FR2982022A3 - Deformation measuring device for measuring and storing deformation of object i.e. landing gear leg, has cover covering base secured to landing gear leg, where cover is coupled in elongation with base via non-return unit - Google Patents

Deformation measuring device for measuring and storing deformation of object i.e. landing gear leg, has cover covering base secured to landing gear leg, where cover is coupled in elongation with base via non-return unit Download PDF

Info

Publication number
FR2982022A3
FR2982022A3 FR1159805A FR1159805A FR2982022A3 FR 2982022 A3 FR2982022 A3 FR 2982022A3 FR 1159805 A FR1159805 A FR 1159805A FR 1159805 A FR1159805 A FR 1159805A FR 2982022 A3 FR2982022 A3 FR 2982022A3
Authority
FR
France
Prior art keywords
cover
landing gear
gear leg
deformation
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1159805A
Other languages
French (fr)
Inventor
Marc Renauld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECT IND
TECH MODERNES D EXTENSIOMETRIE TME
Original Assignee
ECT IND
TECH MODERNES D EXTENSIOMETRIE TME
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECT IND, TECH MODERNES D EXTENSIOMETRIE TME filed Critical ECT IND
Priority to FR1159805A priority Critical patent/FR2982022A3/en
Priority to FR1252188A priority patent/FR2982020A1/en
Priority to FR1252189A priority patent/FR2982018A1/en
Publication of FR2982022A3 publication Critical patent/FR2982022A3/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
    • G01K11/265Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies using surface acoustic wave [SAW]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • G01L1/165Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators with acoustic surface waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element
    • G01L9/0025Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element with acoustic surface waves

Abstract

The device (30) has a base (31) intended to be secured to a surface of an object i.e. landing gear leg, and a cover (32) covering the base, where the cover is coupled in elongation with the base via a non-return unit. The cover includes two parallel wings (32a, 32b) that extend orthogonally from a face of the cover. The base includes a notch close to the inner face of one of the wings, and the non-return unit includes two corners that extend in the notch, where a surface acoustic wave (SAW) sensor (33) is sensitive to the elongation of the cover.

Description

SYSTEME DE MESURE DE CONTRAINTES AUTONOME L'invention porte sur un système de mesure de contraintes sans apport de courant, capable de transmettre, sans fil, des données en temps réel, de stocker et de transmettre la valeur de contrainte maxi détectée. Ce système de mesure permet aussi d'être discriminé parmi plusieurs systèmes identiques, donc localisé. Les mesures de contraintes permettent des mesures de grandeurs physiques telles que, micro déformations, effort, température, pression, selon leur emplacement sur un corps de référence. DESCRIPTION 1 Des systèmes de mesure sans apport de courant sont connus sous la dénomination américaine SAW pour Surface Accoustic Waves. Le principe a été décrit pour la première fois en 1885 par Lord Rayleigh, il est rappelé en figure 1. L'apport d'énergie est constitué par une excitation par une onde radio fréquence possédant une certaine largeur de bande reçue sur un premier réflecteur récepteur. Cet apport d'énergie est transformé en onde acoustique par le substrat piézoélectrique à une fréquence propre proche de la fréquence d'excitation. L'onde acoustique se déplace le long du substrat et transmet à son tour une énergie à un second réflecteur émetteur. Une antenne en sortie permet de récupérer un signal RF. La fréquence d'excitation est par exemple centrée sur 2,45 GHz. L'invention utilise ce principe pour mesurer des contraintes en collant le substrat piézoélectrique sur un matériau soumis à des contraintes, donc des micro déformations qui vont modifier la fréquence propre. Ces modifications de fréquence reflètent directement les variations de contrainte, de température ou de pression selon la disposition du capteur et ce qu'on souhaite mesurer. Dans le cas où plusieurs de ces jauges sont placées dans le champ d'apport d'énergie, leur réponse en fréquence doit être différente pour discriminer chacune des jauges. Cette solution trouve rapidement ses limites lorsque l'on veut une multitude de jauges et une fréquence d'excitation unique. L'invention propose de placer sur chaque jauge plusieurs (p) réflecteurs possédant chacun une fréquence propre différente f, parmi un nombre prédéterminé (n) de fréquences utilisables dans la bande de la fréquence d'excitation F. Une déformation du capteur par exemple sous l'effet d'une contrainte modifie légèrement la fréquence propre de chaque réflecteur à l'intérieur d'une plage de fréquences. Une plage d'une fréquence ne doit pas déborder sur les plages des fréquences voisines de façon à rester distincte des autres fréquences. Par exemple : Plage 1 : de f0 à f0 + delta-f, Plage 2 : de fl à fl + delta-f avec fl > f0 + delta-f, Plage 3 : de f2 à f2 + delta-f avec f2 > fl + delta-f, Etc. Chaque émetteur transmet à l'intérieur d'une plage de fréquence centrée sur sa fréquence de référence. La détermination du nombre de plages disponibles dépend notamment du delta-f et de la bande passante de signal d'apport. The invention relates to a current-less constraint measurement system capable of wirelessly transmitting real-time data, storing and transmitting the detected maximum stress value. This measurement system also allows to be discriminated among several identical systems, so localized. Stress measurements allow measurements of physical quantities such as, micro deformations, stress, temperature, pressure, depending on their location on a reference body. DESCRIPTION 1 Current-less measurement systems are known by the US SAW name for Surface Accoustic Waves. The principle was described for the first time in 1885 by Lord Rayleigh, it is recalled in Figure 1. The energy input is constituted by an excitation by a radio frequency wave having a certain bandwidth received on a first receiver reflector . This energy input is transformed into an acoustic wave by the piezoelectric substrate at a natural frequency close to the excitation frequency. The acoustic wave travels along the substrate and in turn transmits energy to a second emitter reflector. An output antenna is used to recover an RF signal. The excitation frequency is for example centered on 2.45 GHz. The invention uses this principle to measure stresses by bonding the piezoelectric substrate on a material subjected to stresses, and thus micro-deformations which will modify the natural frequency. These frequency changes directly reflect the variations in stress, temperature or pressure depending on the arrangement of the sensor and what one wishes to measure. In the case where several of these gauges are placed in the energy supply field, their frequency response must be different to discriminate each of the gauges. This solution quickly finds its limits when one wants a multitude of gauges and a unique excitation frequency. The invention proposes to place on each gauge several (p) reflectors each having a different natural frequency f, from a predetermined number (n) of frequencies usable in the band of the excitation frequency F. A deformation of the sensor for example under the effect of a constraint slightly modifies the natural frequency of each reflector within a range of frequencies. A range of one frequency may not overlap the neighboring frequency ranges so as to remain distinct from other frequencies. For example: Range 1: from f0 to f0 + delta-f, Range 2: from fl to fl + delta-f with fl> f0 + delta-f, Range 3: from f2 to f2 + delta-f with f2> fl + delta-f, Etc. Each transmitter transmits within a frequency range centered on its reference frequency. The determination of the number of available ranges depends in particular on the delta-f and the input signal bandwidth.

Chaque jauge doit comporter une combinaison unique de fréquences propres. Exemple. Imaginons une bande de fréquence où 10 plages de fréquences sont disponibles, sans chevauchement d'une plage sur l'autre, et 3 réflecteurs par jauge dont la séquence est unique. Fréquences : fo, fl, f2, f3, f4, f5, f6, f7, f8, f9 Jauge 1 : f0, fl, f2 Jauge 2 : f0, fl, f3 Jauge 3 : f0, fl, f4 Jauge 8 : f0, fl, f9 Jauge 9 : f0, f2, f3 Et ainsi de suite. Par exemple : La jauge 1 est soumise à une contrainte, les fréquences f0, fl et f2 se décalent en f0+3' f1+3' f2+3,. La jauge 2 n'est soumise à aucune contrainte. La jauge 3 est soumise à une contrainte, les fréquences f0, fl, et f4 se décalent en f0+8, f1+8, f4+15. Le récepteur qui scanne les fréquences émises passe de l'état 1 à l'état 2 comme représenté en figure 2. Dans cette figure les écarts A et Ô sont représentés comme étant positifs, mais les écarts à la fréquence propre peuvent être négatifs. Etat 1 : on a les fréquences f0, fl, f2, f3 et f4. Etat 2 : on a les fréquences f0, f0+8, f0+3' fl, f1+8, f1+3' f2+8, f3, f4+3,. Jauge 1 avec contrainte : fréquences f0+8, f1+8, f2+15 (en gris). Jauge 2 : sans contrainte : fréquences f0, fl, f3 (en blanc). Jauge 3 avec contrainte : fréquences f0+3' f1+3' f4+3, (en noir). La combinaison des fréquences mesurées dans chaque plage permet d'identifier de façon unique les jauges qui ont émis ces fréquences, à l'exception de la situation sans contrainte où seule les fréquences de référence sont observées. On voit que l'une des conditions du fonctionnement du système est que les plages ne se chevauchent pas. Avantageusement le décalage en fréquence provoqué par une contrainte sur une jauge est identique pour chaque plage de fréquence. Si ce n'est pas le cas (par exemple à cause de réponses non linéaires), l'identification des jauges est encore possible à condition que ces non linéarités soient connues. Le nombre de jauges discernables est de 0103 = 120 alors qu'avec une fréquence unique par jauge il n'est possible de discerner que 10 jauges. Si l'on imprime 4 fréquences sur 10 sur chaque jauges l'on peut alors discerner 0104 = 210 jauges De façon plus générale, l'invention couvre également un procédé de détermination des contraintes subies par plusieurs jauges en distinguant chaque jauge avec une seule fréquence d'excitation F possédant une largeur de bande. Les jauges émettent chacune plusieurs fréquences (p) parmi plusieurs fréquences (n) prédéterminées à l'intérieur de la bande de fréquence. Le procédé comporte les étapes suivantes : - exciter les jauges avec la fréquence F, - recevoir les fréquences émises en réponse par chaque réflecteur de chaque jauge, - calculer les décalages en fréquence pour chacune de ces fréquences et les attribuer aux fréquences de référence, - attribuer à chaque jauge les décalages en fréquence de ses réflecteurs, - calculer la contrainte subie par chaque jauge. Each gauge must have a unique combination of eigenfrequencies. Example. Imagine a frequency band where 10 frequency ranges are available, without overlapping one range on the other, and 3 reflectors per gauge whose sequence is unique. Frequencies: fo, fl, f2, f3, f4, f5, f6, f7, f8, f9 Gauge 1: f0, fl, f2 Gauge 2: f0, fl, f3 Gauge 3: f0, fl, f4 Gauge 8: f0, fl, f9 Gauge 9: f0, f2, f3 And so on. For example: The gauge 1 is stressed, the frequencies f0, f1 and f2 are shifted to f0 + 3 'f1 + 3' f2 + 3,. Gauge 2 is not subject to any constraints. Gauge 3 is stressed, the frequencies f0, f1 and f4 are shifted to f0 + 8, f1 + 8, f4 + 15. The receiver that scans the transmitted frequencies goes from state 1 to state 2 as shown in FIG. 2. In this figure the differences A and Ô are represented as being positive, but the deviations to the natural frequency can be negative. State 1: we have the frequencies f0, fl, f2, f3 and f4. State 2: We have the frequencies f0, f0 + 8, f0 + 3 ', f1 + 8, f1 + 3' f2 + 8, f3, f4 + 3,. Gauge 1 with constraint: frequencies f0 + 8, f1 + 8, f2 + 15 (in gray). Gauge 2: without constraint: frequencies f0, fl, f3 (in white). Gauge 3 with constraint: frequencies f0 + 3 'f1 + 3' f4 + 3, (in black). The combination of the frequencies measured in each range makes it possible to uniquely identify the gauges that emitted these frequencies, with the exception of the situation without constraint where only the reference frequencies are observed. It can be seen that one of the conditions of operation of the system is that the beaches do not overlap. Advantageously, the frequency offset caused by a constraint on a gauge is identical for each frequency range. If this is not the case (for example because of nonlinear responses), the identification of the gauges is still possible provided that these nonlinearities are known. The number of discernible gauges is 0103 = 120 whereas with a single frequency per gauge it is possible to discern only 10 gauges. If 4 out of 10 frequencies are printed on each gauge, then 0104 = 210 gages can be discerned. More generally, the invention also covers a method of determining the stresses experienced by several gages by distinguishing each gage with a single frequency. F excitation having a bandwidth. The gauges each emit several frequencies (p) among several predetermined frequencies (n) within the frequency band. The method comprises the following steps: - excite the gauges with the frequency F, - receive the frequencies emitted in response by each reflector of each gauge, - calculate the frequency offsets for each of these frequencies and assign them to the reference frequencies, - assign to each gauge the frequency offsets of its reflectors, - calculate the stress experienced by each gauge.

DESCRIPTION 2 La figure 3 représente un ensemble mécanique pour la mesure et la mémorisation d'une contrainte maximale subie par un support. La figure 4 représente cet ensemble mécanique vu de dessous. Partie mécanique de mémorisation de la contrainte. La variation de contrainte que l'on veut mesurer est liée à la variation d'élongation de l'élément à mesurer. Le mécanisme comprend 3 éléments : - La base : elle est collée au support à mesurer. - Le capot : il est libre du support à mesurer mais lié en longueur a la base car il comporte un premier (1) et un deuxième (2) retours à ses extrémités respectives de sorte qu'il enserre la base. Le premier retour (1) a une forme de V aplati dont la pointe est tournée vers l'intérieur du mécanisme. - Les coins de blocage : ils sont libres du support à mesurer. Ces coins sont liés entre eux par un élément élastique qui tend constamment à les rapprocher. Ils sont en forme de trapèze et maintenus en place de la façon suivante : - les côtés inclinés prennent appui contre et peuvent coulisser sur les faces du premier retour en forme de V, - les côtés opposés à ces côtés inclinés prennent appui contre et peuvent coulisser sur un troisième (3) retour du capot situé entre le premier et le deuxième retour. L'ensemble s'allonge sous l'influence de 2 facteurs : la température et la contrainte. La température : les éléments qui constituent cet ensemble mécanique ont des coefficients d'allongement thermique identiques. Tout s'allonge sans modification mécanique. La contrainte : la base s'allonge et allonge le capot. Cet allongement du capot libère les coins et leur permet de glisser sur le premier (1) et le troisième (3) retour du capot et de se rapprocher grâce à l'élément élastique. Ce rapprochement est irréversible par arc-boutement des coins contre les faces du premier retour (1) en V aplati. L'ensemble mécanique conserve en « mémoire » la contrainte qui a provoqué l'allongement de la base. Si la contrainte se réduit, la base se rétracte mais le capot reste à sa nouvelle longueur. Il faut une contrainte plus importante que la précédente pour que le capot s'allonge de nouveau et conserve cette élongation. Il s'agit donc d'une mémorisation de la contrainte maximum subie par la base. Mesure. DESCRIPTION 2 FIG. 3 represents a mechanical assembly for measuring and storing a maximum stress experienced by a support. Figure 4 shows this mechanical assembly seen from below. Mechanical part of constraint storage. The variation of stress that one wants to measure is related to the variation of elongation of the element to be measured. The mechanism comprises 3 elements: - The base: it is glued to the support to be measured. - The cover: it is free of the support to be measured but bound in length to the base because it has a first (1) and a second (2) returns at its respective ends so that it encloses the base. The first return (1) has a flattened V shape whose tip is turned towards the inside of the mechanism. - Blocking wedges: they are free of the support to be measured. These corners are interconnected by an elastic element that constantly tends to bring them closer together. They are trapezoidal shaped and held in place as follows: - the inclined sides bear against and can slide on the faces of the first V-shaped return, - the opposite sides to these inclined sides bear against and can slide on a third (3) return of the hood located between the first and the second return. The whole is extended under the influence of 2 factors: temperature and stress. Temperature: the elements that constitute this mechanical assembly have identical coefficients of thermal elongation. Everything goes on without mechanical modification. The constraint: the base extends and extends the hood. This elongation of the hood frees the corners and allows them to slide on the first (1) and third (3) back of the hood and to get closer thanks to the elastic element. This approximation is irreversible by bracing the corners against the faces of the first return (1) V flattened. The mechanical assembly keeps in "memory" the stress which caused the elongation of the base. If the constraint is reduced, the base retracts but the hood remains at its new length. It takes a greater stress than the previous one for the hood to stretch again and keep this elongation. It is thus a memorization of the maximum stress undergone by the base. Measured.

Claims (1)

REVENDICATIONS1. Le capot possède 2 jauges SAW, une première jauge REVENDICATIONS1. Le capot possède 2 jauges SAW, une première jauge (SAW1) sensible à l'élongation du capot, un seconde jauge (SAW2) placée sur une zone neutre du capot qui n'est sensible qu'à la température et donc peut la mesurer. La lecture de la première jauge (SAW1) est fonction à la fois de la contrainte maximale subie par le support et de la température au moment de la lecture. La lecture de la seconde jauge (SAW2) n'est fonction que de la température au moment de la lecture. La mesure de la contrainte maximum est donc représentée par la différence entre ces deux lectures. On peut donc connaître la contrainte maximum quelle que soit la température de fonctionnement, mais aussi quelle que soit la température au moment de la récolte des données. REVENDICATIONS1. The hood has 2 SAW gauges, a first gauge CLAIMS1. The hood has 2 SAW gauges, a first gauge (SAW1) sensitive to the elongation of the hood, a second gauge (SAW2) placed on a neutral zone of the hood which is sensitive to temperature and therefore can measure it. The reading of the first gauge (SAW1) is a function of both the maximum stress sustained by the medium and the temperature at the time of reading. The reading of the second gauge (SAW2) depends only on the temperature at the time of reading. The measure of the maximum stress is therefore represented by the difference between these two readings. We can therefore know the maximum stress whatever the operating temperature, but also whatever the temperature at the time of data collection.
FR1159805A 2011-10-28 2011-10-28 Deformation measuring device for measuring and storing deformation of object i.e. landing gear leg, has cover covering base secured to landing gear leg, where cover is coupled in elongation with base via non-return unit Pending FR2982022A3 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1159805A FR2982022A3 (en) 2011-10-28 2011-10-28 Deformation measuring device for measuring and storing deformation of object i.e. landing gear leg, has cover covering base secured to landing gear leg, where cover is coupled in elongation with base via non-return unit
FR1252188A FR2982020A1 (en) 2011-10-28 2012-03-12 SYSTEM FOR SIMULTANEOUS MEASUREMENT OF PHYSICAL SIZES USING MULTI-FREQUENCY CONSTRAINTS GAUGES.
FR1252189A FR2982018A1 (en) 2011-10-28 2012-03-12 DEVICE FOR MEASURING AND STORING MAXIMUM DEFORMATION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1159805A FR2982022A3 (en) 2011-10-28 2011-10-28 Deformation measuring device for measuring and storing deformation of object i.e. landing gear leg, has cover covering base secured to landing gear leg, where cover is coupled in elongation with base via non-return unit

Publications (1)

Publication Number Publication Date
FR2982022A3 true FR2982022A3 (en) 2013-05-03

Family

ID=46062556

Family Applications (3)

Application Number Title Priority Date Filing Date
FR1159805A Pending FR2982022A3 (en) 2011-10-28 2011-10-28 Deformation measuring device for measuring and storing deformation of object i.e. landing gear leg, has cover covering base secured to landing gear leg, where cover is coupled in elongation with base via non-return unit
FR1252188A Withdrawn FR2982020A1 (en) 2011-10-28 2012-03-12 SYSTEM FOR SIMULTANEOUS MEASUREMENT OF PHYSICAL SIZES USING MULTI-FREQUENCY CONSTRAINTS GAUGES.
FR1252189A Withdrawn FR2982018A1 (en) 2011-10-28 2012-03-12 DEVICE FOR MEASURING AND STORING MAXIMUM DEFORMATION.

Family Applications After (2)

Application Number Title Priority Date Filing Date
FR1252188A Withdrawn FR2982020A1 (en) 2011-10-28 2012-03-12 SYSTEM FOR SIMULTANEOUS MEASUREMENT OF PHYSICAL SIZES USING MULTI-FREQUENCY CONSTRAINTS GAUGES.
FR1252189A Withdrawn FR2982018A1 (en) 2011-10-28 2012-03-12 DEVICE FOR MEASURING AND STORING MAXIMUM DEFORMATION.

Country Status (1)

Country Link
FR (3) FR2982022A3 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7605461U1 (en) * 1976-02-24 1976-06-16 W. Semer Kg, 5161 Girbelsrath ROD HOLDER FOR A TELESCOPIC SPRING ROD, PARTICULARLY FOR SUSPENSING SHOWER CURTAINS
EP1372104A3 (en) * 1996-11-28 2005-12-28 Gordian Holding Corporation Radio frequency reading system
GB2352814B (en) * 1999-07-28 2003-04-09 Transense Technologies Plc Pressure monitor system
WO2004061761A1 (en) * 2002-12-27 2004-07-22 Aruze Corp. Card medium with built-in resonance tag, method for producing card medium, and object identifying device
US7623037B1 (en) * 2005-02-08 2009-11-24 University Of Central Florida Research Foundation, Inc. Multi-transducer/antenna surface acoustic wave device sensor and tag
US7633206B2 (en) * 2007-07-26 2009-12-15 Delaware Capital Formation, Inc. Reflective and slanted array channelized sensor arrays
US8094008B2 (en) * 2007-11-09 2012-01-10 Applied Sensor Research & Development Corporation Coded acoustic wave sensors and system using time diversity

Also Published As

Publication number Publication date
FR2982018A1 (en) 2013-05-03
FR2982020A1 (en) 2013-05-03

Similar Documents

Publication Publication Date Title
EP1056985B1 (en) Tensile testing sensor for measuring mechanical jamming deformations on first installation and automatic calibrating based on said jamming
FR2496893A1 (en) RING INTERFEROMETER
FR2950691A1 (en) SEALED PRESSURE MEASURING MEMBER
KR20120085653A (en) Optical mems device and remote sensing system utilizing the same
CN102435421A (en) Test method and test system for polarization of semiconductor laser
EP2824520A1 (en) Acoustic identification of a mechanical watch movement
FR2956738A1 (en) DEVICE FOR MEASURING TORSIONS, FLEXIONS OR OTHER DEFORMATIONS AND METHOD FOR MANUFACTURING SUCH A DEVICE
FR2847373A1 (en) Autonomous energy source tyre pressure indicator having transducer converting ambient energy/alternating energy and modulable high frequency reflector modulation varying input value
FR3030744A1 (en) SYSTEM FOR EVALUATING THE CONDITION OF A TIRE
FR3030743A1 (en) SYSTEM FOR EVALUATING THE CONDITION OF A TIRE WITH A DEVICE FOR DETECTING THE MEANING SENSE
FR2995995A1 (en) PRESSURE SENSOR BASED ON NANOJAUGES COUPLEES WITH A RESONATOR
FR2832804A1 (en) Accelerometer with temperature correction uses two piezoelectric resonators whose frequencies are measured to determine temperature corrected acceleration
FR2982022A3 (en) Deformation measuring device for measuring and storing deformation of object i.e. landing gear leg, has cover covering base secured to landing gear leg, where cover is coupled in elongation with base via non-return unit
FR2857092A1 (en) Dynamic load measuring sensor for roadway, has conducting cap forming interface between surface on which pressure is to be applied and electromagnetic loop, where pressure reduces loops reactance and inductance to measure load
FR2789171A1 (en) MONOLITHIC STRUCTURE OF A VIBRATING GYROMETER
FR2478319A1 (en) LASER ROTATION SPEED SENSOR IN RING
EP0458752B1 (en) Method for measuring the angle of incidence of a light beam, measuring device for carrying out the method, and distance measuring device utilising same
FR3094480A1 (en) Acoustic wave sensor and interrogation thereof
CA2664544C (en) Microwave device for controlling a material
FR2727202A1 (en) MASS FLOW METER
EP3914882B1 (en) System and method for measuring the filling level of a fluid container by means of acoustic waves
WO2011110437A1 (en) Device for quantifying the degassing of a piece of equipment arranged in a vacuum chamber
FR3017458A1 (en) TORQUE MEASURING DEVICE FOR TURBOMACHINE TREE.
EP2461166B1 (en) System for measuring the radial velocity of a mobile device
FR2943416A1 (en) Temperature sensor for measuring temperature of blood bag in medical field, has board with secondary part defined by insulation zone arranged between primary and secondary parts to limit heat transfer from primary part toward secondary part