FR2975827A1 - Method for manufacturing electronic component, involves encapsulating integrated circuit in case, and protecting integrated circuit by frame surrounding integrated circuit on portion of height of integrated circuit - Google Patents

Method for manufacturing electronic component, involves encapsulating integrated circuit in case, and protecting integrated circuit by frame surrounding integrated circuit on portion of height of integrated circuit Download PDF

Info

Publication number
FR2975827A1
FR2975827A1 FR1154632A FR1154632A FR2975827A1 FR 2975827 A1 FR2975827 A1 FR 2975827A1 FR 1154632 A FR1154632 A FR 1154632A FR 1154632 A FR1154632 A FR 1154632A FR 2975827 A1 FR2975827 A1 FR 2975827A1
Authority
FR
France
Prior art keywords
integrated circuit
frame
support
box
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1154632A
Other languages
French (fr)
Inventor
Christian Rivero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Rousset SAS
Original Assignee
STMicroelectronics Rousset SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Rousset SAS filed Critical STMicroelectronics Rousset SAS
Priority to FR1154632A priority Critical patent/FR2975827A1/en
Publication of FR2975827A1 publication Critical patent/FR2975827A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The method involves encapsulating an integrated circuit (5) in a case (2), and protecting the integrated circuit by a frame (8) surrounding the integrated circuit on a portion of height of the integrated circuit. The frame and the integrated circuit are mutually provided. The integrated circuit is fixed on a support (7), where the frame and the support are mutually soldered. The support is deformed so as to form another support that comprises a box. The integrated circuit is fixed in bottom of the box, where side walls of the box form the frame. An independent claim is also included for an electronic component.

Description

B 11-2079FR 1 Procédé de fabrication d'un composant électronique et composant correspondant L'invention concerne les composants électroniques. Un composant électronique comprend classiquement un circuit intégré encapsulé dans un boîtier, généralement en résine. Il est connu que les paramètres électriques de certains éléments du circuit intégré, comme par exemple le courant des transistors MOS, la fréquence d'oscillation des horloges, peuvent être modifiés par rapport aux fréquences nominales prévues lors de la conception du circuit intégré, en raison des contraintes mécaniques subies par le circuit intégré lors de la phase d'encapsulation de celui-ci par la résine conduisant à la formation du boîtier. The method of manufacturing an electronic component and corresponding component The invention relates to electronic components. An electronic component conventionally comprises an integrated circuit encapsulated in a housing, generally made of resin. It is known that the electrical parameters of certain elements of the integrated circuit, such as, for example, the current of the MOS transistors, the oscillation frequency of the clocks, can be modified with respect to the nominal frequencies provided during the design of the integrated circuit, because mechanical stresses experienced by the integrated circuit during the encapsulation phase thereof by the resin leading to the formation of the housing.

On peut par exemple citer à cet égard l'article de Hassan Ali intitulé « Stress-Induced Parametric Shift in Plastic Packaged Devices », IEEE Transactions on components, packaging, and manufacturing technology - part B, vol. 20, N° 4, novembre 1997 ou bien l'article de Wei Zhao et autres intitulé « Influence of Uniaxial Tensile Strain on the Performance of Partially Depleted SOI CMOS Ring Oscillators », IEEE Electron Device Letters, vol.27, N° 1, janvier 2006, ou encore l'article de Feng Yuan et autres, intitulé « Performance Enhancement of Ring Oscillators and Transimpedance Amplifiers by Package Strain », IEEE Transactions on electron devices, vol.53, N°4, avril 2006. Une solution actuellement utilisée pour remédier à cette modification de paramètres électriques consiste à agir au niveau de la conception même du circuit intégré de façon à essayer d'estimer et d'anticiper les modifications de ces paramètres électriques après encapsulation dans la résine, par exemple en utilisant un schéma de conception spécifique du circuit intégré ou bien, en concevant certains éléments du circuit intégré de façon à leur conférer des valeurs pour ces paramètres électriques (par exemple des fréquences d'oscillation), légèrement différentes des valeurs nominales prévues, afin d'essayer d'obtenir les valeurs nominales souhaitées après encapsulation. Cependant, une telle solution est complexe à mettre en oeuvre, ne permet pas d'anticiper les modifications de toutes sortes de paramètres électriques, et ne permet pas de prendre en compte des contraintes mécaniques additionnelles appliquées par le boîtier sur le circuit intégré lors de la soudure du boîtier sur la carte imprimée, ou bien le vieillissement de la résine qui peut induire des modifications temporelles des contraintes mécaniques appliquées sur le circuit intégré. Selon un mode de mise en oeuvre et de réalisation, il est proposé une solution permettant de rendre le circuit intégré moins sensible aux contraintes mécaniques résultant de l'encapsulation et de mieux prendre en compte l'évolution temporelle de ces contraintes lors du vieillissement du matériau d'encapsulation, par exemple la résine. Selon un aspect, il est proposé un procédé de fabrication d'un composé électronique, comprenant une encapsulation dans un boîtier d'un circuit intégré, le procédé comprenant en outre, préalablement à ladite encapsulation, une protection du circuit intégré par un cadre entourant le circuit intégré sur au moins une partie de sa hauteur. I1 est possible que le cadre soit au moins partiellement voire totalement en contact avec le circuit intégré, ce qui permet de réduire les contraintes exercées sur le substrat du circuit intégré lors de l'encapsulation et au cours du temps, puisque le matériau d'encapsulation n'est pas directement en contact avec le substrat de silicium par exemple et que de ce fait le cadre ne transmet qu'une partie des contraintes exercées. Cela étant il est préférable que le cadre entoure à distance le circuit intégré. For example, Hassan Ali's article "Stress-Induced Parametric Shift in Plastic Packaged Devices", IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 20, No. 4, November 1997 or the article by Wei Zhao et al. Entitled "Influence of Uniaxial Tensile Strain on the Performance of Partially Depleted SOI CMOS Ring Oscillators," IEEE Electron Device Letters, vol.27, No. 1, January 2006, or the article by Feng Yuan et al., titled "Performance Enhancement of Ring Oscillators and Transimpedance Amplifiers by Package Strain," IEEE Transactions on Electron Devices, Vol.53, No. 4, April 2006. A solution currently in use to overcome this modification of electrical parameters is to act at the design level of the integrated circuit so as to try to estimate and anticipate the changes in these electrical parameters after encapsulation in the resin, for example using a circuit diagram. specific design of the integrated circuit or, by designing certain elements of the integrated circuit so as to give them values for these electrical parameters (for example e oscillation frequencies), slightly different from the nominal values expected, in order to try to obtain the desired nominal values after encapsulation. However, such a solution is complex to implement, does not anticipate the changes of all kinds of electrical parameters, and does not allow to take into account additional mechanical stresses applied by the housing on the integrated circuit during the soldering the housing on the printed circuit board, or the aging of the resin which can induce temporal changes in the mechanical stresses applied to the integrated circuit. According to one embodiment and embodiment, a solution is proposed making it possible to make the integrated circuit less sensitive to the mechanical stresses resulting from the encapsulation and to better take into account the temporal evolution of these stresses during the aging of the material. encapsulation, for example the resin. According to one aspect, there is provided a method for manufacturing an electronic compound, comprising an encapsulation in a housing of an integrated circuit, the method further comprising, prior to said encapsulation, a protection of the integrated circuit by a frame surrounding the integrated circuit on at least a part of its height. It is possible for the frame to be at least partially or totally in contact with the integrated circuit, which makes it possible to reduce the stresses exerted on the substrate of the integrated circuit during encapsulation and over time, since the encapsulation material is not directly in contact with the silicon substrate for example and that therefore the frame transmits only part of the stresses exerted. However, it is preferable that the frame remotely surrounds the integrated circuit.

En effet, du fait de l'espace entre le cadre et le circuit intégré, le volume de résine au contact du circuit intégré est bien moindre et par conséquent les contraintes mécaniques exercées sur le circuit intégré sont nettement réduites. Et le cadre encaisse ici la majeure partie des contraintes mécaniques sans les transférer au circuit intégré puisque le cadre se situe à distance du circuit intégré. Le cadre fait alors office d'amortisseur ce qui n'est pas le cas lorsqu'il est directement en contact avec le circuit intégré. Cela étant quelle que soit la solution utilisée (cadre en contact avec le circuit intégré ou à distance de celui-ci), le cadre permet de réduire les contraintes mécaniques lors de l'encapsulation mais aussi au cours du temps et également des contraintes additionnelles qui pourraient résulter de la soudure du composant sur une carte. Par ailleurs, même s'il est préférable que le cadre entoure le circuit intégré sur la totalité de sa hauteur, il est suffisant qu'une partie du circuit intégré soit entourée. En effet, dans ce cas, la partie de silicium entourée par le cadre va permettre de rendre moins sensible aux déformations la partie supérieure de silicium du circuit intégré qui n'est pas entourée par le cadre. Indeed, because of the space between the frame and the integrated circuit, the volume of resin in contact with the integrated circuit is much lower and therefore the mechanical stresses exerted on the integrated circuit are significantly reduced. And the frame cash here most of the mechanical constraints without transferring them to the integrated circuit since the frame is located away from the integrated circuit. The frame then serves as a damper which is not the case when it is directly in contact with the integrated circuit. That being whatever the solution used (frame in contact with the integrated circuit or at a distance from it), the frame makes it possible to reduce the mechanical stresses during the encapsulation but also over time and also the additional constraints which could result from soldering the component on a card. Moreover, although it is preferable that the frame surrounds the integrated circuit over its entire height, it is sufficient that part of the integrated circuit is surrounded. In fact, in this case, the silicon part surrounded by the frame will make it possible to make the upper part of silicon of the integrated circuit that is not surrounded by the frame less sensitive to deformation.

A titre indicatif, il s'avère suffisant d'entourer le circuit intégré sur environ un tiers de sa hauteur. En général, le circuit intégré est fixé sur un support, connu par l'homme du métier sous la dénomination anglosaxonne de « die attach ». Dans ce cas le cadre entoure le circuit intégré sur au moins une partie de sa hauteur à partir de sa base reposant sur le support. Bien qu'il soit possible de poser le cadre autour du circuit intégré de façon libre, il est prévu, selon un mode de mise en oeuvre, que ladite protection comprenne une solidarisation mutuelle du cadre et du support. As an indication, it is sufficient to surround the integrated circuit about one third of its height. In general, the integrated circuit is fixed on a support, known to those skilled in the art under the Anglo-Saxon name "die attach". In this case the frame surrounds the integrated circuit over at least part of its height from its base resting on the support. Although it is possible to install the frame around the integrated circuit freely, it is provided, according to an embodiment, that said protection comprises a mutual attachment of the frame and the support.

Ainsi, par exemple, le cadre peut être fixé par tout moyen sur le support, par exemple par soudure. Cela étant, il est particulièrement avantageux que ladite solidarisation mutuelle du cadre et du support comprenne préalablement à la fixation du circuit intégré sur le support, une déformation du support, par exemple par emboutissage, de façon à former un support comportant un caisson, et une fixation du circuit intégré dans le fond du caisson, les parois latérales du caisson formant alors ledit cadre. Thus, for example, the frame can be fixed by any means on the support, for example by welding. That being so, it is particularly advantageous for said mutual attachment of the frame and the support to comprise, prior to the fixing of the integrated circuit on the support, a deformation of the support, for example by stamping, so as to form a support comprising a box, and a fixing the integrated circuit in the bottom of the box, the side walls of the box then forming said frame.

Un tel mode de mise en oeuvre permet ainsi d'avoir une seule pièce monobloc qui fait à la fois office de support et de caisson, avec en outre, des bords arrondis du caisson obtenus lors de la déformation, par exemple par emboutissage, ce qui est nettement préférable à des arêtes droites obtenues notamment lorsque le cadre est soudé sur le support. Selon un autre aspect, il est proposé un composant électronique, comprenant un circuit intégré encapsulé dans un boîtier et comprenant en outre, à l'intérieur du boîtier, un cadre entourant, préférentiellement à distance, le circuit intégré sur au moins une partie de sa hauteur, par exemple sur au moins un tiers de sa hauteur. Selon un mode de réalisation, le circuit intégré est fixé sur un support solidaire du cadre. Le support peut être une pièce monobloc déformée de façon à comporter un caisson et le circuit intégré est fixé sur le fond du caisson, les parois latérales du caisson formant ledit cadre. Selon un mode de réalisation, le cadre est ajouré, ce qui permet une meilleure pénétration de la résine entre le circuit intégré et le cadre. Such an embodiment thus makes it possible to have a single piece that acts as both a support and a box, with, in addition, rounded edges of the box obtained during the deformation, for example by stamping, which is much preferable to straight edges obtained especially when the frame is welded to the support. In another aspect, there is provided an electronic component, comprising an integrated circuit encapsulated in a housing and further comprising, inside the housing, a frame surrounding, preferably at a distance, the integrated circuit on at least a portion of its height, for example on at least one third of its height. According to one embodiment, the integrated circuit is fixed on a support secured to the frame. The support may be a one-piece piece deformed so as to comprise a box and the integrated circuit is fixed on the bottom of the box, the side walls of the box forming said frame. According to one embodiment, the frame is perforated, which allows better penetration of the resin between the integrated circuit and the frame.

D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée de modes de mise en oeuvre et de réalisation, nullement limitatifs, et des dessins annexés sur lesquels : - les figures 1 à 5 illustrent schématiquement différents modes de mise en oeuvre et de réalisation de l'invention. Sur la figure 1, la référence 1 désigne un composant électronique comportant un circuit intégré 5 réalisé dans et/ou un substrat semiconducteur, par exemple un substrat de silicium. Le circuit intégré est fixé sur un support 7 (« die attach ») par tous moyens, par exemple par collage au moyen d'une colle appropriée 6. Les plots de contact supérieurs du circuit intégré sont, dans cet exemple de réalisation, reliés à des pattes de connexion 3 par l'intermédiaire de fils électriquement conducteurs 4, par exemple des fils en or. Dans cet exemple de réalisation, un cadre 8 est fixé sur le support 7 de façon à entourer le circuit intégré 5 en ménageant un espace E entre les bords latéraux du circuit intégré 5 et les bords du cadre 8. Puis, l'ensemble est encapsulé dans un matériau d'encapsulation, par exemple une résine, de façon à former un boîtier 2. Other advantages and characteristics of the invention will appear on examining the detailed description of embodiments and embodiments, in no way limiting, and the appended drawings in which: FIGS. 1 to 5 schematically illustrate various modes of implementation and realization of the invention. In FIG. 1, reference numeral 1 designates an electronic component comprising an integrated circuit 5 made of and / or a semiconductor substrate, for example a silicon substrate. The integrated circuit is fixed on a support 7 ("die attach") by any means, for example by gluing by means of a suitable adhesive 6. The upper contact pads of the integrated circuit are, in this embodiment, connected to connecting lugs 3 via electrically conductive wires 4, for example gold wires. In this embodiment, a frame 8 is fixed on the support 7 so as to surround the integrated circuit 5 by providing a space E between the lateral edges of the integrated circuit 5 and the edges of the frame 8. Then, the assembly is encapsulated in an encapsulating material, for example a resin, so as to form a housing 2.

Dans ce mode de réalisation, le boîtier est un boîtier dit « QFP » comportant des pattes de connexion. Ces pattes de connexion sont destinées à être ultérieurement soudées sur une carte imprimée (PCB : « Printed Circuit Board »). Cela étant, l'invention s'applique à tous types de boîtiers ne comportant pas forcément de pattes de connexion, comme les boîtiers dits « BGA » comportant des matrices de billes de connexion. Lors de l'étape d'encapsulation, la résine pénètre notamment dans l'espace e entre le cadre et le circuit intégré. Le cadre étant situé à distance du circuit intégré, il va faire office d'amortisseur et encaisser les contraintes mécaniques induites par la résine d'encapsulation qui peuvent être des contraintes en compression ou en expansion qui sont matérialisées sur la figure 2 par la flèche F. Par ailleurs, le volume de résine contenu dans l'espace E est de ce fait très faible par rapport au volume restant de la résine. Par conséquent, les contraintes induites par la résine directement sur le circuit intégré sont fortement réduites. A titre indicatif, la distance entre le circuit intégré et le cadre peut être comprise entre 100 micromètres et 500 micromètres. Le cadre est avantageusement rigide, par exemple formé du même matériau que celui du support 7. Ainsi, le support 7 et le cadre peuvent être tous deux en cuivre. Cela étant, le cadre et le support peuvent être constitués de deux matériaux différents (par exemple le support en cuivre et le cadre en aluminium). In this embodiment, the housing is a so-called "QFP" housing comprising connecting lugs. These connection tabs are intended to be subsequently soldered on a printed circuit board (PCB: "Printed Circuit Board"). This being the case, the invention applies to all types of boxes that do not necessarily have connection lugs, such as the so-called "BGA" boxes comprising connecting ball matrices. During the encapsulation step, the resin penetrates in particular in the space e between the frame and the integrated circuit. Since the frame is located at a distance from the integrated circuit, it will act as a damper and absorb the mechanical stresses induced by the encapsulation resin, which may be compression or expansion stresses, which are shown in FIG. 2 by the arrow F Moreover, the volume of resin contained in the space E is therefore very small compared to the remaining volume of the resin. Therefore, the stresses induced by the resin directly on the integrated circuit are greatly reduced. As an indication, the distance between the integrated circuit and the frame may be between 100 micrometers and 500 micrometers. The frame is advantageously rigid, for example formed of the same material as that of the support 7. Thus, the support 7 and the frame can both be made of copper. That being so, the frame and the support can be made of two different materials (for example the copper support and the aluminum frame).

Bien que la hauteur du cadre 8 soit à peu près égale sur les figures 1 et 2, à la hauteur du circuit intégré, une hauteur minimum pour le cadre de l'ordre d'un tiers de la hauteur du circuit intégré permet déjà de réduire significativement les contraintes sur le circuit intégré provoquées par la résine. En effet, la partie inférieure du substrat est protégée par le cadre qui encaisse les contraintes, et cette partie inférieure permet de ce fait de limiter les déformations de la partie supérieure du substrat du silicium non entourée par le cadre. I1 est possible, en fonction du matériel choisi pour le cadre, que celui-ci se déforme légèrement lors de la phase d'encapsulation, et que son extrémité supérieure se rapproche des parois latérales du circuit intégré. Cependant, l'homme du métier saura choisir les dimensions du cadre, et notamment son épaisseur, ainsi que la valeur de la distance entre le cadre et le circuit intégré de façon à ce que même après déformation, le cadre reste à distance du circuit intégré. A titre d'exemple, on pourra par exemple choisir une épaisseur de cadre égale à l'épaisseur du support, par exemple de l'ordre de 0,1 mm. Cela étant, de façon plus générale, une épaisseur de cadre comprise entre la moitié et le double de l'épaisseur du support 7 peut convenir. A titre indicatif lorsque l'épaisseur du support est de l'ordre de 0,1 mm, on peut par exemple choisir une épaisseur de cadre égale à 0,127 mm. Plusieurs solutions sont possibles pour réaliser le cadre. Une première solution, illustrée sur la figure 3, consiste à réaliser le cadre 8 de façon séparée puis à le fixer, par exemple par soudure, sur le support 7. Le circuit intégré sera ensuite fixé sur le support 7 par l'intermédiaire de la colle 6 à l'intérieur du cadre 8. De façon à favoriser la pénétration de la résine entre le circuit intégré et le cadre, il peut être avantageux de prévoir un cadre 8 ajouré comportant, comme illustré sur la figure 3, des ouvertures 80 sur au moins une de ses parois latérales. Une autre possibilité de réalisation du cadre est illustrée sur la figure 4. Although the height of the frame 8 is approximately equal in FIGS. 1 and 2, at the height of the integrated circuit, a minimum height for the frame of the order of one third of the height of the integrated circuit already makes it possible to reduce significantly the stresses on the integrated circuit caused by the resin. Indeed, the lower part of the substrate is protected by the frame which encases the stresses, and this lower part thus makes it possible to limit the deformations of the upper part of the silicon substrate not surrounded by the frame. It is possible, depending on the material chosen for the frame, that it slightly deforms during the encapsulation phase, and that its upper end is close to the side walls of the integrated circuit. However, those skilled in the art will be able to choose the dimensions of the frame, and in particular its thickness, as well as the value of the distance between the frame and the integrated circuit so that even after deformation, the frame remains at a distance from the integrated circuit . By way of example, it is possible, for example, to choose a frame thickness equal to the thickness of the support, for example of the order of 0.1 mm. However, more generally, a frame thickness of between half and twice the thickness of the support 7 may be suitable. As an indication when the thickness of the support is of the order of 0.1 mm, one can for example choose a frame thickness equal to 0.127 mm. Several solutions are possible to realize the frame. A first solution, illustrated in FIG. 3, consists of producing the frame 8 separately and then fixing it, for example by welding, on the support 7. The integrated circuit will then be fixed on the support 7 via the glue 6 inside the frame 8. In order to promote the penetration of the resin between the integrated circuit and the frame, it may be advantageous to provide a perforated frame 8 having, as illustrated in FIG. 3, openings 80 on at least one of its side walls. Another possibility of producing the frame is illustrated in FIG.

On procède à un emboutissage 700 d'une plaque 70, par exemple en cuivre, de façon à former un caisson 71 dont la paroi de fond 7 forme le support destiné à recevoir le circuit intégré et dont les parois latérales 72 forment le cadre. Embossing 700 of a plate 70, for example copper, so as to form a box 71, the bottom wall 7 forms the support for receiving the integrated circuit and whose side walls 72 form the frame.

On obtient donc une pièce monobloc faisant à la fois office de support et de cadre. Ceux-ci présentent l'avantage, par rapport au mode de réalisation de la figure 3, d'avoir des bords arrondis entre la paroi de fond 7 et les parois latérales 72, ce qui est préférable d'un point de vue mécanique. One thus obtains a monoblock piece doing at the same time office of support and frame. These have the advantage, compared to the embodiment of Figure 3, to have rounded edges between the bottom wall 7 and the side walls 72, which is preferable from a mechanical point of view.

Puis, comme illustré sur la partie droite de la figure 4, le circuit intégré 5 est fixé par la colle 6 sur la paroi de fond 7, et les parois latérales 72 du caisson font alors office de cadre. Dans les modes de réalisation illustrés sur les figures 3 et 4, le cadre et le support sont mutuellement solidaires. Then, as shown in the right part of Figure 4, the integrated circuit 5 is fixed by the adhesive 6 on the bottom wall 7, and the side walls 72 of the box then act as a frame. In the embodiments illustrated in Figures 3 and 4, the frame and the support are mutually supportive.

I1 serait également possible, comme illustré sur la figure 5, que le cadre 8 soit posé de façon libre sur le support 7. Plus précisément, on voit sur la partie gauche de la figure 5 que le cadre 8 est réalisé séparément, par exemple en cuivre ou en aluminium. Puis, il est placé de façon libre sur le support 7 autour du circuit intégré 5 fixé sur le support 7 par la colle 6. Puis, comme illustré sur la partie droite de la figure 5, le boîtier d'encapsulation est formé par moulage de la résine autour du cadre et entre le cadre et le circuit intégré. L'invention n'est pas limitée aux modes de mise en oeuvre et de réalisation qui viennent d'être décrits mais en embrasse toutes les variantes. Ainsi il est également possible que le cadre vienne partiellement en contact avec voire enserre totalement à contact le circuit intégré, ce qui permet déjà d'obtenir une diminution des contraintes appliquées sur le circuit intégré par rapport à une configuration sans cadre. It would also be possible, as illustrated in FIG. 5, for the frame 8 to be placed freely on the support 7. More precisely, it can be seen on the left-hand part of FIG. 5 that the frame 8 is made separately, for example in copper or aluminum. Then, it is placed freely on the support 7 around the integrated circuit 5 fixed on the support 7 by the adhesive 6. Then, as illustrated on the right part of FIG. 5, the encapsulation box is formed by molding of the resin around the frame and between the frame and the integrated circuit. The invention is not limited to the embodiments and embodiments that have just been described, but encompasses all variants thereof. Thus it is also possible that the frame comes partially in contact with or even fully encloses the integrated circuit, which already makes it possible to obtain a reduction in the stresses applied to the integrated circuit with respect to a frameless configuration.

Claims (9)

REVENDICATIONS1. Procédé de fabrication d'un composant électronique, comprenant une encapsulation d'un circuit intégré (5) dans un boîtier (2), caractérisé en qu'il comprend en outre, préalablement à ladite encapsulation, une protection du circuit intégré (5) par un cadre (8) entourant le circuit intégré (5) sur au moins une partie de sa hauteur. REVENDICATIONS1. A method of manufacturing an electronic component, comprising an encapsulation of an integrated circuit (5) in a housing (2), characterized in that it further comprises, prior to said encapsulation, a protection of the integrated circuit (5) by a frame (8) surrounding the integrated circuit (5) over at least a portion of its height. 2. Procédé selon la revendication 1, dans lequel ladite protection comprend une disposition mutuelle à distance du cadre (8) et du circuit intégré (5) 2. The method of claim 1, wherein said protection comprises a mutual arrangement remote from the frame (8) and the integrated circuit (5). 3. Procédé selon la revendication 1 ou 2, comprenant en outre une fixation du circuit intégré sur un support (7), et ladite protection comprend une solidarisation mutuelle du cadre (8) et du support (7). 3. The method of claim 1 or 2, further comprising an attachment of the integrated circuit on a support (7), and said protection comprises a mutual attachment of the frame (8) and the support (7). 4. Procédé selon la revendication 3, dans lequel ladite solidarisation mutuelle du cadre et du support comprend préalablement à la fixation du circuit intégré sur le support, une déformation (700) du support de façon à former un support comportant un caisson (71) et une fixation du circuit intégré dans le fond (7) du caisson, les parois latérales (72) du caisson formant ledit cadre. 4. The method of claim 3, wherein said mutual attachment of the frame and the support comprises prior to the attachment of the integrated circuit on the support, a deformation (700) of the support so as to form a support comprising a box (71) and an attachment of the integrated circuit in the bottom (7) of the box, the side walls (72) of the box forming said frame. 5. Composant électronique, comprenant un circuit intégré (5) encapsulé dans un boîtier (2), caractérisé en ce qu'il comprend en outre à l'intérieur du boîtier (2), un cadre (8) entourant le circuit intégré (5) sur au moins une partie de sa hauteur. An electronic component, comprising an integrated circuit (5) encapsulated in a housing (2), characterized in that it further comprises inside the housing (2), a frame (8) surrounding the integrated circuit (5). ) on at least part of its height. 6. Composant selon la revendication 5, dans lequel le cadre (8) entoure le circuit intégré (5) à distance. 6. Component according to claim 5, wherein the frame (8) surrounds the integrated circuit (5) remotely. 7. Composant selon la revendication 5 ou 6, dans lequel le circuit intégré est fixé sur un support (7) solidaire du cadre (8). 7. Component according to claim 5 or 6, wherein the integrated circuit is fixed on a support (7) integral with the frame (8). 8. Composant selon la revendication 7, dans lequel le support est une pièce monobloc déformée de façon à comporter un caisson (71) et le circuit intégré (5) est fixé sur le fond (7) du caisson, les parois latérales (72) du caisson formant ledit cadre. 8. Component according to claim 7, wherein the support is a one-piece piece deformed so as to comprise a box (71) and the integrated circuit (5) is fixed on the bottom (7) of the box, the side walls (72). the box forming said frame. 9. Composant selon l'une des revendications 5 à 8, dans lequel le cadre (8) est ajouré. 9. Component according to one of claims 5 to 8, wherein the frame (8) is perforated.
FR1154632A 2011-05-27 2011-05-27 Method for manufacturing electronic component, involves encapsulating integrated circuit in case, and protecting integrated circuit by frame surrounding integrated circuit on portion of height of integrated circuit Pending FR2975827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1154632A FR2975827A1 (en) 2011-05-27 2011-05-27 Method for manufacturing electronic component, involves encapsulating integrated circuit in case, and protecting integrated circuit by frame surrounding integrated circuit on portion of height of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1154632A FR2975827A1 (en) 2011-05-27 2011-05-27 Method for manufacturing electronic component, involves encapsulating integrated circuit in case, and protecting integrated circuit by frame surrounding integrated circuit on portion of height of integrated circuit

Publications (1)

Publication Number Publication Date
FR2975827A1 true FR2975827A1 (en) 2012-11-30

Family

ID=44511073

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1154632A Pending FR2975827A1 (en) 2011-05-27 2011-05-27 Method for manufacturing electronic component, involves encapsulating integrated circuit in case, and protecting integrated circuit by frame surrounding integrated circuit on portion of height of integrated circuit

Country Status (1)

Country Link
FR (1) FR2975827A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179348A (en) * 1988-01-05 1989-07-17 Nec Corp Semiconductor device
JPH02130864A (en) * 1988-11-10 1990-05-18 Seiko Epson Corp Die pad structure for lead frame
US20020195703A1 (en) * 2001-06-21 2002-12-26 Rohm Co., Ltd. Semiconductor electronic parts
WO2005045930A1 (en) * 2003-11-04 2005-05-19 Infineon Technologies Ag Leadframe with insulating ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179348A (en) * 1988-01-05 1989-07-17 Nec Corp Semiconductor device
JPH02130864A (en) * 1988-11-10 1990-05-18 Seiko Epson Corp Die pad structure for lead frame
US20020195703A1 (en) * 2001-06-21 2002-12-26 Rohm Co., Ltd. Semiconductor electronic parts
WO2005045930A1 (en) * 2003-11-04 2005-05-19 Infineon Technologies Ag Leadframe with insulating ring

Similar Documents

Publication Publication Date Title
FR2819634A1 (en) SEMICONDUCTOR PACKAGE WITH SENSOR PROVIDED WITH AN INSERT AND MANUFACTURING METHOD THEREOF
EP2112471A1 (en) Mounting device for electronic component
FR2865575A1 (en) Wrapping of semiconductor pastilles to form structures for micromechanical devices incorporating a membrane, notably for pressure sensors
FR3012670A1 (en) ELECTRONIC SYSTEM COMPRISING STACKED ELECTRONIC DEVICES WITH INTEGRATED CIRCUIT CHIPS
FR2837022A1 (en) Device with power semiconductor, comprises assembly frame and metal block as substrate for semiconductor component encapsulated by moulded resin
FR2936359A1 (en) CONNECTION BY EMBOITEMENT OF TWO INSERTS WELDED.
FR2931029A1 (en) PROTECTIVE STRUCTURE FOR A PRINTED BOARD AND METHOD FOR MANUFACTURING THE STRUCTURE
JP2012512405A (en) Apparatus and method for manufacturing the apparatus
FR2851374A1 (en) Semiconductor case, has frame constituting spaced out electrical connection pins on front surface with integrated chip having wires, grooves, balls and other set of pins connected to pins on front surface
FR3053526A1 (en) METHOD FOR COLLECTIVELY MANUFACTURING ELECTRONIC DEVICES AND ELECTRONIC DEVICE
EP0593330A1 (en) 3D-interconnection method for electronic component housings and resulting 3D component
EP0883177A1 (en) Semiconductor device with heat sink
FR2800909A1 (en) OPTICAL SEMICONDUCTOR HOUSING AND METHOD FOR MANUFACTURING SUCH HOUSING
FR2835651A1 (en) Arrangement for mounting of a semiconductor casing on a plate support using a base, used for optical semiconductors having optical sensors and lenses
FR3004579A1 (en)
FR2975827A1 (en) Method for manufacturing electronic component, involves encapsulating integrated circuit in case, and protecting integrated circuit by frame surrounding integrated circuit on portion of height of integrated circuit
FR2939963A1 (en) METHOD FOR MANUFACTURING SEMICONDUCTOR COMPONENT CARRIER, SUPPORT AND SEMICONDUCTOR DEVICE
EP1410446A1 (en) Optical semiconductor housing with transparent chip and method for making same
FR3116383A1 (en) Integrated circuit package with heat sink and manufacturing method
FR2769100A1 (en) Casing for photosemiconductor device
FR2861216A1 (en) Support plate for semiconductor chip includes two layers of thermally conducting material, linked via holes in plate, to assist heat dissipation
FR3085576A1 (en) COVER FOR INTEGRATED CIRCUIT BOX
JP2013157386A5 (en)
FR3041859A1 (en) ELECTRONIC DEVICE WITH INTEGRATED CONDUCTIVE WIRE AND METHOD OF MANUFACTURE
BE1023972B1 (en) FOCUS PLANAR MATRIX PERIPHERAL VIAS FOR INTEGRATED READING CIRCUIT