FR2978681A1 - Partially converting gaseous mixture containing carbon monoxide and hydrogen into hydrocarbon mixture, comprises contacting gaseous mixture with solid catalyst comprising porous support and an active phase - Google Patents

Partially converting gaseous mixture containing carbon monoxide and hydrogen into hydrocarbon mixture, comprises contacting gaseous mixture with solid catalyst comprising porous support and an active phase Download PDF

Info

Publication number
FR2978681A1
FR2978681A1 FR1101704A FR1101704A FR2978681A1 FR 2978681 A1 FR2978681 A1 FR 2978681A1 FR 1101704 A FR1101704 A FR 1101704A FR 1101704 A FR1101704 A FR 1101704A FR 2978681 A1 FR2978681 A1 FR 2978681A1
Authority
FR
France
Prior art keywords
active phase
catalyst
sic
support
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1101704A
Other languages
French (fr)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Strasbourg
TotalEnergies SE
Sicat LLC
Original Assignee
Centre National de la Recherche Scientifique CNRS
Total SE
Universite de Strasbourg
Sicat LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Total SE, Universite de Strasbourg, Sicat LLC filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR1101704A priority Critical patent/FR2978681A1/en
Priority to FR1157096A priority patent/FR2978682B1/en
Priority to BR112013030497A priority patent/BR112013030497A2/en
Priority to AU2012264468A priority patent/AU2012264468B2/en
Priority to EP12729686.1A priority patent/EP2714848B1/en
Priority to PCT/FR2012/051224 priority patent/WO2012164231A1/en
Priority to AP2013007309A priority patent/AP3640A/en
Priority to CN201280026248.4A priority patent/CN103748193B/en
Priority to US14/123,235 priority patent/US9493381B2/en
Priority to EA201391784A priority patent/EA025257B1/en
Publication of FR2978681A1 publication Critical patent/FR2978681A1/en
Priority to ZA2013/08854A priority patent/ZA201308854B/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

Catalytic process for at least partially converting a gaseous mixture containing carbon monoxide and hydrogen into a hydrocarbon mixture, comprises contacting the gaseous mixture with a solid catalyst, where the solid catalyst comprises a porous support comprising a composite material containing silicon and titanium carbide and/or titanium oxide, and an active phase. An independent claim is included for preparing and activating the catalyst, comprising depositing an active phase precursor on the porous support and activating at least one active phase on active phase precursor to form the active phase.

Description

Procédé catalytique pour la conversion d'un gaz de synthèse en hydrocarbures Domaine technique de l'invention La présente invention concerne la synthèse Fischer-Tropsch, et plus particulièrement les catalyseurs pour cette réaction. Elle concerne un nouveau catalyseur qui comprend du cobalt déposé sur un support de SiC/TiC et/ou SiC/TiO2 à haute surface spécifique et un procédé de préparation pour ce catalyseur. Etat de la technique La synthèse de Fischer - Tropsch (appelé ici aussi « SFT »), inventée en 1923, transforme un mélange de CO et de H2 appelé « gaz de synthèse », obtenu à partir de matières premières carbonées (notamment le charbon), en un mélange d'hydrocarbures gazeux et liquides. La réaction est exothermique et procède en présence d'un catalyseur. Depuis quelque temps, on observe un regain d'intérêt pour ce procédé. Les raisons sont multiples : le prix élevé du pétrole brut, les contraintes législatives sur les carburants et les émissions qu'engendre leur combustion, des considérations géopolitiques visant à réduire la dépendance énergétique (surtout aux Etats-Unis qui disposent de la plus grande réserve de charbon au monde), les besoins énergétiques croissants de la Chine et de l'Inde (deux pays qui disposent de peu de ressources en pétrole, mais d'énormes ressources de charbon), la possibilité d'utiliser de la biomasse (la seule ressource carbonée inépuisable) pour la SFT. TECHNICAL FIELD OF THE INVENTION The present invention relates to Fischer-Tropsch synthesis, and more particularly to catalysts for this reaction. It relates to a new catalyst which comprises cobalt deposited on a support of SiC / TiC and / or SiC / TiO2 with a high specific surface area and a preparation process for this catalyst. State of the art The Fischer-Tropsch synthesis (here also called "SFT"), invented in 1923, transforms a mixture of CO and H2 called "synthesis gas", obtained from carbonaceous raw materials (in particular coal). in a mixture of gaseous and liquid hydrocarbons. The reaction is exothermic and proceeds in the presence of a catalyst. For some time, there has been a renewed interest in this process. There are many reasons for this: the high price of crude oil, the legislative constraints on fuels and the emissions that result from their combustion, geopolitical considerations aimed at reducing energy dependence (especially in the United States, which has the greatest the growing energy needs of China and India (two countries with few oil resources, but huge coal resources), the possibility of using biomass (the only resource inexhaustible carbon) for SFT.

Ainsi, de très nombreuses recherches ont porté sur la géométrie du réacteur, sur le catalyseur, et sur les conditions de réaction. En particulier, le catalyseur a fait l'objet de très nombreuses recherches, tant pour la composition et structure microscopique de la phase active que pour le support du catalyseur. D'une manière générale, il existe deux grandes familles de procédés, exploitant deux types de catalyseurs différents, qui ont été utilisés pour la SFT: Les procédés de type slurry (utilisant un catalyseur à base de cobalt ou de fer) et les procédés en lit fixe (dont la plupart utilisent un catalyseur à base de cobalt). Le catalyseur pour la SFT doit successivement casser des liaisons (dissociation de CO et de H2) puis en reformer d'autres (hydrogénation et croissance de chaîne par30 couplage C-C à la surface du métal). On sait que les métaux permettant la meilleure dissociation et le meilleur couplage sont ceux du groupe 8 (Co, Fe et Ru) ainsi que le Ni. Le choix du métal est déterminant à la fois pour la sélectivité et pour le prix du catalyseur. Thus, a great deal of research has focused on the geometry of the reactor, the catalyst, and the reaction conditions. In particular, the catalyst has been the subject of much research, both for the composition and microscopic structure of the active phase for the support of the catalyst. In general, there are two main families of processes, exploiting two different types of catalysts, which have been used for SFT: Slurry processes (using a cobalt or iron-based catalyst) and processes for fixed bed (most of which use a cobalt-based catalyst). The catalyst for SFT must successively break bonds (dissociation of CO and H2) and then reform others (hydrogenation and chain growth by C-C coupling to the metal surface). It is known that the metals allowing the best dissociation and the best coupling are those of group 8 (Co, Fe and Ru) as well as Ni. The choice of metal is decisive for both the selectivity and the price of the catalyst.

On sait que les catalyseurs à base de fer forment une grande quantité de CO2 via la réaction appelée « water gas shift » (CO+H2O=CO2+H2). De tels catalyseurs ne conviennent pas pour le GTL (« Gas To Liquids ») mais plutôt pour des gaz de synthèse issus de la gazéification du charbon ou de la biomasse (« Coal to Liquids », « Biomass to Liquids », faible ratio H2/CO). Par ailleurs ces catalyseurs produisent des oléfines linéaires aussi bien que des alcools, aldéhydes et cétones. Le ruthénium est le plus actif mais aussi le plus cher. C'est donc le cobalt, qui présente le meilleur équilibre entre stabilité, activité et prix qui est majoritairement utilisé. It is known that iron catalysts form a large amount of CO2 via the reaction called "water gas shift" (CO + H2O = CO2 + H2). Such catalysts are not suitable for GTL ("Gas To Liquids") but rather for synthesis gas from the gasification of coal or biomass ("Coal to Liquids", "Biomass to Liquids", low ratio H2 / CO). Moreover, these catalysts produce linear olefins as well as alcohols, aldehydes and ketones. Ruthenium is the most active but also the most expensive. It is therefore cobalt, which has the best balance between stability, activity and price which is mainly used.

Les catalyseurs à base de cobalt connus comprennent en général une phase active comprenant entre 10 et 30% massiques de cobalt, un second métal comme promoteur (typiquement Pt, Ru ou Pd) et un dopant structurel (typiquement Zr, Ba, La), déposés sur un support à base d'oxyde réfractaire à haute surface spécifique (souvent modifié par un dopant structurel). On sait que la taille des particules de Co est déterminante pour l'activité et la sélectivité du catalyseur FT. Au-dessous de 8 nm, l'activité et la sélectivité sont mauvaises et l'optimum semble se situer autours de 8 à 10 nm. The known cobalt-based catalysts generally comprise an active phase comprising between 10 and 30% by weight of cobalt, a second metal as promoter (typically Pt, Ru or Pd) and a structural dopant (typically Zr, Ba, La), deposited on a high surface area refractory oxide-based support (often modified by a structural dopant). It is known that the size of the Co particles is decisive for the activity and the selectivity of the FT catalyst. Below 8 nm, the activity and selectivity are poor and the optimum seems to be around 8 to 10 nm.

Le cobalt doit se trouver sous sa forme métallique, et donc la réduction de son oxyde doit être complète. Or, sur les supports à base d'oxydes (typiquement SiO2, AI2O3, TiO2 ou une combinaison de ces derniers), les petites particules de Co sont difficilement réductibles du fait de la forte interaction métal/support. Pour cette raison, un promoteur (typiquement Ru, Pt, Pd) est associé à la phase active pour favoriser sa réduction. Ces métaux nobles sont connus pour former des particules bimétalliques et des alliages qui influent sur la sélectivité et l'activité et sur la dispersion du Co ; par ailleurs ils inhibent la désactivation. Cependant, une trop grande quantité de promoteur peut bloquer les sites actifs du Co. L'addition de Zr à un support de catalyseur à base d'alumine favorise la réduction des oxydes de cobalt déposés sur ce support ; le Zr limite la formation d'aluminates. Les particules de cobalt doivent être convenablement dispersées sur le support. Si la dispersion des particules est mauvaise, les sites actifs du cobalt ne sont pas employés de manière optimale. En revanche une bonne dispersion des particules de cobalt entraine une augmentation de l'activité catalytique telle que la conversion du monoxyde de carbone. D'une manière générale, le support de catalyseur joue un rôle très important dans la SFT. Sur le plan fonctionnel, il doit pouvoir disperser les particules de Co, avoir une très bonne résistance mécanique (surtout en mode « slurry »), et apporter une stabilité thermique aux particules de Co. Par ailleurs, le support doit résister aux conditions hydrothermales et aux acides et alcools présents dans le milieu réactionnel lors de la synthèse Fischer-Tropsch. Or, l'alumine, le dioxyde de titane et la silice ne se montrent pas très stables dans un environnement acide, ou en présence d'alcools. Outre sa pureté, les supports tels que l'alumine, la silice ou le dioxyde de titane doivent être stabilisés pour palier les problèmes de solubilité. The cobalt must be in its metallic form, and therefore the reduction of its oxide must be complete. However, on the supports based on oxides (typically SiO 2, Al 2 O 3, TiO 2 or a combination of these), the small Co particles are hardly reducible due to the strong metal / support interaction. For this reason, a promoter (typically Ru, Pt, Pd) is associated with the active phase to promote its reduction. These noble metals are known to form bimetallic particles and alloys that influence the selectivity and activity and the dispersion of Co; in addition, they inhibit deactivation. However, too much promoter can block the active sites of the Co. The addition of Zr to an alumina catalyst support promotes the reduction of cobalt oxides deposited on this support; Zr limits the formation of aluminates. The cobalt particles must be properly dispersed on the support. If the dispersion of the particles is bad, the cobalt active sites are not used optimally. On the other hand, a good dispersion of the cobalt particles leads to an increase in the catalytic activity such as the conversion of carbon monoxide. In general, the catalyst support plays a very important role in the SFT. Functionally, it must be able to disperse Co particles, have very good mechanical strength (especially in "slurry" mode), and provide thermal stability to Co. particles. Furthermore, the support must withstand hydrothermal conditions and with the acids and alcohols present in the reaction medium during the Fischer-Tropsch synthesis. However, alumina, titanium dioxide and silica are not very stable in an acidic environment, or in the presence of alcohols. In addition to its purity, supports such as alumina, silica or titanium dioxide must be stabilized to overcome solubility problems.

Le brevet US 6,875,720 enseigne l'amélioration de la résistance de l'alumine par protection avec du silicium, du zirconium et du titane ; un support à base de dioxyde de titane (référence P25 ex-Degussa), après transformation en rutile et mise en forme par atomisation est protégé par l'addition de Si. La demande de brevet US 2005/0124490 décrit l'utilisation d'une alumine promue à la silice pour accroitre sa résistance aux acides et aux alcools. Le brevet US 7,163,963 décrit la dopage d'une alumine aux terres rares (notamment La ou Nd) pour accroitre la résistance chimique du support. US Pat. No. 6,875,720 teaches the improvement of the resistance of alumina by protection with silicon, zirconium and titanium; a support based on titanium dioxide (reference P25 ex-Degussa), after transformation into rutile and spray-formed is protected by the addition of Si. Patent Application US 2005/0124490 describes the use of a Alumina promoted with silica to increase its resistance to acids and alcohols. US Pat. No. 7,163,963 describes the doping of a rare earth alumina (in particular La or Nd) to increase the chemical resistance of the support.

Les supports à base d'alumine et de silice sont le plus couramment utilisés, bien qu'un support à base de TiO2 présente également d'excellentes performances. II est habituellement admis par l'homme du métier que le TiO2 mis en forme (notamment sous la forme de granules par extrusion, ou de microsphères par atomisation) présente une résistance mécanique inférieure aux supports oxydes précités. Le brevet US 5,484,757 décrit un procédé de fabrication de supports de catalyseur en TiO2 à tenue mécanique améliorée. Alumina and silica-based supports are the most commonly used, although a TiO2-based carrier also has excellent performance. It is generally accepted by those skilled in the art that the shaped TiO 2 (especially in the form of extrusion granules, or spray microspheres) has a lower mechanical strength to the aforementioned oxide supports. No. 5,484,757 discloses a method of manufacturing TiO2 catalyst supports with improved mechanical strength.

Dans l'article paru dans Journal of Catalysis 236 (2005) 139-152, il a été démontré que des catalyseurs à base de cobalt et cobalt promu au rhénium déposés sur du TiO2 rutile de faible surface spécifique ayant des macropores (diamètre 790 nm) étaient plus sélectifs que ses homologues préparés sur y-alumine et silice. Les auteurs ont noté que la distribution poreuse du support a une très grande influence sur la taille et la morphologie des particules de cobalt. In the article published in Journal of Catalysis 236 (2005) 139-152, it has been demonstrated that rhenium promoted cobalt and cobalt catalysts deposited on low surface area rutile TiO 2 having macropores (diameter 790 nm) were more selective than its counterparts prepared on y-alumina and silica. The authors noted that the porous distribution of the support has a very large influence on the size and morphology of the cobalt particles.

Pour soustraire l'influence de la nature chimique du support la même équipe de recherche a étudié l'influence de la taille des pores de différents supports en alumine envers la sélectivité C5+ (c'est-à-dire la sélectivité envers des hydrocarbures possédant au moins 5 atomes de carbone). Il a été clairement démontré que plus le diamètre moyen des pores est grand meilleure sera la sélectivité en C5+. To subtract the influence of the chemical nature of the support, the same research team studied the influence of the pore size of different alumina substrates on the C5 + selectivity (that is, the selectivity towards hydrocarbons having at least minus 5 carbon atoms). It has been clearly demonstrated that the higher the average pore diameter, the better the selectivity to C5 +.

Dans l'article Journal of Catalysis 259 (2008) 161-164, les auteurs se sont affranchis de la taille des particules de cobalt et ont synthétisé plusieurs séries de catalyseurs préparés sur y-AI203 et a-AI203. Les catalyseurs préparés sur alumine alpha se sont montrés systématiquement plus sélectifs que leurs homologues préparés sur alumine gamma. Dans l'article Applied Catalysis A : General 154 (2010) 162-182, les auteurs ont observé l'influence de la phase cristallographique d'une même alumine mais ayant subi des traitements thermiques à différentes températures. Plus la taille des pores est importante, plus la sélectivité en C5+ est améliorée. Les catalyseurs préparés sur une alumine alpha de faible volume poreux et de faible surface spécifique se sont montrés plus sélectifs que leurs homologues préparés sur alumine gamma. In Journal of Catalysis 259 (2008) 161-164, the authors deviated from the size of the cobalt particles and synthesized several series of catalysts prepared on γ-Al 2 O 3 and α-Al 2 O 3. Catalysts prepared on alpha alumina were consistently more selective than their counterparts prepared on gamma alumina. In Applied Catalysis A: General 154 (2010) 162-182, the authors observed the influence of the crystallographic phase of the same alumina but having undergone heat treatments at different temperatures. The larger the pore size, the more the C5 + selectivity is improved. Catalysts prepared on a low pore volume, low volume alpha alumina were more selective than their gamma alumina counterparts.

Dans le brevet US 7,351,679 une y-alumine a été traitée thermiquement pour avoir au moins 10% en masse d'alumine-a et une surface spécifique inférieure à 50 m2/g. Ce document fait référence à l'article « Selectivity control and catalyst design in the Fischer-Tropsch synthesis : sites, pellets and reactors » paru dans Advances in Catalysis, Vol. 39, 1993, p 221-302, qui décrit qu'un maximum de sélectivité C5+ est atteint en concevant un support (ou grain de catalyseur) ayant une diffusion réactifs/produits optimale. En effet, dans les larges pores, les alpha-oléfines auront tendance à désorber avant de prolonger leur chaîne de carbone. Dans les pores étroits, le CO risque d'avoir du mal à diffuser conduisant à un défaut de CO dans le milieu et un enrichissement d'hydrogène. Cet enrichissement va conduire à une hydrogénation des oléfines, diminuant la sélectivité en hydrocarbures plus lourds. In US Pat. No. 7,351,679 an γ-alumina has been heat-treated to have at least 10% by weight of α-alumina and a specific surface area of less than 50 m 2 / g. This document refers to the article "Selectivity control and catalyst design in the Fischer-Tropsch synthesis: sites, pellets and reactors" published in Advances in Catalysis, Vol. 39, 1993, p 221-302, which discloses that a maximum of C5 + selectivity is achieved by designing a carrier (or catalyst grain) having optimal reagent / product diffusion. Indeed, in large pores, alpha-olefins will tend to desorb before extending their carbon chain. In narrow pores, CO may have difficulty diffusing leading to a lack of CO in the medium and hydrogen enrichment. This enrichment will lead to a hydrogenation of olefins, decreasing the selectivity to heavier hydrocarbons.

Un paramètre x, fonction de la taille des particules, de la porosité, de la charge de cobalt et de la dispersion de cobalt, a été introduit pour exprimer la résistance diffusionnelle dans une particule de catalyseur ; il est défini par : x=R200/ro avec : Ro : diamètre de la particule de catalyseur (m) c : porosité du catalyseur O : densité des sites catalystiques (site/m2) rp : rayon moyen des pores (m) L'optimum de la sélectivité C5+ est donné pour une valeur de x comprise entre 500 et 1000 x 1016 m-'. Pour faire varier x, le paramètre le plus sensible est la taille macroscopique du grain de catalyseur. Or en lit fixe, le catalyseur doit avoir une taille supérieure au millimètre pour limiter la perte de charge. En lit fluidisé, la valeur de x est inférieure à l'optimum car on ne peut pas faire varier indépendamment la dispersion du cobalt (surface spécifique du support), le volume poreux et la charge de cobalt. A parameter x, a function of particle size, porosity, cobalt loading, and cobalt dispersion, was introduced to express the diffusional resistance in a catalyst particle; it is defined by: x = R200 / ro with: Ro: diameter of the catalyst particle (m) c: porosity of the catalyst O: density of the catalytic sites (site / m2) rp: average radius of the pores (m) L ' The optimum of the C5 + selectivity is given for a value of x of between 500 and 1000 x 1016 m -1. To vary x, the most sensitive parameter is the macroscopic size of the catalyst grain. Gold in fixed bed, the catalyst must have a size greater than one millimeter to limit the pressure drop. In a fluidized bed, the value of x is lower than the optimum since the dispersion of cobalt (specific surface area of the support), the pore volume and the cobalt charge can not be varied independently.

Le document US 7,351,679 précité propose un catalyseur au cobalt sur une alumine de basse surface spécifique (< 50 m2/g) ayant de larges pores. Une telle alumine peut être obtenue en traitant thermiquement une alumine gamma entre 700 et 1300°C pendant 1 à 15 heures. Idéalement, le support doit contenir au moins 80% d'alumine alpha et une surface spécifique inférieure à 30 m2/g. Un tel support permet de synthétiser un catalyseur pour la réaction de Fischer-Tropsch plus sélectif en C5+. Cependant, la faible surface spécifique du support ne permet pas de déposer une grande quantité de cobalt et les inventeurs se limitent à 12% en masse de cobalt pour ne pas affecter la sélectivité C5+. The above-mentioned US Pat. No. 7,351,679 proposes a cobalt catalyst on a low surface area alumina (<50 m 2 / g) having large pores. Such alumina can be obtained by heat treating a gamma alumina between 700 and 1300 ° C for 1 to 15 hours. Ideally, the support should contain at least 80% alpha alumina and a specific surface area of less than 30 m2 / g. Such a support makes it possible to synthesize a catalyst for the more selective C5 + Fischer-Tropsch reaction. However, the low specific surface area of the support does not make it possible to deposit a large quantity of cobalt and the inventors are limited to 12% by weight of cobalt so as not to affect the C5 + selectivity.

L'homme du métier est donc confronté à un équilibre entre surface spécifique, diamètre des pores (et volume poreux) : plus le matériau contient d'alumine alpha, moins sa surface spécifique sera élevée et plus la taille des pores sera grande ; inversement, plus le matériau contient de phase gamma alumine, plus sa surface spécifique sera importante, en revanche plus les pores seront étroits. Une grande surface spécifique permet une meilleure dispersion du cobalt ce qui se traduit par une meilleure activité (meilleure conversion du monoxyde de carbone) et de larges pores conduisent à une augmentation de sélectivité C5+. Those skilled in the art are therefore faced with a balance between specific surface area, pore diameter (and pore volume): the more alpha alumina material contains, the lower the specific surface area and the larger the pore size; conversely, the more the material contains gamma-alumina phase, the more its specific surface area will be important, however the smaller the pores will be. A large specific surface area allows a better dispersion of the cobalt which results in a better activity (better conversion of carbon monoxide) and large pores lead to an increase of C5 + selectivity.

Il existe donc un besoin de disposer d'un support pouvant résister aux conditions hydrothermales drastiques de la synthèse Fischer-Tropsch, ayant suffisamment de surface spécifique pour disperser la phase active et de larges pores pour améliorer la sélectivité en C5+. There is therefore a need for a support that can withstand the drastic hydrothermal conditions of the Fischer-Tropsch synthesis, having sufficient specific surface area to disperse the active phase and large pores to improve the C5 + selectivity.

Par ailleurs, il existe également un besoin d'avoir un support à base de TiO2 (connu par l'homme de l'art pour améliorer la sélectivité en C5+) et suffisamment stable mécaniquement pour être utilisé dans la réaction de Fischer-Tropsch. On the other hand, there is also a need for TiO2-based support (known to those skilled in the art to improve C5 + selectivity) and sufficiently mechanically stable for use in the Fischer-Tropsch reaction.

Un autre problème des catalyseurs Fischer-Tropsch est lié à leur résistance mécanique. En effet, l'une des exigences d'un catalyseur Fischer-Tropsch utilisé dans un réacteur à lit fluidisé est que les grains de catalyseur doivent maintenir leur intégrité aussi longtemps que possible. En effet, l'une des causes de la diminution de la durée de vie des catalyseurs Fischer-Tropsch est la perte de cobalt actif par attrition. Par ailleurs, les produits de réactions peuvent être pollués par les poudres de catalyseurs formées par leur dégradation mécanique. Bien que donnant de très bons résultats notamment en sélectivité C5+, les supports de TiO2 ne sont pas envisagés en lit fluidisé par manque de résistance à l'attrition. La silice ne semble pas apporter de satisfaction et seule l'alumine modifiée supporte les contraintes du procédé. Comme mentionné ci- dessus, il n'existe cependant pas de matériau qui présente à la fois une grande surface spécifique, c'est à dire au moins supérieurs à 30 m2/g et préférablement supérieure à 50 m2/g ayant en plus de larges pores (supérieurs à 30 nm), et une résistance mécanique acceptable. De plus, compte tenu des résultats prometteurs et plus particulièrement concernant la sélectivité en C5+, il serait avantageux d'avoir un support de catalyseur avec une surface chimique identique ou proche de celle du TiO2, avec préférentiellement une surface spécifique supérieure à 30 m2/g et surtout des propriétés mécaniques permettant au catalyseur d'être employé dans un réacteur à lit fixe et dans un réacteur à lit fluidisé. Another problem of Fischer-Tropsch catalysts is related to their mechanical strength. Indeed, one of the requirements of a Fischer-Tropsch catalyst used in a fluidized bed reactor is that the catalyst grains must maintain their integrity for as long as possible. Indeed, one of the causes of the decrease in the life of the Fischer-Tropsch catalysts is the loss of active cobalt by attrition. Moreover, the reaction products can be polluted by the catalyst powders formed by their mechanical degradation. Although giving very good results, especially in C5 + selectivity, TiO2 supports are not envisaged in a fluidized bed due to lack of resistance to attrition. Silica does not seem to bring satisfaction and only modified alumina supports the constraints of the process. As mentioned above, however, there is no material which has both a large specific surface area, ie at least greater than 30 m 2 / g and preferably greater than 50 m 2 / g, in addition to having a large surface area. pores (greater than 30 nm), and acceptable mechanical strength. In addition, given the promising results and more particularly concerning the C5 + selectivity, it would be advantageous to have a catalyst support with a chemical surface that is identical to or similar to that of TiO 2, with preferably a specific surface area greater than 30 m 2 / g. and especially mechanical properties allowing the catalyst to be used in a fixed bed reactor and in a fluidized bed reactor.

Objets de l'invention Objects of the invention

Le but de la présente invention est de fournir un catalyseur pour la réaction de Fischer-Tropsch extrêmement actif avec une forte sélectivité en C5+. Un autre but de la présente invention est de fournir un support de catalyseur, utilisable notamment pour la réaction de Fischer-Tropsch, présentant une grande robustesse mécanique pour permettre son utilisation dans un lit fluidisé, réputé pour générer de grands dommages aux particules de catalyseurs. The object of the present invention is to provide a catalyst for the highly active Fischer-Tropsch reaction with a high C5 + selectivity. Another object of the present invention is to provide a catalyst support, particularly usable for the Fischer-Tropsch reaction, having a high mechanical strength to allow its use in a fluidized bed, known to generate great damage to the catalyst particles.

Enfin, un autre but de l'invention est de fournir un catalyseur qui offre la possibilité de récupérer la phase active et les éléments dopants des catalyseurs usagés. Finally, another object of the invention is to provide a catalyst which offers the possibility of recovering the active phase and the doping elements of used catalysts.

Par la présente invention, les inventeurs apportent une solution aux problèmes posés en proposant un matériau à base de carbure permettant de modifier de manière quasi indépendante la surface spécifique, le volume macroporeux et la distribution macroporeuse. Ce type de matériau est particulièrement adapté pour réaliser un catalyseur pour la réaction de Fischer-Tropsch, qui pourra être utilisé aussi bien en lit fluidisé qu'en lit fixe. Selon l'invention, ce type de matériau contient au moins une phase de carbure de silicium (SiC), la phase préférée pour le carbure de silicium étant la phase beta, et au moins une phase comportant du titane sous la forme du carbure de titane (TiC) et/ou de l'oxyde de titane (TiO2). By the present invention, the inventors provide a solution to the problems posed by proposing a carbide-based material that makes it possible to modify, almost independently, the specific surface, the macroporous volume and the macroporous distribution. This type of material is particularly suitable for producing a catalyst for the Fischer-Tropsch reaction, which can be used both in fluidized bed and fixed bed. According to the invention, this type of material contains at least one silicon carbide (SiC) phase, the preferred phase for the silicon carbide being the beta phase, and at least one phase comprising titanium in the form of titanium carbide (TiC) and / or titanium oxide (TiO2).

Ce type de matériau peut être soumis à un traitement thermique oxydant qui conduit à l'oxydation partielle ou totale des carbures, et plus particulièrement du TiC en TiO2, ce dernier pouvant se présenter soit sous forme anatase, soit sous forme rutile, ou bien sous la forme d'un mélange des deux, ou encore sous forme amorphe. This type of material may be subjected to an oxidizing heat treatment which leads to the partial or total oxidation of the carbides, and more particularly TiC 2 TiO 2, the latter may be in anatase form, or in rutile form, or under the form of a mixture of the two, or in amorphous form.

Un tel matériau convient aussi bien pour la synthèse de catalyseurs à base de cobalt, qu'à base de fer ou des deux. On peut ajouter des métaux des groupes 7, 8, 9 et 10. Un catalyseur à base de cobalt préparé sur ce nouveau support permet en outre d'accroître l'activité tout en gardant une sélectivité en C5+ très élevée. Such a material is equally suitable for the synthesis of catalysts based on cobalt, iron-based or both. Group 7, 8, 9 and 10 metals can be added. A cobalt-based catalyst prepared on this new support also makes it possible to increase the activity while maintaining a very high C5 + selectivity.

Enfin, un tel matériau permet de réaliser un catalyseur pour la réaction de Fischer-Tropsch économiquement avantageux car la capacité de recyclage des métaux et du support est supérieure que celles connues par l'homme de l'art. Finally, such a material makes it possible to produce a catalyst for the economically advantageous Fischer-Tropsch reaction because the recycling capacity of the metals and the support is greater than those known to those skilled in the art.

25 Un premier objet de l'invention est donc un procédé catalytique de conversion au moins partielle d'un mélange gazeux contenant du CO et du H2 en mélange d'hydrocarbures, comportant une étape de mise en contact dudit mélange gazeux avec un catalyseur solide, ledit catalyseur solide comportant - un support poreux comportant un matériau composite comportant du SiC et un 30 carbure de titane (composite appelé « SiC/TiC ») et/ou un oxyde de titane (composite appelé « SiC/TiO2 »), et - une phase active. A first object of the invention is therefore a catalytic process for at least partial conversion of a gaseous mixture containing CO and H 2 into a hydrocarbon mixture, comprising a step of contacting said gaseous mixture with a solid catalyst, said solid catalyst comprising - a porous support comprising a composite material comprising SiC and a titanium carbide (composite called "SiC / TiC") and / or a titanium oxide (composite called "SiC / TiO2"), and - a active phase.

Ledit support peut se présenter notamment sous la forme de grains, billes, extrudés ou 35 sous la forme de mousse alvéolaire. 20 Dans un mode de réalisation, ladite phase active comprend majoritairement du cobalt ou du fer, et optionnellement l'autre des deux métaux, et optionnellement un ou plusieurs métaux de transition des groupes 7, 8, 9 et/ou 10. Elle peut comprendre également un promoteur, de préférence à une teneur ne dépassant pas 2% massiques. Ledit promoteur peut être sélectionné dans le groupe formé par : ruthénium (promoteur préféré), platine, rhénium, rhodium, iridium, palladium, les terres rares et leurs oxydes, les éléments alcalino-terreux et leurs oxydes. Said support may be in particular in the form of grains, beads, extruded or in the form of cellular foam. In one embodiment, said active phase comprises predominantly cobalt or iron, and optionally the other of the two metals, and optionally one or more transition metals of groups 7, 8, 9 and / or 10. It may comprise also a promoter, preferably at a content not exceeding 2% by weight. Said promoter may be selected from the group consisting of: ruthenium (preferred promoter), platinum, rhenium, rhodium, iridium, palladium, rare earths and their oxides, alkaline earth elements and their oxides.

Dans un autre mode de réalisation, qui peut être combiné avec les autres, ledit support poreux présente une surface spécifique BET supérieure à 5 m2/g, préférentiellement supérieure à 30 m2/g, plus préférentiellement supérieure à 40 m2/g et encore plus préférentiellement supérieure à 60 m2/g. In another embodiment, which can be combined with the others, said porous support has a BET specific surface area greater than 5 m 2 / g, preferably greater than 30 m 2 / g, more preferably greater than 40 m 2 / g and even more preferentially greater than 60 m2 / g.

Dans un autre mode de mode de réalisation, qui peut lui aussi être combiné avec les autres, ledit support poreux présente une surface microporeuse supérieure à 10 m2/g, et de préférence supérieure à 20 m2/g. Avantageusement, son volume poreux se situe dans la gamme 30 nm à 300 nm mesuré par intrusion de mercure est supérieur à 0,12 cm3/g, de préférence supérieure à 0,15 cm3/g et encore plus préférentiellement supérieur à 0,20 cm3/g. In another embodiment, which can also be combined with the others, said porous support has a microporous surface greater than 10 m 2 / g, and preferably greater than 20 m 2 / g. Advantageously, its pore volume is in the range 30 nm to 300 nm measured by mercury intrusion is greater than 0.12 cm3 / g, preferably greater than 0.15 cm3 / g and still more preferably greater than 0.20 cm3. /boy Wut.

Un aspect particulier de l'invention est la réalisation et l'utilisation d'un catalyseur pour la synthèse Fischer-Tropsch qui comprend du cobalt déposé sur un support mixte comportant, d'une part, du 8-SiC et, d'autre part, du TiC et/ou du TiO2, ledit support ayant une surface spécifique supérieure à 30 m2/g, de préférence supérieure à 40 m2/g, et plus particulièrement supérieure à 60 m2/g. A particular aspect of the invention is the production and use of a catalyst for Fischer-Tropsch synthesis which comprises cobalt deposited on a mixed support comprising, on the one hand, 8-SiC and on the other hand , TiC and / or TiO2, said support having a specific surface area greater than 30 m 2 / g, preferably greater than 40 m 2 / g, and more particularly greater than 60 m 2 / g.

On appelle ici le composite non-oxydé comportant du SiC et du TiC « composite SiC/TiC », et le composite comportant du SiC et du TiO2 « composite SiC/TiO2 », sachant que sauf mention contraire et sauf contexte particulier, dans le composite SiC/TiO2 une faible partie du titane pourra être présent sous la forme de carbure ; l'expression « SiC/TiO2/(TiC) » est ici parfois utilisé pour désigner un composite dans lequel le TiC a été incomplètement oxydé en TiO2. The non-oxidized composite comprising SiC and TiC "composite SiC / TiC" is called here, and the composite comprising SiC and TiO2 "composite SiC / TiO2", unless otherwise specified and in a particular context, in the composite. SiC / TiO2 a small portion of the titanium may be present in the form of carbide; the expression "SiC / TiO2 / (TiC)" is here sometimes used to designate a composite in which the TiC has been incompletely oxidized to TiO2.

Préférentiellement le support comporte au moins 0,5% de Ti (notamment sous la forme de TiC et / ou TiO2) et préférentiellement plus de 1%, ces pourcentages étant des pourcentages molaires par rapport à la somme Ti + Si du support ; ils ne prennent pas en compte la phase active. Une teneur molaire en titane comprise entre 0,5% et 15% (et de préférence entre 1% et 10%) est préférée. Preferably the support comprises at least 0.5% of Ti (in particular in the form of TiC and / or TiO2) and preferably more than 1%, these percentages being molar percentages relative to the Ti + Si sum of the support; they do not take into account the active phase. A molar titanium content of between 0.5% and 15% (and preferably between 1% and 10%) is preferred.

Dans un mode de réalisation particulier, on prépare un composite SiC/TiO2 présentant une surface spécifique BET supérieure à 60 m2/g et un volume poreux mesuré par intrusion de mercure supérieur à 0,12 cm3/g pour des pores d'un diamètre compris entre 30 nm et 300 nm. Ce composite est utilisable comme support pour un catalyseur de la synthèse Fischer-Tropsch. Un tel composite peut être préparé par exemple en déposant une source organique de titane (i.e. un précurseur de TiO2) sur un support poreux en SiC, sans passer par la phase TiC.. Ce dépôt peut prendre la forme d'une couche, continue ou non : il est ensuite converti en TiO2. In a particular embodiment, an SiC / TiO 2 composite having a BET specific surface area greater than 60 m 2 / g and a pore volume measured by mercury intrusion greater than 0.12 cm 3 / g for pores with an included diameter are prepared. between 30 nm and 300 nm. This composite is useful as a support for a Fischer-Tropsch synthesis catalyst. Such a composite may be prepared for example by depositing an organic source of titanium (ie a TiO 2 precursor) on a porous SiC support, without passing through the TiC 3 phase. This deposit may take the form of a layer, continuous or no: it is then converted to TiO2.

Préférentiellement, la charge de phase active (par exemple la charge de cobalt métallique) est comprise entre 1 et 50% massiques par rapport à la masse totale du catalyseur (cette masse totale correspondant à la somme des masses du support et de la phase active déposée sur ce support), et plus particulièrement entre 5% et 35%, et encore plus préférentiellement entre 5% et 30%. Preferably, the active phase charge (for example the charge of cobalt metal) is between 1 and 50% by mass relative to the total mass of the catalyst (this total mass corresponding to the sum of the masses of the support and the active phase deposited on this support), and more particularly between 5% and 35%, and even more preferably between 5% and 30%.

Avantageusement, le catalyseur comporte au moins un promoteur, de préférence jusqu'à 2% massiques. Le promoteur peut être le ruthénium, le platine, le rhénium, le rhodium, l'iridium, le palladium. On préfère le ruthénium ; avantageusement sa teneur ne dépasse pas les 2%. Le promoteur peut être également choisi parmi les terres rares, les oxydes de terre rare, les éléments alcalino-terreux et leurs oxydes. A titre d'exemple, on peut utiliser du ZrO2 et/ou un oxyde de manganèse. Advantageously, the catalyst comprises at least one promoter, preferably up to 2% by weight. The promoter may be ruthenium, platinum, rhenium, rhodium, iridium, palladium. Ruthenium is preferred; advantageously its content does not exceed 2%. The promoter may also be chosen from rare earths, rare earth oxides, alkaline earth elements and their oxides. By way of example, it is possible to use ZrO 2 and / or a manganese oxide.

L'invention concerne également l'utilisation d'un catalyseur pour la réaction de Fischer-Tropsch à base de cobalt supporté sur un composite poreux SiC/TiC, SiC/TiO2 ou SiC/TiO2/(TiC) ayant une surface spécifique supérieure à 30 m2/g, de préférence supérieure à 40 m2/g, et plus particulièrement supérieure à 60 m2/g, avantageusement avec de larges pores. The invention also relates to the use of a catalyst for the cobalt-based Fischer-Tropsch reaction supported on a porous SiC / TiC, SiC / TiO2 or SiC / TiO2 / (TiC) composite having a specific surface area greater than 30. m2 / g, preferably greater than 40 m 2 / g, and more particularly greater than 60 m 2 / g, advantageously with large pores.

Un autre objet de l'invention est de fournir une méthode de préparation d'un catalyseur pour la synthèse de Fischer-Tropsch qui comprend un support à base de SiC/TiC, SiC/TiO2 ou SiC/TiO2/(TiC). Cette méthode comprend la préparation d'un mélange comportant au moins une source de silicium, au moins une source de carbone et au moins une source de titane et éventuellement des liants et agents de mise en forme, cette préparation étant suivie d'au moins un traitement thermique qui a pour objet de transformer ladite source de silicium au moins partiellement en carbure de silicium et au moins une partie de ladite source de titane en carbure de titane. Avantageusement, ce traitement thermique est au moins en partie effectué à une température comprise entre 1200°C et 1450°C. Another object of the invention is to provide a method for preparing a catalyst for Fischer-Tropsch synthesis which comprises SiC / TiC, SiC / TiO2 or SiC / TiO2 / (TiC) based support. This method comprises the preparation of a mixture comprising at least one silicon source, at least one carbon source and at least one titanium source and optionally binders and shaping agents, this preparation being followed by at least one heat treatment for converting said silicon source at least partially to silicon carbide and at least a portion of said titanium source to titanium carbide. Advantageously, this heat treatment is at least partly carried out at a temperature of between 1200 ° C. and 1450 ° C.

De manière optionnelle, une étape d'oxydation additionnelle à une température d'au moins 350°C, et préférentiellement d'au moins 400°C peut être réalisée pour transformer partiellement ou totalement le carbure de titane en dioxyde de titane. Un tel matériau SiC/TiO2/(TiC) présente en outre une excellente résistance mécanique. Sa surface spécifique peut être supérieure ou égale à 60 m2/g, avec de larges pores. Optionally, an additional oxidation step at a temperature of at least 350 ° C, and preferably at least 400 ° C can be performed to partially or completely transform the titanium carbide titanium dioxide. Such SiC / TiO2 / (TiC) material also has excellent mechanical strength. Its specific surface may be greater than or equal to 60 m2 / g, with large pores.

Toutes les autres techniques de préparations pouvant conduire à un composite SiC/TiC ou SiC/TiO2 ayant les mêmes propriétés peuvent être utilisées dans le cadre de la présente invention, tel que par exemple une préforme contenant du silicium et/ou du carbone et/ou un précurseur de carbone sur laquelle est déposée du TiO2 ou un précurseur de titane. Cette technique permet en outre de concentrer la phase TiC en surface de la préforme après synthèse du composite. All other preparation techniques that can lead to an SiC / TiC or SiC / TiO 2 composite having the same properties can be used in the context of the present invention, such as, for example, a preform containing silicon and / or carbon and / or a carbon precursor on which is deposited TiO2 or a titanium precursor. This technique also makes it possible to concentrate the TiC phase at the surface of the preform after synthesis of the composite.

Encore un autre objet est un procédé de préparation et d'activation d'un catalyseur pour utilisation dans le procédé catalytique de conversion selon l'invention, ledit procédé de préparation et d'activation comprenant : (a) au moins une étape de dépôt de précurseur de phase active sur un support poreux comportant un matériau composite de type SiC/TiC et/ou de type SiC/TiO2 ; (b) au moins une phase d'activation dudit précurseur de phase active pour former la phase active. Yet another object is a process for preparing and activating a catalyst for use in the catalytic conversion process according to the invention, said method of preparation and activation comprising: (a) at least one deposition step of active phase precursor on a porous support comprising a composite material of the SiC / TiC type and / or of the SiC / TiO2 type; (b) at least one activation phase of said active phase precursor to form the active phase.

Ladite phase de dépôt de précurseur comprend au moins une phase d'imprégnation dudit support avec une solution d'un précurseur de phase active, suivie d'une étape de séchage et d'une étape de calcination. Said precursor deposition phase comprises at least one impregnation phase of said support with a solution of an active phase precursor, followed by a drying step and a calcination step.

Ladite calcination se fait avantageusement à une température comprise entre 250°C et 450°C pendant 1 à 14 heures, de préférence entre 300°C et 400°C pendant 4 à 16 heures. Said calcination is advantageously at a temperature between 250 ° C and 450 ° C for 1 to 14 hours, preferably between 300 ° C and 400 ° C for 4 to 16 hours.

L'invention vise également l'utilisation du catalyseur selon la présente invention pour la réaction de Fischer-Tropsch et qui consiste à convertir un mélange de H2 et de CO (syngas ou gaz de synthèse) en hydrocarbures C5+. The invention also relates to the use of the catalyst according to the present invention for the Fischer-Tropsch reaction and which consists in converting a mixture of H 2 and CO (syngas or synthesis gas) into C 5 + hydrocarbons.

Figures Les figures 2 à 4 illustrent des modes de réalisation de l'invention, mais ne la limitent pas. La figure 1 montre une micrographie obtenue par microscopie électronique à balayage d'un échantillon de support R-SiC poreux selon l'état de la technique, avant imprégnation. La tension d'accélération était de 3 kV, la barre blanche en bas à droite indique la longueur de 1 pm. La figure 2 montre une micrographie obtenue par microscopie électronique à balayage d'un échantillon de support 6-SiC/TiC poreux selon l'invention, avant imprégnation. La tension d'accélération était de 3 kV, la barre blanche en bas à droite indique la longueur de 1 pm. La figure 3 montre la distribution poreuse obtenue par sorptométrie à l'azote pour un support en R-SiC poreux connu, pour un support en SiC/TiC selon l'invention, et pour un support en SiC/TiO2 selon l'invention. La figure 4 montre la distribution du volume poreux (en cm3/g) obtenue par intrusion du mercure en fonction du diamètre de pores (en nanomètres) pour un support en 6-SiC poreux connu et pour un support en TiO2/SiC selon l'invention. Figures 2 to 4 illustrate embodiments of the invention, but do not limit it. FIG. 1 shows a micrograph obtained by scanning electron microscopy of a porous R-SiC support sample according to the state of the art, before impregnation. The acceleration voltage was 3 kV, the white bar at the bottom right indicates the length of 1 μm. FIG. 2 shows a micrograph obtained by scanning electron microscopy of a porous 6-SiC / TiC support sample according to the invention, before impregnation. The acceleration voltage was 3 kV, the white bar at the bottom right indicates the length of 1 μm. FIG. 3 shows the porous distribution obtained by nitrogen sorptometry for a known porous R-SiC support, for a SiC / TiC support according to the invention, and for a SiC / TiO 2 support according to the invention. FIG. 4 shows the distribution of the pore volume (in cm 3 / g) obtained by mercury intrusion as a function of the pore diameter (in nanometers) for a known porous 6-SiC support and for a TiO 2 / SiC support according to FIG. invention.

Description détaillée de l'invention D'une manière générale, dans le présent document, le terme « surface spécifique » fait référence à la surface spécifique dite BET, mesurée à l'aide de la méthode de Brunauer, Emmet et Teller, bien connue de l'homme du métier. La « porosité » d'un matériau est habituellement définie par référence à trois catégories de pores qui se distinguent par leur taille : la microporosité (diamètre inférieur à 2 nm), la mésoporosité (diamètre compris entre 2 et 50 nm) et la macroporosité (diamètre supérieur à 50 nm), voir à ce sujet l'article de F. Rouquerol et al., « Texture des matériaux pulvérulents ou poreux », paru dans la collection Techniques de l'Ingénieur, vol. P 1050. Sauf mention contraire, tous les pourcentages qui caractérisent une composition chimique sont des pourcentages massiques. DETAILED DESCRIPTION OF THE INVENTION Generally speaking, in the present document, the term "specific surface" refers to the BET specific surface area, measured using the method of Brunauer, Emmet and Teller, well known in the art. the skilled person. The "porosity" of a material is usually defined by reference to three categories of pores that are distinguished by their size: microporosity (diameter less than 2 nm), mesoporosity (diameter between 2 and 50 nm) and macroporosity ( diameter greater than 50 nm), see in this regard the article by F. Rouquerol et al., "Texture of pulverulent or porous materials", published in the collection Techniques de l'Ingénieur, vol. P 1050. Unless otherwise stated, all percentages that characterize a chemical composition are percentages by weight.

A) Préparation du support Nous décrivons ici un mode de préparation typique du support. On approvisionne une source de silicium finement divisé, tel que du silicium métallique (toute source de silicium peut convenir) sous la forme d'une poudre, et au moins une source de carbone ou précurseur de carbone. Dans un mode de réalisation, cette source de carbone ou ce précurseur de carbone agit comme un liant lors du procédé de fabrication ; il peut s'agir d'une résine carbonisable. On forme un mélange de la source de silicium et de la source de carbone. On ajoute à ce mélange une source de titane, telle que du TiO2 en poudre (toutes les sources de TiO2 peuvent convenir. On peut ajouter des porogènes pour générer des méso et/ou macropores. Le mélange ainsi obtenu est homogénéisé par les techniques connues de l'homme de l'art. A) Preparation of the support We describe here a typical way of preparing the support. A source of finely divided silicon, such as metallic silicon (any silicon source may be suitable) is supplied as a powder, and at least one carbon source or precursor of carbon. In one embodiment, this carbon source or precursor acts as a binder in the manufacturing process; it may be a carbonizable resin. A mixture of the silicon source and the carbon source is formed. A source of titanium, such as powdered TiO 2, is added to this mixture (all sources of TiO 2 may be suitable.) Porogens may be added to generate meso and / or macropores, and the mixture thus obtained is homogenized by known techniques. the skilled person.

A ce mélange peut être ajouté un liant temporaire, tel que de l'eau, de l'alcool polyvinylique (PVA), du polyéthylèneglycol (PEG) ou tout autre liant connu de l'homme de l'art. Des agents de dispersion tels que des dispersants ou des agents de peptisation peuvent être ajoutés (par exemple avant ou après introduire la poudre de TiO2 dans le mélange) afin de mieux disperser la poudre de TiO2. Ensuite, ce mélange est mis en forme, par exemple par atomisation et séchage de gouttelettes, ou par extrusion pour obtenir des cylindres, polylobes ou d'autres formes. Si l'extrusion est préférée, des additifs tels que des plastifiants peuvent être ajoutés pour conférer au mélange une consistance qui facilite l'extrusion. Ces plastifiants sont avantageusement carbonisables. To this mixture may be added a temporary binder, such as water, polyvinyl alcohol (PVA), polyethylene glycol (PEG) or any other binder known to those skilled in the art. Disperse agents such as dispersants or peptizers may be added (for example before or after introducing the TiO 2 powder into the mixture) in order to better disperse the TiO 2 powder. Then, this mixture is shaped, for example by atomization and drying of droplets, or by extrusion to obtain cylinders, polylobes or other forms. If extrusion is preferred, additives such as plasticizers may be added to impart to the blend a consistency that facilitates extrusion. These plasticizers are advantageously carbonizable.

Dans une variante du procédé, on infiltre ce mélange dans une mousse poreuse d'un polymère carbonisable (telle qu'une mousse polyuréthane) ; cette variante permet notamment la préparation de mousses alvéolaires de SiC/TiC/(TiO2). In a variant of the process, this mixture is infiltrated into a porous foam of a carbonizable polymer (such as a polyurethane foam); this variant makes it possible in particular to prepare foams of SiC / TiC / (TiO2).

Après l'étape de mis en forme, le précurseur séché subit un cycle thermique sous atmosphère inerte à une température inférieure à 1450°C (de préférence inférieure à 1400°C) et pendant au moins une heure. On obtient ainsi un composé mixte comportant une phase carbure de titane et une phase carbure de silicium beta (13-SiC). De manière optionnelle, ce support peut être traité sous air à une température comprise entre 350°C et 500°C pendant 2à 10 h pour oxyder, totalement ou partiellement, le TiC en TiO2. After the shaping step, the dried precursor is cycled under an inert atmosphere at a temperature below 1450 ° C (preferably below 1400 ° C) and for at least one hour. This gives a mixed compound comprising a titanium carbide phase and a beta-silicon carbide (13-SiC) phase. Optionally, this support may be treated in air at a temperature of between 350 ° C. and 500 ° C. for 2 to 10 hours in order to completely or partially oxidize the TiC 2 to TiO 2.

Le support selon l'invention comporte à la fois des micro-, méso- et macropores. La figure 2 montre un cliché obtenu par microscopie électronique à balayage d'un support selon l'invention avant imprégnation. Les macropores sont bien visibles et présentent un diamètre poreux supérieur au micron. Les figures 3 et 4 caractérisent la porosité de quelques supports typiques correspondant à l'état de la technique (J3-SiC) et à la présente invention. The support according to the invention comprises at the same time micro-, meso- and macropores. FIG. 2 shows a photograph obtained by scanning electron microscopy of a support according to the invention before impregnation. The macropores are clearly visible and have a pore diameter greater than one micron. Figures 3 and 4 characterize the porosity of some typical media corresponding to the state of the art (J3-SiC) and the present invention.

B) Préparation et activation du catalyseur Nous décrivons ici des procédés pour la préparation et l'activation du catalyseur. En partant d'un support de catalyseur selon l'invention comme décrit ci-dessus, un catalyseur selon l'invention peut être préparé par n'importe quelle technique connue de l'homme du métier. Une technique avantageuse d'imprégnation des métaux et promoteurs est celle de l'imprégnation du volume poreux (incipient wetness imprégnation). Elle consiste à dissoudre les métaux et promoteurs dans un volume de solvant approximativement égal au volume poreux du support, et à imprégner le support par cette solution. B) Preparation and activation of the catalyst Here we describe processes for the preparation and activation of the catalyst. Starting from a catalyst support according to the invention as described above, a catalyst according to the invention can be prepared by any technique known to those skilled in the art. An advantageous technique for impregnating metals and promoters is that of the impregnation of the porous volume (incipient wetness impregnation). It consists of dissolving the metals and promoters in a volume of solvent approximately equal to the pore volume of the support, and impregnating the support with this solution.

Le précurseur de cobalt préféré est le nitrate de cobalt, qui est soluble dans l'eau et d'autres solvants alcooliques. Mais d'autres sels ou composés de cobalt peuvent également convenir, par exemple l'acétate de cobalt, le chlorure de cobalt et le carbonyle de cobalt. The preferred cobalt precursor is cobalt nitrate, which is soluble in water and other alcoholic solvents. But other salts or cobalt compounds may also be suitable, for example cobalt acetate, cobalt chloride and cobalt carbonyl.

Si on souhaite ajouter un promoteur, ce dernier peut être déposé par exemple par co- imprégnation (c'est-à-dire qu'on introduit un de ses sels solubles dans la solution qui comporte le sel du cobalt), ou encore par une deuxième imprégnation (avec une solution d'un sel approprié) qui suit l'étape d'imprégnation du cobalt. Dans le cas où l'on procède par une deuxième imprégnation, on préfère d'abord décomposer le sel (de préférence le nitrate) de cobalt par un traitement thermique, avant de procéder à la seconde imprégnation introduisant le promoteur. Mais on peut également procéder à la réduction de l'oxyde de cobalt en cobalt métallique avant de procéder à ladite seconde imprégnation. If it is desired to add a promoter, the latter can be deposited for example by co-impregnation (that is to say that one of its soluble salts is introduced into the solution which comprises the salt of cobalt), or by a second impregnation (with a solution of a suitable salt) which follows the step of impregnation of cobalt. In the case where it is proceeded by a second impregnation, it is preferred first to decompose the salt (preferably nitrate) cobalt by heat treatment, before proceeding to the second impregnation introducing the promoter. But it is also possible to reduce the cobalt oxide to cobalt metal before proceeding to said second impregnation.

Le promoteur préféré est le ruthénium. Son précurseur peut être un sel de ruthénium capable à être dissout soit dans une solution aqueuse soit dans une solution organique. On préfère le nitrate de ruthénium ; d'autres sels tels que le chlorure de ruthénium ou l'acétylacétonate de ruthénium peuvent être utilisés. The preferred promoter is ruthenium. Its precursor may be a ruthenium salt capable of being dissolved either in an aqueous solution or in an organic solution. Ruthenium nitrate is preferred; other salts such as ruthenium chloride or ruthenium acetylacetonate may be used.

Parmi les solvants organiques qui conviennent, à la fois pour le sel de cobalt (notamment pour le nitrate de cobalt) et pour le sel du promoteur (et notamment pour le sel de ruthénium, et plus particulièrement pour le nitrate de ruthénium), on peut citer l'acétone, le méthanol, l'éthanol, le diméthyle formamide, le diéthyl éther, le cyclohexane, le xylène et le tetrahydrofurane. Among the suitable organic solvents, both for the cobalt salt (in particular for cobalt nitrate) and for the salt of the promoter (and in particular for the ruthenium salt, and more particularly for ruthenium nitrate), it is possible to mention acetone, methanol, ethanol, dimethylformamide, diethyl ether, cyclohexane, xylene and tetrahydrofuran.

Après l'imprégnation le solide est séché à température ambiante, typiquement pendant 10 heures, puis à une température plus élevée, avantageusement comprise entre 100 et 130°C (typiquement à 110°C) pendant plusieurs heures. Si des solvants organiques sont utilisés, une évaporation lente à l'évaporateur rotatif est préférée. Le catalyseur séché est calciné, de préférence sous air, à une température comprise entre 200°C et 500°C, préférablement entre 200°C et 350°C. Dans un mode de réalisation avantageux, la montée en température se fait à une vitesse comprise entre 0,5°C/min et 5°C/min. La durée du traitement peut être comprise entre 1 et 24 heures et préférablement entre 2 et 6 heures. After the impregnation, the solid is dried at ambient temperature, typically for 10 hours, then at a higher temperature, advantageously between 100 and 130 ° C. (typically at 110 ° C.) for several hours. If organic solvents are used, slow evaporation on a rotary evaporator is preferred. The dried catalyst is calcined, preferably in air, at a temperature between 200 ° C and 500 ° C, preferably between 200 ° C and 350 ° C. In an advantageous embodiment, the rise in temperature is at a speed between 0.5 ° C / min and 5 ° C / min. The duration of the treatment may be between 1 and 24 hours and preferably between 2 and 6 hours.

Avant son utilisation, le catalyseur doit être activé. Cela peut se faire par réduction sous flux d'hydrogène. Cette activation peut se faire à une température comprise entre 250°C et 450°C, plus particulièrement entre 300°C et 400°C pendant 1 à 24 heures et plus particulièrement entre 4 et 16 heures. Elle peut se faire in situ dans le réacteur Fischer-Tropsch. Before use, the catalyst must be activated. This can be done by reduction under hydrogen flow. This activation can be carried out at a temperature of between 250 ° C. and 450 ° C., more particularly between 300 ° C. and 400 ° C. for 1 to 24 hours and more particularly between 4 and 16 hours. It can be done in situ in the Fischer-Tropsch reactor.

C) Utilisation du catalyseur dans la synthèse Fischer-Tropsch Pour la synthèse Fischer-Tropsch, le catalyseur selon l'invention peut être mis en oeuvre dans les réacteurs connus de l'homme du métier pour cette synthèse, et notamment dans un réacteur à lit fixe multitubulaire et dans un réacteur à lit circulant bouillonnant. On peut utiliser le catalyseur notamment sous la forme de billes (avantageusement d'un diamètre compris entre 20 pm et 400 pm) ou d'extrudés ou sous la forme de mousse alvéolaire. C) Use of the catalyst in Fischer-Tropsch synthesis For Fischer-Tropsch synthesis, the catalyst according to the invention can be used in reactors known to those skilled in the art for this synthesis, and in particular in a bed reactor fixed multitubular and in a bubbling circulating bed reactor. The catalyst may be used in particular in the form of beads (advantageously of a diameter of between 20 μm and 400 μm) or of extrudates or in the form of cellular foam.

D) Avantaqes de l'invention Un premier avantage du support selon l'invention est qu'il permet d'accroitre considérablement l'activité du catalyseur sans altérer sa sélectivité en C5+. Un autre avantage de ce support et catalyseur est sa remarquable résistance mécanique, sa résistance hydrothermale et sa résistance aux attaques chimiques. Un autre avantage de ce catalyseur est sa stabilité sous flux. Enfin, un autre avantage de ce catalyseur est la possibilité de faciliter la récupération de la phase active et le/les promoteurs du catalyseur usagé ; en effet, ce nouveau support résiste très bien aux traitements acides ou basiques humides qui sont utilisés pour récupérer les éléments métalliques de la phase active. Le composite SiC/TiC et/ou SiC/TiO2 permet, grâce à sa haute surface spécifique, de mieux disperser les particules de cobalt, augmentant de ce fait la productivité du catalyseur. La présence de mésopores d'un diamètre supérieur à environ 30 nm et de macropores d'un diamètre supérieur à 500 nm, ou même supérieur à 1 pm permet d'éliminer les phénomènes de diffusion, ce qui conduit à une augmentation de la sélectivité C5+. D) ADVANTAGES OF THE INVENTION A first advantage of the support according to the invention is that it makes it possible to considerably increase the activity of the catalyst without impairing its C5 + selectivity. Another advantage of this support and catalyst is its remarkable mechanical strength, its hydrothermal resistance and its resistance to chemical attack. Another advantage of this catalyst is its stability under flow. Finally, another advantage of this catalyst is the possibility of facilitating the recovery of the active phase and the promoter (s) of the spent catalyst; indeed, this new medium is very resistant to wet acidic or basic treatments that are used to recover the metal elements of the active phase. The composite SiC / TiC and / or SiC / TiO2 allows, thanks to its high specific surface, to better disperse the cobalt particles, thereby increasing the productivity of the catalyst. The presence of mesopores with a diameter greater than approximately 30 nm and macropores with a diameter greater than 500 nm, or even greater than 1 μm, makes it possible to eliminate the diffusion phenomena, which leads to an increase in the C5 + selectivity. .

Le catalyseur selon l'invention est également avantageux pour les procédés lit fixe, car la forte tenue mécanique des grains de catalyseurs permet de limiter la formation de fines lors des chargements et déchargements des réacteurs. The catalyst according to the invention is also advantageous for fixed bed processes, because the high mechanical strength of the catalyst grains makes it possible to limit the formation of fines during the loading and unloading of the reactors.

Un catalyseur préparé sur ce nouveau type de support permet en outre d'accroitre l'activité, d'améliorer significativement la sélectivité en C5+, et de supporter les contraintes hydrothermales de la synthèse Fischer-Tropsch. A catalyst prepared on this new type of support also makes it possible to increase the activity, to significantly improve the C5 + selectivity, and to withstand the hydrothermal stresses of the Fischer-Tropsch synthesis.

Les inventeurs ont constaté que l'utilisation du composite selon l'invention peut permettre de diminuer la charge en phase active lors de la synthèse Fischer-Tropsch. The inventors have found that the use of the composite according to the invention can make it possible to reduce the charge in the active phase during Fischer-Tropsch synthesis.

A titre exemple, de bons résultats ont été obtenus avec une charge de cobalt de l'ordre de 10% massiques, alors que les procédés selon l'état de la technique utilisent des catalyseurs avec une charge de cobalt supérieure à 30%, qui peut atteindre 40% ou même 45%.35 Exemples For example, good results have been obtained with a cobalt charge of the order of 10% by weight, whereas the methods according to the state of the art use catalysts with a cobalt load greater than 30%, which can reach 40% or even 45% .35 Examples

Pour illustrer l'invention et pour permettre à l'homme du métier de l'exécuter, nous décrivons ici des modes de réalisation ; cependant cela ne saurait limiter la portée de l'invention. L'exemple 1 concerne l'état de la technique, les exemples 2 et 3 l'invention. Certains aspects de ces exemples sont illustrés par les figures 1 à 4. To illustrate the invention and to enable those skilled in the art to perform it, we describe here embodiments; however this can not limit the scope of the invention. Example 1 relates to the state of the art, examples 2 and 3 the invention. Some aspects of these examples are illustrated in Figures 1 to 4.

Dans ces exemples, la surface spécifique a été déterminée à partir des isothermes d'adsorption d'azote à pression variable, et à la température de l'azote liquide, à l'aide d'un appareil automatique Micromeritics Tristar 3000 TM. La surface spécifique totale (appelée « surface spécifique BET ») a été obtenue par la méthode BET, bien connue de l'homme du métier. La surface externe a été obtenue par la méthode t-plot. La surface microporeuse a été obtenue par la différence entre la surface spécifique BET totale et la surface externe. Les distributions micro- et méso-poreuses ont été obtenues à partir de l'isotherme de désorption d'azote. Les distributions méso- et macro-poreuses et le volume poreux total ont été obtenus par intrusion de mercure sur un porosimètre automatique Micrometrics Autopore III TM type 9420. Exemple 1 : Préparation du catalyseur de référence 30% Co sur un support de SiC 20 Une masse de 20 g de support de catalyseur en carbure de silicium beta (R-SiC) de surface spécifique moyenne (26 m2/g), voir la figure 1, a été imprégnée avec 42,32 g de nitrate de cobalt dissous dans 20 g d'eau distillée. Après imprégnation, le solide a été séché à température ambiante pendant 12 heures puis étuvé à 110°C pendant 2 25 heures. Ensuite le solide a été calciné sous air à 350°C pendant 2 heures. L'oxyde de cobalt ainsi obtenu a été réduit sous 300 cc/min d'hydrogène à 300°C pendant 6 heures. Le catalyseur a été passivé à température ambiante sous un flux contenant 1 vol.% d'O2 dilué dans de l'hélium. In these examples, the specific surface area was determined from the variable pressure nitrogen adsorption isotherms, and the temperature of the liquid nitrogen, using a Micromeritics Tristar 3000 TM automatic device. The total surface area (called "BET specific surface area") was obtained by the BET method, well known to those skilled in the art. The outer surface was obtained by the t-plot method. The microporous surface was obtained by the difference between the total BET surface area and the outer surface. Micro- and meso-porous distributions were obtained from the nitrogen desorption isotherm. The meso- and macro-porous distributions and the total pore volume were obtained by mercury intrusion on a Micrometrics Autopore III TM automatic porosimeter type 9420. Example 1: Preparation of the reference catalyst 30% Co on an SiC support 20 A mass of 20 g of beta (R-SiC) silicon carbide catalyst support of average specific surface area (26 m 2 / g), see FIG. 1, was impregnated with 42.32 g of cobalt nitrate dissolved in 20 g of 'distilled water. After impregnation, the solid was dried at room temperature for 12 hours and then baked at 110 ° C for 2 hours. Then the solid was calcined under air at 350 ° C for 2 hours. The cobalt oxide thus obtained was reduced under 300 cc / min of hydrogen at 300 ° C for 6 hours. The catalyst was passivated at room temperature under a stream containing 1 vol% O 2 diluted in helium.

30 Exemple 2 : Préparation d'un catalyseur 30% Co sur un support en SiC/TiO2 selon l'invention EXAMPLE 2 Preparation of a 30% Co Catalyst on a SiC / TiO 2 Support According to the Invention

Une masse de 20 g de support de catalyseur en SiC/TiO2 (voir la figure 2) présentant un micro, méso et macroporosité et ayant une surface spécifique de 86 m2/g a été 35 imprégnée avec 42,32 g de nitrate de cobalt dissous dans 20 g d'eau distillée. Après 16 imprégnation, le solide a été séché à température ambiante pendant 12 heures puis étuvé à 110°C pendant 2 heures. Ensuite le solide a été calciné sous air à 350°C pendant 2 heures. L'oxyde de cobalt ainsi obtenu a été réduit sous 300 cm3/min d'hydrogène à 300°C pendant 6 heures. Le catalyseur a été passivé à température ambiante sous un flux contenant 1 vol.% d'O2 dilué dans de l'hélium. A mass of 20 g of SiC / TiO 2 catalyst support (see FIG. 2) having a micro, meso and macroporosity and having a surface area of 86 m 2 / g was impregnated with 42.32 g of cobalt nitrate dissolved in 20 g of distilled water. After impregnation, the solid was dried at room temperature for 12 hours and then baked at 110 ° C for 2 hours. Then the solid was calcined under air at 350 ° C for 2 hours. The cobalt oxide thus obtained was reduced under 300 cm 3 / min of hydrogen at 300 ° C for 6 hours. The catalyst was passivated at room temperature under a stream containing 1 vol% O 2 diluted in helium.

Exemple 3 : Préparation d'un catalyseur 10% Co sur un support en SiC/TiO2 selon l'invention Une masse de 20 g de support de catalyseur en SiC/TiO2 présentant un micro, méso et macroporosité et ayant une surface spécifique de 86 m2/g a été imprégnée avec 10,97 g de nitrate de cobalt dissous dans 20 g d'eau distillée. Après imprégnation, le solide a été séché à température ambiante pendant 12 heures puis étuvé à 110°C pendant 2 heures. Ensuite le solide a été calciné sous air à 350°C pendant 2 heures. L'oxyde de cobalt ainsi obtenu a été réduit sous 300cc/min d'hydrogène à 300°C pendant 6 heures. Le catalyseur a été passivé à température ambiante sous un flux contenant 1 vol.% d'O2 dilué dans de l'hélium. Example 3 Preparation of a 10% Co Catalyst on a SiC / TiO 2 Support According to the Invention A mass of 20 g of SiC / TiO 2 catalyst support having a micro, meso and macroporosity and having a specific surface area of 86 m 2 It was impregnated with 10.97 g of cobalt nitrate dissolved in 20 g of distilled water. After impregnation, the solid was dried at room temperature for 12 hours and then cured at 110 ° C for 2 hours. Then the solid was calcined under air at 350 ° C for 2 hours. The cobalt oxide thus obtained was reduced under 300cc / min of hydrogen at 300 ° C for 6 hours. The catalyst was passivated at room temperature under a stream containing 1 vol% O 2 diluted in helium.

Exemple 4: Préparation d'un catalyseur 10% Co sur un support en SiC/TiC selon l'invention Example 4 Preparation of a 10% Co Catalyst on an SiC / TiC Support According to the Invention

Une masse de 20 g de support de catalyseur en TiC/SiC présentant un micro, méso et macroporosité et ayant une surface spécifique de 72 m2/g a été imprégnée avec 10,97 g de nitrate de cobalt dissous dans 20 g d'eau distillée. Après imprégnation, le solide a été séché à température ambiante pendant 12 heures puis étuvé à 110°C pendant 2 heures. Ensuite le solide a été calciné sous air à 350°C pendant 2 heures. L'oxyde de cobalt ainsi obtenu a été réduit sous 300cc/min d'hydrogène à 300°C pendant 6 heures. Le catalyseur a été passivé à température ambiante sous un flux contenant 1 vol.% d'O2 dilué dans de l'hélium. A mass of 20 g of TiC / SiC catalyst support having a micro, meso and macroporosity and having a surface area of 72 m 2 / g was impregnated with 10.97 g of cobalt nitrate dissolved in 20 g of distilled water. After impregnation, the solid was dried at room temperature for 12 hours and then cured at 110 ° C for 2 hours. Then the solid was calcined under air at 350 ° C for 2 hours. The cobalt oxide thus obtained was reduced under 300cc / min of hydrogen at 300 ° C for 6 hours. The catalyst was passivated at room temperature under a stream containing 1 vol% O 2 diluted in helium.

Exemple 5 : Activité en Synthèse Fischer-Tropsch Example 5 Activity in Fischer-Tropsch Synthesis

Les catalyseurs décrits dans les exemples 1 à 4 ont été testés en synthèse de Fischer-Tropsch. 5 g de catalyseur sous forme de grains de 250-400 pm de diamètre ont été placés dans un réacteur en acier inoxydable ayant un diamètre de 6 mm. La pression du système a été augmentée jusqu'à 4 MPa (avec une rampe de 4 MPa.h"1) sous un flux d'argon. Lorsque la pression désirée a été atteinte, on a augmenté la température du réacteur jusqu'à 210°C (rampe de chauffe de 2°C.min"1). Lorsque la température désirée a été atteinte, on a remplacé le flux d'argon par un mélange 50 :50 v:v d'argon et de gaz de synthèse (H2/CO, 2 :1 v :v). Le catalyseur a été activé pendant 3 jours sous flux dilué avant d'être soumis à un mélange réactionnel de H2/CO pur, la température du réacteur pouvait alors être variée. Les activités et sélectivités des catalyseurs des exemples 1 à 4 à différentes températures et vitesses spatiales horaires sont consignées dans les tableaux 1 à 3. L'activité d'un catalyseur à base de SiC/TiC est plus que doublée comparée à celle d'un catalyseur à base de SiC. Le surcroît d'activité peut être mesuré dans le réacteur par une élévation de la température plus élevée pour le catalyseur selon l'invention. The catalysts described in Examples 1 to 4 were tested in Fischer-Tropsch synthesis. 5 g of granular catalyst 250-400 μm in diameter were placed in a stainless steel reactor having a diameter of 6 mm. The pressure of the system was increased to 4 MPa (with a ramp of 4 MPa · h -1) under a stream of argon.When the desired pressure was reached, the reactor temperature was increased to 210 ° C (heating ramp 2 ° C.min "1). When the desired temperature was reached, the argon stream was replaced with a 50:50 v: v mixture of argon and synthesis gas (H2 / CO, 2: 1 v: v). The catalyst was activated for 3 days under a diluted stream before being subjected to a reaction mixture of pure H2 / CO, the temperature of the reactor could then be varied. The activities and selectivities of the catalysts of Examples 1 to 4 at different temperatures and hourly space velocities are given in Tables 1 to 3. The activity of a SiC / TiC catalyst is more than doubled compared to that of a catalyst. catalyst based on SiC. The increased activity can be measured in the reactor by raising the temperature higher for the catalyst according to the invention.

Tableau 1 : Activité et sélectivité en synthèse Fischer-Tropsch GHSV [%] CO conversion C5+ gc5+/gcata~yst/h [h"1] [%massiques] T= T= T= T= T= T= 215°C 220°C 215°C 220°C 215°C 220°C Exemple 1 1900 43,37 57,38 91 90,23 0,23 0,26 (30%Co sur SiC) Exemple 2 2750 58,78 68,23 92,42 93,08 0,41 0,48 30%Co sur SiC/TiO2 Tableau 2 : Activité et sélectivité en synthèse Fischer-Tropsch GHSV CO conversion [%] C5+ [% massiques] gc5+/gcata~yst/h [h 1] T= T= T= T= T= T= 225°C 227°C 225°C 227°C 225°C 227°C Exemple 1 1900 71,23 - 90,28 - 0,32 - (30% Co sur SiC) Exemple 2 3800 58,61 62,49 92,32 90,84 0,54 0,57 (30% Co sur SiC/TiO2) 15 Tableau 3 : Activité et sélectivité en synthèse Fischer-Tropsch GHSV CO C5+ [% gC5+/gcata~yst/h [h-'] conversion massiques] [%] T = 215°C T = 215°C T = 215°C Exemple 3 2750 36 93,49 0,17 (10% Co sur SiC/TIO2) Exemple 4 2750 53,05 91,54 0,24 (10% Co sur SiC/TiC) Tableau 4 : Données physiques des supports Surface spécifique Surface Surface Volume poreux BET [m2/g] spécifique due spécifique cumulé obtenu aux micropores externe [m2/g] par intrusion au [m2/g] mercure [cm3lg] SiC 25,6 1,2 24,4 0,52 SiC/TiC 72 43 29 0,43 SiC/TiO2 86 50 36 0,43 Table 1: Activity and selectivity in Fischer-Tropsch synthesis GHSV [%] CO conversion C5 + gc5 + / gcata ~ yst / h [h-1] [% by weight] T = T = T = T = T = T = 215 ° C 220 ° C 215 ° C 220 ° C 215 ° C 220 ° C Example 1 1900 43.37 57.38 91 90.23 0.23 0.26 (30% Co on SiC) Example 2 2750 58.78 68.23 92 , 42 93.08 0.41 0.48 30% Co on SiC / TiO2 Table 2: Activity and selectivity in synthesis Fischer-Tropsch GHSV CO conversion [%] C5 + [% by mass] gc5 + / gcata ~ yst / h [h 1 ] T = T = T = T = T = T = 225 ° C 227 ° C 225 ° C 227 ° C 225 ° C 227 ° C Example 1 1900 71.23 - 90.28 - 0.32 - (30% Co on SiC) Example 2 3800 58.61 62.49 92.32 90.84 0.54 0.57 (30% Co on SiC / TiO2) Table 3: Activity and Selectivity in Fischer-Tropsch Synthesis GHSV CO C5 + [% gC5 + / gcata ~ yst / h [h- '] mass conversion] [%] T = 215 ° C = 215 ° C = 215 ° C Example 3 2750 36 93.49 0.17 (10% Co on SiC / TIO2) Example 4 2750 53.05 91.54 0.24 (10% Co on SiC / TiC) Table 4: Physical Media Data Surface Area Surface Area Volume in BET specific [m / g] specific cumulative result obtained with external micropores [m2 / g] by intrusion with [m2 / g] mercury [cm3lg] SiC 25.6 1.2 24.4 0.52 SiC / TiC 72 43 29 0.43 SiC / TiO2 86 50 36 0.43

Claims (1)

REVENDICATIONS1. Procédé catalytique de conversion au moins partielle d'un mélange gazeux contenant du CO et du H2 en mélange d'hydrocarbures, comportant une étape de mise en contact dudit mélange gazeux avec un catalyseur solide, ledit catalyseur solide comportant - un support poreux comportant un matériau composite comportant du SiC et un carbure de titane (composite appelé « SiC/TiC ») et/ou un oxyde de titane (composite appelé « SiC/TiO2 »), et - une phase active. 3. Procédé selon la revendication 1, dans lequel la teneur en phase active par rapport à la masse totale dudit support poreux avec sa phase active est comprise entre 1 à 50% massiques, de préférence entre 5% et 35% et encore plus préférentiellement entre 5% et 30%. 4. Procédé selon la revendication 1 ou 2, dans lequel ladite phase active comprend majoritairement du cobalt ou du fer, et optionnellement l'autre des deux métaux, et optionnellement un ou plusieurs métaux de transition des groupes 7, 8, 9 et/ou 10. 5. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel ladite phase active comprend un promoteur, de préférence à une teneur ne dépassant pas 2% massiques. 25 6. Procédé selon la revendication 4, caractérisé en ce que ledit promoteur est sélectionné dans le groupe formé par : ruthénium (promoteur préféré), platine, rhénium, rhodium, iridium, palladium, les terres rares et leurs oxydes, les éléments alcalino-terreux et leurs oxydes. 30 7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel ledit support poreux présente une surface spécifique BET supérieure à 5 m2/g, préférentiellement supérieure à 30 m2/g, plus préférentiellement supérieure à 40 m2/g et encore plus préférentiellement supérieure à 60 m2/g. 208. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel ledit support poreux présente une teneur molaire en titane par rapport à la somme molaire Si + Ti comprise entre 0,5% et 15%, et de préférence entre 0,5% et 10%. 9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ledit support poreux présente une surface microporeuse supérieure à 10 m2/g, et de préférence supérieure à 20 m2/g. 10. Procédé selon la revendication 8, caractérisé en ce que ledit support poreux présente une volume poreux dans la gamme 30 nm à 300 nm mesuré par intrusion de mercure supérieur à 0,12 cm3/g, de préférence supérieure à 0,15 cm3/g et encore plus préférentiellement supérieur à 0,20 cm3/g. 11. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit support se présente sous la forme de grains ou billes, ou sous la forme de mousse alvéolaire. 12. Procédé de préparation et d'activation d'un catalyseur pour utilisation dans le procédé catalytique de conversion selon l'une quelconque des revendications 1 à 10, ledit procédé de préparation et d'activation comprenant : (a) au moins une étape de dépôt de précurseur de phase active sur un support poreux comportant un matériau composite de type SiC/TiC et/ou de type SiC/TiO2 ; (b) au moins une phase d'activation dudit précurseur de phase active pour former la phase active. 13. Procédé selon la revendication 11, caractérisé en ce que ladite phase de dépôt de précurseur comprend au moins une phase d'imprégnation dudit support avec une solution d'un précurseur de phase active, suivie d'une étape de séchage et d'une étape de calcination. 14. Procédé selon la revendication 12, caractérisé en ce que ladite calcination se fait à une température comprise entre 250°C et 450°C pendant 1 à 14 heures, de préférence entre 300°C et 400°C pendant 4 à 16 heures. REVENDICATIONS1. Catalytic process for at least partial conversion of a gaseous mixture containing CO and H 2 into a hydrocarbon mixture, comprising a step of bringing said gaseous mixture into contact with a solid catalyst, said solid catalyst comprising a porous support comprising a material composite comprising SiC and a titanium carbide (composite called "SiC / TiC") and / or a titanium oxide (composite called "SiC / TiO2"), and - an active phase. 3. Method according to claim 1, wherein the content of the active phase relative to the total mass of said porous support with its active phase is between 1 to 50% by weight, preferably between 5% and 35% and even more preferably between 5% and 30%. The process according to claim 1 or 2, wherein said active phase comprises predominantly cobalt or iron, and optionally the other of the two metals, and optionally one or more transition metals of groups 7, 8, 9 and / or The method according to any one of claims 1 to 3, wherein said active phase comprises a promoter, preferably at a content not exceeding 2% by weight. The process according to claim 4, characterized in that said promoter is selected from the group consisting of: ruthenium (preferred promoter), platinum, rhenium, rhodium, iridium, palladium, rare earths and their oxides, alkaline earth elements, earthy and their oxides. 7. A method according to any one of claims 1 to 5, wherein said porous support has a BET specific surface area greater than 5 m2 / g, preferably greater than 30 m2 / g, more preferably greater than 40 m2 / g and more more preferably greater than 60 m 2 / g. The method according to any one of claims 1 to 6, wherein said porous support has a molar content of titanium with respect to the molar Si + Ti of between 0.5% and 15%, and preferably between 0, 5% and 10%. 9. A process according to any one of claims 1 to 7, wherein said porous support has a microporous surface greater than 10 m 2 / g, and preferably greater than 20 m 2 / g. 10. Method according to claim 8, characterized in that said porous support has a pore volume in the range 30 nm to 300 nm measured by intrusion of mercury greater than 0.12 cm3 / g, preferably greater than 0.15 cm3 / g and even more preferably greater than 0.20 cm3 / g. 11. A method according to any one of claims 1 to 9, characterized in that said support is in the form of grains or beads, or in the form of cellular foam. A process for preparing and activating a catalyst for use in the catalytic conversion process according to any one of claims 1 to 10, said method of preparing and activating comprising: (a) at least one step of active phase precursor deposition on a porous support comprising a composite material of SiC / TiC type and / or of SiC / TiO2 type; (b) at least one activation phase of said active phase precursor to form the active phase. 13. The method of claim 11, characterized in that said precursor deposition phase comprises at least one impregnation phase of said support with a solution of an active phase precursor, followed by a drying step and a calcination step. 14. The method of claim 12, characterized in that said calcination is at a temperature between 250 ° C and 450 ° C for 1 to 14 hours, preferably between 300 ° C and 400 ° C for 4 to 16 hours.
FR1101704A 2011-06-01 2011-06-01 Partially converting gaseous mixture containing carbon monoxide and hydrogen into hydrocarbon mixture, comprises contacting gaseous mixture with solid catalyst comprising porous support and an active phase Pending FR2978681A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
FR1101704A FR2978681A1 (en) 2011-06-01 2011-06-01 Partially converting gaseous mixture containing carbon monoxide and hydrogen into hydrocarbon mixture, comprises contacting gaseous mixture with solid catalyst comprising porous support and an active phase
FR1157096A FR2978682B1 (en) 2011-06-01 2011-08-02 CATALYTIC PROCESS FOR THE CONVERSION OF SYNTHESIS GAS TO HYDROCARBONS
PCT/FR2012/051224 WO2012164231A1 (en) 2011-06-01 2012-05-31 Catalytic process for the conversion of a synthesis gas to hydrocarbons
AU2012264468A AU2012264468B2 (en) 2011-06-01 2012-05-31 Catalytic process for the conversion of a synthesis gas to hydrocarbons
EP12729686.1A EP2714848B1 (en) 2011-06-01 2012-05-31 Catalytic process for the conversion of a synthesis gas to hydrocarbons
BR112013030497A BR112013030497A2 (en) 2011-06-01 2012-05-31 catalytic process for converting a synthesis gas into hydrocarbons
AP2013007309A AP3640A (en) 2011-06-01 2012-05-31 Catalytic process for the conversion of a synthesis gas to hydrocarbons
CN201280026248.4A CN103748193B (en) 2011-06-01 2012-05-31 Catalytic processes for forming gas to be changed into hydrocarbon
US14/123,235 US9493381B2 (en) 2011-06-01 2012-05-31 Catalytic process for the conversion of a synthesis gas to hydrocarbons
EA201391784A EA025257B1 (en) 2011-06-01 2012-05-31 Catalytic process for the conversion of a synthesis gas to hydrocarbons
ZA2013/08854A ZA201308854B (en) 2011-06-01 2013-11-25 Catalytic process for the conversion of a synthesis gas to hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1101704A FR2978681A1 (en) 2011-06-01 2011-06-01 Partially converting gaseous mixture containing carbon monoxide and hydrogen into hydrocarbon mixture, comprises contacting gaseous mixture with solid catalyst comprising porous support and an active phase

Publications (1)

Publication Number Publication Date
FR2978681A1 true FR2978681A1 (en) 2013-02-08

Family

ID=44802255

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1101704A Pending FR2978681A1 (en) 2011-06-01 2011-06-01 Partially converting gaseous mixture containing carbon monoxide and hydrogen into hydrocarbon mixture, comprises contacting gaseous mixture with solid catalyst comprising porous support and an active phase

Country Status (1)

Country Link
FR (1) FR2978681A1 (en)

Similar Documents

Publication Publication Date Title
EP1827684B1 (en) Cobalt-based catalyst for fischer-tropsch synthesis
FR3065650B1 (en) METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING PHOTOCATALYST IN THE FORM OF POROUS MONOLITH
EP2921227A1 (en) Fischer-tropsch catalyst based on a group viiib metal and a carrier of oxides including alumina, silica, a spinel and phosphorus
EP2714848B1 (en) Catalytic process for the conversion of a synthesis gas to hydrocarbons
EP3448559B1 (en) Preparation method for cobalt catalysts based on a support containing a mixed oxide phase containing cobalt and/or nickel prepared by the use of a dicarboxylic acid comprising at least three carbon atoms
CA2817684C (en) Preparation process for a catalyst implementing a rapid drying stage and its use for fischer-tropsch synthesis
EP3322530B1 (en) A fischer-tropsch synthesis catalyst comprising a porous extruded titania-based material comprising mesopores and macropores, its preparation and a fischer-tropsch process in the presence of the fischer-tropsch synthesis catalyst
JP5284963B2 (en) Metal nitrate conversion process
EP2864044A1 (en) Catalyst supports made from silicon carbide covered with tio2 for fischer-tropsch synthesis
WO2017186408A1 (en) Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared using an ester compound
FR3057472A1 (en) COBALT CATALYST BASED ON A SUPPORT COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED BY USING A HYDROGENOCARBON COMPOUND
JP2021513453A (en) Fischer-Tropsch method, supported Fischer-Tropsch method Synthetic catalyst and its use
FR2992236A1 (en) Preparing catalyst support used in Fischer-Tropsch reaction, comprises providing beta-silicon carbide support, preparing titanium dioxide precursor solution, impregnating support in solution, and drying and calcining impregnated support
EP3381552B1 (en) Method for preparing cobalt catalysts
US11865513B2 (en) Extruded titania-based materials comprising quaternary ammonium compounds and/or prepared using quaternary ammonium compounds
FR3050662A1 (en) COBALT CATALYST BASED ON A SUPPORT COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED BY USE OF AN AMINO ACID COMPOUND
RU2675839C1 (en) Nano-catalyst from monodisperse transition metal for fischer-tropsch synthesis, method for its preparation and its application
FR3087672A1 (en) SUPPORT-BASED COBALT CATALYST COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED FROM AN ORGANIC COMPOUND FROM THE CARBOXYANHYDRIDE FAMILY
FR2918982A1 (en) CATALYST SUPPORT BASED ON BETA-SIC WITH ALUMINUM LAYER
FR2978681A1 (en) Partially converting gaseous mixture containing carbon monoxide and hydrogen into hydrocarbon mixture, comprises contacting gaseous mixture with solid catalyst comprising porous support and an active phase
WO2017186405A1 (en) Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel, prepared using oxalic acid or oxalate
EP3643401B1 (en) Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared from a dilactone compound
FR3087671A1 (en) SUPPORT-BASED COBALT CATALYST COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED FROM AN ETHER COMPOUND
TO Luck et al.(43) Pub. Date: Jul. 10, 2014
FR3006325A1 (en) FISCHER-TROPSCH PROCESS USING A CATALYST BASED ON A GROUP VIII METAL PREPARED IN SUPERCRITICAL FLUID