FR2976823A1 - EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE PHASE MECHANICALLY ANCHORED IN THE SUPPORT - Google Patents

EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE PHASE MECHANICALLY ANCHORED IN THE SUPPORT Download PDF

Info

Publication number
FR2976823A1
FR2976823A1 FR1155688A FR1155688A FR2976823A1 FR 2976823 A1 FR2976823 A1 FR 2976823A1 FR 1155688 A FR1155688 A FR 1155688A FR 1155688 A FR1155688 A FR 1155688A FR 2976823 A1 FR2976823 A1 FR 2976823A1
Authority
FR
France
Prior art keywords
support
crystallites
catalytic
same
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1155688A
Other languages
French (fr)
Other versions
FR2976823B1 (en
Inventor
Gallo Pascal Del
Fabrice Rossignol
Thierry Chartier
Raphael Faure
Sebastien Goudalle
Claire Bonhomme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Air Liquide SA
Universite de Limoges
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Centre National de la Recherche Scientifique CNRS
Air Liquide SA
Universite de Limoges
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1155688A priority Critical patent/FR2976823B1/en
Application filed by Centre National de la Recherche Scientifique CNRS, Air Liquide SA, Universite de Limoges, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Centre National de la Recherche Scientifique CNRS
Priority to MX2013015110A priority patent/MX2013015110A/en
Priority to RU2014102340/04A priority patent/RU2014102340A/en
Priority to BR112013033508A priority patent/BR112013033508A2/en
Priority to EP12730415.2A priority patent/EP2723496A1/en
Priority to CN201280031118.XA priority patent/CN103702759A/en
Priority to US14/128,483 priority patent/US20140130482A1/en
Priority to JP2014517561A priority patent/JP2014518152A/en
Priority to CA2838360A priority patent/CA2838360A1/en
Priority to PCT/EP2012/060904 priority patent/WO2013000683A1/en
Priority to KR1020147001791A priority patent/KR20140082632A/en
Publication of FR2976823A1 publication Critical patent/FR2976823A1/en
Application granted granted Critical
Publication of FR2976823B1 publication Critical patent/FR2976823B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2832Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support granular, e.g. pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1028Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)

Abstract

Dispositif d'épuration des gaz d'échappement d'un moteur thermique comprenant : - un(des) support(s) céramique(s) catalytique(s) comprenant un arrangement de cristallites de même taille, même morphologie isodiamétrique et même composition chimique ou sensiblement de même taille, même morphologie isodiamétrique et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec les cristallites qui l'entourent, et - une(des) phase(s) active(s) pour la destruction chimique d'impuretés du gaz d'échappement comprenant des particules métalliques ancrées mécaniquement dans ledit support catalytique de manière telle que la coalescence et la mobilité de chaque particule sont limités à un volume maximum correspondant à celui d'un cristallite dudit support céramique catalytique.Apparatus for purifying the exhaust gases of a heat engine comprising: - a catalytic ceramic support (s) comprising an arrangement of crystallites of the same size, same isodiametric morphology and same chemical composition or of substantially the same size, same isodiametric morphology and same chemical composition in which each crystallite is in point or almost punctual contact with the surrounding crystallites, and - an active phase (s) for the chemical destruction of impurities in the exhaust gas comprising metal particles mechanically anchored in said catalytic support in such a way that the coalescence and mobility of each particle are limited to a maximum volume corresponding to that of a crystallite of said catalytic ceramic support.

Description

L'invention concerne un dispositif d'épuration des gaz d'échappement d'un moteur thermique, communément appelé «pot catalytique », notamment pour un véhicule automobile, dispositif comprenant un support sur lequel est déposé au moins un catalyseur pour la destruction chimique d'impuretés des gaz d'échappement, Un tel dispositif a pour fonction d'éliminer au moins en partie les gaz polluants contenus dans les gaz d'échappement, notamment l'oxyde de carbone, les hydrocarbures et les oxydes d'azote, en les transformant par des réactions de réduction ou d'oxydation. L'invention propose en particulier des dispositifs d'épuration des gaz d'échappement comprenant des supports céramiques oxydes et des particules métalliques actives dont les caractéristiques structurales et l'ancrage des particules dans le support amènent des performances supérieures â celles des supports oxydes de catalyseurs conventionnels. Des synergies entre diverses applications industrielles chimiques et pétrochimiques et les conditions opératoires d'un moteur automobile ont été observées. On constate que le procédé le plus proche de celui d'un moteur en fonctionnement pleine charge est le procédé SMR (Steam Methane Reforming) en terme de température et d'atmosphère gazeuse (Hz, CO, CO2, CH4 résiduel, H2O). Ceci est notamment vrai pour les matériaux catalytiques sur les aspects choix des phases actives (métaux nobles, Ni, ...), pour les mécanismes de dégradation des supports oxydes et/ou des phases actives, pour les zones de température de fonctionnement (600-1000°C) et dans une certaine mesure sur les vitesses spatiales notamment dans le cadre de réacteurs-échangeurs structurés SMR. La conséquence est notamment des phénomènes de dégradation physique (température induisant des coalescences de nanoparticules, délamination des dépôts, ...) très proches. Un catalyseur hétérogène gaz-solide est généralement un matériau inorganique constitué d'au moins un support céramique oxyde ou non sur lequel est dispersé une ou plusieurs phases actives qui convertissent des réactifs en produits â travers des cycles répétés et ininterrompus de phases élémentaires (adsorption, dissociation, diffusion, réaction-recombinaison, diffusion, désorption). Le support peut dans certains cas intervenir non seulement d'un point de vue physique (fort volume poreux et surface BET élevée pour améliorer la dispersion des phases actives) mais également chimique (accélérer par exemple l'adsorption, la dissociation la diffusion et la désorption de telles ou telles molécules). Le catalyseur participe â la conversion en retournant â son état d'origine â la fin de chaque cycle durant toute sa durée de vie. Un catalyseur modifie/accélère le(s) mécanisme(s) réactionnel(s) et la(les) cinétique(s) de(s) réaction(s) associée(s) sans en changer la thermodynamique. Afin de maximiser le taux de conversion par les catalyseurs supportés, il est essentiel de maximiser l'accessibilité des réactifs aux particules actives. Dans le but de comprendre l'intérêt d'un support tel que celui développé ici, rappelons tout d'abord les étapes principales d'une réaction de catalyse hétérogène. Un gaz composé de molécules A traverse un lit catalytique et réagit en surface du catalyseur pour former un gaz d'espèce B. L'ensemble des étapes élémentaires sont : a) Transport du réactif A (diffusion en volume), â travers une couche de gaz, jusqu'à la surface externe du catalyseur, b) Diffusion de l'espèce A (diffusion en volume ou moléculaire (Knüdsen)), à travers le réseau poreux du catalyseur, jusqu'à la surface catalytique, c) Adsorption de l'espèce A sur la surface catalytique, d) Réaction de A pour former B sur les sites catalytiques présents sur la surface du catalyseur, e) Désorption du produit B de la surface, f) Diffusion de l'espèce B à travers le réseau poreux, g) Transport du produit B (diffusion en volume) de la surface externe du catalyseur, à travers la couche de gaz, jusqu'au flux de gaz. La norme européenne EURO 5 applicable depuis le 1' septembre 2009 (et bientôt EURO 6 qui sera applicable le 1' septembre 2014) oblige les constructeurs de véhicules motorisés à limiter de manière drastique les rejets de gaz toxiques (CO, NOx, hydrocarbures imbrûlés). Or, l'optimisation des pots catalytiques est aujourd'hui en grande partie liée à celle (efficacité, durée de vie) des catalyseurs. Pour rappel, un pot catalytique est constitué d'une chambre de conversion inoxydable dans laquelle les gaz d'échappement sont introduits. Ces gaz traversent une structure en céramique généralement constitué d'un substrat céramique en nid d'abeilles de nature oxyde (cordiérite, mullite, ...). Sur les parois du substrat céramique (de forme nid d'abeilles) est déposé un catalyseur dit trois voies (TWC : Three Ways Catalysts). Le catalyseur accélère la cinétique de transformation des réactifs en produits. Dans les pots catalytiques, l'objectif est de limiter les rejets de gaz toxiques (CO, NOx et hydrocarbures imbrûlés) en les transformant principalement en eau, COz et azote. The invention relates to a device for cleaning the exhaust gases of a heat engine, commonly called a "catalytic converter", in particular for a motor vehicle, comprising a support on which at least one catalyst is deposited for the chemical destruction of The function of such a device is to eliminate, at least in part, the polluting gases contained in the exhaust gases, in particular carbon monoxide, hydrocarbons and nitrogen oxides, by transforming by reduction or oxidation reactions. The invention particularly provides exhaust gas cleaning devices comprising oxide ceramic supports and active metal particles whose structural characteristics and the anchoring of the particles in the support lead to higher performances than those of the catalyst oxide supports. conventional. Synergies between various chemical and petrochemical industrial applications and the operating conditions of an automotive engine have been observed. It can be seen that the process that is closest to that of a fully loaded engine is SMR (Steam Methane Reforming) in terms of temperature and gaseous atmosphere (Hz, CO, CO2, residual CH4, H2O). This is particularly true for catalytic materials on the choice aspects of the active phases (noble metals, Ni, ...), for the degradation mechanisms of the oxide supports and / or the active phases, for the operating temperature zones (600 -1000 ° C) and to a certain extent on space velocities, particularly in the context of SMR structured exchange reactors. The consequence is in particular phenomena of physical degradation (temperature inducing coalescence of nanoparticles, delamination of deposits, ...) very close. A heterogeneous gas-solid catalyst is generally an inorganic material consisting of at least one oxide or non-oxide ceramic support on which is dispersed one or more active phases which convert reagents into products through repeated and uninterrupted cycles of elementary phases (adsorption, dissociation, diffusion, reaction-recombination, diffusion, desorption). In some cases, the support can intervene not only from a physical point of view (high pore volume and high BET surface to improve the dispersion of the active phases) but also chemical (accelerate for example adsorption, dissociation, diffusion and desorption of such and such molecules). The catalyst participates in the conversion by returning to its original state at the end of each cycle throughout its life. A catalyst modifies / accelerates the reaction mechanism (s) and the kinetics of the associated reaction (s) without changing the thermodynamics thereof. In order to maximize the conversion rate by the supported catalysts, it is essential to maximize reagent accessibility to the active particles. In order to understand the interest of a support such as that developed here, let us first recall the main steps of a heterogeneous catalysis reaction. A gas composed of molecules A passes through a catalytic bed and reacts at the surface of the catalyst to form a gas of species B. The set of elementary steps are: a) Transport of the reagent A (diffusion by volume), through a layer of gas, up to the outer surface of the catalyst, b) Diffusion of species A (volume or molecular diffusion (Knüdsen)), through the porous network of the catalyst, to the catalytic surface, c) Adsorption of species A on the catalytic surface, d) Reaction of A to form B on the catalytic sites present on the catalyst surface, e) Desorption of product B from the surface, f) Diffusion of species B through the porous network (g) Transport of product B (volume diffusion) from the outer surface of the catalyst through the gas layer to the gas flow. The European standard EURO 5 applicable since September 1, 2009 (and soon EURO 6 which will be applicable on September 1, 2014) obliges motor vehicle manufacturers to drastically limit the release of toxic gases (CO, NOx, unburnt hydrocarbons). . However, the optimization of catalytic converters is today largely linked to that (efficiency, lifetime) of the catalysts. As a reminder, a catalytic converter consists of a stainless conversion chamber in which the exhaust gas is introduced. These gases pass through a ceramic structure generally consisting of a ceramic honeycomb substrate oxide (cordierite, mullite, ...). On the walls of the ceramic substrate (honeycomb) is deposited a so-called three-way catalyst (TWC: Three Ways Catalysts). The catalyst accelerates the conversion kinetics of the reagents into products. In catalytic converters, the objective is to limit the release of toxic gases (CO, NOx and unburned hydrocarbons) by transforming them mainly into water, COz and nitrogen.

Par définition, un catalyseur 3 voies est capable d'assurer 3 types de réactions simultanément : - une réduction des oxydes d'azote en azote et en dioxyde de carbone : 2N0 + 2C0 -> Nz + 2C0z - une oxydation des monoxydes de carbone en dioxyde de carbone : 2C0 + Oz -> 2CO2 et - une oxydation des hydrocarbures imbrûlés (HC) en dioxyde de carbone et en eau : 4CXHy + (4x+y)02 -> 4xC0z + 2yH20 Les réactions d'oxydation (nécessitant une pression partielle élevée en oxygène) et de réduction (faible pression partielle d'oxygène) ajoutent des contraintes. Elles nécessitent une quantité d'air très précise à ajouter au carburant. Une sonde lambda placée sur l'échappement permet de mesurer la quantité d'oxygène en sortie. Une boucle d'asservissement permet de contrôler très précisément le ratio air/carburant en le maintenant à une valeur idéale. Il est à noter que : - Le pot catalytique n'est efficace qu'à partir de 250-300°C environ. C'est pourquoi les petits 15 trajets sont problématiques. - La réaction parasite suivante est susceptible de se produire aux températures élevées : 2N0 + CO -> N2O + CO2 Les architectures céramiques des pots catalytiques pour dépollution automobile sont généralement des substrats en nids d'abeille et sont pour la majorité constituées de cordiérite (2 20 MgO-2 Al2O3-5 SiO2) ou de mullite. Ces architectures développent une faible surface spécifique (quelques m2/g) avec une porosité en volume de 20% à 40%. Les supports des phases actives classiques sont des oxydes : l'alumine pour sa stabilité thermo-chimique basse température «800°C), la cérine pour ses propriétés redox vis-à-vis de l'oxygène et la zircone pour son affinité chimique avec le rhodium. Pendant longtemps, le 25 développement de surface spécifique a été recherché à partir de l'alumine sous ses formes y, ô et 0 (de 50 à 250 m2/g). Depuis, des supports en cérine et zircone développant de 20 à 100 m2/g ont été réalisés. Cependant, dans tous les cas de figure, le support s'effondre thermiquement après quelques cycles induisant une chute de la surface spécifique, une chute du volume poreux et une accélération des phénomènes de migration/diffusion/coalescence des nanoparticules 30 métalliques. Afin de minimiser ces phénomènes d'effondrement thermique sous conditions opératoires des supports oxydes ces derniers ont été stabilisés par ajouts d'éléments tel que l'yttrium, le gadolinium, le lanthane, ... On emploie ainsi La-Al203, CeGdO, ZrYO, CeZrYO, ...Ceci limite leurs effondrements thermiques mais ne minimise pas les phénomènes de migration/frittage des particules métalliques. La désactivation des catalyseurs 3 voies a fait l'objet de nombreuses études qui ne tiennent pas compte des problèmes mécaniques de tenue de la structure en cordiérite (fracture due aux vibrations). Les phénomènes de désactivation peuvent être classifiés suivant la figure 1. Des phénomènes de désactivation réversibles apparaissent aux faibles températures «300°C) : - Physisorption des produits et réactifs par exemple le CO2 - Chimisorption des produits et réactifs (exemple, l'oxyde de souffre sur un oxyde) Les phénomènes de désactivation qui apparaissant aux hautes températures élevées (600-1000°C) sont eux irréversibles, il s'agit souvent de réactions entre : - Les éléments du ou des oxydes supports des phases actives - Les métaux nobles amenant la formation d'alliages non désirés - Les métaux nobles et le support oxyde des phases actives (par exemple la migration de l'ion Rh3+ dans une structure y Al2O3) Toutefois, comme dans le cas du procédé de vaporéformage du méthane (SMR : Steam Methane Reforming), les phénomènes impactant le plus les performances des catalyseurs â haute température sont (i) le frittage de l'oxyde support de(s) phase(s) active(s) et (ii) la coalescence des particules métalliques des phases actives (phénomène de diffusion/ségrégation/coalescence des nanoparticules), le second phénomène étant accéléré par le premier. Dès lors, un problème qui se pose est de fournir un dispositif d'épuration des gaz d'échappement d'un moteur thermique comprenant un catalyseur amélioré capable de stabiliser dans des conditions similaires â celles rencontrées lors du vaporéformage du méthane, des particules nanométriques de phases actives, de manière â améliorer ses performances. Une solution de l'invention est un dispositif d'épuration des gaz d'échappement d'un moteur thermique comprenant : - un support céramique catalytique comprenant un arrangement de cristallites de même taille, 30 même morphologie isodiamétrique et même composition chimique ou sensiblement de même taille, même morphologie isodiamétrique et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec les cristallites qui l'entourent, et - une phase active pour la destruction chimique d'impuretés du gaz d'échappement comprenant des particules métalliques ancrées mécaniquement dans ledit support catalytique de manière telle que la coalescence et la mobilité de chaque particule sont limités â un volume maximum correspondant â celui d'un cristallite dudit support céramique catalytique. Le premier avantage de la solution proposée concerne le support céramique catalytique ultra-divisé méso-poreux de(s) phase(s) active(s). En effet, celui-ci développe une grande surface spécifique disponible supérieure ou égale â 20 m2/g, de part la taille de ses particules nanométriques qui le constitue et leur arrangement respectif. Par ailleurs, le support est stable dans les conditions de fonctionnement des pots catalytiques ; autrement dit le support est stable â des températures comprises entre 600°C et 1000°C dans une atmosphère contenant un mélange de gaz d'échappement (CO, H2O, NO, N2, CXHy, Oz, N2O...). Cette stabilité thermique est liée directement â la microstructure du matériau synthétisé (arrangement de cristallites de même taille, même morphologie isodiamétrique et même composition chimique ou sensiblement de même taille, même morphologie isodiamétrique et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec des cristallites qui l'entourent) et au(x) procédé(s) de synthèse associé(s). L'architecture particulière du support catalytique influe directement sur la stabilité des nanoparticules métalliques. L'arrangement des cristallites et la porosité permet de développer un ancrage mécanique des dites nanoparticules métalliques sur la surface du support. Parallèlement, l'excellente dispersion des phases actives ainsi obtenue permet d'envisager une réduction importante de la quantité de métaux nobles employée sans perte des performances catalytiques. By definition, a 3-way catalyst is capable of performing 3 types of reactions simultaneously: - a reduction of nitrogen oxides to nitrogen and carbon dioxide: 2N0 + 2CO -> Nz + 2COz - an oxidation of carbon monoxides in carbon dioxide: 2C0 + Oz -> 2CO2 and - oxidation of unburned hydrocarbons (HC) to carbon dioxide and water: 4CXHy + (4x + y) 02 -> 4xC0z + 2yH20 Oxidation reactions (requiring pressure partial high oxygen) and reduction (low oxygen partial pressure) add constraints. They require a very precise amount of air to add to the fuel. A lambda probe placed on the exhaust measures the amount of oxygen output. A servo loop makes it possible to control the air / fuel ratio very precisely by keeping it at an ideal value. It should be noted that: - The catalytic converter is only effective from around 250-300 ° C. This is why small trips are problematic. - The following parasitic reaction is likely to occur at high temperatures: 2N0 + CO -> N2O + CO2 The ceramic architectures of catalytic converters for automotive pollution control are generally substrates in honeycombs and are for the most part made of cordierite (2 MgO-2 Al2O3-5 SiO2) or mullite. These architectures develop a low specific surface area (a few m2 / g) with a volume porosity of 20% to 40%. The supports of the classical active phases are oxides: alumina for its low-temperature thermo-chemical stability (800 ° C.), ceria for its redox properties with respect to oxygen and zirconia for its chemical affinity with rhodium. For a long time, specific surface development has been sought from alumina in its forms y, o and O (from 50 to 250 m 2 / g). Since then, supports ceria and zirconia developing from 20 to 100 m2 / g have been made. However, in all cases, the support collapses thermally after a few cycles inducing a drop in the specific surface, a drop in the pore volume and an acceleration of migration / diffusion / coalescence phenomena of the metal nanoparticles. In order to minimize these phenomena of thermal collapse under operating conditions of the oxide supports, the latter have been stabilized by additions of elements such as yttrium, gadolinium, lanthanum, etc. La-Al 2 O 3, CeGdO, ZrYO are thus used. , CeZrYO, ... This limits their thermal collapses but does not minimize the phenomena of migration / sintering of metal particles. The deactivation of the 3-way catalysts has been the subject of numerous studies which do not take into account the mechanical problems of resistance of the cordierite structure (fracture due to vibrations). The deactivation phenomena can be classified according to Figure 1. Reversible deactivation phenomena appear at low temperatures "300 ° C): - Physisorption of products and reagents for example CO2 - Chemisorption of products and reagents (for example, the oxide of suffers on an oxide) The phenomena of deactivation which appear at the high high temperatures (600-1000 ° C) are irreversible, it is often reactions between: - The elements of the oxide (s) supporting the active phases - The noble metals causing the formation of unwanted alloys - The noble metals and oxide support active phases (eg the migration of the Rh3 + ion into a structure y Al2O3) However, as in the case of methane steam reforming process (SMR: Steam Methane Reforming), the phenomena that have the greatest impact on the performance of high temperature catalysts are (i) the sintering of the support oxide of the phase (s) active (s) and (ii) the coalescence of the metal particles of the active phases (phenomenon of diffusion / segregation / coalescence of the nanoparticles), the second phenomenon being accelerated by the first. Therefore, a problem that arises is to provide a device for cleaning the exhaust gas of a heat engine comprising an improved catalyst capable of stabilizing under conditions similar to those encountered during methane steam reforming, nanometric particles of active phases so as to improve its performance. A solution of the invention is a device for cleaning the exhaust gases of a heat engine comprising: a catalytic ceramic support comprising an arrangement of crystallites of the same size, same isodiametric morphology and same chemical composition or substantially the same size, same isodiametric morphology and same chemical composition in which each crystallite is in point or almost punctual contact with the surrounding crystallites, and - an active phase for the chemical destruction of impurities in the exhaust gas comprising anchored metallic particles mechanically in said catalytic support such that the coalescence and mobility of each particle is limited to a maximum volume corresponding to that of a crystallite of said catalytic ceramic support. The first advantage of the proposed solution relates to the ultra-divided mesoporous catalytic ceramic support of active phase (s). Indeed, it develops a large available surface area greater than or equal to 20 m2 / g, due to the size of its nanoscale particles which constitutes it and their respective arrangement. Furthermore, the support is stable under the operating conditions of the catalytic converters; in other words, the support is stable at temperatures of between 600 ° C. and 1000 ° C. in an atmosphere containing a mixture of exhaust gases (CO, H 2 O, NO, N 2, CXH 2, Oz, N 2 O, etc.). This thermal stability is directly related to the microstructure of the synthesized material (arrangement of crystallites of the same size, same isodiametric morphology and same chemical composition or substantially of the same size, same isodiametric morphology and same chemical composition in which each crystallite is in point contact or almost punctual with surrounding crystallites) and associated synthesis method (s). The particular architecture of the catalytic support has a direct influence on the stability of the metal nanoparticles. The arrangement of the crystallites and the porosity makes it possible to develop a mechanical anchoring of said metallic nanoparticles on the surface of the support. In parallel, the excellent dispersion of the active phases thus obtained makes it possible to envisage a significant reduction in the amount of noble metals employed without loss of catalytic performance.

La figure 2 illustre le blocage mécanique des particules métalliques par le support céramique catalytique. Premièrement, il apparaît clairement que les particules actives élémentaires seront au maximum de la taille d'une cristallite de support. Deuxièmement, leur mouvement sous l'effet combiné d'une température élevée et d'une atmosphère riche en vapeur d'eau reste malgré tout limité aux puits de potentiel que représente l'espace entre deux cristallites. Les flèches représentent l'unique mouvement possible des particules métalliques. FIG. 2 illustrates the mechanical blocking of the metal particles by the catalytic ceramic support. Firstly, it is clear that the elementary active particles will be at most the size of a support crystallite. Second, their movement under the combined effect of a high temperature and an atmosphere rich in water vapor is still limited to potential wells that represents the space between two crystallites. The arrows represent the only possible movement of the metal particles.

Enfin, notons que le blocage mécanique réalisé par le support céramique catalytique limite la coalescence possible des particules actives. Selon le cas, le dispositif selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes : - ledit arrangement est en alumine (Al2O3) stabilisé ou non au lanthane, au cérium ou au zirconium, ou en cérine (CeO2) stabilisée ou non â l'oxyde de gadolinium, ou en zircone (ZrO2) stabilisée ou non â l'oxyde d'yttrium ou en phase spinelle ou en oxyde de lanthane (La203) ou un mélange d'un ou plusieurs de ces composés. - les particules métalliques sont choisies : (i) entre les métaux nobles choisis parmi le Ruthénium, le Rhodium, le Palladium, l'Argent, l'Osmium, l'Iridium, le Platine ou un alliage entre un, deux ou trois de ces métaux nobles, ou (ii) entre les métaux de transition choisi parmi le Nickel, l'Argent, l'Or, le Cobalt, et le Cuivre ou un alliage entre un, deux ou trois de ces métaux de transition, ou (iii) entre un alliage entre un, deux ou trois de ces métaux nobles et un, deux ou trois de ces métaux de transition. - les cristallites ont un diamètre équivalent moyen compris entre 2 et 20 nm, de préférence entre 5 et 15 nm, et les particules métalliques ont un diamètre équivalent moyen compris entre 2 et 20 nm, de préférence inférieur â 10 nm. - l'arrangement de cristallites supports de phase(s) active(s) est au mieux un empilement hexagonal compact ou cubique face centrée dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec au plus 12 autres cristallites dans un espace â 3 dimensions. De préférence, l'ensemble catalytique (substrat + catalyseur) mis en oeuvre dans le dispositif de purification selon l'invention peut comprendre un substrat d'architectures diverses telles que des structures alvéolaires, des barillets, des monolithes, des structures en nid d'abeilles, des sphères, des réacteurs-échangeurs structurés multi échelles (µréacteurs), ... de nature céramique ou métallique ou métallique revêtu de céramique, et sur lequel le support de phase(s) active(s)peut être déposé (washcoat). La présente invention a également pour objet un procédé d'épuration des gaz d'échappement d'un moteur thermique dans lequel on fait circuler lesdits gaz d'échappement â travers un dispositif selon l'invention. Finally, note that the mechanical blocking produced by the catalytic ceramic support limits the possible coalescence of the active particles. Depending on the case, the device according to the invention may have one or more of the following characteristics: - said arrangement is alumina (Al2O3) stabilized or not stabilized with lanthanum, cerium or zirconium, or cerine (CeO2) stabilized or not gadolinium oxide, or zirconia (ZrO 2) stabilized or non-stabilized with yttrium oxide or spinel phase or lanthanum oxide (La 2 O 3) or a mixture of one or more of these compounds. the metal particles are chosen: (i) between the noble metals chosen from Ruthenium, Rhodium, Palladium, Silver, Osmium, Iridium, Platinum or an alloy between one, two or three of these noble metals, or (ii) between transition metals selected from Nickel, Silver, Gold, Cobalt, and Copper or an alloy between one, two or three of these transition metals, or (iii) between an alloy between one, two or three of these noble metals and one, two or three of these transition metals. the crystallites have a mean equivalent diameter of between 2 and 20 nm, preferably between 5 and 15 nm, and the metal particles have a mean equivalent diameter of between 2 and 20 nm, preferably less than 10 nm. the phase-active crystallite arrangement (s) active is at best a hexagonal compact or cubic face-centered stack in which each crystallite is in point contact or almost punctual with at most 12 other crystallites in a 3-dimensional space . Preferably, the catalytic assembly (substrate + catalyst) used in the purification device according to the invention may comprise a substrate of various architectures such as honeycomb structures, barrels, monoliths, honeycomb structures. bees, spheres, multi-scale structured reaction heat exchangers (μreactors), ... of a ceramic or metallic or metallic nature coated with ceramics, and on which the active phase support (s) can be deposited (washcoat) . The present invention also relates to a process for cleaning the exhaust gas of a heat engine in which said exhaust gas is circulated through a device according to the invention.

Le moteur thermique est de préférence un moteur de véhicule automobile, en particulier un moteur diesel ou un moteur essence. Nous allons â présent voir en détails comment est synthétisé l'ensemble support céramique - phases actives (catalyseur) mis en oeuvre dans le dispositif d'épuration selon l'invention. Un procédé de préparation d'un ensemble support(s) céramique(s) - phase(s) active(s) peut comprendre les étapes suivantes : a) préparation d'un support céramique catalytique comprenant un arrangement de cristallites de même taille, même morphologie et même composition chimique ou sensiblement de même taille, même morphologie et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec les cristallites qui l'entourent, b) imprégnation du support céramique catalytique avec une solution précurseur de la ou des phases actives métalliques ; c) calcination sous air du catalyseur imprégné â une température comprise entre 350°C et 1000°C, de préférence â une température comprise entre 450°C et 700°C, encore plus préférentiellement â une température de 500°C de manière â obtenir une/des phase(s) active(s) oxydée(s) déposée(s) en surface du(des) support(s) céramique(s) catalytique(s) ; et d) réduction éventuelle de la ou des phases actives oxydées entre 300°C et 1000°C, de préférence â une température comprise entre 300°C et 600°C, encore plus préférentiellement â une température de 300°C. Notons que ce procédé peut comprendre une ou plusieurs des caractéristiques ci-dessous : - l'étape b) d'imprégnation est réalisée sous vide pendant une durée comprise entre 5 et 60 minutes ; - â l'étape b), la solution de phase(s) active(s) est une solution de nitrate de rhodium (Rh(NO3)3, 2H20) ou une solution de nitrate de nickel (Ni(NO3)2, 6H20) ou de palladium ((Pd(NO3)3,2 H2O) ou de platine ((Pt(NO3M,yH20) ou un mélange entre ces solutions. Il peut également être utilisé des précurseurs carbonate(s), chlorure(s), ... ou un mélange de précurseurs divers (nitrates, carbonates, ...) contenant des métaux nobles (Rh, Pt, Ir, Ru, Re, Pd) et/ou des métaux de transition (Ni, Cu, Co, ...) - ledit procédé comprend après l'étape d) éventuellement une étape e) de vieillissement sous conditions opératoires ou proche des conditions opératoires du catalyseur. Le premier cycle de fonctionnement (arrêt/démarrage) peut être considéré comme une étape de vieillissement. Le support céramique catalytique décrit â l'étape a) du procédé de préparation de l'ensemble support céramique - phase(s) active(s) mis en oeuvre dans le dispositif d'épuration selon l'invention peut être préparé par deux procédés. Un premier procédé conduira â un support céramique catalytique comprenant un substrat et un film â la surface dudit substrat comprenant un arrangement de cristallites de même taille, même morphologie isodiamétrique et même composition chimique ou sensiblement de même taille, même morphologie isodiamétrique et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec des les cristallites qui l'entourent. Un second procédé conduira â un support céramique catalytique comprenant des granules comprenant un arrangement de cristallites de même taille, même morphologie isodiamétrique et même composition chimique ou sensiblement de même taille, même morphologie isodiamétrique et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec les cristallites qui l'entourent. Notons que les granules sont sensiblement sphériques. Le premier procédé de préparation du support céramique catalytique comprend les étapes suivantes : i) Préparation d'un sol comprenant des sels de nitrates et/ou de carbonates d'aluminium et/ou de magnésium et/ou de cérium et/ou de zirconium et/ou d'yttrium et/ou gadolinium et/ou de lanthane, un surfactant et les solvants tels que eau, éthanol et ammoniac ; ii) Trempage d'un substrat dans le sol préparé â l'étape i) ; iii) Séchage du substrat imprégné de sol de manière â obtenir un matériau composite gélifié comprenant un substrat recouvert d'un film gélifié ; et iv) Calcination du matériau composite gélifié de l'étape iii) â une température comprise typiquement entre 500°C et 1000°C sous air. De préférence le substrat mis en oeuvre dans ce premier procédé de préparation du support céramique catalytique est en alumine dense. The heat engine is preferably a motor vehicle engine, in particular a diesel engine or a gasoline engine. We will now see in detail how is synthesized ceramic support - active phases (catalyst) implemented in the purification device according to the invention. A method of preparing a ceramic support (s) - active phase (s) may comprise the following steps: a) preparation of a catalytic ceramic support comprising an arrangement of crystallites of the same size, even morphology and same chemical composition or substantially the same size, same morphology and same chemical composition in which each crystallite is in point contact or almost punctual with the crystallites that surround it, b) impregnation of the catalytic ceramic support with a precursor solution of the metallic active phases; c) calcining in air the impregnated catalyst at a temperature between 350 ° C and 1000 ° C, preferably at a temperature of between 450 ° C and 700 ° C, still more preferably at a temperature of 500 ° C to obtain an active phase (s) oxidized (s) deposited on the surface (s) support (s) ceramic (s) catalytic (s); and d) optionally reducing the oxidized active phase (s) between 300 ° C and 1000 ° C, preferably at a temperature of between 300 ° C and 600 ° C, even more preferably at a temperature of 300 ° C. Note that this process may comprise one or more of the following characteristics: the impregnation stage b) is carried out under vacuum for a period of between 5 and 60 minutes; in step b), the active phase solution (s) is a solution of rhodium nitrate (Rh (NO 3) 3, 2H 2 O) or a solution of nickel nitrate (Ni (NO 3) 2, 6H 2 O ) or palladium ((Pd (NO3) 3,2 H2O) or platinum ((Pt (NO3M, yH2O)) or a mixture of these solutions, precursors carbonate (s), chloride (s), ... or a mixture of various precursors (nitrates, carbonates, ...) containing noble metals (Rh, Pt, Ir, Ru, Re, Pd) and / or transition metals (Ni, Cu, Co,. ..) - said method comprises after step d) optionally a step e) aging under operating conditions or close to the operating conditions of the catalyst The first operating cycle (stop / start) can be considered as an aging step. The catalytic ceramic support described in step a) of the process for the preparation of the ceramic support assembly - active phase (s) implemented in the purification device according to the invention. The invention can be prepared by two methods. A first method will result in a catalytic ceramic support comprising a substrate and a film on the surface of said substrate comprising an arrangement of crystallites of the same size, same isodiametric morphology and same or substantially the same chemical composition, same isodiametric morphology and same chemical composition in which each crystallite is in point or almost punctual contact with the crystallites which surround it. A second method will result in a catalytic ceramic support comprising granules comprising an arrangement of crystallites of the same size, same isodiametric morphology and same or substantially the same chemical composition, same isodiametric morphology and same chemical composition in which each crystallite is in point contact or almost punctual with the crystallites that surround it. Note that the granules are substantially spherical. The first process for preparing the catalytic ceramic support comprises the following steps: i) Preparation of a sol comprising salts of nitrates and / or carbonates of aluminum and / or magnesium and / or cerium and / or zirconium and and / or yttrium and / or gadolinium and / or lanthanum, a surfactant and solvents such as water, ethanol and ammonia; ii) Soaking a substrate in the soil prepared in step i); iii) drying the soil impregnated substrate to obtain a gelled composite material comprising a gelled film coated substrate; and iv) calcining the gelled composite material of step iii) at a temperature typically between 500 ° C and 1000 ° C in air. Preferably, the substrate used in this first process for preparing the catalytic ceramic support is of dense alumina.

Le second procédé de préparation du support céramique catalytique comprend les étapes suivantes : i) Préparation d'un sol comprenant des sels de nitrates et/ou de carbonates d'aluminium et/ou de magnésium et/ou de cérium et/ou de zirconium et/ou d'yttrium et/ou gadolinium et/ou de lanthane, un surfactant et les solvants tels que eau, éthanol et ammoniac ; ii) Atomisation du sol au contact d'un flux d'air chaud de manière â évaporer le solvant 5 et former une poudre micronique ; iii) Calcination de la poudre â une température comprise entre 500°C et 1000°C. Le sol préparé dans les deux procédés de préparation du support céramique catalytique comprend de préférence quatre principaux constituants : - Les précurseurs inorganiques : pour des raisons de limitation du coût, nous avons choisi 10 d'utiliser des nitrates de magnésium et d'aluminium, de cérium, de zirconium, d'yttrium ou un mélange entre ces sels de nitrates. D'autres précurseurs inorganiques peuvent être utilisés (carbonates, sulfonâtes, chlorures, ...) seuls ou mélangés dans le procédé. La stoechiométrie des nitrates, dans le cadre de l'exemple, peut être vérifiée par ICP (Inductively Coupled Plasma) avant leur solubilisation dans de l'eau osmosée. 15 - Le surfactant autrement appelé tensioactif. On peut utiliser un copolymère tribloc Pluronic F127 de type EO-PO-E0. Il possède deux blocs hydrophiles (EO) et un bloc central hydrophobe (PO). - Le solvant (éthanol absolu). - NH3.H20 (28% massique). Le surfactant est solubilisé dans une solution ammoniacale ce qui 20 permet de créer des liaisons hydrogène entre les blocs hydrophiles et les espèces inorganiques. La première étape consiste â solubiliser le surfactant (0,9g) dans de l'éthanol absolu (23 mL) et dans une solution ammoniacale (4,5 mL). Le mélange est ensuite chauffé â reflux pendant 1h. Puis, la solution de nitrates préalablement préparée (20 mL) est ajoutée goutte â goutte au mélange. Le tout est chauffé â reflux pendant lh puis refroidi jusqu'à la température ambiante. 25 Le sol ainsi synthétisé est vieilli dans une étuve ventilée dont la température ambiante (20°C) est contrôlée précisément. Dans le cas du premier procédé de synthèse, le trempage consiste â plonger un substrat dans le sol et â le retirer â vitesse constante. Les substrats utilisés dans le cadre de notre étude sont des plaques en alumine frittées â 1700°C pendant 1h30 sous air (densité relative des 30 substrats = 97% par rapport â la densité théorique). Cette invention s'applique â des substrats d'architectures diverses telles que des structures alvéolaires, des barillets, des monolithes, des structures en nid d'abeilles, des sphères, des réacteurs-échangeurs structurés multi-échelles (µréacteurs), ... de nature céramique ou métallique, ou métallique revêtu de céramique, et sur lequel le dit support est déposable (wash coat). The second method for preparing the catalytic ceramic support comprises the following steps: i) Preparation of a sol comprising salts of nitrates and / or carbonates of aluminum and / or magnesium and / or cerium and / or zirconium and and / or yttrium and / or gadolinium and / or lanthanum, a surfactant and solvents such as water, ethanol and ammonia; ii) Atomizing the soil in contact with a hot air stream so as to evaporate the solvent and form a micron powder; iii) calcination of the powder at a temperature between 500 ° C and 1000 ° C. The soil prepared in the two processes for preparing the catalytic ceramic support preferably comprises four main constituents: inorganic precursors: for reasons of cost limitation, we have chosen to use magnesium and aluminum nitrates, cerium, zirconium, yttrium or a mixture of these nitrate salts. Other inorganic precursors can be used (carbonates, sulfonates, chlorides, ...) alone or mixed in the process. The stoichiometry of the nitrates, in the context of the example, can be verified by ICP (Inductively Coupled Plasma) before their solubilization in osmosis water. 15 - The surfactant otherwise called surfactant. It is possible to use a Pluronic F127 triblock copolymer of the EO-PO-E0 type. It has two hydrophilic blocks (EO) and a hydrophobic central block (PO). - The solvent (absolute ethanol). NH 3 H 2 O (28% by weight). The surfactant is solubilized in an ammoniacal solution which makes it possible to create hydrogen bonds between the hydrophilic blocks and the inorganic species. The first step is to solubilize the surfactant (0.9 g) in absolute ethanol (23 mL) and in an ammoniacal solution (4.5 mL). The mixture is then refluxed for 1 hour. Then, the previously prepared nitrate solution (20 mL) is added dropwise to the mixture. The whole is refluxed for 1 h and then cooled to room temperature. The soil thus synthesized is aged in a ventilated oven whose ambient temperature (20 ° C.) is precisely controlled. In the case of the first synthetic process, dipping involves dipping a substrate into the soil and removing it at a constant rate. The substrates used in the context of our study are sintered alumina plates at 1700 ° C. for 1h30 in air (relative density of the substrates = 97% relative to the theoretical density). This invention applies to substrates of various architectures such as honeycomb structures, barrels, monoliths, honeycomb structures, spheres, multi-scale structured reactor-exchangers (μrefactors), etc. of ceramic or metallic nature, or ceramic coated metal, and on which said support is removable (wash coat).

Lors du retirage du substrat, le mouvement du substrat entraîne le liquide formant une couche de surface. Cette couche se divise en deux, la partie interne se déplace avec le substrat alors que la partie externe retombe dans le récipient. L'évaporation progressive du solvant conduit à la formation d'un film à la surface du substrat. Il est possible d'estimer l'épaisseur du dépôt obtenu en fonction de la viscosité du sol et de la vitesse de tirage (Equation 1) : Equation 1 : e oc x v2/3 avec x constante de dépôt dépendante de la viscosité et de la densité du sol et de la tension de surface liquide-vapeur. v est la vitesse de tirage. Ainsi, plus la vitesse de tirage est élevée, plus l'épaisseur du dépôt est importante. When removing the substrate, the movement of the substrate causes the liquid forming a surface layer. This layer divides in two, the inner part moves with the substrate while the outer part falls into the container. The progressive evaporation of the solvent leads to the formation of a film on the surface of the substrate. It is possible to estimate the thickness of the deposit obtained as a function of the viscosity of the soil and the drawing speed (Equation 1): Equation 1: e oc x v 2/3 with x deposition constant depending on the viscosity and the density of the soil and the liquid-vapor surface tension. v is the drawing speed. Thus, the higher the pulling speed, the greater the thickness of the deposit.

Les substrats trempés sont ensuite étuvés entre 30°C et 70°C pendant quelques heures. Un gel est alors formé. Une calcination des substrats sous air permet d'éliminer les nitrates mais aussi de décomposer le surfactant et ainsi de libérer la porosité. Dans le cas du second procédé de synthèse, la technique d'atomisation permet de transformer un sol en forme sèche solide (poudre) par l'utilisation d'un intermédiaire chaud (Figure 3). The quenched substrates are then baked at 30 ° C to 70 ° C for a few hours. A gel is then formed. Calcination of substrates under air eliminates nitrates but also decomposes the surfactant and thus release porosity. In the case of the second synthesis process, the atomization technique makes it possible to transform a sol into a solid dry form (powder) by the use of a hot intermediate (FIG. 3).

Le principe repose sur la pulvérisation en fines gouttelettes du sol 3, dans une enceinte 4 au contact d'un flux d'air chaud 2 afin d'évaporer le solvant. La poudre obtenue est entraînée par le flux de chaleur 5 jusqu'à un cyclone 6 qui va séparer l'air 7 de la poudre 8. L'appareil pouvant être utilisé dans le cadre de la présente invention est un modèle commercial de référence « 190 Mini Spray Dryer » de marque Büchi. The principle is based on the spraying of fine droplets soil 3, in a chamber 4 in contact with a hot air stream 2 in order to evaporate the solvent. The powder obtained is driven by the heat flow 5 to a cyclone 6 which will separate the air 7 from the powder 8. The apparatus that can be used in the context of the present invention is a reference commercial model "190 Mini Spray Dryer by Büchi brand.

La poudre récupérée à l'issue de l'atomisation est séchée dans une étuve à 70°C puis calcinée. La calcination à 900°C détruit la mésostructuration du dépôt qui était présente à 500°C. La cristallisation de la phase (spinelle dans cet exemple) entraîne une désorganisation locale de la porosité. Il en résulte néanmoins un support céramique catalytique selon l'invention, autrement dit un dépôt ultra-divisé et très poreux avec des particules quasi sphériques en contact ponctuel les unes avec les autres (Figure 4). La figure 4 correspond à 3 micrographies MEB haute résolution du support catalytique avec 3 grossissements différents. The powder recovered after the atomization is dried in an oven at 70 ° C and then calcined. Calcination at 900 ° C destroys the mesostructuration of the deposit which was present at 500 ° C. The crystallization of the phase (spinel in this example) causes a local disorganization of the porosity. This nevertheless results in a catalytic ceramic support according to the invention, in other words an ultra-divided and highly porous deposit with quasi-spherical particles in point contact with each other (FIG. 4). Figure 4 corresponds to 3 high resolution SEM micrographs of the catalytic support with 3 different magnifications.

Ces particules supports de(s) phase(s) active(s) d'une taille de l'ordre de la dizaine de nanomètres affichent une distribution granulométrique très étroite centrée autour de 12 nm. La taille moyenne des cristallites, de spinelle dans cet exemple, est de 12nm (mesurée par diffraction des RX aux petits angles, Figure 5). Cette taille correspond â celle des particules élémentaires observées en microscopie électronique â balayage indiquant que les particules élémentaires sont monocristallines. Diffraction des Rayons X aux petits angles (valeurs de l'angle 20 comprises entre 0,5 et 6°) : cette technique nous a permis de déterminer la taille des cristallites du support de catalyseur. Le diffractomètre utilisé dans cette étude, basé sur une géométrie Debye-Scherrer, est équipé d'un détecteur courbe â localisation (Inel CPS 120) au centre duquel est positionné l'échantillon. Ce dernier est un substrat en saphir monocristallin sur lequel a été dip-coaté le sol. La formule de Scherrer permet de relier la largeur â mi-hauteur des pics de diffraction â la taille des cristallites (Equation 2). Equation 2 : D correspond â la taille des cristallites (nm) est la longueur d'onde de la raie Ka du Cu (1,5406 A) R correspond â la largeur â mi-hauteur de la raie (en rad) 0 correspond â l'angle de diffraction. Dans le procédé de préparation du catalyseur selon l'invention, le support céramique catalytique est ensuite imprégné avec une solution de précurseur de Rh, et/ou de Pt, et/ou de Pd et/ou de Ni. Le catalyseur étudié est le catalyseur 3 voies pour utilisation dans les pots catalytiques. Dans le cas d'une phase active comprenant du rhodium supporté par un support spinelle (catalyseur nommé AlMg + Rh), l'imprégnation est réalisée sous vide pendant 15 minutes. Un nitrate de Rh (Rh(NO3)3, 2H20), a été retenu en tant que précurseur inorganique de Rh. La concentration en Rh dans la solution de nitrate a été fixée â 0,1g/L. Après imprégnation, le catalyseur est calciné sous air â 500°C pendant 4h. A ce stade, nous avons un oxyde de rhodium déposé en surface du support ultra-divisé mésoporeux. La réduction de la phase active est effectuée sous Ar-Hz (3%vol) â 300°C pendant 1h. D=0,9x Pcose De manière â observer la taille et la dispersion métallique en surface du support, des observations par microscopie électronique en transmission ont été effectuées (Figure 6a). Ces dernières révèlent la présence de particules de Rh â l'état élémentaire d'une taille de l'ordre du nanomètre. Ces petites particules sont concentrées autour des particules de spinelle du support. These particles support phase (s) active (s) of a size of about ten nanometers display a very narrow particle size distribution centered around 12 nm. The average spinel crystallite size in this example is 12 nm (measured by small angle X-ray diffraction, Figure 5). This size corresponds to that of the elementary particles observed in scanning electron microscopy indicating that the elementary particles are monocrystalline. X-ray diffraction at small angles (angle values between 0.5 and 6 °): this technique allowed us to determine the size of the crystallites of the catalyst support. The diffractometer used in this study, based on a Debye-Scherrer geometry, is equipped with a localized curved detector (Inel CPS 120) at the center of which the sample is positioned. The latter is a monocrystalline sapphire substrate on which the soil has been dip-coated. Scherrer's formula makes it possible to relate the width at mid-height of the diffraction peaks to the size of the crystallites (Equation 2). Equation 2: D corresponds to the size of the crystallites (nm) is the wavelength of the Cu Ka line (1.5406 A) R corresponds to the width at mid-height of the line (in rad) 0 corresponds to the diffraction angle. In the process for preparing the catalyst according to the invention, the catalytic ceramic support is then impregnated with a solution of precursor Rh, and / or Pt, and / or Pd and / or Ni. The catalyst studied is the 3-way catalyst for use in catalytic converters. In the case of an active phase comprising rhodium supported by a spinel support (catalyst named AlMg + Rh), the impregnation is carried out under vacuum for 15 minutes. Rh (Rh (NO 3) 3, 2H 2 O) nitrate was retained as the inorganic precursor of Rh. The concentration of Rh in the nitrate solution was set at 0.1 g / L. After impregnation, the catalyst is calcined in air at 500 ° C. for 4 hours. At this point, we have a rhodium oxide deposited on the surface of the ultra-divided mesoporous support. The reduction of the active phase is carried out under Ar-Hz (3% vol) at 300 ° C. for 1 hour. D = 0.9x Pcose In order to observe the size and the metal dispersion at the surface of the support, observations by transmission electron microscopy were made (FIG. 6a). The latter reveal the presence of particles of Rh in the elemental state of a size of the order of one nanometer. These small particles are concentrated around the spinel particles of the support.

Après un vieillissement simulant les conditions au sein d'un pot catalytique de ce catalyseur (900°C, 48h), les particules de Rh coalescent jusqu'à une taille de 5nm (Figure 6b). A ce stade, une particule de Rh est stabilisée sur une particule de support spinelle, ce qui réduit fortement la possibilité d'une future coalescence des particules métalliques en cours de fonctionnement du catalyseur. After aging simulating the conditions in a catalytic converter of this catalyst (900 ° C., 48 h), the Rh particles coalesce to a size of 5 nm (FIG. 6b). At this point, a Rh particle is stabilized on a spinel support particle, which greatly reduces the possibility of future coalescence of the metal particles during catalyst operation.

Dans le cas d'une phase active comprenant du nickel (catalyseur nommé AlMg +Ni), l'imprégnation du support est réalisée avec une solution de nitrate de Ni (Ni(NO3)2, 6H20). La concentration en Ni dans cette solution peut être fixée à 5g/L. Après imprégnation, le catalyseur peut être calciné sous air à 500°C pendant 4h puis réduit sous Ar-Hz (3%vol) à 700°C pendant 2h. In the case of an active phase comprising nickel (catalyst named AlMg + Ni), the impregnation of the support is carried out with a solution of Ni nitrate (Ni (NO3) 2, 6H20). The Ni concentration in this solution can be set at 5g / L. After impregnation, the catalyst can be calcined under air at 500 ° C. for 4 hours and then reduced under Ar-Hz (3% vol) at 700 ° C. for 2 hours.

Des résultats similaires à ceux obtenus avec le catalyseur AlMg + Rh sont obtenus avec le catalyseur AlMg +Ni. Dans le cas de phase(s) active(s) comprenant du rhodium, du platine et du paladium (catalyseur nommé AlMg +RhPtPd), l'imprégnation du support est réalisée avec une solution de nitrates contenant les dits éléments). Results similar to those obtained with the AlMg + Rh catalyst are obtained with the AlMg + Ni catalyst. In the case of active phase (s) comprising rhodium, platinum and palladium (catalyst named AlMg + RhPtPd), the impregnation of the support is carried out with a solution of nitrates containing said elements).

I1 est à noter dans le cas du support céramique ultra-divisé mésoporeux, l'étude menée uniquement sur la spinelle MgAl204. Les 2 procédés de synthèse du support décrits peuvent être par exemple extrapolés à la cérine dopée ou non au gadolinium, ou encore à la zircone dopée ou non à l'oxyde d'yttrium. La stabilité dans le temps d'un catalyseur selon l'invention a été réalisée. It should be noted in the case of the ultra-divided mesoporous ceramic support, the study conducted solely on the spinel MgAl204. The 2 methods of synthesis of the support described can be for example extrapolated to gadolinium-doped or non-doped ceria, or else to zirconia doped or not with yttrium oxide. The stability over time of a catalyst according to the invention has been achieved.

Le catalyseur AlMg+Rh a été vieilli durant 20 jours en étant soumis à une température de l'ordre de 650°C et un autre échantillon a été soumis à une température de l'ordre de 850°C. La microstructure des catalyseurs en sortie de vieillissement a été observée par microscopie électronique à balayage. Les clichés étant similaires pour les deux températures, nous présenterons les caractérisations des catalyseurs soumis à un vieillissement à 850°C (Figure 7). The AlMg + Rh catalyst was aged for 20 days while being subjected to a temperature of the order of 650 ° C. and another sample was subjected to a temperature of the order of 850 ° C. The microstructure of the catalysts at the end of aging was observed by scanning electron microscopy. The images being similar for the two temperatures, we will present the characterizations of the catalysts subjected to aging at 850 ° C (Figure 7).

Les atmosphères sont très proches de celles des pots catalytiques. The atmospheres are very close to those of catalytic converters.

Le support ultra-divisé de phase spinelle (support céramique catalytique) est conservé après vieillissement et le grossissement des particules de spinelle est très limité. En ce qui concerne les particules métalliques, la taille des particules métalliques après vieillissement reste globalement inférieure ou égale â la taille des cristallites élémentaires du support spinelle. L'intérêt de développer un support ultra-divisé pour favoriser un ancrage mécanique des phases actives est démontré sur ces micrographies (Figure 7a)). En effet, sur cette figure, nous voyons que la dispersion métallique est meilleure sur le dépôt ultra-divisé que sur un grain d'alumine non recouvert de dépôt, présent â gauche sur la photographie. Aux endroits où il n'y a pas de dépôt, il est impossible d'ancrer mécaniquement des particules métalliques, la coalescence est naturelle. Dès lors, on pourra de préférence utiliser le catalyseur selon l'invention pour la catalyse 3 voies (TWC : Three Way Catalysts) dans les pots catalytiques pour dépollution automobile. Dans le cadre de cette étude, la réaction concerne la dépollution des gaz d'échappement. Cette invention peut être étendue â diverses applications en catalyse hétérogène moyennant une adaptation de(s) phase(s) active(s) â la réaction catalytique désirée (SMR, réactions chimiques, pétrochimiques, environnementales, ...) sur un support céramique catalytique ultra-divisé â base spinelle, alumine, cérine, zircone (stabilisée â l'yttrium ou non) ou un mélange de ces composés. The ultra-divided spinel phase support (catalytic ceramic support) is preserved after aging and the magnification of the spinel particles is very limited. With regard to the metal particles, the size of the metal particles after aging generally remains less than or equal to the size of the elemental crystallites of the spinel support. The interest of developing an ultra-divided support to promote mechanical anchoring of the active phases is demonstrated on these micrographs (Figure 7a)). In fact, in this figure, we see that the metallic dispersion is better on the ultra-divided deposit than on a grain of alumina not covered with deposit, present on the left in the photograph. In places where there is no deposit, it is impossible to mechanically anchor metal particles, the coalescence is natural. Therefore, it will be possible to preferably use the catalyst according to the invention for 3-way catalysis (TWC: Three Way Catalysts) in catalytic converters for automotive pollution control. In the context of this study, the reaction concerns the pollution control of exhaust gases. This invention can be extended to various applications in heterogeneous catalysis by adaptation of the active phase (s) to the desired catalytic reaction (SMR, chemical, petrochemical, environmental reactions, etc.) on a catalytic ceramic support. ultra-divided based spinel, alumina, ceria, zirconia (stabilized with yttrium or not) or a mixture of these compounds.

Claims (8)

REVENDICATIONS1. Dispositif d'épuration des gaz d'échappement d'un moteur thermique comprenant : - un(des) support(s) céramique(s) catalytique(s) comprenant un arrangement de cristallites de même taille, même morphologie isodiamétrique et même composition chimique ou sensiblement de même taille, même morphologie isodiamétrique et même composition chimique dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec les cristallites qui l'entourent, et - une(des) phase(s) active(s) pour la destruction chimique d'impuretés du gaz d'échappement comprenant des particules métalliques ancrées mécaniquement dans ledit support catalytique de manière telle que la coalescence et la mobilité de chaque particule sont limités à un volume maximum correspondant à celui d'un cristallite dudit support céramique catalytique. REVENDICATIONS1. Apparatus for purifying the exhaust gases of a heat engine comprising: - a catalytic ceramic support (s) comprising an arrangement of crystallites of the same size, same isodiametric morphology and same chemical composition or of substantially the same size, same isodiametric morphology and same chemical composition in which each crystallite is in point or almost punctual contact with the surrounding crystallites, and - an active phase (s) for the chemical destruction of impurities in the exhaust gas comprising metal particles mechanically anchored in said catalytic support in such a way that the coalescence and mobility of each particle are limited to a maximum volume corresponding to that of a crystallite of said catalytic ceramic support. 2. Dispositif selon la revendication 1, caractérisé en ce que ledit arrangement est en alumine (Al2O3), ou en cérine (CeO2) stabilisée ou non à l'oxyde de gadolinium, ou en zircone (ZrO2) stabilisé ou non à l'oxyde d'yttrium ou en phase spinelle ou en oxyde de lanthane (La203) ou un mélange d'un ou plusieurs de ces composés. 2. Device according to claim 1, characterized in that said arrangement is alumina (Al2O3), or cerine (CeO2) stabilized or not stabilized with gadolinium oxide, or zirconia (ZrO2) stabilized or not with the oxide of yttrium or spinel phase or lanthanum oxide (La203) or a mixture of one or more of these compounds. 3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que les particules 20 métalliques sont choisies : (i) entre les métaux nobles choisis parmi le Ruthénium, le Rhodium, le Palladium, l'Osmium, l'Iridium, le Platine ou un alliage entre un, deux ou trois de ces métaux nobles, ou (ii) entre les métaux de transition choisis parmi le Nickel, l'Argent, l'Or, le Cobalt, et le Cuivre ou un alliage entre un, deux ou trois de ces métaux de transition ou 25 (iii) entre un alliage entre un, deux ou trois de ces métaux nobles et un, deux ou trois de ces métaux de transition. 3. Device according to one of claims 1 or 2, characterized in that the metal particles are chosen: (i) between the noble metals selected from Ruthenium, Rhodium, Palladium, Osmium, Iridium, platinum or an alloy between one, two or three of these noble metals, or (ii) between the transition metals selected from nickel, silver, gold, cobalt, and copper or an alloy between one, two or three of these transition metals or (iii) between an alloy of one, two or three of these noble metals and one, two or three of these transition metals. 4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les cristallites ont un diamètre équivalent moyen compris entre 2 et 20 nm, de préférence entre 5 et 15 nm, et les 30 particules métalliques ont un diamètre équivalent moyen compris entre 2 et 20 nm, de préférence inférieur à 10 nm. 4. Device according to one of claims 1 to 3, characterized in that the crystallites have a mean equivalent diameter of between 2 and 20 nm, preferably between 5 and 15 nm, and the metal particles have a mean equivalent diameter included between 2 and 20 nm, preferably less than 10 nm. 5. Dispositif selon l'une des revendications 1 â 4, caractérisé en ce que l'arrangement de cristallites est au mieux un empilement hexagonal compact ou cubique face centrée dans lequel chaque cristallite est en contact ponctuel ou quasiment ponctuel avec au plus 12 autres cristallites dans un espace â 3 dimensions. 5. Device according to one of claims 1 to 4, characterized in that the arrangement of crystallites is at best a compact hexagonal or cubic face-centered stack in which each crystallite is in point contact or almost punctual with at most 12 other crystallites in a 3-dimensional space. 6. Procédé d'épuration des gaz d'échappement d'un moteur thermique dans lequel on fait circuler lesdits gaz d'échappement â travers un dispositif selon l'une des revendications 1 â 5. 6. Process for cleaning the exhaust gas of a heat engine in which said exhaust gas is circulated through a device according to one of claims 1 to 5. 7. Procédé d'épuration selon la revendication 6, caractérisé en ce que le moteur thermique est un moteur de véhicule automobile, en particulier un moteur diesel. 7. Purification process according to claim 6, characterized in that the engine is a motor vehicle engine, in particular a diesel engine. 8. Procédé d'épuration selon la revendication 6, caractérisé en ce que le moteur thermique est un moteur de véhicule automobile, de préférence un moteur essence. 8. Purification process according to claim 6, characterized in that the engine is a motor vehicle engine, preferably a gasoline engine.
FR1155688A 2011-06-27 2011-06-27 EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE PHASE MECHANICALLY ANCHORED IN THE SUPPORT Expired - Fee Related FR2976823B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
FR1155688A FR2976823B1 (en) 2011-06-27 2011-06-27 EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE PHASE MECHANICALLY ANCHORED IN THE SUPPORT
CA2838360A CA2838360A1 (en) 2011-06-27 2012-06-08 Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase mechanically anchored in the carrier
BR112013033508A BR112013033508A2 (en) 2011-06-27 2012-06-08 combustion engine exhaust gas purification device comprising a ceramic support and an active phase mechanically coupled to the support
EP12730415.2A EP2723496A1 (en) 2011-06-27 2012-06-08 Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase mechanically anchored in the carrier
CN201280031118.XA CN103702759A (en) 2011-06-27 2012-06-08 Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase mechanically anchored in the carrier
US14/128,483 US20140130482A1 (en) 2011-06-27 2012-06-08 Device for the Purification of Exhaust Gases from a Heat Engine, Comprising a Ceramic Carrier and an Active Phase Mechanically Anchored in the Carrier
MX2013015110A MX2013015110A (en) 2011-06-27 2012-06-08 Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase mechanically anchored in the carrier.
RU2014102340/04A RU2014102340A (en) 2011-06-27 2012-06-08 DEVICE FOR CLEANING EXHAUST GASES OF A HEAT ENGINE CONTAINING A CERAMIC CARRIER AND ACTIVE PHASE MECHANICALLY FIXED IN THE CARRIER
PCT/EP2012/060904 WO2013000683A1 (en) 2011-06-27 2012-06-08 Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase mechanically anchored in the carrier
KR1020147001791A KR20140082632A (en) 2011-06-27 2012-06-08 Device for the purification of exhaust gases from a heat engine, comprising a ceramic carrier and an active phase mechanically anchored in the carrier
JP2014517561A JP2014518152A (en) 2011-06-27 2012-06-08 Device for purifying exhaust gas from a heat engine comprising a ceramic carrier and an active phase mechanically fixed in the carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1155688A FR2976823B1 (en) 2011-06-27 2011-06-27 EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE PHASE MECHANICALLY ANCHORED IN THE SUPPORT

Publications (2)

Publication Number Publication Date
FR2976823A1 true FR2976823A1 (en) 2012-12-28
FR2976823B1 FR2976823B1 (en) 2015-03-27

Family

ID=46397167

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1155688A Expired - Fee Related FR2976823B1 (en) 2011-06-27 2011-06-27 EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE PHASE MECHANICALLY ANCHORED IN THE SUPPORT

Country Status (11)

Country Link
US (1) US20140130482A1 (en)
EP (1) EP2723496A1 (en)
JP (1) JP2014518152A (en)
KR (1) KR20140082632A (en)
CN (1) CN103702759A (en)
BR (1) BR112013033508A2 (en)
CA (1) CA2838360A1 (en)
FR (1) FR2976823B1 (en)
MX (1) MX2013015110A (en)
RU (1) RU2014102340A (en)
WO (1) WO2013000683A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991713A1 (en) * 2012-06-11 2013-12-13 Air Liquide EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A FRACTIONAL NANOMETER-SCALE CERAMIC SUPPORT
FR3009973B1 (en) * 2013-08-30 2023-06-09 Air Liquide MATERIAL FOR PRE-COATING A METALLIC SUBSTRATE WITH A CERAMIC-BASED CATALYTIC MATERIAL
KR102016751B1 (en) * 2017-12-14 2019-10-14 한국에너지기술연구원 Catalytic removal method of NOx and N2O from semiconductor exhausted gas with various pollutants
WO2020189779A1 (en) 2019-03-20 2020-09-24 千葉県 Agent targeting double-membrane organelle dna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166340A1 (en) * 2001-08-30 2004-08-26 Aktina Limited Process for making thin film porous ceramic-metal composites and composites obtained by this process
EP1920832A1 (en) * 2006-11-08 2008-05-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude New supported noble metal catalyst and its use in synthesis gas production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991713A1 (en) * 2012-06-11 2013-12-13 Air Liquide EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A FRACTIONAL NANOMETER-SCALE CERAMIC SUPPORT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166340A1 (en) * 2001-08-30 2004-08-26 Aktina Limited Process for making thin film porous ceramic-metal composites and composites obtained by this process
EP1920832A1 (en) * 2006-11-08 2008-05-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude New supported noble metal catalyst and its use in synthesis gas production

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SANCHEZ-DOMINGUEZ M ET AL: "Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation", CATALYSIS TODAY, ELSEVIER, NL, vol. 158, no. 1-2, 5 December 2010 (2010-12-05), pages 35 - 43, XP027446438, ISSN: 0920-5861, [retrieved on 20100702], DOI: 10.1016/J.CATTOD.2010.05.026 *
ZHANG H ET AL: "Nanocast Ordered Mesoporous CeO2 as Support for Highly Active Gold Catalyst in CO Oxidation", CHINESE JOURNAL OF CATALYSIS / DALIAN INSTITUTE OF CHEMICAL PHYSICS, ELSEVIER, AMSTERDAM, NL, vol. 30, no. 11, 1 November 2009 (2009-11-01), pages 1085 - 1090, XP026793538, ISSN: 1872-2067, [retrieved on 20091101] *
ZHANG J H ET AL: "Mesostructured CeO2 and Pd/CeO2 nanophases: Templated synthesis, crystalline structure and catalytic properties", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, ELSEVIER, AMSTERDAM, NL, vol. 237, no. 1-2, 2 August 2005 (2005-08-02), pages 182 - 190, XP004970781, ISSN: 1381-1169, DOI: 10.1016/J.MOLCATA.2005.04.056 *

Also Published As

Publication number Publication date
FR2976823B1 (en) 2015-03-27
EP2723496A1 (en) 2014-04-30
CN103702759A (en) 2014-04-02
MX2013015110A (en) 2014-04-14
CA2838360A1 (en) 2013-01-03
KR20140082632A (en) 2014-07-02
US20140130482A1 (en) 2014-05-15
BR112013033508A2 (en) 2017-01-24
JP2014518152A (en) 2014-07-28
WO2013000683A1 (en) 2013-01-03
RU2014102340A (en) 2015-08-10

Similar Documents

Publication Publication Date Title
CA2396471C (en) Catalytic devices
US5958829A (en) Coating dispersion for exhaust gas catalysts
FR2976823A1 (en) EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE PHASE MECHANICALLY ANCHORED IN THE SUPPORT
FR2976821A1 (en) EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A CERAMIC SUPPORT AND AN ACTIVE ACTIVE PHASE CHEMICALLY AND MECHANICALLY IN THE SUPPORT
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
JP4714568B2 (en) Exhaust gas purification catalyst and method for producing the same
WO2013000682A1 (en) Device for purifying exhaust gases from a heat engine, comprising a catalytic ceramic support comprising an arrangement of essentially identical crystallites
FR2969013A1 (en) CATALYST COMPRISING ACTIVE PARTICLES BLOCKED PHYSICALLY AND CHEMICALLY ON THE SUPPORT
FR2991713A1 (en) EXHAUST GAS PURIFYING DEVICE OF A THERMAL MOTOR COMPRISING A FRACTIONAL NANOMETER-SCALE CERAMIC SUPPORT
US20070117715A1 (en) Exhaust gas purification catalyst and method of fabricating the same
FR2969012A1 (en) CATALYST COMPRISING ACTIVE PARTICLES BLOCKED PHYSICALLY ON THE SUPPORT
WO2012080653A1 (en) Catalyst ceramic support having a controlled microstructure
Behjati et al. Characterization of LaFe 0.6 Co 0.4 O 3 washcoat layer on a monolithic substrate
JP2017185438A (en) Catalyst for purifying exhaust gas
JP2007152286A (en) High heat resistance catalyst carrier and its manufacturing method
JP2005246216A (en) Catalyst for cleaning exhaust gas
JP2007167707A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP2006320840A (en) Catalyst for cleaning exhaust gas and its manufacturing method

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20160229