FR2968839A1 - WATERPROOF HIGH VOLTAGE BATTERY PACK - Google Patents

WATERPROOF HIGH VOLTAGE BATTERY PACK Download PDF

Info

Publication number
FR2968839A1
FR2968839A1 FR1060381A FR1060381A FR2968839A1 FR 2968839 A1 FR2968839 A1 FR 2968839A1 FR 1060381 A FR1060381 A FR 1060381A FR 1060381 A FR1060381 A FR 1060381A FR 2968839 A1 FR2968839 A1 FR 2968839A1
Authority
FR
France
Prior art keywords
battery pack
housing
reservoir
battery
drawer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1060381A
Other languages
French (fr)
Other versions
FR2968839B1 (en
Inventor
Ludovic Lefebvre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR1060381A priority Critical patent/FR2968839B1/en
Priority to PCT/FR2011/052883 priority patent/WO2012076808A1/en
Publication of FR2968839A1 publication Critical patent/FR2968839A1/en
Application granted granted Critical
Publication of FR2968839B1 publication Critical patent/FR2968839B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/691Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Le pack batterie (20) haute tension étanche pour véhicule hybride ou électrique, comprend un carter (50) dans lequel sont disposées des cellules (23) pour la production, le stockage et la libération d'énergie électrique, et un réservoir extractible (25) qui contient un matériau (34) absorbeur d'humidité, caractérisé en ce qu'il comprend des moyens (22, 37, 36) de maintien de l'étanchéité à l'intérieur du carter lorsqu'on extrait le réservoir extractible (25).The sealed high voltage battery pack (20) for a hybrid or electric vehicle comprises a housing (50) in which cells (23) are arranged for producing, storing and releasing electrical energy, and an extractable reservoir (25). ) which contains a moisture-absorbing material (34), characterized in that it comprises means (22, 37, 36) for maintaining the seal inside the housing when extracting the extractable reservoir (25). ).

Description

PACK BATTERIE HAUTE TENSION ETANCHE WATERPROOF HIGH VOLTAGE BATTERY PACK

L'invention concerne un pack batterie haute tension étanche pour véhicule hybride ou électrique, comprenant des cellules pour la production, le stockage et la libération d'énergie électrique. La pression économique, liée notamment au prix des carburants, et environnementale liée notamment à la réglementation des émissions polluantes et des gaz à effet de serre, encourage le développement de véhicules à chaînes de traction électrique ou hybride. On entend par chaîne de traction hybride, une chaîne de traction mettant en oeuvre deux types de motorisation, en série, en parallèle ou en dérivation de puissance, comprenant un moteur thermique à combustion interne et un moteur électrique. Les véhicules hybrides et électriques comprennent une batterie haute tension de traction, nécessaire à l'entraînement du véhicule. Dans le cas d'un véhicule électrique, la batterie constitue généralement la seule source d'énergie embarquée à bord pour alimenter le ou les moteurs électriques. Dans le cas d'un véhicule hybride, la batterie apporte de l'énergie à un moteur électrique qui apporte un surplus de couple ou de puissance mécanique pour amplifier les performances du moteur thermique et réduire les émissions polluantes. Une telle batterie s'échauffe non seulement par effets Joule et thermochimique en exploitation et en recharge, mais aussi par les appels de courant qui résultent de certaines conditions d'utilisation. Les niveaux de températures maximales admissibles par la batterie, engendrent des besoins de contrôle thermique. Généralement, une température de la batterie au-delà de 40°C à 50°C est préjudiciable à sa durée de vie et à sa sûreté de fonctionnement. Afin de refroidir la batterie de manière optimale même dans les situations de vie extrêmes, la tendance actuelle est de l'équiper avec une thermorégulation qui met en oeuvre du fluide réfrigérant prélevé via une dérivation du circuit de climatisation du véhicule. Ce mode de refroidissement est justifié par la sollicitation accrue de la batterie sur les véhicules électriques et les véhicules pleinement hybrides (full hybrid en anglais) qui sont des véhicules hybrides à batterie rechargeable par une source externe. On exige de ces véhicules, notamment une grande autonomie en véhicule à zéro émission (ZEV pour Zero Emission Vehicle en anglais) allant parfois jusqu'à 30km pour un véhicule hybride et jusqu'à plus de 200km pour un véhicule électrique, en rupture par rapport aux véhicules hybrides et électriques de première génération. The invention relates to a sealed high-voltage battery pack for a hybrid or electric vehicle, comprising cells for producing, storing and releasing electrical energy. Economic pressure, linked in particular to the price of fuel, and environmental, particularly related to the regulation of pollutant emissions and greenhouse gases, encourages the development of electric or hybrid traction chain vehicles. Hybrid drivetrain is understood to mean a traction chain using two types of motorization, in series, in parallel or in power bypass, comprising an internal combustion engine and an electric motor. Hybrid and electric vehicles include a high-voltage traction battery needed to drive the vehicle. In the case of an electric vehicle, the battery is generally the only source of energy on board to power the electric motor (s). In the case of a hybrid vehicle, the battery provides energy to an electric motor that provides a surplus of torque or mechanical power to boost the performance of the engine and reduce emissions. Such a battery heats up not only by Joule and thermochemical effects in operation and recharge, but also by the current calls that result from certain conditions of use. The maximum permissible temperature levels by the battery, generate needs for thermal control. Generally, a temperature of the battery beyond 40 ° C to 50 ° C is detrimental to its life and its dependability. In order to cool the battery optimally even in extreme life situations, the current trend is to equip it with a thermoregulation which uses refrigerant taken through a bypass of the air conditioning circuit of the vehicle. This mode of cooling is justified by the increased solicitation of the battery on electric vehicles and fully hybrid vehicles (hybrids in English) which are hybrid vehicles with rechargeable battery from an external source. These vehicles are required, in particular Zero Emission Vehicle (ZEV) range, sometimes up to 30km for a hybrid vehicle and up to 200km for an electric vehicle, which is out of proportion hybrid and first generation electric vehicles.

On exige aussi de ces véhicules des prestations dynamiques longitudinales permettant de faire face en mode électrique à toutes les situations urbaines, voire périphériques et extra urbaines parmi lesquelles on peut citer à titre purement illustratif et non limitatif, l'insertion dans la circulation, l'accélération, le dépassement, en évitant d'avoir recours au moteur thermique dans le cas d'un véhicule hybride, de façon à maximiser le gain en consommation. On exige encore de ces véhicules la prestation d'un confort thermique en termes de chauffage et de réfrigération de l'habitacle, équivalent à celui d'un véhicule conventionnel, en particulier en mode tout électrique. Cette exigence impose à la batterie HT (haute tension) de traction, d'alimenter en plus des organes de mouvement, des consommateurs électriques de type réchauffeur électrique de l'air extérieur entrant dans l'habitacle ou compresseur électrique du circuit de climatisation. La batterie HT de traction doit avoir une durée de vie pouvant aller jusqu'à égaler celle du véhicule (10 à 15 ans et 200 à 300.000km). Ceci impose de thermo réguler la batterie à une température la plus basse possible, notamment dans sa plage optimale de fonctionnement, quelques soient les conditions d'utilisation. Les solutions connues de l'état antérieur de la technique ne permettent pas de répondre à toutes les 5 contraintes. Le document DE102008034698A1 décrit un pack batterie comprenant un réservoir extractible qui contient un matériau absorbeur d'humidité. Le problème est que, lors de l'extraction du réservoir pour renouveler le 10 matériau absorbeur d'humidité, un appel d'air dans le pack batterie risque d'y introduire de l'air humide. D'autres conceptions mettent en oeuvre un pack batterie parfaitement étanche. Le volume laissé libre entre le carter et les composants internes du pack 15 batterie tels que ses cellules, son électronique de gestion, est rempli de vide ou d'un gaz inerte ou encore de résine. Toute intervention en après-vente à l'intérieur du pack batterie est alors impossible. De plus, ce type de conception n'apporte aucune solution à 20 la gestion de l'humidité se condensant à l'intérieur du pack batterie. Pour remédier au problème posé par l'état antérieur de la technique, l'invention a pour objet un pack batterie haute tension étanche pour véhicule hybride ou 25 électrique, comprenant un carter dans lequel sont disposées des cellules pour la production, le stockage et la libération d'énergie électrique, et un réservoir extractible qui contient un matériau absorbeur d'humidité, caractérisé en ce qu'il comprend des moyens 30 de maintien de l'étanchéité à l'intérieur du carter lorsqu'on extrait le réservoir extractible. Avantageusement, les moyens de maintien de l'étanchéité comprennent sur au moins une face de carter du pack batterie, une ou plusieurs zones molles qui se 35 déforment de façon à équilibrer des pressions à l'intérieur et à l'extérieur du pack batterie. These vehicles are also required to provide longitudinal dynamic performances that make it possible to cope in an electric fashion with all urban, even peripheral and extra-urban situations, among which may be mentioned in a purely illustrative and nonlimiting way, the insertion into the traffic, the acceleration, overtaking, avoiding the use of the engine in the case of a hybrid vehicle, so as to maximize the gain in consumption. These vehicles are still required to provide thermal comfort in terms of heating and cooling of the passenger compartment, equivalent to that of a conventional vehicle, especially in all-electric mode. This requirement imposes on the HV battery (high voltage) traction, to supply in addition to the movement organs, electrical consumers type electric air heater outside entering the cabin or electric compressor air conditioning system. The traction battery HT must have a life of up to equal that of the vehicle (10 to 15 years and 200 to 300,000km). This requires thermo regulating the battery at the lowest possible temperature, especially in its optimal operating range, whatever the conditions of use. Known solutions of the prior art do not meet all the constraints. Document DE102008034698A1 describes a battery pack comprising an extractable reservoir which contains a moisture-absorbing material. The problem is that when removing the reservoir to renew the moisture-absorbing material, a draw of air into the battery pack may introduce moist air therein. Other designs implement a perfectly sealed battery pack. The volume left free between the casing and the internal components of the battery pack such as its cells, its management electronics, is filled with vacuum or an inert gas or resin. Any after-sales intervention inside the battery pack is impossible. In addition, this type of design provides no solution to the management of moisture condensing inside the battery pack. In order to overcome the problem posed by the prior art, the subject of the invention is a sealed high-voltage battery pack for a hybrid or electric vehicle, comprising a casing in which cells for the production, storage and storage are arranged. release of electrical energy, and an extractable reservoir which contains a moisture-absorbing material, characterized in that it comprises means 30 for maintaining the seal inside the housing when extracting the extractable reservoir. Advantageously, the means for maintaining the seal comprise on at least one casing face of the battery pack, one or more soft areas which deform in order to balance pressures inside and outside the battery pack.

Particulièrement, ladite face est en partie supérieure du pack batterie. Avantageusement aussi, le pack batterie comprend un logement pour le réservoir extractible disposé en partie basse du carter, ledit logement comportant une paroi de décanteur dans laquelle est pratiqué au moins un orifice qui permet à un liquide condensé de s'écouler jusqu'au matériau absorbeur contenu dans le réservoir extractible. Particulièrement, le réservoir extractible est sous forme de tiroir et les moyens de maintien de l'étanchéité comprennent au moins un dispositif d'étanchéité disposé sur le fond du tiroir de façon à obstruer le logement lorsque le tiroir est amené dans sa position extraite. Plus particulièrement, ledit dispositif est agencé pour obstruer l'orifice lorsque le réservoir est en position extraite du pack batterie. Plus particulièrement encore, les moyens de maintien de l'étanchéité comprennent au moins une plaque sur une face du réservoir en contact avec ladite paroi de décanteur, ladite plaque étant agencée pour occulter l'orifice en cours d'extraction du réservoir. De préférence, ledit logement comprend une ouverture qui permet d'équilibrer des pressions à l'intérieur et à l'extérieur du logement pendant l'extraction du réservoir. Avantageusement encore, le pack batterie comprend un compartiment séparé des cellules et dédié à la maintenance du pack batterie. Optionnellement, le pack batterie comprend un clapet d'obstruction du réservoir extractible animé par un ressort de rappel qui est libéré par un retrait du matériau absorbant de façon à plaquer le clapet de façon étanche contre une partie inférieure du réservoir extractible. In particular, said face is in the upper part of the battery pack. Advantageously also, the battery pack comprises a housing for the extractable reservoir disposed at the bottom of the housing, said housing having a settler wall in which is formed at least one orifice which allows a condensed liquid to flow to the absorber material contained in the extractable tank. In particular, the extractable reservoir is in the form of a drawer and the means for maintaining the seal comprise at least one sealing device disposed on the bottom of the drawer so as to obstruct the housing when the drawer is brought into its extracted position. More particularly, said device is arranged to obstruct the orifice when the reservoir is in the extracted position of the battery pack. More particularly, the means for maintaining the seal comprise at least one plate on one side of the tank in contact with said settler wall, said plate being arranged to conceal the orifice during extraction of the tank. Preferably, said housing comprises an opening which makes it possible to balance pressures inside and outside the housing during extraction of the tank. Advantageously, the battery pack comprises a compartment separate from the cells and dedicated to the maintenance of the battery pack. Optionally, the battery pack comprises an extractable reservoir clog valve driven by a return spring which is released by a withdrawal of the absorbent material so as to press the valve sealingly against a lower portion of the extractable reservoir.

D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels : - la figure 1 est un schéma d'architecture connue de circuit réfrigérant à deux boucles parallèles de 5 réfrigération ; - la figure 2A est une vue en perspective d'un exemple d'évaporateur de type serpentin intégré dans un pack batterie HT de traction ; - la figure 2B est une vue en perspective d'un 10 exemple d'évaporateur de type plaque froide intégré dans un pack batterie HT de traction ; - la figure 3 est une vue en perspective d'un pack batterie comprenant un matériau absorbant conformément à l'invention ; 15 - la figure 4 est une vue de côté en coupe du bas du pack batterie de la figure 3 ; - les figures 5A à 5G reproduisent la figure 4 pour différentes étapes conduisant à un retrait de matériau absorbant du pack batterie ; 20 - la figure 6 reproduit la figure 4 après avoir retiré le matériau absorbant du pack batterie ; - les figures 7A à 7H reproduisent la figure 6 pour différentes étapes conduisant à une remise en place de matériau absorbant dans le pack batterie. 25 La figure 1 montre un système de gestion thermique qui permet de refroidir un pack batterie 1 de manière optimale, y compris dans des situations de vie extrêmes. Le système de gestion thermique met en oeuvre un fluide réfrigérant prélevé du circuit de climatisation du 30 véhicule via une dérivation. Le circuit de climatisation du véhicule est basé de manière connue sur une boucle fermée comprenant un réservoir 8 équipé d'un filtre déshydratant et qui contient du fluide réfrigérant à l'état liquide, un 35 évaporateur 5 dans lequel le fluide réfrigérant passe de l'état liquide à l'état gazeux, un compresseur 6 qui comprime et refoule vers un condenseur 7, le gaz produit par l'évaporateur 5. Dans le condenseur 7, le fluide réfrigérant repasse de l'état gazeux à l'état liquide avant d'être reconduit au réservoir 8. En mode de refroidissement de l'habitacle, l'évaporateur 5 est généralement situé en contact avec un conduit d'amenée d'air dans l'habitacle (non représenté) en vue de son refroidissement. De manière à évaporer le fluide réfrigérant qui le traverse, l'évaporateur 5 absorbe la chaleur de l'air traversant le conduit d'amenée et provoque ainsi son refroidissement. Le condenseur 7 est alors généralement situé en contact avec l'extérieur de l'habitacle. La chaleur libérée par la condensation du fluide dans le condenseur est alors évacuée vers l'extérieur. Other characteristics and advantages of the invention will emerge clearly from the description which is given hereinafter, by way of indication and in no way limiting, with reference to the appended drawings, in which: FIG. 1 is a diagram of known architecture refrigerant circuit with two parallel cooling loops; FIG. 2A is a perspective view of an example of a coil-type evaporator integrated in an HV traction battery pack; FIG. 2B is a perspective view of an exemplary cold plate type evaporator integrated in a traction battery pack HT; FIG. 3 is a perspective view of a battery pack comprising an absorbent material according to the invention; Figure 4 is a bottom sectional side view of the battery pack of Figure 3; FIGS. 5A to 5G reproduce FIG. 4 for various steps leading to a removal of absorbent material from the battery pack; Figure 6 shows Figure 4 after removing the absorbent material from the battery pack; - Figures 7A to 7H reproduce Figure 6 for different steps leading to a replacement of absorbent material in the battery pack. Figure 1 shows a thermal management system that optimally cools a battery pack 1, including in extreme life situations. The thermal management system uses a refrigerant fluid taken from the air conditioning circuit of the vehicle via a bypass. The air conditioning circuit of the vehicle is based in a known manner on a closed loop comprising a reservoir 8 equipped with a desiccant filter and which contains coolant in the liquid state, an evaporator 5 in which the refrigerant passes from the liquid state in the gaseous state, a compressor 6 which compresses and represses to a condenser 7, the gas produced by the evaporator 5. In the condenser 7, the refrigerant returns from the gaseous state to the liquid state before It is carried back to the tank 8. In the cooling mode of the passenger compartment, the evaporator 5 is generally located in contact with an air supply duct in the passenger compartment (not shown) with a view to cooling it. In order to evaporate the refrigerant flowing through it, the evaporator 5 absorbs the heat of the air passing through the supply duct and thus causes its cooling. The condenser 7 is then generally located in contact with the outside of the passenger compartment. The heat released by the condensation of the fluid in the condenser is then discharged to the outside.

Une vanne pressostatique et thermostatique 9 permet d'asservir le flux de fluide réfrigérant en entrée de l'évaporateur 5 en fonction de la pression et de la température du fluide en sortie de façon à réguler la quantité de chaleur absorbée dans l'évaporateur 5. A pressostatic and thermostatic valve 9 makes it possible to control the refrigerant flow at the inlet of the evaporator 5 as a function of the pressure and the temperature of the outlet fluid so as to regulate the quantity of heat absorbed in the evaporator 5.

La dérivation pour prélever le fluide réfrigérant du circuit de climatisation, comprend une conduite 24 pour amener le fluide réfrigérant prélevé jusqu'au pack batterie 1 et une conduite 29 pour ramener le fluide réfrigérant du pack batterie dans le circuit de climatisation. L'amont de la conduite 24 est branché entre le réservoir 8 et l'évaporateur 5 en amont de la vanne 9. L'aval de la conduite 24 est branché en entrée d'un évaporateur à l'intérieur du pack batterie 1. L'amont de la conduite 29 est branché en sortie de l'évaporateur à l'intérieur du pack batterie 1. L'aval de la conduite 29 est branché entre l'évaporateur 5 et le compresseur 6 en aval de l'évaporateur 5. Une vanne pressostatique et thermostatique 2 permet d'asservir le flux de fluide réfrigérant circulant dans le pack batterie 1 en fonction de la pression et de la température du fluide en sortie de façon à réguler la quantité de chaleur absorbée dans le pack batterie 1. The bypass for withdrawing the cooling fluid from the air conditioning circuit comprises a pipe 24 for bringing the refrigerant removed to the battery pack 1 and a pipe 29 to bring the refrigerant fluid of the battery pack into the air conditioning circuit. The upstream line 24 is connected between the tank 8 and the evaporator 5 upstream of the valve 9. The downstream line 24 is connected to the inlet of an evaporator inside the battery pack 1. L upstream of the pipe 29 is connected at the outlet of the evaporator inside the battery pack 1. The downstream of the pipe 29 is connected between the evaporator 5 and the compressor 6 downstream of the evaporator 5. pressostatic and thermostatic valve 2 makes it possible to control the flow of refrigerant circulating in the battery pack 1 according to the pressure and temperature of the output fluid so as to regulate the amount of heat absorbed in the battery pack 1.

Les vannes 2 et 9 constituent chacune un détendeur respectivement pour la boucle évaporateur batterie et pour la boucle évaporateur habitacle. Une vanne tout ou rien 3 en amont du détendeur 2, laisse passer dans un état ouvert le fluide réfrigérant dans la conduite 24 vers l'évaporateur de la batterie 1 et bloque le passage du fluide dans un état fermé. Une vanne tout ou rien 4 en amont du détendeur 9, laisse passer le fluide réfrigérant vers l'évaporateur 5 dans un état ouvert et bloque le passage du fluide dans un état fermé. Les vannes 3 et 4 permettent d'assurer ou non la réfrigération d'une boucle sans interférer sur celle de l'autre. Valves 2 and 9 each constitute a regulator respectively for the battery evaporator loop and for the passenger compartment evaporator loop. An on-off valve 3 upstream of the expander 2, passes in an open state the refrigerant in the pipe 24 to the evaporator of the battery 1 and blocks the passage of the fluid in a closed state. An on-off valve 4 upstream of the expander 9 passes the refrigerant to the evaporator 5 in an open state and blocks the passage of the fluid in a closed state. The valves 3 and 4 make it possible to ensure or not the refrigeration of one loop without interfering with that of the other.

Le système de gestion thermique représenté en figure 1 permet de refroidir le pack batterie 1 pour répondre à la sollicitation accrue de la batterie sur les véhicules électriques et les véhicules pleinement hybrides (full hybrid en anglais) à batterie rechargeable par une source externe. La réfrigération procurée par le système de la figure 1, permet des performances de refroidissement élevées de la batterie HT de traction, avec un bilan énergétique favorable grâce à un coefficient de performance prenant généralement des valeurs de 1,8 à 3,5 pour une réfrigération usuelle lorsque la température extérieure varie dans une plage de 25 à 40°C. On rappelle que le coefficient de performance d'un système thermique est le rapport égal à la quantité de chaleur récupérée, divisée par la quantité de travail fourni pour récupérer cette quantité de chaleur. Le coefficient de performance peut s'élever jusqu'à des valeurs de 5 à 8 dans des conditions de température ambiante clémente comprise entre 5 et 20°C. De telles conditions de température favorisent le refroidissement de la batterie haute tension de traction au cours de situations de vie usuelles. The thermal management system shown in FIG. 1 makes it possible to cool the battery pack 1 to respond to the increased demand of the battery on electric vehicles and fully hybrid vehicles (full hybrid in English) with rechargeable battery by an external source. The refrigeration provided by the system of Figure 1, allows high cooling performance of the traction battery HT, with a favorable energy balance through a coefficient of performance generally taking values from 1.8 to 3.5 for refrigeration usual when the outside temperature varies in a range of 25 to 40 ° C. It is recalled that the coefficient of performance of a thermal system is the ratio equal to the amount of heat recovered, divided by the amount of work provided to recover this amount of heat. The coefficient of performance can be as high as 5 to 8 under warm ambient conditions of 5 to 20 ° C. Such temperature conditions favor the cooling of the high-voltage traction battery during usual life situations.

Le bilan énergétique favorable est un premier avantage qui fait préférer le mode de gestion thermique qui vient d'être décrit lorsqu'il est comparé à d'autres modes de gestion thermique basés par exemple sur un refroidissement par air extérieur ou par air en provenance de l'habitacle, ou sur un refroidissement par simple circulation d'eau. D'autres avantages font préférer le mode de gestion thermique basé une boucle fermée de réfrigération. The favorable energy balance is a first advantage that makes the thermal management mode that has just been described preferable when compared to other thermal management modes based for example on an outdoor air or air cooling from the cockpit, or on a cooling by simple circulation of water. Other advantages are that the thermal management mode based on a closed refrigeration loop is preferred.

Le système de gestion thermique basé sur une boucle fermée de réfrigération présente l'avantage d'être indépendant de l'état ambiant dans l'habitacle qui est soumis à la pollution de l'air par la fumée de cigarette ou la poussière, aux vitres ouvertes, aux réglages du groupe de climatisation par l'utilisateur du véhicule qui ne sont pas toujours favorables à la gestion thermique de la batterie. Le système de gestion thermique basé sur une boucle fermée de réfrigération présente des avantages en termes de sûreté de fonctionnement et de sécurité qui résultent de son isolation de l'habitacle. L'absence de nuisance acoustique offre une prestation de silence particulièrement recherchée dans un véhicule électrique ou full hybride en roulage électrique. L'installation possible du système de gestion thermique sous le capot, sous la caisse et/ou dans l'habitacle du véhicule, présente l'avantage d'une faible intrusion qui résulte d'une absence de conduits d'air de grosse section, d'échangeur thermique supplémentaire et de pulseur d'air à mettre en oeuvre. Le surcoût engendré est maîtrisé par rapport aux autres modes de gestion thermique. Les avantages ci-dessus mentionnés poussent à équiper tout véhicule hybride ou électrique à performances élevées en dynamique ou en autonomie, avec le système de gestion thermique de la figure 1 de façon à assurer la réfrigération de la batterie HT de traction en direct par fluide réfrigérant en contact avec les cellules actives de la batterie. Le pack batterie 1, tel qu'il est représenté en figure 2A, est constitué d'un assemblage de cellules cylindriques 10. Chaque cellule 10 constitue le lieu où s'effectuent la production, le stockage et la libération d'énergie électrique. Des calories sont dégagées dans chaque cellule 10 par effet Joule et par les réactions thermochimiques exothermiques qui s'y déroulent. Le carter ou la paroi de chaque cellule 10 fait office de conducteur thermique pour évacuer les calories à l'extérieur de la cellule jusqu'à un échangeur 9 de type serpentin. L'échangeur 9 joue ici le même rôle que l'évaporateur 5 du groupe de climatisation de l'habitacle représenté en figure 1. Une détente en amont est suivie d'une évaporation d'un fluide réfrigérant de type R134a, CO2, HF0-1234yf, ou autre au sein de l'échangeur 9. La détente et l'évaporation sont pilotées par un détendeur, réalisé par exemple par la vanne 2 de type à orifice calibré pressostatique et/ou thermostatique dédié. Le pack batterie 1, tel qu'il est représenté en figure 2B, est constitué d'un assemblage de cellules plates 11. Chaque cellule 11 constitue le lieu où s'effectuent la production, le stockage et la libération d'énergie électrique. Les calories qui sont dégagées dans chaque cellule 11 par effet Joule et par les réactions thermochimiques exothermiques qui s'y déroulent, sont évacuées à travers le carter ou la paroi de chaque cellule 11 qui fait office de conducteur thermique, à l'extérieur de la cellule jusqu'à un échangeur 12 de type à plaques ou à tubes plats. L'échangeur à plaques 12 joue ici encore le même rôle que l'évaporateur 5 du groupe de climatisation de l'habitacle représenté en figure 1. The thermal management system based on a closed loop of refrigeration has the advantage of being independent of the ambient state in the passenger compartment which is subjected to the pollution of the air by the smoke of cigarette or the dust, to the panes open, the settings of the air conditioning group by the user of the vehicle that are not always favorable to the thermal management of the battery. The closed loop refrigeration thermal management system has advantages in terms of operational safety and security that result from its isolation from the passenger compartment. The absence of acoustic nuisance offers a particularly sought-after silence service in an electric or full hybrid vehicle in electric taxi. The possible installation of the thermal management system under the bonnet, under the body and / or in the cabin of the vehicle, has the advantage of a small intrusion resulting from a lack of large section air ducts, additional heat exchanger and air blower to implement. The extra cost generated is controlled compared to other thermal management modes. The above mentioned advantages push to equip any hybrid or electric vehicle with high performance dynamics or autonomy, with the thermal management system of Figure 1 so as to ensure the refrigeration of HT live traction battery by refrigerant in contact with the active cells of the battery. The battery pack 1, as shown in FIG. 2A, consists of an assembly of cylindrical cells 10. Each cell 10 constitutes the place where the production, the storage and the release of electrical energy take place. Calories are released in each cell by Joule effect and by the exothermic thermochemical reactions that take place there. The casing or the wall of each cell 10 acts as a thermal conductor for evacuating the calories outside the cell to a coil-type exchanger 9. The exchanger 9 here plays the same role as the evaporator 5 of the air-conditioning unit of the passenger compartment shown in FIG. 1. An upstream expansion is followed by an evaporation of a refrigerant fluid of the R134a, CO2, HF0- 1234yf, or other within the exchanger 9. The expansion and evaporation are controlled by a pressure reducer, made for example by the valve 2 type pressure switch orifice and / or dedicated thermostatic. The battery pack 1, as shown in FIG. 2B, consists of an assembly of flat cells 11. Each cell 11 constitutes the place where the production, the storage and the release of electrical energy take place. The calories which are released in each cell 11 by the Joule effect and by the exothermic thermochemical reactions which take place therein, are evacuated through the housing or the wall of each cell 11 which acts as a thermal conductor, outside the cell up to a plate type exchanger 12 or flat tube. The plate heat exchanger 12 again plays the same role as the evaporator 5 of the air-conditioning unit of the passenger compartment shown in FIG.

Dans un cas comme dans l'autre, des plaques de conduction thermique, disposées en contact et/ou entre les cellules, peuvent être prévues pour amener les calories jusqu'aux échangeurs de type évaporateur. Comme représenté en figure 3, les cellules 23, l'évaporateur 26, les éventuelles plaques de conduction ainsi qu'une électronique de gestion de la batterie, sont enfermés dans un carter 50, le tout constituant un pack batterie 20 comparable au pack batterie 1 de la figure 1. Le carter 50 sert en tant que de besoin de protection mécanique contre des petits chocs de type gravillons, branchages, petits animaux, trottoir, de protection contre les agressions de l'eau, de la neige, des sels, de la boue ou autres. Le carter 50 peut aussi servir d'écran ou d'isolant thermique sous le capot ou sous la caisse du véhicule vis-à-vis de l'environnement réchauffé par les gaz d'échappement, l'écoulement d'air chaud venant du compartiment moteur. Le carter peut encore servir à intégrer les fixations du pack batterie au véhicule. Le détendeur 2 est préférentiellement en dehors du pack batterie 20 afin de pouvoir en diversifier les réglages d'une application véhicule à une autre sans impacter les composants internes du pack batterie. Le pack batterie représenté en figure 3, est réfrigéré par un fluide réfrigérant amené par la conduite 24 et récupéré par la conduite 29. Un refroidissement par réfrigération pose de nombreux défis à relever. Certains de ces défis sont d'ailleurs communs à tous les types de batterie, quel qu'en soit le mode de gestion thermique. Une bonne isolation électrique est indispensable d'une part entre les cellules 23 et d'autre part vis-à- vis du fluide réfrigérant. Les contacts thermiques doivent être judicieusement étudiés afin de conserver une bonne performance d'échange thermique depuis le coeur actif de la cellule où sont produites des calories, jusqu'au fluide réfrigérant où les calories sont absorbées. Il convient de porter une attention particulière notamment sur le choix des matériaux entre les lieux de production et d'absorption des calories ainsi que sur les états de surface entre chaque cellule et l'évaporateur, quelle que soit sa technologie. Par exemple, on peut monter, dans le carter fermant le pack batterie, les cellules sous contrainte contre l'évaporateur ou inversement afin d'exercer une pression entre eux qui tend à faire disparaître toute lame d'air pouvant faire office de couche isolante et favoriser ainsi l'échange de chaleur par contact thermique. La gestion thermique par boucle de réfrigération conduit par nature, lorsque le fluide réfrigérant est suffisamment froid en entrée de la batterie, à une formation de condensation à l'intérieur du pack batterie. La condensation de la vapeur d'eau contenue dans l'air présent dans le pack batterie au contact de l'évaporateur froid, provoque un ruissellement d'eau qui conduit à une présence de condensats d'eau, ou d'autres liquides qu'il convient de gérer pour réduire les risques de courts-circuits, de corrosion électrochimique, et autres. Préférentiellement, le carter du pack batterie est étanche, notamment lorsque le pack batterie est installé sous la caisse du véhicule ou dans le compartiment moteur. L'étanchéité du pack batterie a pour but d'éviter toute intrusion venant de l'extérieur : eau (pluie, neige, flaque, passage au gué, humidité contenue dans l'air extérieur), sels de déneigement, poussières, etc. Il faut également gérer la dilatation de l'air contenu dans le pack batterie. La dilatation de l'air résulte notamment de l'échauffement du pack batterie. La dilatation de l'air emprisonné crée un différentiel de pression entre l'intérieur du pack batterie et l'environnement extérieur. Un niveau élevé d'étanchéité du pack batterie permet non seulement de s'affranchir de toute intrusion d'eau venant de l'extérieur, mais aussi de limiter l'apport de l'humidité présente dans l'air extérieur, réduisant ainsi à la source la production de condensats. Cet apport d'humidité n'est cependant évité que dans la mesure où le pack batterie possède un niveau élevé d'étanchéité à l'air. De façon à éviter une introduction d'air humide dans le pack batterie, en particulier en cas d'ouverture du carter pour assurer une opération de maintenance en service après-vente, par exemple pour un échange de fusible, les zones de maintenance pour les services en après vente (fusibles, ...) sont préférentiellement localisées dans un compartiment 27 séparé des cellules et de l'évaporateur, accessible en APV par un couvercle équipé de joints. Néanmoins, une telle étanchéité du pack batterie ne permet pas d'évacuer vers l'extérieur les condensats se formant lors du fonctionnement de la réfrigération batterie. In either case, thermal conduction plates arranged in contact and / or between the cells may be provided to bring the calories to the evaporator-type exchangers. As shown in FIG. 3, the cells 23, the evaporator 26, the possible conduction plates and a battery management electronics are enclosed in a housing 50, the whole constituting a battery pack 20 comparable to the battery pack 1 of Figure 1. The casing 50 serves as a need for mechanical protection against small shocks like chippings, branches, small animals, sidewalk, protection against aggression of water, snow, salt, mud or others. The casing 50 can also serve as a screen or thermal insulation under the hood or under the vehicle body vis-à-vis the environment heated by the exhaust gas, the flow of hot air from the compartment engine. The housing can still be used to integrate the battery pack attachments to the vehicle. The regulator 2 is preferably outside the battery pack 20 in order to diversify the settings of a vehicle application to another without impacting the internal components of the battery pack. The battery pack shown in FIG. 3 is refrigerated by a refrigerant supplied by line 24 and recovered via line 29. Refrigeration cooling poses many challenges. Some of these challenges are also common to all types of battery, whatever the mode of thermal management. Good electrical insulation is essential on the one hand between the cells 23 and on the other hand vis-à-vis the refrigerant. The thermal contacts must be carefully studied in order to maintain a good thermal exchange performance from the active heart of the cell where calories are produced to the coolant where the calories are absorbed. Particular attention should be paid in particular to the choice of materials between the places of production and absorption of calories as well as the surface conditions between each cell and the evaporator, whatever its technology. For example, one can mount, in the housing closing the battery pack, the cells under stress against the evaporator or vice versa in order to exert a pressure between them which tends to remove any air space that can act as an insulating layer and thus promote heat exchange by thermal contact. The thermal management by cooling loop leads by nature, when the coolant is sufficiently cold at the input of the battery, to a formation of condensation inside the battery pack. The condensation of the water vapor contained in the air present in the battery pack in contact with the cold evaporator, causes a runoff of water which leads to the presence of condensates of water, or other liquids that it should be managed to reduce the risk of short circuits, electrochemical corrosion, and others. Preferably, the casing of the battery pack is sealed, especially when the battery pack is installed under the vehicle body or in the engine compartment. The waterproofness of the battery pack is intended to prevent any intrusion from the outside: water (rain, snow, puddle, fording, moisture contained in the outside air), salt removal, dust, etc. It is also necessary to manage the expansion of the air contained in the battery pack. The expansion of the air results in particular from the heating of the battery pack. The expansion of trapped air creates a pressure differential between the inside of the battery pack and the outside environment. A high level of tightness of the battery pack not only makes it possible to overcome any intrusion of water coming from outside, but also to limit the contribution of the moisture present in the outside air, thus reducing to the source the production of condensates. This moisture supply is, however, avoided only to the extent that the battery pack has a high level of airtightness. In order to avoid a humid air introduction into the battery pack, in particular in the case of opening of the casing to ensure a maintenance operation in after-sales service, for example for a fuse exchange, the maintenance areas for the after-sales services (fuses, etc.) are preferably located in a compartment 27 separated from the cells and the evaporator, accessible by a APV lid equipped with seals. However, such tightness of the battery pack does not allow to evacuate to the outside condensates formed during operation of the battery refrigeration.

Un circuit supplémentaire dédié au dégazage (venting en anglais) élimine hors du pack batterie tout produit gazeux (H2, CO, CO2, CH4, HF, ...) ou liquide (électrolyte, gaz dissous) en cas d'emballement, de défaillance ou en cours de vieillissement du pack batterie. Ce circuit de dégazage est dissocié du système de gestion thermique de la batterie et est conçu pour que les produits de dégradation de la batterie ne soient jamais en contact avec les cellules ni avec le système de gestion thermique interne comprenant l'évaporateur 26, l'éventuel dispositif de réchauffage de la batterie, et autres conduits de fluide 24, 29. Compte tenu des prix de revient, des prix de vente, du coût en garantie pour le constructeur automobile, et du prix d'achat et du coût de la main d'oeuvre associée en après-vente pour le client, d'un pack batterie complet, il est souhaitable de pouvoir intervenir dessus pour l'ouvrir et en remplacer si nécessaire et en toute sécurité pour les opérateurs, les constituants défectueux, sans avoir à échanger tout le pack complet. An additional circuit dedicated to degassing (venting in English) eliminates from the battery pack any gaseous product (H2, CO, CO2, CH4, HF, ...) or liquid (electrolyte, dissolved gas) in case of runaway, failure or during aging of the battery pack. This degassing circuit is dissociated from the thermal management system of the battery and is designed so that the degradation products of the battery are never in contact with the cells or with the internal thermal management system comprising the evaporator 26, the possible battery heating device, and other fluid conduits 24, 29. Taking into account the cost price, the selling price, the cost as a guarantee for the car manufacturer, and the purchase price and the cost of the hand associated customer after-sales service, a complete battery pack, it is desirable to be able to intervene to open it and replace it if necessary and safely for the operators, the defective components, without having to exchange all the complete pack.

Selon un premier aspect, le pack batterie 20 comprend, sur au moins une face 28 de son carter, une ou plusieurs zones molles 22 occupant tout ou partie de la superficie de la face 28. Chaque zone molle 22 est positionnée à un emplacement peu ou pas chargé mécaniquement ou thermiquement afin de ne pas altérer la tenue aux sollicitations mécaniques et thermiques de l'ensemble du pack batterie. La zone molle 22 est constituée d'un matériau, par exemple du caoutchouc, qui rend la zone 22 et son raccordement au carter, d'une part inertes électriquement et électrostatiquement, et d'autre part étanches à l'air, aux gaz, aux liquides, tant de l'extérieur vers l'intérieur que de l'intérieur vers l'extérieur du pack batterie. La zone molle 22, de type ballon ou soufflet, a pour fonction d'absorber les expansions ou les rétractions volumiques à l'intérieur du pack batterie, quand le pack batterie est respectivement en surpression ou en dépression par rapport à l'environnement extérieur. La surpression ou la dépression peuvent résulter de conditions de température et de pression internes au pack batterie ou de conditions externes liées à des variations de l'environnement extérieur en termes de température, de pression atmosphérique, ou d'altitude. On rappelle la nécessité pour le pack batterie d'être strictement étanche à l'eau et le plus possible étanche à l'air de façon à s'opposer à toute entrée d'air extérieur, en particulier chargé en humidité, dans le pack batterie. La superficie de la ou des zones molles 22 est dimensionnée de façon à absorber toute dilatation ou rétraction volumique en prenant en compte notamment le volume de la batterie 20, les pressions et les températures pouvant régner de part et d'autre des parois du pack batterie, à l'intérieur et à l'extérieur du pack batterie. Selon un second aspect, un matériau 34 absorbeur de l'humidité est disposé en partie inférieure du carter du pack batterie 20. Le matériau 34 absorbeur de l'humidité est sous forme d'une couche de matériau absorbant l'humidité et/ou de sels hygroscopiques contenus dans des sachets en matériau hydrophile ou sous forme d'un revêtement. Une option consiste à mettre en oeuvre une provision de sels ou de matériaux absorbants en quantité suffisante pour couvrir la durée de vie du pack batterie en tenant compte des conditions d'utilisation extrêmes. A titre illustratif, on peut citer les utilisations les plus sollicitantes thermiquement pour la batterie. Pour refroidir le pack batterie, ces utilisations recourent considérablement à la réfrigération, laquelle provoque la formation de condensats. On peut encore citer les conditions extérieures extrêmes liées aux variations d'altitude et de température extérieure, en termes de température extérieure élevée, d'hygrométrie, et autres. According to a first aspect, the battery pack 20 comprises, on at least one face 28 of its housing, one or more soft zones 22 occupying all or part of the surface area of the face 28. Each soft zone 22 is positioned at a location where not loaded mechanically or thermally so as not to alter the resistance to mechanical and thermal stress of the entire battery pack. The soft zone 22 consists of a material, for example rubber, which makes the zone 22 and its connection to the casing, on the one hand inert electrically and electrostatically, and on the other hand airtight, gas, to liquids, both from the outside to the inside and from the inside to the outside of the battery pack. The soft zone 22, of balloon or bellows type, has the function of absorbing expansions or volume shrinkage inside the battery pack, when the battery pack is respectively overpressure or depression relative to the external environment. Overpressure or depression may result from temperature and pressure conditions internal to the battery pack or from external conditions related to changes in the external environment in terms of temperature, atmospheric pressure, or altitude. It is recalled the need for the battery pack to be strictly watertight and as much as possible airtight so as to oppose any external air intake, in particular loaded with moisture, in the battery pack . The surface of the soft zone or zones 22 is dimensioned so as to absorb any expansion or volume shrinkage, taking into account in particular the volume of the battery 20, the pressures and the temperatures that may reign on both sides of the battery pack walls. , inside and outside the battery pack. In a second aspect, a moisture absorbing material 34 is disposed in the lower portion of the battery pack housing 20. The moisture absorbing material 34 is in the form of a layer of moisture absorbing material and / or hygroscopic salts contained in sachets of hydrophilic material or in the form of a coating. One option is to implement a supply of salts or absorbent materials in sufficient quantity to cover the life of the battery pack taking into account the extreme conditions of use. As an illustration, the most thermally demanding uses for the battery can be cited. To cool the battery pack, these uses make considerable use of refrigeration, which causes the formation of condensates. We can also mention extreme outdoor conditions related to changes in altitude and outside temperature, in terms of high outdoor temperature, humidity, and others.

Cette option peut s'avérer coûteuse et encombrante, c'est pourquoi on préfère une alternative qui, comme décrit ci-après, réduit significativement la quantité de sels ou autres matériaux absorbants mise en oeuvre. Une option alternative consiste à mettre en oeuvre une provision de quantité moindre et un procédé consistant à déterminer un moment opportun pour remplacer la provision qui a été placée dans le pack batterie lors de son assemblage en usine. Des données sont déjà présentes dans les calculateurs du véhicule pour la gestion du confort thermique de l'habitacle et pour la gestion thermique de la batterie en relation avec le mode de fonctionnement de la chaîne de traction parmi les modes ZEV, full hybride, et autres. Ces données sont relatives à la température du pack batterie, à la température extérieure, à l'altitude, à la température de l'habitacle, à la pression atmosphérique, à l'hygrométrie, à la fréquence et la durée d'utilisation de la boucle de réfrigération du pack batterie, à la température et la pression du fluide réfrigérant en entrée de l'évaporateur à l'intérieur du pack batterie, et à d'autres paramètres. This option can be expensive and cumbersome, which is why an alternative is preferred which, as described below, significantly reduces the amount of salts or other absorbent materials used. An alternative option is to implement a smaller quantity provision and a method of determining a convenient time to replace the provision that has been placed in the battery pack during factory assembly. Data are already present in the vehicle computers for the management of the thermal comfort of the passenger compartment and for the thermal management of the battery in relation to the mode of operation of the power train among ZEV modes, full hybrid, and others . These data relate to the temperature of the battery pack, the outside temperature, the altitude, the temperature of the passenger compartment, the atmospheric pressure, the hygrometry, the frequency and the duration of use of the battery. refrigeration loop of the battery pack, the temperature and the pressure of the refrigerant at the inlet of the evaporator inside the battery pack, and other parameters.

Le procédé de l'option alternative exploite ces données préexistantes pour déterminer le moment opportun en fonction du volume de sels ou de matériaux absorbants initialement présents dans le pack batterie et en fonction du volume d'air contenu dans le pack batterie. Le procédé détermine aussi le moment opportun en fonction des pas de maintenance du véhicule et de la date de la dernière maintenance afin de ne pas obliger le client à se rendre dans le réseau après-vente uniquement pour cette raison, quitte à anticiper le remplacement des sels ou matériaux absorbants. A cette fin et afin d'en faciliter le remplacement, un réservoir sous forme de tiroir 25 est mis en place dans la partie basse du carter de la batterie pour contenir le matériau absorbeur 34 sous forme de sels absorbants ou autres. Ainsi, en ordre de marche, le matériau absorbeur 34 est positionné avantageusement sous les lieux de décantation par gravité, de canalisation et de concentration des condensats afin d'en faciliter l'absorption. Le réservoir, constitué dans un mode préféré de réalisation, par le tiroir 25 et notamment son guidage dans le carter du pack batterie, sont conçus de manière à chasser l'air ayant pénétré dans le pack batterie lors de son extraction pour l'échange des sels ou matériaux hygroscopiques. Par ailleurs, il est possible de mettre en oeuvre un réchauffage (non représenté) des cellules 23 du pack batterie 20 par des moyens de différentes natures tels que des thermistances à coefficient de température positif (CTP), des résistances électriques, une utilisation du circuit réfrigérant en mode de pompe à chaleur, ou autres. Le réchauffage des cellules 23 du pack batterie 20 est particulièrement utile par conditions extérieures froides pour obtenir plus rapidement des performances élevées. Le courant que le pack batterie peut fournir commence en effet à baisser dès que la température descend en dessous de 20°C jusqu'à s'annuler en dessous de 0°C en technologie Li-polymère ou en dessous d'une température variant dans une plage de -20°C à -40°C en technologie Li-ion. En dessous de températures basses limites qui dépendent de la technologie employée, le pack batterie est indisponible car il ne peut plus fournir de courant. Eventuellement, le dispositif de chauffage est utilisé pour gérer les condensats en vaporisant l'humidité présente afin de contribuer à régénérer les sels ou matériaux absorbants du pack batterie en les séchant. Cette opportunité si appliquée sera toutefois à gérer par la stratégie évoquée ci-dessus en compromis entre le refroidissement de la batterie et la gestion des condensats, ces deux besoins pouvant intervenir en même temps. Ainsi, une batterie adoptant le procédé mettant en oeuvre ces deux aspects et en variante la stratégie décrite ci-dessus, permet de satisfaire pleinement les contraintes évoquées plus haut, à un surcoût négligeable, un faible coût en maintenance et sans impact sur le fonctionnement, la durabilité, la sécurité, l'encombrement, la masse et le conditionnement de la batterie et son intégration au véhicule. La figure 3 détaille le principe d'un pack batterie 20 conforme à l'invention. Le pack batterie 20 comprend des cellules 23. Les cellules 23 peuvent se présenter sous différentes formes, par exemple prismatiques comme représentées en pointillés sur la figure 3. Le pack batterie 20 peut aussi comprendre des cellules 10 de forme cylindrique comme représenté sur la figure 2a ou de toute autre forme comme par exemple en sachet souple. Les cellules 10 ou 23 sont généralement connectées en série afin d'obtenir une tension élevée en sortie du pack batterie 20. The alternative option process exploits this pre-existing data to determine the appropriate timing based on the volume of salts or absorbent materials initially present in the battery pack and the volume of air in the battery pack. The method also determines the appropriate time according to the maintenance steps of the vehicle and the date of the last maintenance so as not to force the customer to visit the after-sales network only for this reason, even anticipating the replacement of the salts or absorbent materials. For this purpose and in order to facilitate its replacement, a drawer-shaped reservoir 25 is placed in the lower part of the battery housing to contain the absorber material 34 in the form of absorbent salts or the like. Thus, in running order, the absorber material 34 is advantageously positioned under gravity settling, channeling and concentration of condensates to facilitate absorption. The reservoir, constituted in a preferred embodiment, by the slide 25 and in particular its guiding in the casing of the battery pack, are designed to expel the air that has entered the battery pack during its extraction for the exchange of the batteries. salts or hygroscopic materials. Furthermore, it is possible to implement a heating (not shown) of the cells 23 of the battery pack 20 by means of different types such as thermistors with positive temperature coefficient (PTC), electrical resistors, use of the circuit refrigerant in heat pump mode, or others. The heating of the cells 23 of the battery pack 20 is particularly useful under cold external conditions to obtain faster high performance. The current that the battery pack can provide begins to drop as soon as the temperature drops below 20 ° C until it vanishes below 0 ° C in Li-polymer technology or below a temperature that varies in temperature. a range of -20 ° C to -40 ° C in Li-ion technology. Below low temperature limits that depend on the technology used, the battery pack is unavailable because it can not supply power. Optionally, the heater is used to handle the condensates by vaporizing the moisture present to help regenerate the salts or absorbent materials of the battery pack by drying them. This opportunity if applied will however be managed by the strategy mentioned above in compromise between the cooling of the battery and the management of condensate, these two needs can intervene at the same time. Thus, a battery adopting the method implementing these two aspects and, as a variant, the strategy described above makes it possible to fully satisfy the constraints mentioned above, at a negligible additional cost, a low cost in maintenance and without impacting on operation, the durability, safety, bulk, mass and conditioning of the battery and its integration into the vehicle. Figure 3 details the principle of a battery pack 20 according to the invention. The battery pack 20 comprises cells 23. The cells 23 may be in various forms, for example prismatic as shown in dashed lines in FIG. 3. The battery pack 20 may also comprise cells 10 of cylindrical shape as represented in FIG. 2a. or any other form such as for example in a flexible bag. The cells 10 or 23 are generally connected in series in order to obtain a high voltage at the output of the battery pack 20.

Un compartiment 27 abrite des composants électroniques qui assurent la gestion électrique et électronique du pack batterie 20. Les composants électroniques abrités dans le compartiment 27, hébergent en mémoire des stratégies de contrôle, de gestion notamment thermique, et de dialogue avec des calculateurs du véhicule. Le compartiment 27 est séparé du reste du pack batterie 20 par une paroi étanche et pare-feu (non représentée), de sorte que tout incident survenant dans la partie du pack batterie contenant les cellules ne puisse pas affecter le contrôle et la gestion du pack batterie 20. De façon à pouvoir maintenir certains éléments liés aux composants électroniques, par exemple les fusibles, une trappe de visite 21 est pratiquée dans le carter. La trappe de visite 21 permet d'intervenir en maintenance sans avoir à démonter l'ensemble du carter car ce démontage risquerait de mettre tout le pack, et en particulier les cellules 23 de batterie, en contact avec l'air extérieur potentiellement chargé en humidité. La trappe de visite 21 est équipée d'une charnière afin d'assurer sa rotation par rapport au carter du pack batterie 20. Un joint 30, par exemple de type torique, disposé sur le pourtour de l'ouverture de la trappe 21, garantit en conditions normales, l'étanchéité du moyen d'accès aux composants électroniques, constitué par la trappe 21. Le joint peut être placé sur le compartiment 27 de l'électronique ou sur la face inférieur du couvercle de trappe de visite 21 en recouvrement avec le carter. La fermeture de la trappe de visite 21, par exemple par deux vis ou par clipsage, provoque une compression du joint 30. L'évaporateur 26 qui constitue l'échangeur de chaleur réfrigérant des cellules du pack batterie 20, est représenté en pointillés sur la figure 3. Un fluide réfrigérant circulant dans l'évaporateur 26 à partir de la conduite 24 jusqu'à la conduite 29, a pour effet de créer une surface froide dans le pack batterie 20. Cette surface froide est propice à la formation de condensats. Un tiroir amovible 25 coulissant dans le carter inférieur du pack batterie 20, est prévu pour contenir un matériau absorbant, par exemple sous forme d'une couche ou de sachets de sels déshydratants. Le montage du tiroir amovible 20 sous les lieux de décantation par gravité, est agencé pour canaliser et concentrer des condensats. A compartment 27 houses electronic components that provide electrical and electronic management of the battery pack 20. The electronic components housed in the compartment 27, contain in memory control strategies, especially thermal management, and dialogue with the vehicle computers. The compartment 27 is separated from the rest of the battery pack 20 by a watertight wall and firewall (not shown), so that any incident occurring in the part of the battery pack containing the cells can not affect the control and management of the pack. Battery 20. In order to maintain certain elements related to electronic components, for example fuses, a inspection hatch 21 is made in the housing. The inspection hatch 21 makes it possible to intervene in maintenance without dismantling the entire casing since this disassembly could put the entire pack, and in particular the battery cells 23, in contact with the outside air potentially loaded with moisture. . The inspection hatch 21 is equipped with a hinge to ensure its rotation relative to the housing of the battery pack 20. A seal 30, for example of the toric type, disposed on the periphery of the opening of the hatch 21, guarantees under normal conditions, the sealing of the access means to the electronic components, constituted by the hatch 21. The seal can be placed on the compartment 27 of the electronics or on the underside of the inspection hatch cover 21 for recovery with the housing. Closing the inspection hatch 21, for example by two screws or by clipping, causes a compression of the seal 30. The evaporator 26 which constitutes the refrigerant heat exchanger of the cells of the battery pack 20, is shown in dashed lines on the Figure 3. A refrigerant flowing in the evaporator 26 from the pipe 24 to the pipe 29, has the effect of creating a cold surface in the battery pack 20. This cold surface is conducive to the formation of condensates. A removable slide 25 sliding in the lower housing of the battery pack 20, is provided to contain an absorbent material, for example in the form of a layer or bags of desiccant salts. The mounting of the removable drawer 20 under the settling places by gravity, is arranged to channel and concentrate condensates.

De même que pour la trappe de visite 21, l'étanchéité du tiroir 25 avec son interface sur le carter inférieur du pack batterie 20, est réalisée par un joint 40, par exemple de type torique, disposé tout autour de l'extérieur de l'ouverture du carter inférieur du pack batterie 20 ou à l'extrémité du tiroir 25 en recouvrement avec le carter. La compression du joint 40 est assurée par la fermeture du tiroir 25, par exemple par deux vis, par clipsage ou par tout autre moyen de verrouillage. Au moins une zone molle 22 est pratiquée, de préférence en partie supérieure du carter du pack batterie au-dessus des cellules 23 afin, comme expliqué ci-dessus, d'absorber les différentiels de pression entre l'espace intérieur du pack batterie et l'environnement extérieur ambiant. As for the inspection hatch 21, the sealing of the slide 25 with its interface on the lower casing of the battery pack 20, is achieved by a seal 40, for example of toric type, arranged all around the outside of the box. opening of the lower housing of the battery pack 20 or the end of the drawer 25 overlapping with the housing. The compression of the seal 40 is ensured by the closure of the slide 25, for example by two screws, by clipping or by any other locking means. At least one soft zone 22 is formed, preferably in the upper part of the battery pack housing above the cells 23 in order, as explained above, to absorb the pressure differentials between the inside of the battery pack and the battery pack. ambient environment.

La figure 4 montre un décanteur 32 qui comprend au moins une paroi inclinée permettant aux condensats de s'écouler de l'évaporateur 26 le long de la paroi du décanteur. Au moins un orifice 31 pratiqué dans la paroi du décanteur 32, de type lumière d'évacuation, permet au liquide condensé de s'écouler jusqu'au tiroir 25. Une lumière associée pratiquée dans une paroi supérieure du tiroir 25 en regard de la lumière d'évacuation du décanteur, permet au liquide condensé d'atteindre le matériau absorbant 34 dans le tiroir. Figure 4 shows a decanter 32 which comprises at least one inclined wall allowing the condensate to flow from the evaporator 26 along the wall of the decanter. At least one orifice 31 formed in the wall of the decanter 32, of the evacuation light type, allows the condensed liquid to flow to the drawer 25. An associated light made in an upper wall of the drawer 25 opposite the light discharge of the settler, allows the condensed liquid to reach the absorbent material 34 in the drawer.

Le tiroir 25 est fermé de façon étanche par fixation au carter du pack batterie 20. Le matériau absorbant 34 est en place et occupe tout le volume intérieur du tiroir 25. Une lumière inférieure 35 est située sous le pack batterie 20 à une position correspondant au fond du tiroir 25 lorsqu'il est fermé. Dans un premier mode de réalisation possible, la lumière inférieure 35 est obstruée de façon étanche par un dispositif 36 muni d'un joint et monté sur le fond du tiroir 25. Dans un deuxième mode de réalisation possible, la lumière inférieure 35 est obstruée de façon étanche par un clapet (non représenté) animé par un ressort de rappel le plaquant de façon étanche au moyen d'un joint surmoulé contre le carter du pack batterie 20. D'autres mode de réalisations sont possibles sans sortir du cadre de la présente invention dans la mesure où ils permettent d'empêcher toute intrusion d'eau venant de l'extérieur. Les figures 5a à 5g illustrent une cinématique d'ouverture du tiroir en vue de retirer le matériau absorbant 34 pour le remplacer. La figure 5a montre un début d'ouverture du tiroir 25. La fixation du tiroir 25 au carter du pack batterie 20 est désactivée. Le tiroir 25 est translaté dans son logement par action extérieure que schématise une flèche 38. Des rainures non représentées de chaque côté longitudinal du logement du tiroir, guident le tiroir 25 en translation. La translation du tiroir 25 peut créer une légère aspiration qui, dans ce cas libère un passage à l'air extérieur par la lumière inférieure 35 comme la flèche 39 le schématise. Cependant la translation du tiroir 25 dans son logement se fait en maintenant une étanchéité qui empêche l'air ainsi aspiré de pénétrer à l'intérieur du tiroir 25 et de pénétrer à l'intérieur du reste du pack batterie 20. Par exemple le dispositif 36 obstrue le logement de tiroir en suivant le fond du tiroir 25 au cours de la translation. The drawer 25 is sealed by fixing to the housing of the battery pack 20. The absorbent material 34 is in place and occupies the entire interior of the drawer 25. A lower light 35 is located under the battery pack 20 at a position corresponding to the bottom of the drawer 25 when closed. In a first possible embodiment, the lower lumen 35 is sealed by a device 36 provided with a seal and mounted on the bottom of the slide 25. In a second possible embodiment, the lower lumen 35 is obstructed by sealingly by a valve (not shown) driven by a return spring sealingly pressing it by means of a seal overmolded against the housing of the battery pack 20. Other embodiments are possible without departing from the scope of this invention to the extent that they prevent any intrusion of water from outside. Figures 5a to 5g illustrate a kinematic opening drawer to remove the absorbent material 34 to replace it. Figure 5a shows a start of opening of the drawer 25. The attachment of the drawer 25 to the housing of the battery pack 20 is deactivated. The drawer 25 is translated into its housing by external action schematically an arrow 38. Grooves not shown on each longitudinal side of the drawer housing, guide the slide 25 in translation. The translation of the slide 25 can create a slight suction, which in this case releases a passage to the outside air by the lower light 35 as the arrow 39 schematically. However, the translation of the slide 25 into its housing is done by maintaining a seal which prevents the air thus sucked from penetrating inside the drawer 25 and to penetrate inside the rest of the battery pack 20. For example the device 36 obstructs the drawer housing by following the bottom of the drawer 25 during translation.

En référence à la figure 5b, la translation du tiroir dans son logement se poursuit. On peut prévoir une plaque 37 sur la face supérieure du tiroir 25 qui permet d'occulter l'orifice 31 en cours d'extraction du tiroir. La figure 5c montre une fin d'ouverture du tiroir 25. Le tiroir est ouvert en butée dans son logement de façon à ce que le fond du tiroir obstrue de manière étanche, l'orifice 31 qui constitue la lumière d'évacuation du décanteur, par exemple au moyen du dispositif 36. Cette obstruction étanche a pour but d'empêcher que l'air venant de l'extérieur ne puisse franchir l'orifice 31 et pénétrer à l'intérieur du pack batterie 20 par cette ouverture. La figure 5d montre un début de retrait de matériau absorbant lorsque le tiroir est en butée d'ouverture. Le matériau absorbant 34, sous forme de couche, de sachet ou autre, est progressivement retiré du tiroir 25 par translation et par-dessus le couvercle 45 du tiroir. Par cette translation, une légère dépression peut apparaître au fond du tiroir, pouvant aspirer l'air extérieur à l'intérieur du tiroir par le jeu entre le tiroir et son logement. Le fond du tiroir obstruant la lumière d'évacuation du décanteur de façon étanche, l'air venant de l'extérieur par cette voie, ne peut pas pénétrer à l'intérieur du pack batterie 20 en franchissant l'orifice 31 constituant cette lumière. En référence aux figures 5e et 5f, à mesure que le matériau absorbant 34 est retiré du tiroir 25, l'air venant de l'extérieur en prend progressivement la place par dépression au fond du tiroir mais sans pouvoir franchir la lumière d'évacuation du décanteur 32 et par conséquent sans pouvoir pénétrer à l'intérieur du pack batterie 20. La figure 5g montre une variante de réalisation possible dans laquelle un retrait par translation du matériau absorbant 34 libère un clapet d'obstruction 33 du tiroir animé par un ressort de rappel qui plaque le clapet 33 de façon étanche contre la partie inférieure du tiroir 25. Ce clapet 33 permet de n'autoriser à l'air venant de l'extérieur, que le passage par le jeu entre le tiroir 25 et son logement. La figure 6 montre un état du pack batterie 20 dans lequel le matériau absorbant 34 est complètement retiré du tiroir 25. En cas de mise en oeuvre de la variante précédemment expliquée en référence à la figure 5g, le clapet 33 est plaqué par le ressort de rappel contre la partie inférieure du tiroir 25 et l'obstrue de façon étanche. Les figures 7a à 7h illustrent une cinématique de 5 mise en place du matériau absorbant 34 de remplacement suivi d'une refermeture du tiroir. En référence à la figure 7a, le matériau absorbant usagé est remplacé par un nouveau matériau, inséré par translation à l'intérieur du tiroir jusqu'à hauteur d'une 10 première paroi supérieure 41 du tiroir. Dans le cas de mise en oeuvre de la variante de réalisation pour laquelle le passage est obstrué de façon étanche par le clapet 33 plaqué par le ressort de rappel contre la partie inférieure du tiroir, le matériau absorbant 34 est 15 introduit contre le clapet. Comme illustré par la figure 7b, la poursuite de l'insertion du matériau absorbant 34 par translation à l'intérieur du tiroir 25 ouvre le clapet 33 contre son ressort de rappel, libérant le passage au matériau 20 absorbant 34 vers le fond du tiroir 25. La figure 7c montre comment le matériau absorbant 34 est poussé en translation à l'intérieur et vers le fond du tiroir 25. Le fond du tiroir, par exemple au moyen du dispositif 36, obstrue toujours de façon étanche 25 l'orifice 31 constituant la lumière d'évacuation du décanteur. L'air occupant le volume du fond du tiroir 25 ne peut pas s'échapper à l'intérieur du pack batterie 20 par l'orifice 31. De façon à ne pas s'opposer à la pénétration du matériau absorbant dans le tiroir, l'air 30 est chassé à l'extérieur du tiroir 25, comme la flèche 43 le schématise, par la lumière associée 42 et le jeu entre le tiroir et son logement par la légère compression ainsi exercée par la translation du matériau absorbant à l'intérieur du fond du tiroir.Referring to Figure 5b, the translation of the drawer in its housing continues. A plate 37 can be provided on the upper face of the slide 25 which makes it possible to conceal the orifice 31 during the extraction of the slide. FIG. 5c shows an end of opening of the spool 25. The spool is open in abutment in its housing so that the bottom of the spool tightly closes off the orifice 31 which constitutes the evacuation orifice of the clarifier, for example by means of the device 36. This sealed obstruction is intended to prevent the air from outside can not cross the orifice 31 and penetrate inside the battery pack 20 through this opening. Figure 5d shows a beginning of removal of absorbent material when the drawer is in abutment stop. The absorbent material 34, in the form of a layer, a bag or the like, is progressively removed from the drawer 25 by translation and over the cover 45 of the drawer. By this translation, a slight depression can appear at the bottom of the drawer, can suck the outside air inside the drawer by the clearance between the drawer and its housing. The bottom of the drawer obstructing the evacuation outlet of the clarifier tightly, the air coming from the outside by this way, can not penetrate inside the battery pack 20 by crossing the orifice 31 constituting this light. Referring to Figures 5e and 5f, as the absorbent material 34 is removed from the drawer 25, the air from the outside gradually takes its place by depression at the bottom of the drawer but without being able to cross the discharge light of the decanter 32 and therefore without being able to penetrate inside the battery pack 20. FIG. 5g shows a possible variant embodiment in which a displacement by translation of the absorbent material 34 releases an obstruction valve 33 of the drawer driven by a spring of reminder which clams the valve 33 sealingly against the lower part of the slide 25. This valve 33 allows to allow air coming from outside, only the passage through the clearance between the drawer 25 and its housing. FIG. 6 shows a state of the battery pack 20 in which the absorbent material 34 is completely removed from the drawer 25. In case of implementation of the variant previously explained with reference to FIG. 5g, the valve 33 is plated by the spring of return against the lower part of the drawer 25 and obstructs tightly. Figures 7a to 7h illustrate a kinematics of placement of the absorbent material 34 replacement followed by a reclosing of the drawer. With reference to FIG. 7a, the used absorbent material is replaced by a new material, inserted by translation inside the drawer up to a first top wall 41 of the drawer. In the case of implementation of the embodiment variant for which the passage is sealed by the valve 33 pressed by the return spring against the lower part of the drawer, the absorbent material 34 is introduced against the valve. As illustrated in FIG. 7b, the further insertion of the absorbent material 34 by translation inside the drawer 25 opens the valve 33 against its return spring, releasing the passage to the absorbent material 34 towards the bottom of the drawer 25 FIG. 7c shows how the absorbent material 34 is pushed in translation inside and towards the bottom of the spool 25. The bottom of the spool, for example by means of the device 36, still clogs the orifice 31 constituting the evacuation light of the clarifier. The air occupying the volume of the bottom of the drawer 25 can not escape inside the battery pack 20 through the orifice 31. In order not to oppose the penetration of the absorbent material in the drawer, the air 30 is driven out of the drawer 25, as the arrow 43 schematically, by the associated light 42 and the clearance between the drawer and its housing by the slight compression thus exerted by the translation of the absorbent material inside from the bottom of the drawer.

35 La figure 7d montre la poursuite de l'insertion du matériau absorbant 34 à l'intérieur et vers le fond du tiroir 25. L'accentuation de la compression poursuit l'expulsion de l'air occupant le volume du fond du tiroir, vers l'extérieur du tiroir et du pack batterie 20. Sur la figure 7e, quasiment tout le matériau absorbant 34 est inséré à l'intérieur et au fond du tiroir 25. Quasiment tout l'air se trouvant initialement dans le tiroir et s'y étant inséré lors du retrait du précédent matériau absorbant 34, a été expulsé. Sur la figure 7f, le matériau absorbant est 10 totalement et parfaitement inséré à l'intérieur et au fond du tiroir 25 dont tout l'air a été expulsé. En référence à la figure 7g, la refermeture du tiroir 25 chasse par la lumière inférieure 35 l'air qui s'était introduit à l'arrière du tiroir 25 par ce passage 15 lors de sa précédente ouverture. Comme le montre la figure 7h, la fin de la refermeture du tiroir 25 termine d'expulser l'air par la lumière inférieure 35. Le tiroir 25 et le pack batterie 20 se retrouvent ensuite dans un état semblable à celui 20 représenté en figure 4 mais avec un matériau absorbant régénéré. En termes d'applicabilité industrielle, l'invention permet de gérer à la fois les condensats et le différentiel de pression en interne d'une batterie 25 réfrigérée par boucle de fluide réfrigérant. La gestion est mise en oeuvre en préservant l'étanchéité de l'extérieur vers l'intérieur du pack batterie et vice-versa, sans compromis sur la sécurité, la sûreté de fonctionnement et la durabilité de la batterie. Les 30 performances d'échange thermique sont assurées à un coût négligeable, tant en termes de prix de la batterie que de coût en garantie et en après vente. FIG. 7d shows the continuation of the insertion of the absorbent material 34 into and towards the bottom of the drawer 25. The accentuation of the compression continues the expulsion of the air occupying the volume of the bottom of the drawer, towards the outside of the drawer and the battery pack 20. In FIG. 7e, almost all the absorbent material 34 is inserted inside and at the bottom of the drawer 25. Almost all the air initially in the drawer and therein being inserted during removal of the previous absorbent material 34, was expelled. In FIG. 7f, the absorbent material is completely and perfectly inserted inside and at the bottom of the drawer 25 from which all air has been expelled. Referring to Figure 7g, the reclosing of the slide 25 by the lower light flushes the air which had introduced the back of the drawer 25 through the passage 15 at its previous opening. As shown in FIG. 7h, the end of the reclosing of the spool 25 completes expelling the air through the lower lumen 35. The spool 25 and the battery pack 20 are then found in a state similar to that shown in FIG. but with a regenerated absorbent material. In terms of industrial applicability, the invention makes it possible to manage both the condensates and the pressure differential internally of a refrigerated refrigerant loop battery. Management is implemented by preserving the seal from the outside to the inside of the battery pack and vice versa, without compromising the safety, dependability and durability of the battery. The heat exchange performance is ensured at a negligible cost, both in terms of battery price and warranty and after-sales cost.

Claims (10)

REVENDICATIONS1. Pack batterie (20) haute tension étanche pour véhicule hybride ou électrique, comprenant un carter (50) dans lequel sont disposées des cellules (23) pour la production, le stockage et la libération d'énergie électrique, et un réservoir extractible (25) qui contient un matériau (34) absorbeur d'humidité, caractérisé en ce qu'il comprend des moyens (22, 37, 36) de maintien de l'étanchéité à l'intérieur du carter lorsqu'on extrait le réservoir extractible (25). REVENDICATIONS1. A sealed high voltage battery pack (20) for a hybrid or electric vehicle, comprising a housing (50) in which cells (23) for producing, storing and releasing electrical energy, and an extractable reservoir (25) are disposed which contains a moisture-absorbing material (34), characterized in that it comprises means (22, 37, 36) for maintaining the seal inside the housing when extracting the extractable reservoir (25) . 2. Pack batterie selon la revendication 1, caractérisé en ce que les moyens de maintien de l'étanchéité comprennent sur au moins une face (28) de carter du pack batterie (20), une ou plusieurs zones molles (22) qui se déforment de façon à équilibrer des pressions à l'intérieur et à l'extérieur du pack batterie. 2. Battery pack according to claim 1, characterized in that the means for maintaining the seal comprise on at least one face (28) of the housing of the battery pack (20), one or more soft zones (22) which deform in order to balance pressures inside and outside the battery pack. 3. Pack batterie selon la revendication 2, caractérisé en ce que ladite face (28) est en partie supérieure du pack batterie. 3. Battery pack according to claim 2, characterized in that said face (28) is in the upper part of the battery pack. 4. Pack batterie selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend un logement pour le réservoir extractible (25) disposé en partie basse du carter (50), ledit logement comportant une paroi de décanteur (32) dans laquelle est pratiqué au moins un orifice (31) qui permet à un liquide condensé de s'écouler jusqu'au matériau (34) absorbeur contenu dans le réservoir extractible (25). 4. Battery pack according to one of claims 1 to 3, characterized in that it comprises a housing for the extractable reservoir (25) disposed at the bottom of the housing (50), said housing having a settler wall (32). wherein at least one orifice (31) is provided which allows a condensed liquid to flow to the absorber material (34) contained in the extractable reservoir (25). 5. Pack batterie selon la revendication 4, caractérisé en ce que le réservoir extractible est sous forme de tiroir (25) et en ce que les moyens de maintiende l'étanchéité comprennent au moins un dispositif d'étanchéité (36) disposé sur le fond du réservoir (25) de façon à obstruer le logement lorsque le tiroir (25) est amené dans sa position extraite. 5. Battery pack according to claim 4, characterized in that the extractable reservoir is in the form of a drawer (25) and in that the means for maintaining the seal comprise at least one sealing device (36) arranged on the bottom of the reservoir (25) so as to obstruct the housing when the slide (25) is brought into its extracted position. 6. Pack batterie selon la revendication 5, caractérisé et en ce que ledit dispositif (36) est agencé pour obstruer l'orifice (31) lorsque le réservoir (25) est en position extraite du pack batterie. 10 6. Battery pack according to claim 5, characterized in that said device (36) is arranged to obstruct the orifice (31) when the reservoir (25) is in the extracted position of the battery pack. 10 7. Pack batterie selon l'une des revendications 4 à 6, caractérisé et en ce que les moyens de maintien de l'étanchéité comprennent au moins une plaque (37) sur une face du réservoir (25) en contact avec ladite paroi de 15 décanteur (32), ladite plaque (37) étant agencée pour occulter l'orifice (31) en cours d'extraction du réservoir (25). 7. Battery pack according to one of claims 4 to 6, characterized in that the means for maintaining the seal comprise at least one plate (37) on one side of the tank (25) in contact with said wall of 15 decanter (32), said plate (37) being arranged to obscure the orifice (31) during extraction of the reservoir (25). 8. Pack batterie selon l'une des revendications 4 à 20 7, caractérisé et en ce que ledit logement comprend une ouverture (35) qui permet d'équilibrer des pressions à l'intérieur et à l'extérieur du logement pendant l'extraction du réservoir (25). 25 8. Battery pack according to one of claims 4 to 7, characterized in that said housing comprises an opening (35) which allows to balance pressures inside and outside the housing during the extraction. of the tank (25). 25 9. Pack batterie selon l'une des revendications 1 à 8, caractérisé et en ce qu'il comprend un compartiment (27) séparé des cellules (23) dédié à la maintenance du pack batterie (20). 30 9. Pack battery according to one of claims 1 to 8, characterized in that it comprises a compartment (27) separate cells (23) dedicated to the maintenance of the battery pack (20). 30 10. Pack batterie selon l'une des revendications 1 à 9, caractérisé et en ce qu'il comprend un clapet d'obstruction (33) du réservoir extractible animé par un ressort de rappel qui est libéré par un retrait du matériau absorbant (34) de façon à plaquer le clapet (33) 35 de façon étanche contre une partie inférieure du réservoir extractible (25).5 10. Battery pack according to one of claims 1 to 9, characterized in that it comprises an obstruction valve (33) of the extractable reservoir driven by a return spring which is released by a withdrawal of the absorbent material (34). ) so as to press the valve (33) 35 tightly against a lower part of the extractable reservoir (25).
FR1060381A 2010-12-10 2010-12-10 WATERPROOF HIGH VOLTAGE BATTERY PACK Expired - Fee Related FR2968839B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1060381A FR2968839B1 (en) 2010-12-10 2010-12-10 WATERPROOF HIGH VOLTAGE BATTERY PACK
PCT/FR2011/052883 WO2012076808A1 (en) 2010-12-10 2011-12-06 Sealed, high-voltage battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1060381A FR2968839B1 (en) 2010-12-10 2010-12-10 WATERPROOF HIGH VOLTAGE BATTERY PACK

Publications (2)

Publication Number Publication Date
FR2968839A1 true FR2968839A1 (en) 2012-06-15
FR2968839B1 FR2968839B1 (en) 2013-06-28

Family

ID=44262488

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1060381A Expired - Fee Related FR2968839B1 (en) 2010-12-10 2010-12-10 WATERPROOF HIGH VOLTAGE BATTERY PACK

Country Status (2)

Country Link
FR (1) FR2968839B1 (en)
WO (1) WO2012076808A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230117165A1 (en) * 2017-06-06 2023-04-20 Carrier Corporation Transport refrigeration system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016551B4 (en) 2014-11-08 2023-10-26 Audi Ag Battery for a motor vehicle
EP3355380B1 (en) * 2017-01-26 2019-06-19 Samsung SDI Co., Ltd. Battery housing with absorbent and insulator
US11211658B2 (en) 2017-01-26 2021-12-28 Samsung Sdi Co., Ltd. Battery housing comprising absorbent layer and insulation film
CN106784511B (en) * 2017-03-15 2023-08-15 华霆(合肥)动力技术有限公司 Semi-sealed power supply system and automobile
DE102018209925A1 (en) * 2018-06-19 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Vehicle with a high-voltage battery
CN112259937A (en) 2019-07-05 2021-01-22 宁德时代新能源科技股份有限公司 Battery pack
CN113140861B (en) * 2021-04-23 2022-06-24 江铃汽车股份有限公司 Battery case and battery pack
EP4311004A1 (en) 2022-07-21 2024-01-24 Newfrey LLC Ventilation device and battery system
FR3140217A1 (en) * 2022-09-27 2024-03-29 Psa Automobiles Sa Support for a battery.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917401A (en) * 1995-06-28 1997-01-17 Japan Storage Battery Co Ltd Organic electrolytic solution battery
DE102008034698A1 (en) * 2008-07-26 2009-06-18 Daimler Ag Battery for use with battery housing, has humidity sorbing element fastened by detachable force-fit or form-fit connection to project inside battery housing, where humidity sorbing element is carried out as drying cartridge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917401A (en) * 1995-06-28 1997-01-17 Japan Storage Battery Co Ltd Organic electrolytic solution battery
DE102008034698A1 (en) * 2008-07-26 2009-06-18 Daimler Ag Battery for use with battery housing, has humidity sorbing element fastened by detachable force-fit or form-fit connection to project inside battery housing, where humidity sorbing element is carried out as drying cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230117165A1 (en) * 2017-06-06 2023-04-20 Carrier Corporation Transport refrigeration system

Also Published As

Publication number Publication date
WO2012076808A1 (en) 2012-06-14
FR2968839B1 (en) 2013-06-28

Similar Documents

Publication Publication Date Title
FR2968839A1 (en) WATERPROOF HIGH VOLTAGE BATTERY PACK
EP3017498B1 (en) Thermal control device of the battery of an electric vehicle
FR3085545A1 (en) ELECTRIC MODULE COMPRISING A PLURALITY OF BATTERY CELLS UNDERWATER IN A DIELECTRIC FLUID
WO2017103449A1 (en) Battery pack cooled by a constant-pressure phase-change material
FR2866831A1 (en) Air conditioning system for e.g. hybrid car, has control unit to control valve to open driving flow passage and to start ejector operation when compressor operation is stopped due to temporal stop of engine
EP2133952A1 (en) Module for controlling the temperature of an electric power source of an automobile.
FR3037727A3 (en) BATTERY PACK COOLED BY CONSTANT PRESSURE PHASE CHANGE MATERIAL
EP2108910B1 (en) Internal heat exchanger comprising a means for thermal storage and loop incorporating such heat exchanger
FR3085547A1 (en) ELECTRIC MODULE COMPRISING A PLURALITY OF BATTERY CELLS UNDERWATER IN A DIELECTRIC FLUID
EP2437955A1 (en) Device and method for multifunctional heat management in an electric vehicle
FR3085556A1 (en) HERMETIC ELECTRICAL CONNECTOR FOR FITTING AN ELECTRICAL MODULE COMPRISING A PLURALITY OF BATTERY CELLS SUBMERTED IN A DIELECTRIC FLUID
FR3085542A1 (en) SYSTEM FOR COOLING AT LEAST ONE ELECTRIC MODULE COMPRISING A PLURALITY OF BATTERY CELLS SUBMERSIBLE IN A DIELECTRIC FLUID
EP3426998B1 (en) Thermal barrier in particular for a battery/batteries provided therewith
FR3084210A1 (en) ASSEMBLY COMPRISING A PHASE CHANGE COOLING DEVICE
EP3271677A1 (en) Thermal battery, in particular for a motor vehicle, and corresponding use
FR3040208A1 (en) THERMAL DEVICE FOR A FLUID, WITH CHICANES, AND CIRCUITS THEREFOR
FR3105717A1 (en) Thermal regulation device for an electrical component
EP2748022A1 (en) Device for controlling the flow of a coolant, and circuit including such a device
WO2020049249A1 (en) System for cooling at least one electrical module comprising a plurality of battery cells immersed in a dielectric fluid
FR2976739A3 (en) Thermal regulation device for battery of electric storage cells to provide electrical supply to vehicle i.e. car, has enclosure provided with walls with part that is in contact with circuit, where coolant is circulated in circuit
WO2007144024A1 (en) Thermal exchange device
FR3065796A1 (en) THERMAL EXCHANGER IMPLEMENTED IN A THERMAL CONTROL CIRCUIT OF A MOTOR VEHICLE BATTERY PACK
WO2011045507A1 (en) Improved air-conditioning device
EP2790264B1 (en) Device for controlling the temperature in an electric battery of a motor vehicle and motor vehicle provided with such a device
EP3396290A1 (en) Thermal module with a tank and a heat exchanger

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

CA Change of address

Effective date: 20180312

CD Change of name or company name

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

ST Notification of lapse

Effective date: 20190905