1 Elément d'assemblage en matière plastique et procédé de réalisation 1 Plastic connecting element and method of making
La présente invention se rapporte à un élément d'assemblage en matière plastique permettant de solidariser des pièces constituant un assemblage. The present invention relates to an assembly element of plastic material for securing parts constituting an assembly.
Plus précisément, la présente invention vise à former un rivet en matière plastique destiné à être installé à travers ledit assemblage. L'élément d'assemblage comprend une tige cylindrique en matériau plastique présentant une première extrémité d'arrêt. Cette dernière est, soit ancrée dans un organe auquel on souhaite relier l'assemblage, soit équipée io d'une tête. Et à l'opposé, la tige cylindrique présente une seconde extrémité libre. La tige cylindrique est engagée à travers l'assemblage, tandis que la première extrémité d'arrêt vient prendre appui contre l'une des faces de l'assemblage et que la seconde extrémité libre vient s'étendre en saillie de l'autre face de l'assemblage, opposée à ladite une des faces de l'assemblage. is La seconde extrémité libre est alors apte à être déformée à chaud au moyen d'une bouterolle de manière à former un renflement qui vient s'appliquer contre ladite autre face de l'assemblage. La déformation de la seconde extrémité libre n'est possible qu'à la condition que le matériau plastique soit précisément un matériau thermoplastique à l'instant de la transformation, de manière à 20 autoriser son ramollissement à chaud puis sa déformation et finalement son refroidissement pour que le renflement retrouve les propriétés mécaniques du matériau plastique à température ambiante. Ce type d'assemblage permet par exemple, de solidariser aisément un organe en matériau plastique et une plaque métallique. On le retrouve par 25 exemple dans le domaine électroménager. Toutefois, la déformation du renflement est aisément réversible. Par ailleurs, l'assemblage est nécessairement percé de manière à pouvoir y introduire la tige cylindrique et par conséquent, il perd son étanchéité, quand bien même le renflement viendrait s'appliquer autour dudit perçage. 30 Aussi, un problème qui se pose et que vise à résoudre la présente invention est de fournir un élément d'assemblage qui permette notamment de pallier cette perte d'étanchéité. More specifically, the present invention aims to form a plastic rivet to be installed through said assembly. The assembly element comprises a cylindrical rod of plastics material having a first stop end. The latter is either anchored in an organ to which it is desired to connect the assembly, or equipped with a head. And in contrast, the cylindrical rod has a second free end. The cylindrical rod is engaged through the assembly, while the first stop end bears against one of the faces of the assembly and that the second free end protrudes from the other side of the assembly. the assembly, opposite to one of the faces of the assembly. The second free end is then adapted to be hot deformed by means of a rivet so as to form a bulge which is applied against said other face of the assembly. Deformation of the second free end is possible only if the plastic material is precisely a thermoplastic material at the moment of the transformation, so as to allow its hot softening then its deformation and finally its cooling for that the bulge finds the mechanical properties of the plastic material at room temperature. This type of assembly makes it possible, for example, to easily join a plastic material member and a metal plate. It is found for example in the home appliance field. However, the deformation of the bulge is easily reversible. Moreover, the assembly is necessarily pierced so as to introduce the cylindrical rod and therefore, it loses its seal, even if the bulge would be applied around said bore. Also, a problem that arises and that aims to solve the present invention is to provide an assembly element that allows in particular to overcome this leakage.
Dans ce but, et selon un premier objet, la présente invention propose un élément d'assemblage comprenant une tige cylindrique en matière plastique, destinée à être installée à travers un assemblage présentant deux faces opposées, ladite tige cylindrique présentant d'une part une extrémité d'arrêt apte à venir en appui contre l'une desdites faces opposées dudit assemblage, et d'autre part une extrémité libre opposée apte à être déformée à chaud pour réaliser un renflement destiné à venir s'appliquer contre l'autre desdites faces opposées dudit assemblage. Selon l'invention, ladite tige cylindrique présente en outre une gaine externe en élastomère thermoplastique ; et ladite gaine io externe en élastomère thermoplastique est destinée à former un bourrelet autour de ladite tige cylindrique sous ledit renflement lorsque ladite extrémité libre opposée est déformée à chaud, par quoi ledit bourrelet est apte à former joint entre ledit élément d'assemblage et ladite autre desdites faces opposées dudit assemblage. 15 Ainsi, une caractéristique de l'invention réside dans la mise en oeuvre d'une gaine en élastomère thermoplastique autour de la tige cylindrique de manière à ce qu'elle puisse se déformer en formant un bourrelet lorsque l'extrémité libre de la tige est déformée à chaud pour être renflée, le bourrelet venant alors se former en arrière du renflement autour de la tige cylindrique. 20 Ainsi qu'on l'expliquera plus en détail dans la suite de la description, le bourrelet se forme autour de la tige cylindrique sous le renflement, mais aussi à l'intérieur du perçage de l'assemblage. De la sorte, l'assemblage est rendu totalement étanche puisque la tige cylindrique surmontée du renflement est muni d'un bourrelet en élastomère thermoplastique formant joint entre 25 l'assemblage et la tige cylindrique. L'assemblage ainsi réalisé permet également d'effectuer une liaison souple et ainsi jouer le rôle de filtration des vibrations et des bruits engendrés par des mouvements relatifs des pièces assemblées sous l'effet de sollicitations mécaniques. De même cette liaison souple permet d'absorber des 30 déplacements et contraintes suite à une dilation relative des pièces assemblées sous l'effet de la température. For this purpose, and according to a first object, the present invention proposes an assembly element comprising a cylindrical plastic rod, intended to be installed through an assembly having two opposite faces, said cylindrical rod having on the one hand an end stop member adapted to bear against one of said opposite faces of said assembly, and secondly an opposite free end adapted to be deformed hot to achieve a bulge intended to be applied against the other of said opposite faces said assembly. According to the invention, said cylindrical rod further has an outer sheath of thermoplastic elastomer; and said outer sheath of thermoplastic elastomer is intended to form a bead around said cylindrical rod under said bulge when said opposite free end is hot deformed, whereby said bead is able to form joint between said assembly element and said other said opposite faces of said assembly. Thus, a characteristic of the invention lies in the implementation of a thermoplastic elastomer sheath around the cylindrical rod so that it can deform by forming a bead when the free end of the rod is deformed hot to be bulged, the bead then being formed behind the bulge around the cylindrical rod. As will be explained in more detail in the following description, the bead is formed around the cylindrical rod under the bulge, but also within the bore of the assembly. In this way, the assembly is made completely leakproof since the cylindrical rod surmounted by the bulge is provided with a bead of thermoplastic elastomer forming a seal between the assembly and the cylindrical rod. The assembly thus produced also makes it possible to perform a flexible connection and thus play the role of filtering the vibrations and noises generated by relative movements of the parts assembled under the effect of mechanical stresses. Similarly, this flexible connection makes it possible to absorb displacements and stresses following a relative expansion of the assembled parts under the effect of the temperature.
De plus, ladite tige cylindrique est réalisée dans un matériau polymère thermoplastique et de la sorte, son extrémité libre est apte à être portée à une température donnée autorisant sa déformation pour réaliser le renflement. Puis lorsque le renflement retrouve la température initiale de l'extrémité libre, il redevient rigide. En outre, ledit matériau polymère thermoplastique de ladite tige cylindrique est compatible chimiquement avec ledit élastomère thermoplastique de ladite gaine externe, par quoi ledit matériau polymère thermoplastique et ledit élastomère thermoplastique se lient chimiquement ensemble. De la sorte, io on obtient une meilleure étanchéité entre l'assemblage et la tige cylindrique, ainsi qu'une plus grande résistance mécanique. De plus, ladite tige cylindrique en matière plastique comprend des fibres de renfort. Avantageusement, lesdites fibres de renfort présentent des premières fibres s'étendant longitudinalement à l'intérieur de ladite tige is cylindrique, et elles présentent une extrémité apte à venir s'étendre radialement à l'intérieur dudit renflement. Au cours du bouterollage, l'extrémité des premières fibres qui s'étendent longitudinalement dans l'extrémité libre de la tige, s'écartent radialement à l'intérieur du renflement. De la sorte, l'extrémité des fibres vient s'étendre en retour à l'intérieur du renflement et par 20 conséquent, les fibres viennent renforcer axialement la rigidité de la tige et du renflement ainsi formé. Selon une variante de réalisation, lesdites fibres de renfort présentent des secondes fibres croisées avec lesdites premières fibres. Ces secondes fibres sont par exemple croisées par tissage. Et on obtient de la sorte, un renfort 25 bidirectionnel, longitudinal et transversal. Aussi, ladite extrémité d'arrêt présente un autre renflement formé par déformation à chaud de ladite tige cylindrique. Ledit autre renflement est préalablement formé et il constitue alors la tête de l'élément d'assemblage. Selon un mode de réalisation de l'invention particulièrement avantageux, 30 l'élastomère thermoplastique de ladite gaine externe est un copolymère à blocs. Par exemple, le copolymère à bloc styrène-butadiène, est particulièrement avantageux d'un point de vue économique. D'autres copolymère à blocs, type SBS, SEBS, polyether-esther, polyether-amide, polyurethane, peuvent également être mis en oeuvre. Selon un autre mode de réalisation, l'élastomère thermoplastique de ladite gaine externe est avantageusement un mélange d'élastomère et de polymère thermoplastique. Par exemple, l'élastomère thermoplastique oléfinique non vulcanisé, polypropylène/éthylène-propylène-diène monomère, est également avantageux d'un point de vue économique. Un mélange de plastique et d'élastomère vulcanisé ou non type PP-EPDM ou PVC-nitrile peut être également mis en oeuvre. Io Selon un autre aspect, la présente invention propose un procédé de réalisation d'un élément d'assemblage comprenant une tige cylindrique en matière plastique présentant d'une part une extrémité d'arrêt et d'autre part une extrémité libre apte à être déformée à chaud pour réaliser un renflement ; le procédé comprenant, les étapes suivantes : on forme à travers une filière un is jonc en matériau plastique et on extrude autour dudit jonc une gaine en élastomère thermoplastique pour former un jonc gainé ; puis on sectionne ledit jonc pour former des tiges cylindriques présentant deux extrémités opposées ; et, on forme l'une desdites extrémités desdites tiges cylindriques pour réaliser ladite extrémité d'arrêt, tandis que l'autre extrémité opposée est apte à être 20 déformée à chaud pour réaliser un renflement. L'extrusion de la gaine thermoplastique peut être réalisée simultanément immédiatement après avoir formé le jonc en matière plastique ou bien, de manière avantageuse, ultérieurement. Lorsque la réalisation du jonc en matériau plastique et l'extrusion de la 25 gaine thermoplastique sont réalisées simultanément, et notamment lorsque les matériaux polymère thermoplastique et élastomère thermoplastique sont compatibles, on obtient à l'interface une inter-diffusion des deux couches l'une dans l'autre, et partant, un enchevêtrement des polymères des deux couches. A cette interface, apparaît alors des interactions entre molécules qui 30 accroissent l'adhésion entre les deux matériaux. Ainsi, on réalise aisément des éléments d'assemblage en matière plastique, par exemple des rivets. Ces rivets sont destinés à être mis en oeuvre à travers un assemblage, l'extrémité d'arrêt contre l'une des faces de l'assemblage, l'autre extrémité libre étant apte à être déformé à chaud pour réaliser le renflement qui vient prendre appui contre l'autre face de l'assemblage. Lorsque l'extrémité libre est déformée à chaud, et que les matériaux polymère thermoplastique et élastomère thermoplastique sont compatibles chimiquement, l'inter-diffusion des deux polymères l'un dans l'autre est accrue, et parallèlement, les interactions moléculaires également, ce qui renforce la résistance mécanique. Les deux matériaux se soudent alors l'un à l'autre. Cette caractéristique est avantageuse, notamment lorsque l'extrusion de la io gaine thermoplastique est réalisée ultérieurement. Selon un mode de mise en oeuvre du procédé selon l'invention on force à travers une filière des mèches de fibres de renfort imprégnées dudit matériau plastique pour former ledit jonc en matière plastique. Cette technique de pultrusion permet de réaliser des joncs renforcés et partant, des éléments is d'assemblage présentant de meilleures propriétés mécaniques, ainsi qu'on l'expliquera ci-après. Préférentiellement, la matière plastique mise en oeuvre pour réaliser le jonc est un matériau thermoplastique. Il présente ainsi l'avantage de pouvoir subir des transformations réversibles et notamment de déformation à chaud. 20 D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après de modes de réalisation particuliers de l'invention, donnés à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels : - la Figure 1 est une vue schématique partielle en coupe axiale d'un jonc 25 en matière plastique réalisé selon l'invention ; - la Figure 2 est une vue schématique partielle d'une étape de transformation du jonc représenté sur la Figure 1; - la Figure 3 est une vue schématique partielle du jonc transformé selon un premier mode de mise en oeuvre ; 30 - la Figure 4 est une vue schématique partielle du jonc transformé selon un second mode de mise en oeuvre ; - la Figure 5 est une vue schématique en coupe axiale d'un élément d'assemblage selon à l'invention; - la Figure 6 est une représentation tomographique en vue de face de l'objet tel qu'illustré sur la Figure 4 ; et, - la Figure 7 est une représentation tomographique en vue de dessus de l'objet tel qu'illustré sur la Figure 4 La Figure 1 illustre un jonc 10 présentant une âme 12 réalisée dans un matériau thermoplastique, en l'espèce du polypropylène, et une gaine 14 réalisée dans un élastomère thermoplastique. L'âme 12 est ici obtenue par un procédé de pultrusion et elle inclut ainsi des mèches de fibres de verre 16 noyées dans la matrice de polypropylène. D'autres types de fibres sont io utilisables, par exemple les fibres de carbone. La gaine 14 est alors coextrudée autour de l'âme 12 au moyen d'une tête d'extrusion en équerre installée en aval de la filière de pultrusion. L'élastomère thermoplastique extrudé est en l'espèce un polypropylène - éthylène propylène diène monomère (PP-EPDM). Toutefois d'autres types d'élastomère is thermoplastique peuvent être mis en oeuvre autour de l'âme 12. Le jonc 10, grâce aux procédés de pultrusion et coextrusion mis en oeuvre, peut être réalisé en continu en grande longueur à un coût avantageux. Ensuite, le jonc 10 ainsi formé peut être sectionné en tiges cylindriques de longueur prédéterminée pour ensuite réaliser les éléments d'assemblage selon 20 l'invention. On observera que le jonc n'est pas nécessairement renforcé de fibres. Il peut être obtenu de manière classique par extrusion simple. On a représenté sur la Figure 2, deux étapes successives, A, B, de la mise en oeuvre de l'élément d'assemblage conforme à l'invention dans un 25 premier mode de réalisation. Tout d'abord, on fournit une tige cylindrique 18 obtenue selon la méthode précitée. Cette tige cylindrique 18 est ancrée à l'une de ses extrémités 20 dans une structure 22 pour former une extrémité d'arrêt, tandis que l'extrémité opposée 24 s'étend librement. Par ailleurs, la tige cylindrique 18 est engagée dans un orifice 25 pratiqué à travers un assemblage 30 26. L'extrémité opposée 24 s'étend alors librement en saillie de l'assemblage 26. En regard de cette extrémité opposée 24 est positionné une bouterolle 28 présentant une extrémité active 30 dans laquelle est pratiquée une empreinte hémisphérique et un corps chauffant 32 permettant précisément de porter à température les parois de l'empreinte hémisphérique. Entre l'étape A et l'étape B, la bouterolle 28 a été entraînée en translation vers l'extrémité opposée 24 de la tige cylindrique 18 et a été maintenue à force sous contrainte durant un laps de temps déterminé, de manière à provoquer le fluage de l'extrémité opposée 24 contre l'assemblage 26, et la formation d'un renflement 34 formant une tête hémisphérique. La bouterolle 28 a ensuite été portée dans sa position initiale. De la sorte, l'élément d'assemblage maintien en prise l'assemblage 26 par ses deux faces opposées. En outre, au cours du fluage de l'extrémité opposée 24 et de la formation Io du renflement 34, la gaine 14 en élastomère thermoplastique flue également et forme un bourrelet 36 autour de la tige cylindrique 18 sous le renflement 34. Le bourrelet 36 se forme sous l'effet de la chaleur et des contraintes exercées sur l'extrémité opposée 24 par l'intermédiaire de la bouterolle 28. Aussi, le bourrelet 36 que l'on retrouve plus en détail sur la Figure 4, est plus massif au niveau du is congé situé entre le renflement 34 et la tige cylindrique 18 mais il s'étend également radialement sous le renflement 34 et axialement le long de la tige cylindrique 18 sur une courte distance. Cette distance dépend de la chaleur fournie par la bouterolle 28 et par la température de fluage de l'élastomère thermoplastique. Toutefois, le bourrelet 36 s'étend axialement entre la paroi 20 externe de la tige cylindrique 18 et la paroi interne du perçage de l'assemblage 26 de manière à étanchéifier cet espace. Par conséquent, le bourrelet 36 forme un joint qui s'étend du renflement 34, à l'interface avec la face externe de l'assemblage 26, jusqu'à la tige cylindrique 18 à l'interface avec la paroi interne du perçage. De la sorte, l'élément d'assemblage ainsi formé à travers le 25 perçage de l'assemblage 26 permet également de rendre étanche l'assemblage 26 malgré le perçage. Par ailleurs, on se référera aux Figures 6, 7 représentant la structure interne de l'extrémité opposée 24 après la formation du renflement 34 au moyen de la bouterolle 28. On retrouve sur la Figure 6 la tige cylindrique 18 et 30 le renflement 34 formant tête. Au surplus, on y retrouve les mèches de fibres de verre 16 qui s'étendent longitudinalement dans la tige cylindrique 18, et qui se prolongent en s'étendant radialement dans le renflement 34. On retrouve sur la Figure 7 le renflement 34 en vue de dessus et les mèches de fibres de verre 16 qui s'étendent sensiblement radialement à partir du centre de la tige cylindrique 18. Ainsi, on comprend que l'extrémité des mèches de fibres de verre qui viennent s'étendre en retour dans le renflement 34, et qui sont bien évidemment noyées dans la matrice du matériau thermoplastique, vont renforcer la tenue du renflement 34 formant tête et partant, la résistance de l'élément d'assemblage par rapport aux contraintes de traction. Des essais comparatifs en traction montrent la supériorité en tenue des éléments d'assemblage renforcés en fibre de verre en comparaison de ceux qui io ne le sont pas. En partant d'un jonc de 6 mm de diamètre, et en formant un renflement 34 d'un diamètre voisin de 10 mm, on observe pour une matrice en polypropylène (PP), une augmentation de la résistance en traction d'environ 50 % et pour une matrice en polyéthylène téréphtalate (PET), une augmentation d'environ 75 %. 15 Selon un deuxième mode de réalisation de l'invention telle que représenté sur la Figure 5, les deux extrémités opposées de la tige 18 ont subi la même déformation à chaud. Les éléments similaires et jouant le même rôle sont représentés avec la même référence affectée du signe « ' ». Ainsi, la tige 18 équipée de sa gaine en élastomère thermoplastique 14, présente deux 20 renflements 34' identiques et opposés l'un de l'autre. Ils prennent respectivement appui sur les deux faces opposées de l'assemblage 26' comprenant deux plaques superposées 38, 40 dans lesquelles est pratiqué un perçage 25'. Aussi, les deux extrémités opposées de la tige 18 ont été formées au moyen d'une bouterolle du type représenté sur la Figure 2. 25 À la jonction des renflements 34 ' et de la tige 18, un bourrelet 36' a été formé. Il s'étend également d'une part à l'interface entre le renflement 34' et la face d'appui des plaques 38, 40 et d'autre part à l'interface entre la tige cylindrique 18 et la paroi interne du perçage 25'. Aussi, l'étanchéité des deux plaques superposées et assemblées 38, 40 est obtenue grâce aux bourrelets 30 36' qui forment alors joints d'étanchéité. Selon un troisième mode de réalisation de l'invention représenté sur la Figure 3, on réalise un renflement 34" au moyen de la bouterolle 28, laquelle présente une extrémité active 30 dans laquelle est pratiquée une empreinte non plus hémisphérique mais cylindrique. Les éléments similaires et jouant le même rôle sont représentés sur cette Figure 3 avec la même référence affectée du signe « " ». Le renflement 34" et par conséquent de forme cylindrique, et les extrémités des mèches de fibres de verre non représentées ici, s'y étendent radialement de la même façon que dans le précédent mode de réalisation. De nouveaux essais comparatifs en traction montrent également la supériorité en tenue des éléments d'assemblage renforcés en fibre de verre en comparaison de ceux qui ne le sont pas. En partant d'un jonc de 6 mm de io diamètre, et en formant un renflement 34" d'un diamètre voisin de 10 mm, on observe pour une matrice en polypropylène, une augmentation de la résistance en traction d'environ 120 % et pour une matrice en polyéthylène, une augmentation d'environ 60 %. De plus, le bourrelet 36" formé à la jonction du renflement 34" et de la tige 15 cylindrique 18 permet également d'obtenir une bonne étanchéité de l'assemblage. Selon un mode de mise en oeuvre particulier des éléments d'assemblage décrit ci-dessus, l'élastomère thermoplastique est compatible chimiquement avec le matériau plastique thermoplastique de la tige. De la sorte, après 20 assemblage, notamment dans le cas d'une extrusion simultanée de la gaine externe, les couches d"élastomère thermoplastique et de matériau plastique thermoplastique diffusent partiellement à l'interface l'une dans l'autre de manière à accroître la liaison mécanique entre les deux couches. On obtient ainsi un soudage intime des produits, et partant, on améliore la tenue 25 mécanique de l'assemblage, l'étanchéité de celui-ci aux fluides liquides et gaz , granulés et poussières. Parmi les couples d'élastomères et plastiques compatibles on citera comme exemple : Polyurethane thermoplastique rigide / Polyurethane élastomère thermoplastique ; Poly amide / poly ether bloc amide connu sous le nom de « Pebax® » ; Polychlorure de vinyle (PVC) / PVC nitrile ; 30 Polypropylène / EPDM vulcanisé ou non ; Polyester / polyether ester, connu sous les noms de « Hytrel® » ou « Arnitel® » ; Polyamide / SBS ou SEBS. Le soudage intime décrit ci-dessus est effectué par l'apport de chaleurs nécessaire pour réaliser le rivet L'assemblage constitue également une liaison souple des éléments assemblés, jouant un rôle d'amortisseur de vibration et d'absorbeur de bruit améliorant les propriétés vibro-acoustique de l'assemblage et la durée de vie du rivet. In addition, said cylindrical rod is made of a thermoplastic polymer material and in this way, its free end is adapted to be brought to a given temperature allowing its deformation to achieve the bulge. Then when the bulge returns to the initial temperature of the free end, it becomes rigid again. In addition, said thermoplastic polymer material of said cylindrical rod is chemically compatible with said thermoplastic elastomer of said outer sheath, whereby said thermoplastic polymer material and said thermoplastic elastomer chemically bond together. In this way, a better seal is obtained between the assembly and the cylindrical rod, as well as greater mechanical strength. In addition, said cylindrical plastic rod comprises reinforcing fibers. Advantageously, said reinforcing fibers have first fibers extending longitudinally inside said cylindrical rod, and they have an end adapted to extend radially inside said bulge. During the pebble, the ends of the first fibers which extend longitudinally in the free end of the rod, deviate radially inside the bulge. In this way, the end of the fibers is extended back inside the bulge and consequently, the fibers axially reinforce the rigidity of the rod and the bulge thus formed. According to an alternative embodiment, said reinforcing fibers have second fibers crossed with said first fibers. These second fibers are for example crossed by weaving. In this way, a bidirectional, longitudinal and transverse reinforcement is obtained. Also, said stop end has another bulge formed by hot deformation of said cylindrical rod. Said other bulge is previously formed and it then constitutes the head of the assembly element. According to a particularly advantageous embodiment of the invention, the thermoplastic elastomer of said outer sheath is a block copolymer. For example, the styrene-butadiene block copolymer is particularly advantageous from an economic point of view. Other block copolymers, such as SBS, SEBS, polyether-ester, polyether-amide, polyurethane, can also be used. According to another embodiment, the thermoplastic elastomer of said outer sheath is advantageously a mixture of elastomer and thermoplastic polymer. For example, the unvulcanized olefinic thermoplastic elastomer, polypropylene / ethylene-propylene-diene monomer, is also advantageous from an economic point of view. A mixture of plastic and elastomer vulcanized or non-PP-EPDM type or PVC-nitrile can also be used. According to another aspect, the present invention proposes a method for producing an assembly element comprising a cylindrical plastic rod having on the one hand a stop end and on the other hand a free end capable of being deformed. hot to achieve a bulge; the method comprising the following steps: forming a rod of plastic material through a die and extruding a thermoplastic elastomer sheath around said rod to form a sheathed rod; then said ring is cut to form cylindrical rods having two opposite ends; and, forming one of said ends of said cylindrical rods to provide said stop end, while the other opposite end is heat-deformable to make a bulge. The extrusion of the thermoplastic sheath may be carried out simultaneously immediately after forming the plastic rod or, advantageously, subsequently. When the realization of the rod of plastic material and the extrusion of the thermoplastic sheath are carried out simultaneously, and in particular when the thermoplastic polymer and thermoplastic elastomer materials are compatible, at the interface, an inter-diffusion of the two layers is obtained. in the other, and hence entanglement of the polymers of the two layers. At this interface, interactions occur between molecules that increase the adhesion between the two materials. Thus, plastic connecting elements, for example rivets, are easily made. These rivets are intended to be implemented through an assembly, the stop end against one of the faces of the assembly, the other free end being adapted to be deformed hot to achieve the bulge that comes support against the other side of the assembly. When the free end is hot deformed, and the thermoplastic polymer and thermoplastic elastomer materials are chemically compatible, the inter-diffusion of the two polymers into one another is increased, and in parallel, the molecular interactions also, this which strengthens the mechanical resistance. The two materials are then soldered to each other. This characteristic is advantageous, especially when the extrusion of the thermoplastic sheath is performed later. According to an embodiment of the method according to the invention, reinforcing fibers of impregnated fibers of said plastic material are forced through a die to form said plastics rod. This pultrusion technique makes it possible to produce reinforced rods and hence assembly elements having better mechanical properties, as will be explained hereinafter. Preferably, the plastic material used to make the rod is a thermoplastic material. It thus has the advantage of being able to undergo reversible transformations and in particular of hot deformation. Other features and advantages of the invention will emerge on reading the following description of particular embodiments of the invention, given for information but without limitation, with reference to the appended drawings in which: Figure 1 is a partial schematic view in axial section of a plastic rod 25 made according to the invention; FIG. 2 is a partial schematic view of a transformation step of the ring shown in FIG. 1; - Figure 3 is a partial schematic view of the rod converted according to a first embodiment; Figure 4 is a partial schematic view of the rod transformed according to a second embodiment; - Figure 5 is a schematic axial sectional view of an assembly element according to the invention; - Figure 6 is a tomographic representation in front view of the object as shown in Figure 4; and FIG. 7 is a tomographic representation in plan view of the object as illustrated in FIG. 4. FIG. 1 illustrates a rod 10 having a core 12 made of a thermoplastic material, in this case polypropylene. and a sheath 14 made of a thermoplastic elastomer. The core 12 is here obtained by a pultrusion process and thus includes strands of glass fibers 16 embedded in the polypropylene matrix. Other types of fibers are usable, for example carbon fibers. The sheath 14 is then coextruded around the core 12 by means of an angled extrusion head installed downstream of the pultrusion die. The extruded thermoplastic elastomer is in this case a polypropylene-ethylene propylene diene monomer (PP-EPDM). However, other types of thermoplastic elastomer may be used around the core 12. The rod 10, thanks to the pultrusion and coextrusion processes used, can be carried out continuously in great length at an advantageous cost. Then, the rod 10 thus formed can be cut into cylindrical rods of predetermined length to then make the assembly elements according to the invention. It will be observed that the ring is not necessarily reinforced with fibers. It can be obtained conventionally by simple extrusion. FIG. 2 shows two successive stages, A, B, of the implementation of the assembly element according to the invention in a first embodiment. First, a cylindrical rod 18 obtained according to the above method is provided. This cylindrical rod 18 is anchored at one of its ends 20 in a structure 22 to form a stop end, while the opposite end 24 extends freely. Moreover, the cylindrical rod 18 is engaged in an orifice 25 formed through an assembly 26. The opposite end 24 then extends freely projecting from the assembly 26. Opposite this opposite end 24 is positioned a bolt 28 having an active end 30 in which is formed a hemispherical cavity and a heating body 32 specifically to bring to temperature the walls of the hemispherical cavity. Between step A and step B, the rivet 28 has been translationally driven towards the opposite end 24 of the cylindrical rod 18 and has been held under stress for a predetermined period of time, so as to cause the creep of the opposite end 24 against the assembly 26, and the formation of a bulge 34 forming a hemispherical head. The rivet 28 was then brought to its original position. In this way, the connecting element keeps the assembly 26 engaged by its two opposite faces. In addition, during the creep of the opposite end 24 and the formation Io of the bulge 34, the sheath 14 of thermoplastic elastomer also flows and forms a bead 36 around the cylindrical rod 18 under the bulge 34. The bead 36 is formed under the effect of the heat and the stresses exerted on the opposite end 24 via the rivet 28. Also, the bead 36 which is found in more detail in Figure 4, is more massive at the the fillet is located between the bulge 34 and the cylindrical rod 18 but it also extends radially under the bulge 34 and axially along the cylindrical rod 18 for a short distance. This distance depends on the heat provided by the rivet 28 and the creep temperature of the thermoplastic elastomer. However, the bead 36 extends axially between the outer wall 20 of the cylindrical rod 18 and the inner wall of the bore of the assembly 26 so as to seal this space. Therefore, the bead 36 forms a seal extending from the bulge 34, at the interface with the outer face of the assembly 26, to the cylindrical rod 18 at the interface with the inner wall of the bore. In this way, the assembly element thus formed through the drilling of the assembly 26 also makes it possible to seal the assembly 26 despite the drilling. On the other hand, reference is made to FIGS. 6, 7 showing the internal structure of the opposite end 24 after the formation of the bulge 34 by means of the rivet 28. The cylindrical rod 18 and the bulge 34 forming part of FIG. head. In addition, it contains the fiberglass locks 16 which extend longitudinally in the cylindrical rod 18, and which extend radially extending in the bulge 34. There is shown in Figure 7 the bulge 34 in order to above and the glass fiber strands 16 which extend substantially radially from the center of the cylindrical rod 18. Thus, it is understood that the end of the strands of glass fibers which extend back into the bulge 34 and which are obviously embedded in the matrix of the thermoplastic material, will enhance the resistance of the bulge 34 forming head and hence the strength of the connecting element with respect to tensile stresses. Comparative tensile tests show the superiority in strength of fiberglass reinforced joining elements in comparison with those which are not. Starting from a ring 6 mm in diameter, and forming a bulge 34 with a diameter of about 10 mm, is observed for a polypropylene matrix (PP), an increase in tensile strength of about 50% and for a polyethylene terephthalate (PET) matrix, an increase of about 75%. According to a second embodiment of the invention as shown in FIG. 5, the two opposite ends of the rod 18 have undergone the same heat deformation. Similar elements playing the same role are represented with the same reference assigned the sign "'". Thus, the rod 18 equipped with its thermoplastic elastomer sheath 14, has two bulges 34 'identical and opposite to each other. They respectively bear on the two opposite faces of the assembly 26 'comprising two superimposed plates 38, 40 in which a hole 25' is made. Also, the two opposite ends of the rod 18 have been formed by means of a rivet of the type shown in Figure 2. At the junction of the bulges 34 'and the rod 18, a bead 36' has been formed. It also extends on the one hand to the interface between the bulge 34 'and the bearing face of the plates 38, 40 and on the other hand to the interface between the cylindrical rod 18 and the inner wall of the bore 25 . Also, the sealing of the two superposed and assembled plates 38, 40 is obtained thanks to the beads 36 'which then form seals. According to a third embodiment of the invention shown in FIG. 3, a bulge 34 is produced by means of the rivet 28, which has an active end 30 in which is practiced a not hemispherical but cylindrical imprint. and playing the same role are shown in this Figure 3 with the same reference assigned the sign "" ". The bulge 34 "and therefore of cylindrical shape, and the ends of the strands of glass fibers not shown here, extend radially in the same way as in the previous embodiment." New comparative tensile tests also show the superior strength in holding fiberglass reinforced joining elements in comparison with those which are not, starting from a ring 6 mm in diameter, and forming a bulge 34 "with a diameter of about 10 mm, it is observed for a polypropylene matrix, an increase in tensile strength of about 120% and for a polyethylene matrix, an increase of about 60%. In addition, the bead 36 "formed at the junction of the bulge 34" and the cylindrical rod 18 also provides a good seal of the assembly. According to a particular embodiment of the assembly elements described above, the thermoplastic elastomer is chemically compatible with the thermoplastic plastic material of the rod. In this way, after assembly, especially in the case of simultaneous extrusion of the outer sheath, the layers of thermoplastic elastomer and thermoplastic plastic material partially diffuse at the interface into each other so as to increase the mechanical connection between the two layers, thus obtaining an intimate welding of the products, and thus improving the mechanical strength of the assembly, the sealing thereof to liquid fluids and gases, granules and dusts. Couples of elastomers and compatible plastics can be cited as examples: Rigid thermoplastic polyurethane / Polyurethane thermoplastic elastomer, Polyamide amide / polyether amide block known as "Pebax®", polyvinyl chloride (PVC) / PVC nitrile; EPDM vulcanized or not, Polyester / polyether ester, known under the names "Hytrel®" or "Arnitel®", Polyamide / SBS or SEBS The intimate welding described above is The assembly also constitutes a flexible connection of the assembled elements, playing a role of vibration damper and noise absorber improving the vibro-acoustic properties of the assembly and the life of the rivet.
L'assemblage forme également un compensateur de dilatation thermique différentielle des deux pièces assemblées. Par ailleurs, selon encore un autre mode de mise en oeuvre non représentés, tandis que des premières fibres de renfort s'étendent longitudinalement à l'intérieur de ladite tige cylindrique, des secondes fibres de io renfort sont combinés avec les premières pour s'étendre de façon oblique par rapport à celle-ci. Par exemple, on met en oeuvre une structure bi-directionnelle en fibres tissées ou non-tissées. Selon une variante de réalisation on met en oeuvre une structure bi-directionnelle en fibre tricotée ce qui permet d'obtenir une structure déformable.The assembly also forms a differential thermal expansion compensator of the two assembled parts. Furthermore, according to yet another embodiment not shown, while first reinforcing fibers extend longitudinally inside said cylindrical rod, second reinforcing fibers are combined with the first to extend obliquely to it. For example, a bi-directional structure of woven or non-woven fibers is used. According to an alternative embodiment, a bi-directional structure made of knitted fiber is used, which makes it possible to obtain a deformable structure.
15 Selon encore un autre variante de réalisation, on met en oeuvre une structure de fibres tri-directionnelle afin d'augmenter la résistance à la déformation. According to yet another variant embodiment, a tri-directional fiber structure is used in order to increase the resistance to deformation.