FR2978314A1 - Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging - Google Patents

Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging Download PDF

Info

Publication number
FR2978314A1
FR2978314A1 FR1156624A FR1156624A FR2978314A1 FR 2978314 A1 FR2978314 A1 FR 2978314A1 FR 1156624 A FR1156624 A FR 1156624A FR 1156624 A FR1156624 A FR 1156624A FR 2978314 A1 FR2978314 A1 FR 2978314A1
Authority
FR
France
Prior art keywords
optical
signal
components
component
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1156624A
Other languages
French (fr)
Inventor
Raluca-Maria Indre
Thomas Bonald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Priority to FR1156624A priority Critical patent/FR2978314A1/en
Priority to EP12174798.4A priority patent/EP2549773B1/en
Priority to US13/552,292 priority patent/US9351054B2/en
Priority to CN201210254899.0A priority patent/CN102892051B/en
Publication of FR2978314A1 publication Critical patent/FR2978314A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0013Construction using gating amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Abstract

The device (20) has an optical element (31) arranged to switch to a blocking position for blocking an optical component for merging, as a function of a blocking signal. A duplication element (41) is arranged to duplicate the optical component for merging for sending to a combination element (61), where the combination element is arranged to obtain the blocking signal by combining duplicated optical components other than the optical component for merging. A merging module (70) is arranged to merge the optical components output by the optical element. Independent claims are also included for the following: (1) an optical combiner for optical signals (2) an optical node for aggregating optical signals (3) a method for merging optical components associated with one wavelength into an optical component associated with the wavelength (4) a method for optically combining optical signals.

Description

Dispositif et procédé de fusion de composantes optiques associées à une longueur d'onde en une composante optique fusionnée Device and method for fusing optical components associated with a wavelength into a fused optical component

L'invention se situe dans le domaine des réseaux de transmission optique et concerne des dispositifs de fusion d'une pluralité de composantes optiques associées à une longueur d'onde en une composante optique associée à la même longueur d'onde dans ces réseaux. Le domaine d'application visé est celui des équipements optiques de commutation, en particulier pour les réseaux d'accès optiques et les centres de traitement de données (« Data Center » en anglais). The invention lies in the field of optical transmission networks and relates to devices for melting a plurality of optical components associated with a wavelength into an optical component associated with the same wavelength in these networks. The targeted scope is that of optical switching equipment, in particular for optical access networks and data centers ("Data Center" in English).

Il existe deux types d'équipement de commutation dans un réseau optique : - des routeurs ou commutateurs électroniques, permettant la mise en attente des paquets en cas de congestion ; - des commutateurs optiques ne traitant pas le trafic au niveau paquet mais permettant d'établir des circuits optiques permanents entre deux routeurs ou commutateurs électroniques. There are two types of switching equipment in an optical network: - electronic routers or switches, allowing the waiting of packets in case of congestion; optical switches which do not deal with packet-level traffic but which make it possible to establish permanent optical circuits between two routers or electronic switches.

Afin d'éviter un traitement électronique de chaque paquet, coûteux en énergie, et augmenter les vitesses de commutation, le document intitulé « Optical burst switching (OBS) - A new paradigm for an optical Internet » de C. Qiao et al, publié dans la revue « Journal of High Speed Networks », 8:69-84, 1999, propose d'agréger les paquets en rafales et de commuter les rafales optiquement. Toutefois, un paquet de signalisation doit être envoyé au préalable afin de configurer les commutateurs optiques avant l'arrivée de la rafale. Les performances de cette méthode au niveau de l'utilisation des ressources ne sont pas optimales, la période entre le paquet de signalisation et la rafale n'étant généralement pas utilisable pour commuter d'autres rafales. Le document « The application of optical packet switching in future communication networks » de M. O'Mahony et al, publié dans la revue « IEEE Communications Magazine » de mars 2001, propose une méthode de commutation optique, dans laquelle les paquets sont agrégés en un paquet optique en fonction de leur destination et de contraintes de qualité de service. Un paquet optique comprend une étiquette indiquant notamment la destination de celui-ci. Un commutateur optique met le paquet optique en file d'attente afin de lire l'étiquette et de configurer la table de commutation puis commute le paquet optique. Le traitement de l'étiquette est électronique. Cette méthode n'est pas pour le moment mature car les performances et les coûts des mémoires optiques disponibles sont très limitées. Un des buts de l'invention est de remédier à des insuffisances/inconvénients de l'état de la technique et/ou d'y apporter des améliorations. Selon un premier aspect, l'invention a pour objet un dispositif de fusion d'une pluralité de composantes optiques associées à une longueur d'onde en une composante optique associée à ladite longueur d'onde, le dispositif comprenant : pour chaque composante optique de ladite pluralité à fusionner, - des moyens optiques, agencés pour basculer vers une position de blocage de ladite composante optique à fusionner en fonction d'un signal de blocage ; - des moyens de duplication, agencés pour dupliquer ladite composante optique à fusionner vers des moyens de combinaison ; - les moyens de combinaison, agencés pour obtenir ledit signal de blocage en combinant les composantes optiques de la pluralité dupliquées, en excluant ladite composante optique à fusionner ; et des moyens de fusion, agencés pour fusionner les composantes optiques en sortie des moyens optiques. In order to avoid an electronic processing of each packet, which is expensive in energy, and to increase the switching speeds, the document entitled "Optical burst switching (OBS) - A new paradigm for an optical Internet" by C. Qiao et al, published in the Journal of High Speed Networks, 8: 69-84, 1999, proposes to aggregate the packets in bursts and to switch the bursts optically. However, a signaling packet must be sent beforehand to configure the optical switches before the arrival of the burst. The performance of this method in the use of resources is not optimal, the period between the signaling packet and the burst being generally not usable to switch other gusts. O'Mahony et al's "Application of Optical Packet Switching in Future Communication Networks", published in the IEEE Communications Magazine of March 2001, proposes an optical switching method, in which packets are aggregated into an optical packet according to their destination and quality of service constraints. An optical packet includes a label indicating in particular the destination thereof. An optical switch queues the optical packet to read the tag and configure the switch table and then switches the optical packet. The processing of the label is electronic. This method is not currently mature because the performance and costs of optical memories available are very limited. One of the aims of the invention is to remedy the shortcomings / disadvantages of the state of the art and / or to make improvements thereto. According to a first aspect, the invention relates to a device for fusing a plurality of optical components associated with a wavelength into an optical component associated with said wavelength, the device comprising: for each optical component of said plurality to be fused, - optical means arranged to switch to a blocking position of said optical component to be fused according to a blocking signal; - Duplicating means, arranged to duplicate said optical component to merge to combining means; the combining means, arranged to obtain said blocking signal by combining the duplicate optical components of the plurality, excluding said optical component to be fused; and merging means arranged to merge the optical components at the output of the optical means.

L'invention tire son origine du constat effectué sur les méthodes existantes de commutation tout optique. Dans ce cadre, une alternative a été recherchée et un besoin d'un dispositif apte à fusionner des composantes optiques associées à une longueur d'onde en une composante optique associée à la même longueur d'onde et apte à gérer les collisions a été identifié. On appelle ici composante optique un signal optique porté par une longueur d'onde donnée. The invention originates from the finding made on existing methods of all-optical switching. In this context, an alternative has been sought and a need for a device capable of fusing optical components associated with a wavelength into an optical component associated with the same wavelength and capable of managing collisions has been identified. . Optical component is here called an optical signal carried by a given wavelength.

Le dispositif de fusion selon le premier aspect est remarquable en ce qu'il permet de fusionner plusieurs composantes optiques associées à une même longueur d'onde, tout en gérant les collisions. En cas de présence simultanée sur des ports d'entrée du dispositif de deux composantes optiques, au plus une d'entre elles est présente en sortie du dispositif. Les collisions en entrée du dispositif de fusion sont gérées sans nécessiter d'affecter une longueur d'onde à chacune des sources des composantes optiques. Dans ce dispositif de fusion, seules des opérations élémentaires dans le domaine optique sont effectuées à raide de composants disponibles actuellement. Dans un premier mode de réalisation particulier du dispositif, les moyens optiques sont en outre agencés pour amplifier la composante optique et les moyens de duplication sont connectés en sortie des moyens optiques. The fusion device according to the first aspect is remarkable in that it makes it possible to merge several optical components associated with the same wavelength, while managing the collisions. In the event of simultaneous presence on the input ports of the device of two optical components, at most one of them is present at the output of the device. The collisions at the input of the fusion device are managed without requiring to assign a wavelength to each of the sources of the optical components. In this fusion device, only elementary operations in the optical domain are performed using currently available components. In a first particular embodiment of the device, the optical means are furthermore arranged to amplify the optical component and the duplication means are connected at the output of the optical means.

Dans ce cas, lors d'une collision en entrée du dispositif, la composante optique, qui a été présente la première en entrée du dispositif, est transmise. Une deuxième composante optique présente ultérieurement sur un autre port d'entrée du dispositif est bloquée, tant que la première composante optique est présente. Le fonctionnement de ce premier mode de réalisation est basé sur le principe « premier arrivé, premier servi ». In this case, during an input collision of the device, the optical component, which has been present at the first input of the device, is transmitted. A second optical component later on another input port of the device is blocked, as long as the first optical component is present. The operation of this first embodiment is based on the "first come, first served" principle.

Dans un deuxième mode de réalisation particulier du dispositif, les moyens optiques sont en outre agencés pour amplifier la composante optique et les moyens de duplication sont connectés en entrée des moyens optiques. Dans ce cas, lors d'une collision en entrée du dispositif, aucune des composantes optiques n'est présente en sortie du dispositif. In a second particular embodiment of the device, the optical means are further arranged to amplify the optical component and the duplication means are connected at the input of the optical means. In this case, during an input collision of the device, none of the optical components is present at the output of the device.

Le dispositif de fusion selon le premier aspect est destiné à être intégré dans un combinateur optique selon un deuxième aspect. The fusion device according to the first aspect is intended to be integrated in an optical combiner according to a second aspect.

L'invention a ainsi également pour objet un combinateur optique de signaux optiques, un signal optique comportant des composantes optiques respectivement associées à une pluralité de longueurs d'onde, ledit combineur optique comprenant : - des moyens de démultiplexage respectivement associés à un signal optique en entrée, agencés pour obtenir à partir du signal optique en entrée une pluralité de composantes optiques ; - une pluralité de dispositifs de fusion selon le premier aspect, respectivement associés à une longueur d'onde et connectés en sortie des moyens de démultiplexage ; - des moyens de multiplexage, agencés pour multiplexer les composantes optiques en sortie des dispositifs de fusion en un signal optique de sortie. The invention thus also relates to an optical optical signal combiner, an optical signal comprising optical components respectively associated with a plurality of wavelengths, said optical combiner comprising: demultiplexing means respectively associated with an optical signal input, arranged to obtain from the input optical signal a plurality of optical components; a plurality of fusion devices according to the first aspect, respectively associated with a wavelength and connected at the output of the demultiplexing means; multiplexing means, arranged to multiplex the optical components at the output of the fusion devices into an optical output signal.

Ce combinateur optique permet ainsi de multiplexer dans le domaine temporel plusieurs signaux optiques, comprenant des composantes optiques, en un seul signal optique en sortie, en éliminant sur chaque longueur d'onde les paquets provoquant des collisions. Le combinateur optique est dynamique car il ne nécessite pas l'affectation d'une longueur d'onde à chacune des sources des signaux optiques. L'utilisation de la capacité des fibres optiques est ainsi améliorée. This optical combiner thus makes it possible to multiplex in the time domain several optical signals, comprising optical components, into a single optical signal at the output, eliminating on each wavelength the packets causing collisions. The optical combiner is dynamic because it does not require the assignment of a wavelength to each of the sources of the optical signals. The utilization of the capacity of the optical fibers is thus improved.

Le combinateur optique est également dynamique, en ce qu'il est possible de fusionner uniquement une partie des composantes optiques formant le signal optique. Le combinateur optique selon le deuxième aspect apporte une solution simple et efficace au problème de la commutation optique de paquets. En effet, le combinateur ne fait que combiner les signaux optiques : il n'effectue pas d'opération de commutation à proprement parler. La commutation s'effectue grâce aux longueurs d'onde : par exemple, on associe à chaque longueur d'onde sur chaque port d'entrée un unique port de sortie. La table de commutation est donc statique, mais la combinaison des flux (lorsque les flux de plusieurs interfaces d'entrée convergent vers la même interface de sortie) est dynamique, réalisée au moyen de l'invention. Dans ce combinateur optique, seules des opérations élémentaires dans le domaine optique sont effectuées à l'aide de composants disponibles actuellement. Ceci permet également de le mettre en oeuvre au niveau paquet sur un volume de trafic actuel. La commutation est effectuée au niveau des paquets, sans nécessiter d'agrégation des paquets. L'utilisation des ressources du réseau optique est ainsi optimisée. La commutation optique d'un paquet est effectuée en un temps compatible avec les contraintes actuelles de commutation, c'est-à-dire de l'ordre de la durée d'un paquet, soit une durée de l'ordre d'une microseconde. De plus, aucun traitement électronique des paquets n'est requis, ce qui permet de limiter la consommation énergétique du combinateur. Le combinateur optique ne nécessite pas d'échange de trafic de signalisation, préalablement à la transmission d'un paquet. L'utilisation de la capacité des fibres optiques est ainsi améliorée. The optical combiner is also dynamic, in that it is possible to merge only a part of the optical components forming the optical signal. The optical combiner according to the second aspect provides a simple and effective solution to the problem of optical packet switching. Indeed, the combiner simply combines the optical signals: it does not perform a switching operation itself. Switching is done by wavelengths: for example, a single output port is associated with each wavelength on each input port. The switching table is therefore static, but the combination of flows (when the flows of several input interfaces converge to the same output interface) is dynamic, achieved by means of the invention. In this optical combiner, only elementary operations in the optical domain are performed using currently available components. This also makes it possible to implement it at the packet level on a current volume of traffic. Switching is done at the packet level, without the need for packet aggregation. The use of optical network resources is thus optimized. The optical switching of a packet is performed in a time compatible with the current switching constraints, that is to say of the order of the duration of a packet, ie a duration of the order of one microsecond . In addition, no electronic packet processing is required, which limits the power consumption of the combiner. The optical combiner does not require exchange of signaling traffic, prior to the transmission of a packet. The utilization of the capacity of the optical fibers is thus improved.

Par ailleurs, le combinateur optique ne nécessite pas d'agrégation des paquets, ni mise en file d'attente du paquet optique. Furthermore, the optical combiner does not require packet aggregation or queuing of the optical packet.

Le combinateur optique selon le deuxième aspect est destiné à être intégré dans un noeud optique d'agrégation de signaux optiques selon un troisième aspect. L'invention a ainsi également pour objet un noeud optique d'agrégation de signaux optiques, un signal optique comportant une pluralité de composantes optiques respectivement associées à une pluralité de longueurs d'onde, ledit noeud comprenant : - un combinateur optique de signaux optiques selon le deuxième aspect, agencé pour combiner des signaux optiques respectivement reçus de noeuds optiques sources en un signal optique ; - un dispositif de distribution d'un signal optique, agencé pour distribuer un signal optique reçu vers lesdits noeuds sources. The optical combiner according to the second aspect is intended to be integrated in an optical optical signal aggregation node according to a third aspect. The invention thus also relates to an optical optical signal aggregation node, an optical signal comprising a plurality of optical components respectively associated with a plurality of wavelengths, said node comprising: an optical signal optical combiner according to the second aspect, arranged to combine optical signals respectively received from source optical nodes into an optical signal; a device for distributing an optical signal, arranged to distribute a received optical signal to said source nodes.

Selon un quatrième aspect, l'invention concerne également un procédé de fusion d'une pluralité de composantes optiques associées à une longueur d'onde en une composante optique fusionnée associée à ladite longueur d'onde, comprenant : - une étape de duplication des composantes optiques de ladite pluralité à fusionner, au cours de laquelle lesdites composantes optiques à fusionner sont dupliquées ; - une étape d'obtention de signaux de blocage, dans laquelle un signal de blocage associé à une composante optique à fusionner est obtenu en combinant les composantes optiques de la pluralité dupliquées, à l'exception de ladite composante optique à fusionner ; - une étape de blocage, au cours de laquelle on bloque une composante optique à fusionner en fonction du signal de blocage associé ; - une étape d'obtention de la composante optique fusionnée associée à la longueur d'onde à partir d'une composante optique non bloquée. Selon un cinquième aspect, l'invention concerne également un procédé pour combiner optiquement des signaux optiques, un signal optique comportant des composantes optiques respectivement associées à une pluralité de longueurs d'onde, comprenant : - une étape de démultiplexage des signaux optiques en entrée, pour obtenir à partir d'un signal optique en entrée une pluralité de composantes optiques ; - une mise en oeuvre du procédé de fusion selon le quatrième aspect, pour les composantes optiques associées à une longueur d'onde obtenues à l'étape de démultiplexage à partir des signaux optiques en entrée ; - une étape de multiplexage des composantes optiques en sortie obtenues par la mise en oeuvre du procédé de fusion en un signal optique de sortie. According to a fourth aspect, the invention also relates to a method of fusing a plurality of optical components associated with a wavelength into a fused optical component associated with said wavelength, comprising: a step of duplication of the components optical plurality of said plurality to merge, during which said optical components to be merged are duplicated; a step of obtaining blocking signals, in which a blocking signal associated with an optical component to be fused is obtained by combining the duplicate optical components of the plurality, with the exception of said optical component to be fused; a blocking step, during which an optical component to be fused is blocked as a function of the associated blocking signal; a step of obtaining the fused optical component associated with the wavelength from an unblocked optical component. According to a fifth aspect, the invention also relates to a method for optically combining optical signals, an optical signal comprising optical components respectively associated with a plurality of wavelengths, comprising: a step of demultiplexing the input optical signals, to obtain from an input optical signal a plurality of optical components; an implementation of the fusion method according to the fourth aspect, for the optical components associated with a wavelength obtained in the demultiplexing step from the input optical signals; a step of multiplexing the output optical components obtained by implementing the fusion process into an output optical signal.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés sur lesquels : - la figure la représente schématiquement un combinateur optique selon un mode particulier de réalisation de l'invention ; - la figure lb représente schématiquement un combinateur optique selon un autre mode particulier de réalisation de l'invention ; - la figure 2 représente schématiquement un dispositif de fusion selon un mode particulier de réalisation de l'invention ; - les figures 3a, 3b et 3c représentent trois états de fonctionnement du dispositif de fusion selon un mode particulier de réalisation de l'invention ; - la figure 4 représente un noeud optique d'agrégation dans son environnement selon un mode particulier de réalisation de l'invention ; - la figure 5 illustre les étapes d'un procédé de fusion d'une pluralité de composantes optiques selon un mode particulier de réalisation de l'invention ; - la figure 6 illustre les étapes d'un procédé pour combiner optiquement des signaux optiques selon un mode particulier de réalisation de l'invention. Sur la figure la est représenté schématiquement un combinateur optique 110 selon un mode particulier de réalisation de l'invention. Plus précisément, le combinateur optique 110 permet de combiner N signaux optiques en entrée en un signal optique en sortie. Dans l'exemple particulier de la figure la, trois signaux optiques sont combinés. Aucune limitation n'est attachée au nombre de signaux optiques en entrée du combinateur optique. Le premier signal optique est reçu par l'intermédiaire d'une première fibre optique FOI, connectée au combinateur optique 110 sur un premier port d'entrée. Le deuxième signal optique est reçu par l'intermédiaire d'une deuxième fibre optique FO2, connectée au combinateur optique 110 sur un deuxième port d'entrée. Le troisième signal optique est reçu par l'intermédiaire d'une troisième fibre optique FO3, connectée au combinateur optique 110 sur un troisième port d'entrée. Le signal optique en sortie du combinateur optique 110 sur un port de sortie est transmis par l'intermédiaire d'une quatrième fibre optique FO4. Other features and advantages of the invention will emerge on examining the detailed description below, and the accompanying drawings in which: - Figure la shows schematically an optical combiner according to a particular embodiment of the invention; FIG. 1b schematically represents an optical combiner according to another particular embodiment of the invention; FIG. 2 diagrammatically represents a fusion device according to a particular embodiment of the invention; FIGS. 3a, 3b and 3c show three operating states of the fusion device according to a particular embodiment of the invention; FIG. 4 represents an optical aggregation node in its environment according to a particular embodiment of the invention; FIG. 5 illustrates the steps of a method of fusing a plurality of optical components according to a particular embodiment of the invention; FIG. 6 illustrates the steps of a method for optically combining optical signals according to a particular embodiment of the invention. In Figure la is schematically shown an optical combiner 110 according to a particular embodiment of the invention. More precisely, the optical combiner 110 makes it possible to combine N optical signals at the input into an optical signal at the output. In the particular example of FIG. 1a, three optical signals are combined. No limitation is attached to the number of optical signals input to the optical combiner. The first optical signal is received via a first optical fiber FOI, connected to the optical combiner 110 on a first input port. The second optical signal is received via a second optical fiber FO2, connected to the optical combiner 110 on a second input port. The third optical signal is received via a third optical fiber FO3, connected to the optical combiner 110 on a third input port. The optical signal at the output of the optical combiner 110 on an output port is transmitted via a fourth optical fiber FO4.

Chacun des signaux optiques en entrée et en sortie comporte une pluralité W de composantes optiques, chaque composante optique étant associée à une longueur d'onde donnée. Dans l'exemple particulier de la figure la, quatre composantes optiques forment un signal optique. Aucune limitation n'est attachée au nombre de composantes optiques formant le signal optique. De plus, seul un sous-ensemble de composantes optiques formant le signal optique peut être combiné. Par ailleurs, les nombres N de signaux optiques et W de composantes optiques peuvent être choisis indépendamment l'un de l'autre. Le premier signal optique en entrée est démultiplexé en quatre longueurs d'onde 4 Xa, par un premier démultiplexeur 11. En sortie de ce premier démultiplexeur 11, quatre composantes optiques X1,I, X2,1, du premier signal optique sont obtenues. Le deuxième signal optique en entrée est démultiplexé en quatre longueurs d'onde 4 X,z, par un deuxième démultiplexeur 12. En sortie de ce deuxième démultiplexeur 12, quatre composantes optiques X1,2, X2,2, X3,2, du deuxième signal optique sont obtenues. Le troisième signal optique en entrée est démultiplexé en quatre longueurs d'onde 4 X2, X3, X4 par un troisième démultiplexeur 13. En sortie de ce troisième démultiplexeur 13, quatre composantes optiques X1,3, X2,3, X3,3, X4,3 du troisième signal optique sont obtenues. Each of the input and output optical signals comprises a plurality W of optical components, each optical component being associated with a given wavelength. In the particular example of FIG. 1a, four optical components form an optical signal. No limitation is attached to the number of optical components forming the optical signal. In addition, only a subset of optical components forming the optical signal can be combined. On the other hand, the numbers N of optical signals and W of optical components can be chosen independently of one another. The first optical signal at the input is demultiplexed into four wavelengths 4 Xa, by a first demultiplexer 11. At the output of this first demultiplexer 11, four optical components X1, I, X2,1, of the first optical signal are obtained. The second input optical signal is demultiplexed into four wavelengths 4X, z, by a second demultiplexer 12. At the output of this second demultiplexer 12, four optical components X1,2, X2,2, X3,2, of the second optical signal are obtained. The third input optical signal is demultiplexed into four wavelengths 4X2, X3, X4 by a third demultiplexer 13. At the output of this third demultiplexer 13, four optical components X1,3, X2,3, X3,3, X4 , 3 of the third optical signal are obtained.

Les composantes optiques des premier, deuxième et troisième signaux optiques sont ensuite regroupées par longueur d'onde 4 X2, X3, X4 et transmises en entrée de dispositifs de fusion 201, 202, 203, 204. Les dispositifs de fusion selon l'invention permettent de combiner une pluralité de composantes optiques en une composante optique résultante, de telle sorte que les collisions entre les composantes optiques en entrée du dispositif de fusion sont évitées. Au plus une des composantes optiques générant une collision est sélectionnée. Plus précisément, les composantes optiques X,1,1, X1,2, X1,3 sont transmises en entrée du premier dispositif de fusion 201 ; les composantes optiques X2,1, X2,2, X2,3 sont transmises en entrée du deuxième dispositif de fusion 202, les composantes optiques X3,1, X3,2, X3,3 sont transmises en entrée du troisième dispositif de fusion 203 ; les composantes optiques X4,1, 2 4,2, X4,3 sont transmises en entrée du quatrième dispositif de fusion 204. En sortie du premier dispositif de fusion 201, une première composante optique X1,4 associée à la longueur d'onde est obtenue. En sortie du deuxième dispositif de fusion 202, une deuxième composante optique x,2,4 associée à la longueur d'onde X2 est obtenue. En sortie du troisième dispositif de fusion 203, une troisième composante optique x,3,4 associée à la longueur d'onde X3 est obtenue. En sortie du quatrième dispositif de fusion 204, une quatrième composante optique 244 associée à la longueur d'onde X4 est obtenue. Les quatre composantes optiques X1,4, X2,4, X3,4, X4,4 respectivement en sortie des dispositifs de fusion 201, 202, 203, 204 sont ensuite injectées dans un multiplexeur 14 afin de former le signal optique en sortie. The optical components of the first, second and third optical signals are then grouped by wavelength 4 × 2, X 3, X 4 and transmitted at the input of fusion devices 201, 202, 203, 204. The fusion devices according to the invention make it possible to combining a plurality of optical components into a resulting optical component such that collisions between optical components at the input of the fusion device are avoided. At most one of the optical components generating a collision is selected. More precisely, the optical components X, 1,1, X1,2, X1,3 are transmitted at the input of the first fuser 201; the optical components X2,1, X2,2, X2,3 are transmitted at the input of the second fusion device 202, the optical components X3,1, X3,2, X3,3 are transmitted at the input of the third fusion device 203; the optical components X4,1, 4,2,2, X4,3 are transmitted at the input of the fourth fuser 204. At the output of the first fuser 201, a first optical component X1,4 associated with the wavelength is obtained. At the output of the second fusion device 202, a second optical component x, 2.4 associated with the wavelength λ 2 is obtained. At the output of the third fusion device 203, a third optical component x, 3.4 associated with the wavelength λ3 is obtained. At the output of the fourth fuser 204, a fourth optical component 244 associated with the wavelength λ4 is obtained. The four optical components X1,4, X2,4, X3,4, X4,4 respectively at the output of the fusion devices 201, 202, 203, 204 are then injected into a multiplexer 14 in order to form the optical signal at the output.

La figure lb illustre un autre mode de réalisation du combinateur optique 110. Plus précisément, le combinateur optique 110, tel que représenté à la figure lb, permet de combiner trois signaux optiques en entrée en deux signaux optiques en sortie. Les signaux optiques en sortie du combinateur optique 110 sont respectivement transmis par l'intermédiaire de quatrième FO4 et cinquième FO5 fibres optiques. FIG. 1b illustrates another embodiment of the optical combiner 110. More specifically, the optical combiner 110, as shown in FIG. 1b, makes it possible to combine three input optical signals into two optical signals at the output. The optical signals at the output of the optical combiner 110 are respectively transmitted via fourth FO4 and fifth FO5 optical fibers.

Le combinateur optique comporte des moyens de démultiplexage en longueur d'onde 1l, 12, 13 et des dispositifs de fusion 201, 202, 203, 204 similaires à ceux décrits précédemment en relation avec la figure la. Deux des quatre composantes optiques X1,4, X3,4 respectivement en sortie des dispositifs de fusion 201, 203, sont ensuite injectées dans un premier multiplexeur 141 afin de former un premier signal optique en sortie. The optical combiner comprises wavelength demultiplexing means 11, 12, 13 and fusion devices 201, 202, 203, 204 similar to those previously described in relation to FIG. Two of the four optical components X1,4, X3,4, respectively at the output of the fusion devices 201, 203, are then injected into a first multiplexer 141 in order to form a first optical signal at the output.

Les deux autres composantes optiques 22,4, 23,4 respectivement en sortie des dispositifs de fusion 202, 204 sont ensuite injectées dans un deuxième multiplexeur 142 afin de former un deuxième signal optique en sortie. Il est ainsi possible dans un combinateur optique de combiner N signaux optiques présents en entrée en M signaux optiques en sortie. Aucune limitation n'est attachée au nombre de signaux optiques en entrée ni à celui de signaux en sortie. Il est également possible de prévoir dans un tel combinateur optique de combiner les composantes optiques associées à une longueur d'onde donnée présentes sur un premier ensemble de ports d'entrée du combinateur vers un premier port de sortie et celles présentes sur un deuxième ensemble de ports d'entrée du combinateur vers un deuxième port de sortie. Aucune limitation n'est attachée à ces exemples. Il est ainsi possible de commuter une longueur d'onde sur un port d'entrée vers un port de sortie. Le combinateur optique a été décrit dans une configuration comprenant trois voies. Le nombre de voies est à adapter en fonction du nombre de longueurs d'onde à traiter. Le nombre de ports d'entrée est à définir du nombre de sources à combiner. Un dispositif de fusion 20 d'une pluralité de composantes optiques associées à une longueur d'onde en une composante optique associée à cette longueur d'onde selon un mode particulier de réalisation de l'invention va maintenant être décrit en relation avec la figure 2. Pour une première composante optique associée à la longueur d'onde X,,, le dispositif de fusion 20 comprend les moyens suivants, formant une première voie : - des premiers moyens optiques 31, agencés pour basculer vers une position de blocage de cette première composante optique en fonction d'un premier signal de blocage ; - des premiers moyens de duplication 41, connectés en sortie des premiers moyens optiques 31, agencés pour dupliquer la première composante optique vers deux ports de sortie. The other two optical components 22,4, 23,4 respectively at the output of the fusion devices 202, 204 are then injected into a second multiplexer 142 in order to form a second optical signal at the output. It is thus possible in an optical combiner to combine N optical signals present at the input into M optical signals at the output. No limitation is attached to the number of optical signals input or that of output signals. It is also possible to provide in such an optical combiner to combine the optical components associated with a given wavelength present on a first set of input ports of the combiner to a first output port and those present on a second set of combiner input ports to a second output port. No limitation is attached to these examples. It is thus possible to switch a wavelength on an input port to an output port. The optical combiner has been described in a three-way configuration. The number of channels is to be adapted according to the number of wavelengths to be processed. The number of input ports is to define the number of sources to combine. A device 20 for fusing a plurality of optical components associated with a wavelength into an optical component associated with this wavelength according to a particular embodiment of the invention will now be described with reference to FIG. For a first optical component associated with the wavelength λ 1, the fusion device 20 comprises the following means, forming a first channel: first optical means 31, arranged to switch to a blocking position of this first optical component according to a first blocking signal; first duplication means 41, connected at the output of the first optical means 31, arranged to duplicate the first optical component to two output ports.

Le premier port de sortie des premiers moyens de duplication 41 est connecté en entrée d'un module de fusion 70, comprenant trois ports d'entrée et un port de sortie. Le module de fusion 70 est agencé pour fusionner des composantes optiques en entrée en une composante optique en sortie. La première composante optique dupliquée est ainsi injectée en entrée du module de fusion 70. Le deuxième port de sortie des premiers moyens de duplication 41 est connecté en entrée d'un premier convertisseur optoélectronique 51. La première composante optique dupliquée est ainsi convertie en un premier signal électrique. Pour une deuxième composante optique 2,,2 associée à la longueur d'onde X,,, le dispositif de fusion 20 comprend les moyens suivants, formant une deuxième voie : - des deuxièmes moyens optiques 32, agencés pour basculer vers une position de blocage de cette deuxième composante optique en fonction d'un deuxième signal de blocage ; - des deuxièmes moyens de duplication 42, connectés en sortie des deuxièmes moyens optiques 32, agencés pour dupliquer la deuxième composante optique vers deux ports de sortie. The first output port of the first duplication means 41 is connected to the input of a merger module 70, comprising three input ports and one output port. The fusion module 70 is arranged to merge input optical components into an output optical component. The first duplicated optical component is thus injected at the input of the fusion module 70. The second output port of the first duplication means 41 is connected at the input of a first optoelectronic converter 51. The first duplicated optical component is thus converted into a first electrical signal. For a second optical component 2, 2 associated with the wavelength λ 1, the fusion device 20 comprises the following means, forming a second channel: second optical means 32, arranged to switch to a blocking position this second optical component as a function of a second blocking signal; second duplicating means 42, connected at the output of the second optical means 32, arranged to duplicate the second optical component to two output ports.

Le premier port de sortie des deuxièmes moyens de duplication 42 est connecté en entrée du module de fusion 70. La deuxième composante optique dupliquée est ainsi injectée en entrée du module de fusion 70. Le deuxième port de sortie des deuxièmes moyens de duplication 42 est connecté en entrée d'un deuxième convertisseur optoélectronique 52. La deuxième composante optique dupliquée est ainsi convertie en un deuxième signal électrique. Pour une troisième composante optique associée à la longueur d'onde X,,, le dispositif de fusion 20 comprend les moyens suivants, formant une troisième voie : - des troisièmes moyens optiques 33, agencés pour basculer vers une position de blocage de cette troisième composante optique en fonction d'un troisième signal de blocage ; - des troisièmes moyens de duplication 43, connectés en sortie des troisièmes moyens optiques 33, agencés pour dupliquer la troisième composante optique vers deux ports de sortie. Le premier port de sortie des troisièmes moyens de duplication 43 est connecté en entrée du module de fusion 70. La troisième composante optique dupliquée est ainsi injectée en entrée du module de fusion 70. Le deuxième port de sortie des troisièmes moyens de duplication 43 est connecté en entrée d'un troisième convertisseur optoélectronique 53. La troisième composante optique dupliquée est ainsi convertie en un troisième signal électrique. Les premiers 31, deuxièmes 32, troisièmes 33 moyens optiques sont en outre prévus pour amplifier la composante optique reçue en entrée, en l'absence d'un signal de blocage. Cette position est dite de transfert. Il s'agit par exemple d'un amplificateur optique semi-conducteur SOA. Aucune limitation n'est attachée à ce type de dispositif. On rappelle ici que lorsque le signal de blocage est présent, ces moyens optiques 31, 32, 33 basculent dans une position de blocage des signaux optiques en entrée de ces moyens. The first output port of the second duplication means 42 is connected to the input of the fusion module 70. The second duplicated optical component is thus injected at the input of the fusion module 70. The second output port of the second duplication means 42 is connected. at the input of a second optoelectronic converter 52. The second duplicated optical component is thus converted into a second electrical signal. For a third optical component associated with the wavelength λ ,,, the fusion device 20 comprises the following means, forming a third channel: third optical means 33, arranged to switch to a blocking position of this third component optical according to a third blocking signal; third duplicating means 43, connected at the output of the third optical means 33, arranged to duplicate the third optical component to two output ports. The first output port of the third duplication means 43 is connected to the input of the fusion module 70. The third duplicated optical component is thus injected at the input of the fusion module 70. The second output port of the third duplication means 43 is connected. at the input of a third optoelectronic converter 53. The third duplicated optical component is thus converted into a third electrical signal. The first 31, second 32, third 33 optical means are further provided to amplify the optical component received at the input, in the absence of a blocking signal. This position is called transfer. This is for example a SOA semiconductor optical amplifier. No limitation is attached to this type of device. It will be recalled here that when the blocking signal is present, these optical means 31, 32, 33 switch to a blocking position of the optical signals at the input of these means.

Les premiers 41, deuxièmes 42, troisièmes 43 moyens de duplication sont par exemple des coupleurs 80-20. Les deuxième et troisième signaux électriques, issus respectivement des deuxième et troisième voies, sont ensuite combinés par un premier coupleur 61 pour former le premier signal de blocage des premiers moyens optiques 31. The first 41, second 42, third 43 duplicating means are for example 80-20 couplers. The second and third electrical signals, respectively from the second and third channels, are then combined by a first coupler 61 to form the first blocking signal of the first optical means 31.

Les premier et troisième signaux électriques, issus respectivement des première et troisième voies, sont ensuite combinés par un deuxième coupleur 62 pour former le deuxième signal de blocage des deuxièmes moyens optiques 32. Les premier et deuxième signaux électriques, issus respectivement des première et troisième voies, sont ensuite combinés par un troisième coupleur 62 pour former le troisième signal de blocage des troisièmes moyens optiques 33. Ainsi, pour une composante optique donnée, le dispositif de fusion 20 comporte des moyens de combinaison, agencés pour obtenir un signal de blocage pour des moyens optiques associés à la composante optique donnée en combinant les composantes optiques à fusionner, en excluant la composante optique donnée. En sortie du module de fusion 70, une composante optique est obtenue. Cette composante optique en sortie du dispositif de fusion 20 correspond à la fusion des trois composantes optiques en entrée du dispositif de fusion 20. Ainsi dans ce mode de réalisation, lorsqu'une collision de données entre plusieurs composantes optiques survient en entrée, les données d'une seule composante optique sont présentes en sortie. En effet, lorsqu'une composante optique est sélectionnée, les autres composantes optiques sont bloquées. Ainsi, la composante optique devenant active en premier est sélectionnée pour former la composante optique en sortie. Lorsque la composante optique sélectionnée devient inactive, une autre composante optique devenue active peut être sélectionnée à son tour. Une seule composante optique est sélectionnée parmi les composantes actives en entrée d'un dispositif de fusion pour former la composante optique de sortie, sur la base d'un mécanisme « premier arrivé, premier servi ». The first and third electrical signals, respectively from the first and third channels, are then combined by a second coupler 62 to form the second blocking signal of the second optical means 32. The first and second electrical signals, respectively from the first and third channels , are then combined by a third coupler 62 to form the third blocking signal of the third optical means 33. Thus, for a given optical component, the fusion device 20 comprises combining means, arranged to obtain a blocking signal for optical means associated with the optical component given by combining the optical components to be fused, excluding the given optical component. At the output of the fusion module 70, an optical component is obtained. This optical component at the output of the fusion device 20 corresponds to the fusion of the three optical components at the input of the fusion device 20. Thus, in this embodiment, when a data collision between several optical components occurs as input, the data of only one optical component are present at the output. Indeed, when an optical component is selected, the other optical components are blocked. Thus, the optical component becoming active first is selected to form the output optical component. When the selected optical component becomes inactive, another optical component that has become active can be selected in turn. A single optical component is selected from the input active components of a fusion device to form the output optical component, based on a "first come, first served" mechanism.

Des états de fonctionnement du dispositif de fusion 20 vont maintenant être détaillés en relation avec les figures 3a, 3b et 3c. La figure 3a correspond à un état dans lequel aucune composante optique n'est présente sur l'un des ports d'entrée du dispositif de fusion 20. Les premiers 31, deuxièmes 32, troisièmes 33 moyens optiques sont dans leurs positions de transfert respectives. La figure 3b correspond à un état dans lequel une première composante optique 'i associée à la longueur d'onde X,, est présente sur la première entrée du dispositif de fusion 20. Les premiers moyens de duplication 41 dupliquent la première composante optique et permettent de former le premier signal électrique, puis les deuxième et troisième signaux de blocage. Les deuxièmes 32 et troisièmes 33 moyens de blocage basculent alors vers leurs positions de blocage sous commande respectivement des deuxième et troisième signaux de blocage. La composante optique en sortie du dispositif de fusion 20 est alors formée de la première composante optique. Lorsque la première composante optique devient inactive, le premier signal électrique n'est plus présent et les deuxièmes 32 et troisièmes 33 moyens de blocage reviennent en position de transfert, illustrée à la figure 3a. La figure 3c correspond à un état dans lequel une deuxième composante optique 2,,2 associée à la longueur d'onde X,, est présente sur la deuxième entrée du dispositif de fusion 20. Les deuxièmes moyens de duplication 42 dupliquent la deuxième composante optique et permettent de former le deuxième signal électrique, puis les premier et troisième signaux de blocage. Les premiers 31 et troisièmes 33 moyens de blocage basculent alors vers leurs positions de blocage sous commande respectivement des premier et troisième signaux de blocage. Operating states of the fusion device 20 will now be detailed in connection with FIGS. 3a, 3b and 3c. FIG. 3a corresponds to a state in which no optical component is present on one of the input ports of the fusion device 20. The first 31, second 32, third 33 optical means are in their respective transfer positions. FIG. 3b corresponds to a state in which a first optical component 'i associated with the wavelength λ ,, is present on the first input of the fusion device 20. The first duplication means 41 duplicate the first optical component and enable to form the first electrical signal, then the second and third blocking signals. The second 32 and third 33 blocking means then switch to their locking positions under control respectively of the second and third blocking signals. The optical component at the output of the fusion device 20 is then formed of the first optical component. When the first optical component becomes inactive, the first electrical signal is no longer present and the second 32 and third 33 locking means return to the transfer position, illustrated in Figure 3a. FIG. 3c corresponds to a state in which a second optical component 2, 2 associated with the wavelength λ ,, is present on the second input of the fusion device 20. The second duplication means 42 duplicate the second optical component and make it possible to form the second electrical signal, then the first and third blocking signals. The first 31 and third 33 locking means then switch to their locking positions under control respectively of the first and third blocking signals.

La composante optique en sortie du dispositif de fusion 20 est alors formée de la deuxième composante optique. Lorsque la deuxième composante optique devient inactive, le deuxième signal électrique n'est plus présent et les premiers 31 et troisièmes 33 moyens de blocage reviennent en position de transfert, illustrée à la figure 3a. The optical component at the output of the fusion device 20 is then formed of the second optical component. When the second optical component becomes inactive, the second electrical signal is no longer present and the first 31 and third 33 locking means return to the transfer position, illustrated in Figure 3a.

Dans l'état illustré à la figure 3c, lorsqu'une troisième composante optique 2,,3 associée à la longueur d'onde X,, est présente sur la troisième entrée du dispositif de fusion 20, cette troisième composante va être bloquée tant que la deuxième composante est présente en entrée du dispositif. Un signal optique résiduel est alors susceptible d'être transmis, lorsque les moyens de blocage 33 passent en position de transfert. Afin d'éviter la transmission de ce signal optique résiduel, il est possible de prévoir en option des portes électroniques élémentaires, permettant de maintenir les moyens de blocage 31, 32, 33 en position bloquée tant qu'un signal optique résiduel est présent en entrée. Ceci permet d'améliorer les performances du dispositif en bloquant la transmission de paquets éventuellement incomplets. Dans le premier mode de réalisation particulier décrit en relation avec les figures 2, 3a, 3b, 3c, les moyens de duplication 41-43 sont connectés en sortie des moyens optiques 31-33. Ce mode de réalisation présente ainsi l'avantage de gérer les collisions de données en entrée du dispositif de fusion 20 sur la base d'un principe « premier arrivé-premier servi ». Dans un deuxième mode de réalisation particulier, non représenté, les moyens de duplication 41-43 sont placés en entrée du dispositif de fusion 20. Dans ce cas, les collisions de données en entrée du dispositif de fusion 20 conduisent à une absence de données en sortie du dispositif de fusion 20. Cet autre mode de réalisation permet donc de gérer les collisions mais est toutefois moins avantageux que le précédent. En variante au premier mode de réalisation du dispositif de fusion 20, les moyens de combinaison 61, 62, 63 combinent des signaux optiques. In the state illustrated in FIG. 3c, when a third optical component 2,, 3 associated with the wavelength λ ,, is present on the third input of the fusion device 20, this third component will be blocked as long as the second component is present at the input of the device. A residual optical signal is then likely to be transmitted when the blocking means 33 pass to the transfer position. In order to avoid the transmission of this residual optical signal, it is possible to provide, as an option, elementary electronic gates, making it possible to hold the locking means 31, 32, 33 in the locked position as long as a residual optical signal is present at the input . This improves the performance of the device by blocking the transmission of possibly incomplete packets. In the first particular embodiment described with reference to FIGS. 2, 3a, 3b, 3c, the duplicating means 41-43 are connected at the output of optical means 31-33. This embodiment thus has the advantage of managing the data collisions at the input of the merging device 20 on the basis of a "first come-first served" principle. In a second particular embodiment, not shown, the duplicating means 41-43 are placed at the input of the merging device 20. In this case, the data collisions at the input of the merging device 20 lead to a lack of data. This other embodiment thus makes it possible to manage the collisions but is however less advantageous than the previous one. As an alternative to the first embodiment of the melter 20, the combining means 61, 62, 63 combine optical signals.

Le deuxième port de sortie des premiers moyens de duplication 41 est connecté en entrée des deuxièmes 62 et troisièmes 63 moyens de combinaison, après duplication. Le deuxième port de sortie des deuxièmes moyens de duplication 42 est connecté en entrée des premiers 61 et troisièmes 63 moyens de combinaison, après duplication.. Le deuxième port de sortie des troisièmes moyens de duplication 43 est connecté en entrée des premiers 61 et deuxièmes 62 moyens de combinaison, après duplication. Le signal optique en sortie des moyens de combinaison 61 est alors converti en signal électrique par un premier convertisseur optoélectronique pour former le premier signal de blocage. Le signal optique en sortie des moyens de combinaison 62 est alors converti en signal électrique par un deuxième convertisseur optoélectronique pour former le deuxième signal de blocage. The second output port of the first duplication means 41 is connected at the input of second 62 and third 63 combining means, after duplication. The second output port of the second duplication means 42 is connected at the input of the first 61 and third 63 combination means, after duplication. The second output port of the third duplication means 43 is connected to the input of the first 61 and second 62 means of combination, after duplication. The optical signal at the output of the combining means 61 is then converted into an electrical signal by a first optoelectronic converter to form the first blocking signal. The optical signal at the output of the combining means 62 is then converted into an electrical signal by a second optoelectronic converter to form the second blocking signal.

Le signal optique en sortie des moyens de combinaison 63 est alors converti en signal électrique par un troisième convertisseur optoélectronique pour former le troisième signal de blocage. Les moyens de combinaison optiques présentent l'avantage d'être passifs et ainsi de ne pas nécessiter d'alimentation électrique. Un noeud optique d'agrégation 100 de signaux optiques va maintenant être décrit en relation avec la figure 4. Un tel noeud d'agrégation permet d'agréger les signaux optiques reçus de noeuds optiques 131-135 en un signal optique et de transmettre ce signal optique de manière tout optique à destination d'un réseau de communication 1, par exemple le réseau Internet, et également de distribuer vers les noeuds optiques 131-135 un signal optique reçu du réseau de communication 1. Un signal optique est transmis par le premier noeud optique 131 vers le noeud d'agrégation 100 par l'intermédiaire d'une première fibre optique FOI,I. Un signal optique est transmis du noeud d'agrégation 100 vers le premier noeud optique 131 par l'intermédiaire d'une deuxième fibre optique FOI 2. De même, le deuxième noeud optique 132 est relié au noeud d'agrégation 100 par l'intermédiaire de deux fibres optiques F02,1, F022; le troisième noeud 133 par deux fibres optiques FO3,I, FO3 2 ; le quatrième noeud 134 par deux fibres optiques FO4,I, FO42 ; le cinquième noeud 135 par deux fibres optiques FOS I, F05 2. Un signal optique est transmis par le noeud d'agrégation 100 vers le réseau de communication 1 par l'intermédiaire d'une première fibre optique FO6,I. Un signal optique vers le noeud d'agrégation 100 est transmis du réseau de communication 1 par l'intermédiaire d'une deuxième fibre optique FO6,2. Le noeud d'agrégation 100 comprend un combinateur optique 110 de signaux optiques tel que décrit précédemment, agencé pour combiner des signaux optiques respectivement reçus des noeuds optiques 131-135 en un signal optique et un dispositif de distribution 120 d'un signal optique, agencé pour distribuer un signal optique reçu vers les noeuds optiques 131-135. Le combinateur optique 110 comprend notamment dans ce cas quatre ports d'entrée de signaux optiques. Il est ici souligné que des données générant des collisions sont supprimées par le dispositif de fusion tel que décrit précédemment. Ces données supprimées peuvent être réémises par le noeud source à l'expiration d'une temporisation. Il est également possible de prévoir que le noeud d'agrégation notifie le noeud source émetteur des données supprimées. Afin de permettre aux noeuds optiques 131-135 de communiquer entre eux, des longueurs d'onde particulières sont dédiées au trafic local. Dans ce cas, un premier combinateur optique 110 peut être en charge de fusionner les longueurs d'onde affectées au trafic à destination du réseau de communication 1 et un deuxième combinateur optique en charge de fusionner les longueurs d'onde affectées au trafic local. Il est également envisageable de prévoir un seul combinateur optique, tel que celui décrit en relation avec la figure lb. Le dispositif de distribution 120 est alors agencé pour : - fusionner le signal optique en sortie du deuxième combinateur optique et le signal optique en provenance du réseau de communication 1, et - distribuer le signal optique résultant de la fusion. Dans un contexte plus général de l'interconnexion de plusieurs réseaux d'accès optiques comprenant plusieurs niveaux d'agrégation, un ensemble de longueurs d'onde peut être affecté à chaque réseau d'accès optique. Le trafic de données est alors combiné, acheminé et diffusé au niveau de chaque noeud d'agrégation en fonction de l'ensemble de longueurs d'onde affecté. The optical signal at the output of the combining means 63 is then converted into an electrical signal by a third optoelectronic converter to form the third blocking signal. The optical combining means have the advantage of being passive and thus of not requiring power supply. An optical aggregation node 100 of optical signals will now be described in relation to FIG. 4. Such an aggregation node makes it possible to aggregate the optical signals received from optical nodes 131-135 into an optical signal and to transmit this signal. optically all optical to a communication network 1, for example the Internet, and also to distribute to optical nodes 131-135 an optical signal received from the communication network 1. An optical signal is transmitted by the first optical node 131 to the aggregation node 100 via a first optical fiber FOI, I. An optical signal is transmitted from the aggregation node 100 to the first optical node 131 via a second optical fiber FOI 2. Similarly, the second optical node 132 is connected to the aggregation node 100 via two optical fibers F02,1, F022; the third node 133 by two optical fibers FO3, I, FO3 2; the fourth node 134 by two optical fibers FO4, I, FO42; the fifth node 135 by two optical fibers FOS I, F05 2. An optical signal is transmitted by the aggregation node 100 to the communication network 1 via a first optical fiber FO6, I. An optical signal to the aggregation node 100 is transmitted from the communication network 1 via a second optical fiber FO6,2. The aggregation node 100 comprises an optical combiner 110 of optical signals as described above, arranged to combine optical signals respectively received from the optical nodes 131-135 into an optical signal and an optical signal distribution device 120, arranged for distributing a received optical signal to the optical nodes 131-135. The optical combiner 110 includes in this case four optical signal input ports. It is emphasized here that data generating collisions are suppressed by the fusion device as described above. This deleted data can be re-issued by the source node when a timer expires. It is also possible to provide that the aggregation node notifies the sending source node of the deleted data. In order to allow the optical nodes 131-135 to communicate with each other, particular wavelengths are dedicated to the local traffic. In this case, a first optical combiner 110 may be in charge of merging the wavelengths allocated to the traffic destined for the communication network 1 and a second optical combiner in charge of merging the wavelengths allocated to the local traffic. It is also conceivable to provide a single optical combiner, such as that described with reference to FIG. The distribution device 120 is then arranged to: - merge the optical signal at the output of the second optical combiner and the optical signal from the communication network 1, and - distribute the optical signal resulting from the fusion. In a more general context of the interconnection of several optical access networks comprising several aggregation levels, a set of wavelengths can be assigned to each optical access network. The data traffic is then combined, routed and broadcast at each aggregation node according to the set of wavelengths affected.

On se réfere maintenant à la figure 5 sur laquelle sont illustrées les étapes d'un procédé de fusion d'une pluralité de composantes optiques associées à une longueur d'onde en une composante optique fusionnée associée à ladite longueur d'onde, ces étapes pouvant être avantageusement effectuées au moyen du dispositif de fusion 20 de la figure 2. Le procédé de fusion comprend une étape El de duplication des composantes optiques à fusionner, au cours de laquelle lesdites composantes optiques à fusionner sont dupliquées. Referring now to FIG. 5 on which are illustrated the steps of a method of fusing a plurality of optical components associated with a wavelength into a fused optical component associated with said wavelength, these steps being able to advantageously carried out by means of the melting device 20 of FIG. 2. The melting method comprises a step E1 for duplicating the optical components to be fused, during which said optical components to be fused are duplicated.

Dans une étape E2 du procédé de fusion, on obtient des signaux de blocage. Un signal de blocage est associé à une composante optique à fusionner et est destiné à commander des moyens optiques 31, 32, 33, tels que décrits précédemment. Un signal de blocage associé à une composante optique à fusionner est obtenu en combinant les composantes optiques de la pluralité dupliquées, à l'exception de ladite composante optique à fusionner. In a step E2 of the melting process, blocking signals are obtained. A blocking signal is associated with an optical component to be fused and is intended to control optical means 31, 32, 33, as described above. A blocking signal associated with an optical component to be fused is obtained by combining the duplicate optical components of the plurality, with the exception of said optical component to be fused.

Puis, dans une étape E3, la composante optique à fusionner est bloquée ou non, en fonction du signal de blocage associé obtenu. La composante optique fusionnée associée à la longueur d'onde est alors obtenue dans une étape E5 à partir de la composante optique non bloquée. On se réfère maintenant à la figure 6 sur laquelle sont illustrées les étapes d'un procédé pour combiner optiquement des signaux optiques, un signal optique comportant des composantes optiques respectivement associées à une pluralité de longueurs d'onde, ces étapes pouvant être avantageusement effectuées au moyen du combinateur optique 110 de la figure la. Le procédé pour combiner optiquement comprend une étape Fl de démultiplexage des signaux optiques en entrée, pour obtenir à partir d'un signal optique en entrée une pluralité de composantes optiques. Le procédé de fusion tel que décrit précédemment est ensuite mis en oeuvre pour les composantes optiques associées à une longueur d'onde obtenues à l'étape de démultiplexage à partir des signaux optiques en entrée. Chaque longueur d'onde est ainsi traitée. Le procédé pour combiner optiquement comprend ensuite une étape F2 de multiplexage des composantes optiques en sortie obtenues par la mise en oeuvre du procédé de fusion en un signal optique de sortie. Then, in a step E3, the optical component to be merged is blocked or not, depending on the associated blocking signal obtained. The fused optical component associated with the wavelength is then obtained in a step E5 from the unblocked optical component. Reference is now made to FIG. 6, in which are illustrated the steps of a method for optically combining optical signals, an optical signal comprising optical components respectively associated with a plurality of wavelengths, these steps being advantageously carried out at the same time. means of the optical combiner 110 of FIG. The method for optically combining comprises a step F1 of demultiplexing the input optical signals, to obtain from an optical input signal a plurality of optical components. The fusion method as described above is then implemented for the optical components associated with a wavelength obtained in the demultiplexing step from the input optical signals. Each wavelength is thus treated. The method for optically combining then comprises a step F2 for multiplexing the optical output components obtained by implementing the merging method into an output optical signal.

Claims (7)

REVENDICATIONS1. Dispositif de fusion (20) d'une pluralité de composantes optiques associées à une longueur d'onde en une composante optique associée à ladite longueur d'onde, le dispositif comprenant : pour chaque composante optique de ladite pluralité à fusionner, - des moyens optiques (31-33), agencés pour basculer vers une position de blocage de ladite composante optique à fusionner en fonction d'un signal de blocage ; - des moyens de duplication (41-43), agencés pour dupliquer ladite composante optique à fusionner vers des moyens de combinaison (61-63) ; - les moyens de combinaison, agencés pour obtenir ledit signal de blocage en combinant les composantes optiques de la pluralité dupliquées, en excluant ladite composante optique à fusionner ; et des moyens de fusion (70), agencés pour fusionner les composantes optiques en sortie des moyens optiques. REVENDICATIONS1. A device for fusing (20) a plurality of optical components associated with a wavelength into an optical component associated with said wavelength, the device comprising: for each optical component of said plurality to be fused, - optical means (31-33), arranged to switch to a blocking position of said optical component to be fused according to a blocking signal; duplication means (41-43), arranged to duplicate said optical component to be fused to combining means (61-63); the combining means, arranged to obtain said blocking signal by combining the duplicate optical components of the plurality, excluding said optical component to be fused; and merging means (70) arranged to merge the optical components at the output of the optical means. 2. Dispositif de fusion selon la revendication 1, dans lequel les moyens optiques sont en outre agencés pour amplifier la composante optique et les moyens de duplication sont connectés en sortie des moyens optiques. 2. Fusion device according to claim 1, wherein the optical means are further arranged to amplify the optical component and the duplicating means are connected at the output of the optical means. 3. Dispositif de fusion selon la revendication 1, dans lequel les moyens optiques sont en outre agencés pour amplifier la composante optique et les moyens de duplication sont connectés en entrée des moyens optiques. 3. Fusion device according to claim 1, wherein the optical means are further arranged to amplify the optical component and the duplicating means are connected at the input of the optical means. 4. Combinateur optique de signaux optiques, un signal optique comportant des composantes optiques respectivement associées à une pluralité de longueurs d'onde, ledit combineur optique comprenant : - des moyens de démultiplexage (11-13) respectivement associés à un signal optique en entrée, agencés pour obtenir à partir du signal optique en entrée une pluralité de composantes optiques ; - une pluralité de dispositifs de fusion (201-204) selon la revendication 1, respectivement associés à une longueur d'onde et connectés en sortie des moyens de démultiplexage ; - des moyens de multiplexage (14), agencés pour multiplexer les composantes optiques en sortie des dispositifs de fusion en un signal optique de sortie. An optical signal optical combiner, an optical signal comprising optical components respectively associated with a plurality of wavelengths, said optical combiner comprising: demultiplexing means (11-13) respectively associated with an input optical signal, arranged to obtain from the input optical signal a plurality of optical components; a plurality of fusion devices (201-204) according to claim 1, respectively associated with a wavelength and connected at the output of the demultiplexing means; multiplexing means (14), arranged to multiplex the optical components at the output of the fusion devices into an optical output signal. 5. Noeud optique (100) d'agrégation de signaux optiques, un signal optique comportant une pluralité de composantes optiques respectivement associées à une pluralité de longueurs d'onde, ledit noeud comprenant :- un combinateur optique de signaux optiques selon la revendication 4, agencé pour combiner des signaux optiques respectivement reçus de noeuds optiques sources en un signal optique ; - un dispositif de distribution d'un signal optique, agencé pour distribuer un signal optique reçu vers lesdits noeuds sources. An optical signal aggregation optical node (100), an optical signal comprising a plurality of optical components respectively associated with a plurality of wavelengths, said node comprising: an optical signal optical combiner according to claim 4, arranged to combine optical signals respectively received from source optical nodes into an optical signal; a device for distributing an optical signal, arranged to distribute a received optical signal to said source nodes. 6. Procédé de fusion d'une pluralité de composantes optiques associées à une longueur d'onde en une composante optique fusionnée associée à ladite longueur d'onde, comprenant : - une étape (El) de duplication des composantes optiques de ladite pluralité à fusionner, au cours de laquelle lesdites composantes optiques à fusionner sont dupliquées ; - une étape (E2) d'obtention de signaux de blocage, dans laquelle un signal de blocage associé à une composante optique à fusionner est obtenu en combinant les composantes optiques de la pluralité dupliquées, à l'exception de ladite composante optique à fusionner ; - une étape (E3) de blocage, au cours de laquelle on bloque une composante optique à fusionner en fonction du signal de blocage associé ; - une étape (E4) d'obtention de la composante optique fusionnée associée à la longueur d'onde à partir d'une composante optique non bloquée. A method of fusing a plurality of optical components associated with a wavelength into a fused optical component associated with said wavelength, comprising: a step (E1) of duplicating the optical components of said plurality to be merged; during which said optical components to be fused are duplicated; a step (E2) for obtaining blocking signals, in which a blocking signal associated with an optical component to be fused is obtained by combining the duplicate optical components of the plurality, with the exception of said optical component to be fused; a blocking step (E3), during which an optical component to be fused is blocked as a function of the associated blocking signal; a step (E4) for obtaining the fused optical component associated with the wavelength from an unblocked optical component. 7. Procédé pour combiner optiquement des signaux optiques, un signal optique comportant des composantes optiques respectivement associées à une pluralité de longueurs d'onde, comprenant : - une étape de démultiplexage des signaux optiques en entrée, pour obtenir à partir d'un signal optique en entrée une pluralité de composantes optiques ; - une mise en oeuvre du procédé de fusion selon la revendication 6, pour les composantes optiques associées à une longueur d'onde obtenues à l'étape de démultiplexage à partir des signaux optiques en entrée ; - une étape de multiplexage des composantes optiques en sortie obtenues par la mise en oeuvre du procédé de fusion en un signal optique de sortie. 7. A method for optically combining optical signals, an optical signal comprising optical components respectively associated with a plurality of wavelengths, comprising: a step of demultiplexing the input optical signals, to obtain from an optical signal at the input a plurality of optical components; an implementation of the fusion method according to claim 6, for the optical components associated with a wavelength obtained in the demultiplexing step from the input optical signals; a step of multiplexing the output optical components obtained by implementing the fusion process into an output optical signal.
FR1156624A 2011-07-21 2011-07-21 Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging Pending FR2978314A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR1156624A FR2978314A1 (en) 2011-07-21 2011-07-21 Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging
EP12174798.4A EP2549773B1 (en) 2011-07-21 2012-07-03 Device and method for combining optical components associated with a wavelength in a combined optical component
US13/552,292 US9351054B2 (en) 2011-07-21 2012-07-18 Device and a method for merging optical components associated with one wavelength into a merged optical component
CN201210254899.0A CN102892051B (en) 2011-07-21 2012-07-23 Merge the apparatus and method of optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1156624A FR2978314A1 (en) 2011-07-21 2011-07-21 Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging

Publications (1)

Publication Number Publication Date
FR2978314A1 true FR2978314A1 (en) 2013-01-25

Family

ID=44584243

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1156624A Pending FR2978314A1 (en) 2011-07-21 2011-07-21 Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging

Country Status (1)

Country Link
FR (1) FR2978314A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040022248A1 (en) * 2002-07-31 2004-02-05 Industrial Technology Research Institute QoS-oriented burstification method supporting various grades of burstification delay guarantee
EP1838128A2 (en) * 2006-03-24 2007-09-26 Fujitsu Limited Optical switch system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040022248A1 (en) * 2002-07-31 2004-02-05 Industrial Technology Research Institute QoS-oriented burstification method supporting various grades of burstification delay guarantee
EP1838128A2 (en) * 2006-03-24 2007-09-26 Fujitsu Limited Optical switch system

Similar Documents

Publication Publication Date Title
JP5919435B2 (en) Optical data transmission system
Yao et al. A unified study of contention-resolution schemes in optical packet-switched networks
FR3024622A1 (en) OPTICAL SIGNAL COMPRISING AN ESTATE OF MULTI-BAND RINGS OF MULTI-CARRIER DATA SIGNALS, SYSTEM AND METHOD FOR TRANSMITTING SUCH A SIGNAL, AND CORRESPONDING OPTICAL TRANSPORT NETWORK
Sabella et al. Flexible packet-optical integration in the cloud age: Challenges and opportunities for network delayering
EP2484122A1 (en) Optical packet switching device
EP2549773B1 (en) Device and method for combining optical components associated with a wavelength in a combined optical component
EP0612172B1 (en) Opto-electronic satellite centre for connecting optical subscriber-lines to an ATM network
Sato How optical technologies can innovate intra data center networks
EP1428333B1 (en) Ring network made using a dual optical data bus
Fernandez-Palacios et al. IP offloading over multi-granular photonic switching technologies
FR2978314A1 (en) Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging
EP1303161A1 (en) Frequency selective switch and reconfigurable optical delay circuit containing the same
EP1193995A1 (en) Switch for an optical WDM network
FR2984644A1 (en) AFDX NETWORK WITH PASSIVE OPTICAL ACCESS NETWORK
FR2988542A1 (en) Merging device for merging optical components for e.g. optical access network, has combination element to obtain blocking signal by combining duplicated optical components other than optical component for merging
Agrawal et al. Scalable switching testbed not" stopping" the serial bit stream
Kamchevska et al. The Hi-Ring Architecture for Data Center Networks
Cheng et al. High speed optical flow switch architecture design and IDC application based on SDN technologies
Gaudino RINGO: Demonstration of a WDM packet network architecture for metro applications
EP1326474A2 (en) Device and method of optical data switching for optical communications network
EP2538593A1 (en) All-optical network with scalable architecture
Chatterjee et al. Routing and Wavelength Assignment for WDM-based Optical Networks
Mukherjee Optical‐Electrical‐Optical (O‐E‐O) Switches
FR2852185A1 (en) SELECTION MODULE FOR OPTICAL SIGNAL SWITCH AND OPTICAL SIGNAL SWITCH
Han Flexible optical transport networks: benefits of the combination of time and spectral domains to adapt the granularity of optical resources to the needs of operators