1 SERRURE ELECTRONIQUE 1 ELECTRONIC LOCK
[oo1i L'invention concerne une serrure électronique. [002] Le déposant connait des serrures électroniques, destinées à être 5 commandées par une clé comportant des moyens électroniques pour commander le déverrouillage électrique de la serrure. Ces serrures comportent : - un stator et un rotor monté à rotation dans le stator et muni d'un canal dans lequel la clé peut être introduite, - un organe de blocage du rotor déplaçable dans un logement du stator entre une 10 position de blocage dans laquelle il est en prise avec le rotor pour bloquer sa rotation et une position escamotée dans laquelle il libère la rotation du rotor, et - un levier de verrouillage déplaçable, en réponse à un ordre de déverrouillage électrique, entre une position de verrouillage dans laquelle le levier de verrouillage est susceptible d'être immobilisé par l'organe de blocage pour s'opposer à son 15 déplacement à partir de sa position de blocage et une position de déverrouillage dans laquelle l'organe de blocage est libre de quitter sa position de blocage. [3] Un exemple d'un tel type de serrure est par exemple divulgué dans la demande de brevet FR 2 849 083. [4] Lorsqu'une clé adéquate est introduite dans le canal puis tournée, une force 20 s'exerce sur l'organe de blocage du rotor pour déplacer cet organe de sa position de blocage vers sa position escamotée. Parallèlement à l'exercice de cette force, un ordre de déverrouillage électrique est généré, par exemple suite à la vérification d'un code numérique contenu dans la clé. En réponse à cet ordre de déverrouillage électrique, le levier de verrouillage est déplacé de manière à permettre le 25 déplacement de l'organe de blocage vers sa position escamotée. Cependant, il est possible que l'ordre de déverrouillage électrique intervienne après que la clé ait exercé sa force sur l'organe de blocage. Dans ce cas, il est courant que le levier de verrouillage se coince. Aussi, lorsque l'ordre de déverrouillage est généré, le levier de verrouillage ne peut être déplacé et, en conséquence, la serrure ne se déverrouille 30 pas. Afin de palier à cet inconvénient, des serrures connues du déposant comportent par ailleurs un bras de mémorisation en matériau magnétique apte à tourner autour d'un axe entre une position de repos, et une position de mémorisation, en réponse à l'ordre de déverrouillage électrique, même si le levier de verrouillage est immobilisé par l'organe de blocage. 35 [005] Un exemple d'un tel type de serrure est par exemple divulgué dans la demande de brevet US 2002/0189307. Dans cette demande, un bras de mémorisation se déplace de sa position de repos vers sa position de mémorisation indépendamment du fait que le levier de verrouillage soit bloqué ou non. Toujours dans cette demande, un ressort de torsion lie mécaniquement le levier de verrouillage au bras de mémorisation. Lorsque le levier est immobilisé mais qu'un ordre de déverrouillage est généré, le bras de mémorisation se déplace dans sa position de mémorisation et mémorise mécaniquement l'ordre de déverrouillage. Ensuite, lorsque le levier se décoince, le ressort de torsion exerce une force de rappel sur le levier de déverrouillage qui bascule dans sa position de déverrouillage. L'utilisation de ce ressort de torsion augmente l'encombrement de la serrure. [006] Par ailleurs, le déplacement du bras de mémorisation de sa position de repos à sa position de mémorisation est réalisé par l'intermédiaire d'un moteur électrique disposé parallèlement à l'axe de rotation du rotor. Une telle disposition du moteur électrique augmente aussi inéluctablement l'encombrement de cette serrure. Enfin, la consommation électrique d'une telle serrure est importante. [oon L'invention vise à remédier à un ou plusieurs de ces inconvénients. [008] L'invention concerne une serrure dans laquelle: - la serrure comporte au moins un aimant fixé sur le stator ou le bras de 15 mémorisation pour déplacer le bras de mémorisation de sa position de repos vers sa position de mémorisation, - l'un du stator et du bras de mémorisation comporte un arceau en matériau magnétique et l'autre du stator et du bras comporte une dent magnétique en vis-à-vis de l'arceau de manière à créer un premier entrefer par l'intermédiaire duquel se 20 reboucle un premier circuit magnétique qui relie deux pôles opposés de l'aimant, la dent et l'arceau étant conformés de manière à ce que : - l'épaisseur du premier entrefer diminue au fur et à mesure que le bras de mémorisation tourne de sa position de repos vers sa position de mémorisation, et/ou 25 - la surface des faces de l'arceau et de la dent en vis-à-vis augmente, dans une direction parallèle à l'axe de rotation du bras, au fur et à mesure que le bras tourne de sa position de repos vers sa position de mémorisation. [009] Dans la serrure ci-dessus, le stator et le bras de mémorisation sont 30 conformés de manière à ce que le bras de mémorisation se déplace de sa position de repos vers sa position de mémorisation avec une consommation électrique nulle et un encombrement optimisé. [oo1oi Les modes de réalisation de cette serrure peuvent comporter en outre une ou plusieurs des caractéristiques suivantes : 35 ^ le stator comporte également un doigt en matériau magnétique créant un deuxième circuit magnétique reliant les deux pôles opposés du même aimant en passant par l'intermédiaire du bras de mémorisation et d'un second entrefer entre le bras de mémorisation et une extrémité du doigt, le bras de mémorisation et l'extrémité du doigt étant conformés de manière à ce que le réluctance du deuxième entrefer soit inférieure à celle du premier entrefer lorsque le bras de mémorisation est dans sa position de repos, ^ l'organe de blocage comporte une pièce magnétique créant un troisième circuit magnétique qui relie les deux pôles opposés du même aimant en passant par l'intermédiaire du bras de mémorisation et d'un troisième entrefer entre le bras et la pièce magnétique de l'organe de blocage, le bras de mémorisation et la pièce magnétique étant conformés de manière à ce que la réluctance du troisième entrefer soit inférieure à celle du premier entrefer lorsque le bras de mémorisation est dans sa position de mémorisation, ^ la serrure comporte une source de champ magnétique commandable apte à réduire suffisamment le flux du champ magnétique à l'intérieur du doigt en matériau magnétique pour que l'intensité du champ magnétique dans le deuxième entrefer soit inférieure à l'intensité du champ magnétique dans le premier entrefer de manière à déclencher la rotation du bras de mémorisation de sa position de repos vers sa position de mémorisation, en réponse à l'ordre de déverrouillage, ^ le levier de verrouillage est réalisé en matériau magnétique et est conformé de manière à ce que l'aimant permanent sollicite en permanence le levier vers sa position de déverrouillage, ^ le bras de mémorisation comporte une butée apte à maintenir le levier de verrouillage en position de verrouillage à l'encontre de la sollicitation exercée par l'aimant permanent lorsque le bras de mémorisation est dans sa position de repos, ^ en tout point S de la face de l'arceau en vis-à-vis de la dent magnétique, le centre du cercle osculateur en ce point S se situe toujours d'un même côté d'un plan contenant l'axe de rotation du bras de mémorisation et ce point S, ^ l'arceau s'étend sur une portion angulaire supérieure ou égal à 10 degrés, ^ le bras est en appui contre un butoir lorsque le bras est dans sa position de repos et/ou le bras est en appui contre un talon de l'organe de blocage lorsque le bras est en position de mémorisation, et ^ l'aimant et le bras forment un quatrième entrefer, le bras et l'aimant étant conformés de manière à ce que l'épaisseur de l'entrefer diminue à mesure que le bras se déplace de sa position de repos à sa position de mémorisation. [0011] Les modes de réalisation de cette serrure présentent en outre les avantages suivants : ^ le bras de mémorisation est maintenu dans sa position de repos sans consommation électrique par le biais du deuxième entrefer et du même aimant, ^ le bras de mémorisation est maintenu dans sa position de mémorisation sans consommation électrique par le biais du troisième entrefer et du même aimant, ^ la source de champ magnétique, typiquement une bobine, permet de déclencher la rotation à l'aide d'une simple impulsion de courant et permet donc de minimiser la consommation électrique, ^ réaliser le levier de verrouillage en matériau magnétique permet de déplacer le levier de verrouillage vers sa position de déverrouillage sans ressort de torsion et sans consommation électrique, ^ l'utilisation d'une butée sur le bras de mémorisation permet de maintenir le 10 levier de verrouillage en position de verrouillage sans ajouter d'aimant et permet donc de limiter l'encombrement de la serrure, ^ placer le centre du cercle osculateur toujours du même côté du plan permet d'augmenter le moment exercé par la force magnétique de l'aimant pour faire tourner le bras de mémorisation, 15 ^ utiliser un butoir ou un talon renforce la stabilité de la position du bras de mémorisation dans sa position de repos ou dans sa position de mémorisation, et ^ diminuer l'épaisseur du quatrième entrefer lors du déplacement du bras de mémorisation permet de minimiser la consommation électrique de la serrure. 20 [0012 L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins sur lesquels : - la figure 1 est une illustration schématique d'une serrure électronique, - la figure 2 est une illustration schématique en perspective d'un mécanisme de 25 verrouillage électrique de la serrure de la figure 1, - la figure 3 est une illustration schématique en vue de derrière du mécanisme de verrouillage de la figure 2 - la figure 4 est une illustration schématique en coupe d'un levier de verrouillage pour le mécanisme de la figure 2, 30 - la figure 5 est une illustration schématique en vue de face d'un bras de mémorisation pour le mécanisme de la figure 2, - la figure 6 est une illustration schématique partielle du mécanisme de verrouillage de la figure 2 lorsque le bras de mémorisation est en position de repos, 35 - la figure 7 est une illustration schématique partielle du mécanisme de la figure 2 lorsque le bras de mémorisation se déplace de sa position de repos vers sa position de mémorisation, - la figure 8 est une illustration schématique partielle du mécanisme de la figure 2 lorsque le bras de mémorisation est en position de mémorisation, - la figure 9 est un organigramme d'un procédé de fonctionnement de la serrure de la figure 1, - la figure 10 illustre une première variante du mécanisme la figure 2, - la figure 11 illustre une deuxième variante du mécanisme de la figure 2, et - la figure 12 illustre une troisième variante du mécanisme la figure 2. [0013] Dans ces figures les mêmes références sont utilisées pour désigner les mêmes éléments. [0014] Dans la suite de cette description, les caractéristiques et fonctions bien connues de l'homme du métier ne sont pas décrites en détail. [0015] La figure 1 représente un barillet 2 d'une serrure à double barillet dont l'autre barillet n'est pas montré dans la figure 1. Ce barillet 2 s'étend en profondeur le long d'une direction Z perpendiculaire à des directions horizontale et verticale, respectivement X et Y. Dans la suite de la description, les termes « inférieur » et « supérieur » sont définis en référence à la direction Y. [0016] Les deux barillets sont logés de manière classique dans une porte (non montrée) et sont disposés symétriquement par rapport au plan moyen P de la porte. Les deux barillets sont positionnés et reliés de manière classique l'un à l'autre par une tige de liaison (non montrée) qui présente en son milieu un renflement servant d'entretoise pour maintenir un écartement prédéfini entre les deux barillets. Dans l'espace entre les deux barillets est disposé, de façon classique, un panneton (non montré) qui peut être entraîné en rotation par un rotor 4 de l'un ou l'autre des deux barillets lorsqu'une clé appropriée, par exemple une clé 5, est introduite dans un canal 6 du rotor 4 et tournée manuellement par un utilisateur. [0017] Lorsqu'il est entraîné en rotation par la clé 5 et le rotor 4, le panneton commande un mécanisme de serrure classique (non montré) qui provoque le déplacement d'au moins un pêne de la serrure dans un sens permettant l'ouverture de la porte ou dans un sens interdisant l'ouverture de la porte selon le sens de rotation de la clé 5. [0018] Le rotor 4 du barillet 2 est monté à rotation dans un stator profilé 7. Le stator 7 est lui-même logé dans un fourreau extérieur 8 ayant le même profil. Dans l'exemple, le stator 7 a un profil normalisé, dit « européen ». Toujours dans l'exemple, l'axe de rotation du rotor 4 est parallèle à la direction Z. [0019] Le barillet 2 comporte de manière classique plusieurs paires de goupilles de stator et de rotor, qui sont disposées par paires, bout à bout, dans des paires correspondantes de logements alignés formés respectivement dans le stator 7 et dans le rotor 4. Étant donné que cet arrangement des goupilles de rotor et de stator est bien connu, celui-ci n'a pas été représenté pour simplifier la figure 1. [0020] La clé 5, qui a par exemple une section transversale sensiblement rectangulaire, présente sur au moins une de ses deux grandes faces, de préférence sur ses deux grandes faces, des empreintes et/ou des reliefs qui coopèrent avec les goupilles de rotor. Les empreintes et/ou les reliefs sont conformés et les longueurs des goupilles de rotor sont choisies de telle façon que, si une bonne clé 5 est introduite dans le canal 6 du rotor 4, l'interface entre chaque goupille de rotor et la goupille de stator associée se trouve exactement à l'interface entre le rotor 4 et le stator 7. Dans ces conditions, le rotor 4 peut être tourné manuellement à l'aide de la clé 5, sous réserve qu'un mécanisme 9 de verrouillage électrique soit lui-même dans un état déverrouillé. [0021] En effet, le barillet 2 comporte un organe supplémentaire de blocage 10 destiné à empêcher le rotor 4 de tourner tant qu'un code numérique approprié contenu dans une mémoire (non montrée) logée dans la clé 5 n'a pas été introduit dans un circuit électronique 12 logé dans le barillet 2 (sur la figure 1 le circuit 12 est disposé à l'extérieur du barillet 2 afin de simplifier les dessins). Ce circuit 12, lorsqu'il reçoit le code approprié, génère un ordre de déverrouillage électrique. Par exemple, il commande le mécanisme 9 pour permettre le déblocage du rotor 4. [0022] Par exemple, le code est transmis de la clé 5 au circuit électronique 12 de la serrure par voie hertzienne ou par l'intermédiaire de contacts électriques. Pour une transmission par voie hertzienne, de préférence, la clé 5 est équipée d'un transpondeur et le circuit 12 est équipé d'un lecteur de transpondeurs. [0023] Lorsque la clé 5 est introduite dans le canal 6 du rotor 4, le code numérique contenu dans la mémoire de la clé 5 est transmis au circuit 12. Par exemple, le circuit 12 compare alors le code transmis à au moins un code préenregistré dans une mémoire. En cas de concordance des deux codes, le circuit 12 génère l'ordre de déverrouillage électrique du mécanisme 9. [0024] Dans la forme de réalisation de la serrure représentée sur les dessins, l'organe supplémentaire de blocage 10 est une goupille de stator qui coopère avec une goupille 18 de rotor correspondante de manière à ce que si la bonne clé est introduite dans le canal 6, l'interface entre ces deux goupilles se trouve exactement à l'interface du stator 7 et du rotor 4. Toutefois, contrairement aux autres goupilles de stator, l'organe de blocage 10 est prolongé par un téton conique 20, à sommet arrondi, qui est engagé dans un évidement tronconique correspondant 22 formé dans la goupille de rotor 18. Dans l'exemple, l'organe 10 est réalisé dans un matériau magnétique. [0025] Dans cette description, par « matériau magnétique » on désigne un matériau dont la perméabilité magnétique relative est strictement supérieure à 1 et, de préférence, supérieure à 100 ou 1000. Par exemple, le matériau est un matériau ferromagnétique tel que de l'acier. [0026] L'organe 10 est déplaçable entre une position de blocage (représentée sur la figure 1) dans laquelle il est en prise avec le rotor 4 pour bloquer sa rotation et une position escamotée dans laquelle il libère la rotation du rotor 4. A cet effet, l'organe 10 est monté coulissant dans un logement cylindrique 24 qui est formé dans le stator 7 et qui est aligné axialement avec un logement 26 dans le rotor 4 dans lequel coulisse la goupille 18 de rotor. L'organe 10 comprend par ailleurs une barrette transversale 28 qui est formée d'un seul tenant avec l'organe 10, à l'extrémité inférieure de celui-ci. Une des extrémités de la barrette 28 est conformée pour former un talon 29. The invention relates to an electronic lock. [002] The applicant knows electronic locks, intended to be controlled by a key comprising electronic means for controlling the electric unlocking of the lock. These locks comprise: - a stator and a rotor rotatably mounted in the stator and provided with a channel into which the key can be inserted, - a rotor locking member movable in a stator housing between a locking position in it is in engagement with the rotor to block its rotation and a retracted position in which it releases the rotation of the rotor, and - a movable locking lever, in response to an electric unlocking command, between a locking position in which the locking lever is capable of being immobilized by the locking member to oppose its displacement from its locking position and an unlocking position in which the locking member is free to leave its locking position . [3] An example of such a type of lock is for example disclosed in the patent application FR 2 849 083. [4] When a suitable key is inserted into the channel and then turned, a force is exerted on the body. rotor locking member for moving this member from its locking position to its retracted position. In parallel with the exercise of this force, an electric unlock command is generated, for example following the verification of a digital code contained in the key. In response to this electrical unlocking command, the lock lever is moved to allow movement of the lock member to its retracted position. However, it is possible that the electrical unlocking command occurs after the key has exerted its force on the locking member. In this case, it is common for the locking lever to become stuck. Also, when the unlock command is generated, the lock lever can not be moved and, therefore, the lock does not unlock. In order to overcome this drawback, locks known to the applicant furthermore comprise a storage arm made of magnetic material able to rotate about an axis between a rest position and a storage position, in response to the unlocking command. electric, even if the locking lever is immobilized by the locking member. [005] An example of such a type of lock is for example disclosed in US patent application 2002/0189307. In this application, a storage arm moves from its home position to its storage position regardless of whether the lock lever is locked or not. Still in this application, a torsion spring mechanically links the locking lever to the storage arm. When the lever is immobilized but an unlock command is generated, the storage arm moves to its storage position and mechanically memorizes the unlock command. Then, when the lever decouples, the torsion spring exerts a restoring force on the unlocking lever which tilts in its unlocking position. The use of this torsion spring increases the size of the lock. Furthermore, the movement of the storage arm from its rest position to its storage position is achieved by means of an electric motor arranged parallel to the axis of rotation of the rotor. Such an arrangement of the electric motor also inevitably increases the size of this lock. Finally, the power consumption of such a lock is important. The invention aims to remedy one or more of these disadvantages. [008] The invention relates to a lock in which: - the lock comprises at least one magnet fixed on the stator or the storage arm to move the storage arm from its rest position to its storage position, - the one of the stator and the storage arm comprises a hoop of magnetic material and the other of the stator and the arm comprises a magnetic tooth vis-à-vis the hoop so as to create a first air gap through which 20 loops a first magnetic circuit which connects two opposite poles of the magnet, the tooth and the hoop being shaped so that: - the thickness of the first air gap decreases as the storage arm rotates its rest position towards its storage position, and / or the surface of the faces of the hoop and of the tooth facing each other increases, in a direction parallel to the axis of rotation of the arm, as and as the arm rotates from its position of rest towards its storage position. [009] In the lock above, the stator and the storage arm are shaped so that the storage arm moves from its rest position to its storage position with zero power consumption and optimized footprint. . The embodiments of this lock may furthermore comprise one or more of the following features: the stator also comprises a finger made of magnetic material creating a second magnetic circuit connecting the two opposite poles of the same magnet via the intermediary a storage arm and a second gap between the storage arm and one end of the finger, the storage arm and the end of the finger being shaped so that the reluctance of the second air gap is lower than that of the first air gap when the storage arm is in its rest position, the locking member comprises a magnetic part creating a third magnetic circuit which connects the two opposite poles of the same magnet through the storage arm and a third gap between the arm and the magnetic part of the locking member, the storage arm and the piece agnetic being shaped so that the reluctance of the third air gap is less than that of the first air gap when the storage arm is in its storage position, the lock comprises a controllable magnetic field source capable of sufficiently reducing the flow of the field magnet inside the finger of magnetic material so that the intensity of the magnetic field in the second air gap is less than the intensity of the magnetic field in the first air gap so as to trigger the rotation of the storage arm of its rest position towards its storage position, in response to the unlocking command, the locking lever is made of magnetic material and is shaped so that the permanent magnet permanently urges the lever towards its unlocking position, storage arm comprises a stop capable of holding the locking lever in the position of straining against the bias exerted by the permanent magnet when the storage arm is in its rest position, ^ at all points S of the face of the rollbar opposite the magnetic tooth, the the center of the osculating circle at this point S is always on the same side of a plane containing the axis of rotation of the storage arm and this point S, the arch extends over an angular portion greater than or equal to 10 degrees, the arm bears against a stopper when the arm is in its rest position and / or the arm bears against a heel of the locking member when the arm is in the storage position, and The magnet and the arm form a fourth gap, the arm and the magnet being shaped so that the thickness of the air gap decreases as the arm moves from its rest position to its storage position. The embodiments of this lock also have the following advantages: the storage arm is held in its rest position without electrical consumption by means of the second air gap and the same magnet, the storage arm is maintained in its storage position without power consumption via the third air gap and the same magnet, the magnetic field source, typically a coil, makes it possible to trigger the rotation with the aid of a simple current pulse and thus enables To minimize the electrical consumption, the locking lever made of magnetic material makes it possible to move the locking lever towards its unlocking position without torsion spring and without any electrical consumption. The use of a stop on the storage arm makes it possible to keep the locking lever in the locking position without adding a magnet and thus limit the space requirement With the lock, placing the center of the osculating circle always on the same side of the plane makes it possible to increase the moment exerted by the magnetic force of the magnet to rotate the storage arm, to use a bumper or a heel reinforces the stability of the position of the storage arm in its rest position or in its storage position, and decreasing the thickness of the fourth air gap during the displacement of the storage arm makes it possible to minimize the power consumption of the lock. The invention will be better understood on reading the description which follows, given solely by way of nonlimiting example and with reference to the drawings in which: FIG. 1 is a schematic illustration of a lock Figure 2 is a schematic perspective illustration of an electric lock mechanism of the lock of Figure 1; Figure 3 is a schematic rear view of the lock mechanism of Figure 2; Fig. 4 is a schematic sectional illustration of a locking lever for the mechanism of Fig. 2; Fig. 5 is a diagrammatic front view of a storage arm for the mechanism of Fig. 2; FIG. 6 is a partial schematic illustration of the locking mechanism of FIG. 2 when the storage arm is in the rest position; FIG. 7 is a partial schematic illustration of the FIG. 2 is a partial schematic illustration of the mechanism of FIG. 2 when the storage arm is in the storage position, FIG. 9 is a flowchart of a method of operation of the lock of FIG. 1; FIG. 10 illustrates a first variant of the mechanism of FIG. 2; FIG. 11 illustrates a second variant of the mechanism of FIG. - Figure 12 illustrates a third variant of the mechanism Figure 2. In these figures the same references are used to designate the same elements. In the following description, the features and functions well known to those skilled in the art are not described in detail. FIG. 1 represents a barrel 2 of a double barrel lock, the other barrel of which is not shown in FIG. 1. This barrel 2 extends in depth along a direction Z perpendicular to horizontal and vertical directions, respectively X and Y. In the remainder of the description, the terms "lower" and "upper" are defined with reference to the Y direction. [0016] The two barrels are housed in a conventional manner in a door ( not shown) and are arranged symmetrically with respect to the average plane P of the door. The two barrels are positioned and connected in a conventional manner to one another by a connecting rod (not shown) which has in its middle a bulge serving as a spacer to maintain a predefined spacing between the two barrels. In the space between the two barrels is arranged, conventionally, a bit (not shown) which can be rotated by a rotor 4 of one or other of the two barrels when a suitable key, for example a key 5 is introduced into a channel 6 of the rotor 4 and manually rotated by a user. When driven in rotation by the key 5 and the rotor 4, the bit controls a conventional lock mechanism (not shown) which causes the movement of at least one bolt of the lock in a direction allowing the opening of the door or in a direction prohibiting the opening of the door in the direction of rotation of the key 5. [0018] The rotor 4 of the cylinder 2 is rotatably mounted in a profiled stator 7. The stator 7 is itself even housed in an outer sheath 8 having the same profile. In the example, the stator 7 has a standardized profile, called "European". Still in the example, the axis of rotation of the rotor 4 is parallel to the direction Z. The barrel 2 conventionally comprises several pairs of stator and rotor pins, which are arranged in pairs, end to end in corresponding pairs of aligned housings formed respectively in the stator 7 and in the rotor 4. Since this arrangement of the rotor and stator pins is well known, it has not been shown to simplify FIG. 1 The key 5, which has for example a substantially rectangular cross section, has on at least one of its two large faces, preferably on its two large faces, impressions and / or reliefs which cooperate with the pins of rotor. The imprints and / or the reliefs are shaped and the lengths of the rotor pins are chosen so that, if a good key 5 is inserted into the channel 6 of the rotor 4, the interface between each rotor pin and the pin of associated stator is located exactly at the interface between the rotor 4 and the stator 7. Under these conditions, the rotor 4 can be rotated manually using the key 5, provided that a mechanism 9 electric lock is him - even in an unlocked state. Indeed, the barrel 2 comprises an additional locking member 10 for preventing the rotor 4 from rotating as a suitable digital code contained in a memory (not shown) housed in the key 5 has not been introduced in an electronic circuit 12 housed in the cylinder 2 (in Figure 1 the circuit 12 is disposed outside the cylinder 2 to simplify the drawings). This circuit 12, when it receives the appropriate code, generates an electric unlock command. For example, it controls the mechanism 9 to enable the unlocking of the rotor 4. For example, the code is transmitted from the key 5 to the electronic circuit 12 of the lock by radio relay or by means of electrical contacts. For transmission by radio, preferably, the key 5 is equipped with a transponder and the circuit 12 is equipped with a transponder reader. When the key 5 is inserted into the channel 6 of the rotor 4, the digital code contained in the memory of the key 5 is transmitted to the circuit 12. For example, the circuit 12 then compares the transmitted code to at least one code pre-recorded in a memory. In case of agreement between the two codes, the circuit 12 generates the electrical unlocking command of the mechanism 9. In the embodiment of the lock shown in the drawings, the additional locking member 10 is a stator pin. which cooperates with a corresponding rotor pin 18 so that if the correct key is introduced into the channel 6, the interface between these two pins is exactly at the interface of the stator 7 and the rotor 4. However, unlike to the other stator pins, the locking member 10 is extended by a conical stud 20, with rounded apex, which is engaged in a corresponding frustoconical recess 22 formed in the rotor pin 18. In the example, the member 10 is made of a magnetic material. In this description, "magnetic material" denotes a material whose relative magnetic permeability is strictly greater than 1 and, preferably, greater than 100 or 1000. For example, the material is a ferromagnetic material such as 'steel. The member 10 is movable between a locking position (shown in Figure 1) in which it is engaged with the rotor 4 to block its rotation and a retracted position in which it releases the rotation of the rotor 4. A this effect, the member 10 is slidably mounted in a cylindrical housing 24 which is formed in the stator 7 and which is aligned axially with a housing 26 in the rotor 4 in which slides the pin 18 of the rotor. The member 10 further comprises a transverse bar 28 which is formed integrally with the member 10 at the lower end thereof. One of the ends of the bar 28 is shaped to form a heel 29.
Avantageusement, les deux côtés de la barrette 28 sont engagées et guidées dans des fentes (non représentées) formées dans la paroi du logement 24. Ces fentes empêchent l'organe de blocage 10 de tourner quand il se déplace dans le logement cylindrique 24. [0027] Le mécanisme 9 va maintenant être décrit plus en détail en référence aux 10 figures 2 et 3. [0028] Le mécanisme 9 comporte une cavité 32. La cavité 32 est une zone évidée disposée à l'intérieur du stator 7. Dans l'exemple, la cavité 32 est située en dessous du logement 24 et reçoit la barrette 28. [0029] Le mécanisme 9 comprend un ressort 50 apte à solliciter l'organe 10 vers sa 15 position de blocage lorsque les logements 24 et 26 sont en vis-à-vis. Ce ressort 50 s'appuie, à son extrémité inférieure, contre le fond de la cavité 32 et à son extrémité supérieure contre le dessous du talon 29 de l'organe 10. [0030] Le mécanisme 9 comprend également un aimant permanent 30 apte à rayonner un champ magnétique. L'aimant 30 est logé dans un compartiment du stator 20 7 prévu à cet effet. Dans l'exemple, l'aimant 30 est disposé sur un support 33 délimitant le pourtour inférieur et le côté gauche de la cavité 32. Ce support 33 est réalisé dans un matériau magnétique, de préférence ferromagnétique, de manière à canaliser le flux du champ magnétique rayonné par l'aimant 30. Dans l'exemple, le support 33 possède un coude à partir duquel s'étend un doigt horizontal 33a et une 25 dent verticale 33b. [0031] Le doigt 33a s'étend horizontalement au fond de la cavité 32. L'extrémité distale de ce doigt 33a forme un butoir 40, également en matériau magnétique,de préférence ferromagnétique, qui s'étend verticalement. Le butoir 40 est décrit plus en détail en référence à la figure 6. 30 [0032] La dent 33b s'étend verticalement du fond de la cavité 32 vers la barrette 28. Ici, la section transversale de la dent 33a s'évase en allant de son extrémité libre vers le coude. [0033] L'aimant 30 est disposé à l'intérieur du coude du support 33. [0034] Le mécanisme 9 comprend une source commandable 52 de champ 35 magnétique apte à réduire ou annuler le flux du champ magnétique de l'aimant 30 dans le doigt 33a. Dans l'exemple, la source 52 est une bobine enroulée autour du doigt 33a. [0035] Le mécanisme 9 comprend également un levier 34 de verrouillage déplaçable entre : - une position de verrouillage dans laquelle le levier 34 est susceptible d'être immobilisé par l'organe 10 de blocage pour s'opposer à son déplacement, et - une position de déverrouillage dans laquelle l'organe 10 de blocage est libre de quitter sa position de blocage. [0036] Le levier 34 est disposé dans la cavité 32. Ici, le levier 34 est en position de verrouillage lorsque le levier 34 est vertical, c'est-à-dire qu'il s'étend principalement le long de la direction Y. Le levier 34 est en position de déverrouillage lorsqu'il s'étend selon une direction oblique appartenant au plan formé par les directions X et Y. Sur les figures 2 et 3 le levier 34 est en position de verrouillage. [0037] Ici, le déplacement du levier 34 de sa position de verrouillage à sa position de déverrouillage est réalisé par rotation du levier 34 dans le sens horaire. A cet effet, le levier 34 est monté libre en rotation sur un axe 36. L'axe 36 est parallèle à la direction Z. [0038] Le levier 34 est conformé pour que lorsqu'il est en position de verrouillage, un jeu 37a (visible sur la figure 3) demeure entre le levier 34 et la barrette 28. Ce jeu 37a est suffisamment grand pour permettre au levier 34 de tourner de sa position de verrouillage vers sa position de déverrouillage. Toutefois, comme expliqué précédemment, lorsque le levier 34 est en position de verrouillage et que la clé 5 est introduite dans le canal 6 puis tournée, le rotor 4 exerce une force sur l'organe 10 poussant cet organe 10 vers sa position escamotée. L'organe 10 est légèrement déplacé vers le bas. Le jeu 37a s'annule alors et le déplacement de l'organe 10 vers sa position escamotée est empêché. Lorsque le jeu 37a est nul, le levier 34 est immobilisé. [0039] Par ailleurs, dans cet exemple lorsque l'organe 10 est déplacé vers le bas et que le jeu 37a s'annule, l'organe 10 exerce sur le levier 34 une force sollicitant ce levier 34 vers le fond de la cavité 32. Cette force déforme élastiquement l'axe 36 de telle sorte qu'une extrémité inférieure du levier 34 vient en butée contre le fond de la cavité 32. Ainsi, lorsque le jeu 37a s'annule, le levier 34 est immobilisé entre l'organe 10 et le fond de la cavité 32. [0040] Une fois que l'organe 10 cesse d'exercer la force sollicitant le levier 34 vers le fond de la cavité 32 (par exemple si l'organe 10 retourne de sa position escamotée vers sa position de blocage), l'axe 36, par déformation élastique inverse, retrouve sa position initiale dans laquelle le levier 34 n'est pas en butée au fond de la cavité 32. [0041] La forme du levier 34 est décrite plus en détail en référence à la figure 4 [0042] Le mécanisme 9 comporte également un bras 38 de mémorisation apte à mémoriser un ordre de déverrouillage électrique même si le levier 34 est immobilisé par l'organe 10. Le bras 38 est déplaçable entre: - une position de repos, et - une position de mémorisation, en réponse à l'ordre de déverrouillage électrique. [0043] Ici, le bras 38 est en position de repos lorsqu'il s'étend essentiellement verticalement. Dans la position de repos, une extrémité du bras 38 est en appui sur le butoir 40. Le bras 38 est en position de mémorisation lorsqu'une extrémité supérieure 39 du bras 38 est en butée contre le talon 29. Sur les figures 2 et 3, le bras est en position de repos. [0044] Le bras 38 est disposé à l'intérieur de la cavité 32. Ici, le bras 38 est monté libre en rotation sur l'axe 36. Le déplacement du bras 38 de sa position de repos à sa position de mémorisation s'effectue par une rotation dans le sens horaire. [0045] Le bras 38 est conformé de manière à ce que, lorsque le bras 38 est dans sa position de repos, un jeu 37b (visible sur la figure 2) sépare la barrette 28 de l'extrémité supérieure 39. Ce jeu 37b est plus grand que le jeu 37a de manière à ce que même lorsque le levier 34 est bloqué par la barrette 28 (et donc que le jeu 37a est nul), le jeu 37b est non nul. Le bras 38 peut donc toujours se déplacer pour mémoriser l'ordre de déverrouillage indépendamment du fait que le levier 34 soit immobilisé ou pas. [0046] Le bras 38 est réalisé dans un matériau magnétique, de préférence ferromagnétique, de manière à pouvoir être déplacé par des forces magnétiques qui créent un moment de rotation du bras 38 autour de l'axe 36. Les directions et les intensités des forces magnétiques qui s'exercent sur le bras 38 dépendent notamment de la forme et de l'épaisseur des entrefers entre le bras 38 et les pièces magnétiques à proximité. Le bras 38 est décrit plus en détail en référence à la figure 5. [0047] Le levier 34 va maintenant être décrit plus en détail en référence à la figure 4. Cette figure est une vue en coupe selon un plan de coupe passant par le levier 34 et l'aimant 30. Le levier 34 est réalisé dans un matériau magnétique, de préférence ferromagnétique. L'aimant 30 et le levier 34 sont disposés en vis à vis de manière à ce que l'aimant 30 sollicite en permanence le levier 34 vers sa position de déverrouillage. La partie du levier 34 en vis-à-vis de l'aimant 30 et l'aimant 30 forme un entrefer 341. [0048] Dans cette description, on désigne par « entrefer » l'espace, typiquement rempli d'air, qui sépare deux pièces magnétiques en vis-à-vis et par l'intermédiaire duquel se rebouclent les lignes de champ d'un circuit magnétique. De plus, ici, on qualifie également « d'entrefer » la zone de contact entre deux pièces magnétiques mobiles l'une par rapport à l'autre, lorsque celles-ci sont venues en contact mécanique l'une avec l'autre suite à leur déplacement. [0049] Le levier 34 tend à se positionner avec l'aimant 30 de manière à ce que la réluctance de l'entrefer 341 soit la plus faible possible. Afin d'augmenter encore la sollicitation du levier 34 vers sa position de déverrouillage, le levier 34 est conformé de manière à ce que la réluctance de l'entrefer 341 diminue à mesure que le levier 34 tourne de sa position de verrouillage vers sa position de déverrouillage. On définit la réluctance d'un entrefer à l'aide de la relation suivante : R=E/(po. S) où, - R est la réluctance de l'entrefer, - E est l'épaisseur de l'entrefer, - po est la perméabilité du vide, et - S est la section transversale des faces en vis-à-vis de chaque côté de l'entrefer. [0050] Ici, le levier 34 est conformé de manière à ce que l'épaisseur E de l'entrefer 341 diminue à mesure que le levier 34 tourne. A cet effet, l'extrémité inférieure du levier 34 forme un pied 342 comprenant un biseau 346 en vis-à-vis de l'aimant 30. Le biseau 346 est incliné de manière à ce que la distance entre ce biseau 346 et l'aimant 30 décroisse à mesure que le levier 34 tourne dans le sens horaire. Dans l'exemple, la réluctance de l'entrefer 341 est minimum lorsque le levier 34 est en position de déverrouillage. [0051] Le levier 34 comprend également un méplat 348 disposé sur une extrémité 350 supérieure du levier 34. Ce méplat 348 forme une butée pour la barrette 28 s'opposant au déplacement de l'organe 10 lorsque le levier 34 est en position de verrouillage et que l'organe 10 se déplace de sa position de blocage vers sa position escamotée. [0052] Le levier 34 comporte par ailleurs un plot 352 de repositionnement du levier 34 qui s'étend depuis le pied 342 selon la direction Z. [0053] Le bras 38 va maintenant être décrit plus en détail en référence à la figure 5. [0054] Le bras 38 comporte un arceau 42 qui s'étend depuis une extrémité inférieure de ce bras 38. L'arceau 42 et la dent 33b forment un entrefer 44 par l'intermédiaire duquel se reboucle un circuit magnétique Cl reliant les deux pôles opposés de l'aimant 30. Le circuit magnétique Cl exerce une force magnétique F1 sur le bras 38. Advantageously, the two sides of the bar 28 are engaged and guided in slots (not shown) formed in the wall of the housing 24. These slots prevent the locking member 10 from rotating when it moves in the cylindrical housing 24. [ The mechanism 9 will now be described in more detail with reference to FIGS. 2 and 3. The mechanism 9 has a cavity 32. The cavity 32 is a recessed area disposed inside the stator 7. In FIG. For example, the cavity 32 is situated below the housing 24 and receives the bar 28. The mechanism 9 comprises a spring 50 able to urge the member 10 toward its blocking position when the housings 24 and 26 are in position. vis-a-vis. This spring 50 rests, at its lower end against the bottom of the cavity 32 and at its upper end against the underside of the heel 29 of the member 10. The mechanism 9 also comprises a permanent magnet 30 adapted to radiate a magnetic field. The magnet 30 is housed in a compartment of the stator 7 provided for this purpose. In the example, the magnet 30 is disposed on a support 33 delimiting the lower periphery and the left side of the cavity 32. This support 33 is made of a magnetic material, preferably ferromagnetic, so as to channel the flow of the field In the example, the support 33 has a bend from which extends a horizontal finger 33a and a vertical tooth 33b. The finger 33a extends horizontally at the bottom of the cavity 32. The distal end of the finger 33a forms a stopper 40, also of magnetic material, preferably ferromagnetic, which extends vertically. The stopper 40 is described in more detail with reference to FIG. 6. [0032] The tooth 33b extends vertically from the bottom of the cavity 32 to the bar 28. Here, the cross section of the tooth 33a is flared out. going from its free end to the elbow. The magnet 30 is disposed inside the bend of the support 33. The mechanism 9 comprises a controllable source 52 of magnetic field capable of reducing or canceling the flux of the magnetic field of the magnet 30. the finger 33a. In the example, the source 52 is a coil wound around the finger 33a. The mechanism 9 also comprises a locking lever 34 movable between: - a locking position in which the lever 34 is capable of being immobilized by the locking member 10 to oppose its movement, and - a unlocking position in which the locking member 10 is free to leave its locking position. The lever 34 is disposed in the cavity 32. Here, the lever 34 is in the locking position when the lever 34 is vertical, that is to say, it extends mainly along the Y direction The lever 34 is in the unlocking position when it extends in an oblique direction belonging to the plane formed by the X and Y directions. In FIGS. 2 and 3, the lever 34 is in the locking position. Here, the movement of the lever 34 from its locking position to its unlocking position is achieved by rotation of the lever 34 in the clockwise direction. For this purpose, the lever 34 is rotatably mounted on an axis 36. The axis 36 is parallel to the direction Z. The lever 34 is shaped so that when it is in the locking position, a clearance 37a (Visible in Figure 3) remains between the lever 34 and the bar 28. This game 37a is large enough to allow the lever 34 to rotate from its locking position to its unlocked position. However, as explained above, when the lever 34 is in the locking position and the key 5 is inserted into the channel 6 and rotated, the rotor 4 exerts a force on the member 10 pushing the member 10 to its retracted position. The member 10 is slightly moved down. The clearance 37a then vanishes and the movement of the member 10 towards its retracted position is prevented. When the clearance 37a is zero, the lever 34 is immobilized. Furthermore, in this example when the member 10 is moved downwards and the clearance 37a vanishes, the member 10 exerts on the lever 34 a force urging the lever 34 towards the bottom of the cavity 32 This force elastically deforms the pin 36 so that a lower end of the lever 34 abuts against the bottom of the cavity 32. Thus, when the clearance 37a vanishes, the lever 34 is immobilized between the member 10 and the bottom of the cavity 32. [0040] Once the member 10 stops exerting the force urging the lever 34 towards the bottom of the cavity 32 (for example if the member 10 returns from its retracted position towards its locking position), the axis 36, by inverse elastic deformation, returns to its initial position in which the lever 34 is not in abutment with the bottom of the cavity 32. The shape of the lever 34 is described more in detail with reference to Figure 4 [0042] The mechanism 9 also comprises a storage arm 38 adapted to memorizing an electrical unlocking command even if the lever 34 is immobilized by the member 10. The arm 38 is movable between: - a rest position, and - a storage position, in response to the electric unlocking command. Here, the arm 38 is in the rest position when it extends substantially vertically. In the rest position, one end of the arm 38 bears on the stopper 40. The arm 38 is in the storage position when an upper end 39 of the arm 38 abuts against the heel 29. In FIGS. 2 and 3 , the arm is in the rest position. The arm 38 is disposed inside the cavity 32. Here, the arm 38 is mounted free to rotate on the axis 36. The movement of the arm 38 from its rest position to its storage position s' rotates clockwise. The arm 38 is shaped so that, when the arm 38 is in its rest position, a game 37b (visible in Figure 2) separates the bar 28 from the upper end 39. This game 37b is larger than the game 37a so that even when the lever 34 is blocked by the bar 28 (and therefore the game 37a is zero), the game 37b is non-zero. The arm 38 can therefore always move to memorize the unlocking order regardless of whether the lever 34 is immobilized or not. The arm 38 is made of a magnetic material, preferably ferromagnetic, so that it can be displaced by magnetic forces which create a moment of rotation of the arm 38 about the axis 36. The directions and the intensities of the forces Magnetic forces acting on the arm 38 depend in particular on the shape and the thickness of the air gaps between the arm 38 and the magnetic parts in the vicinity. The arm 38 is described in more detail with reference to FIG. 5. The lever 34 will now be described in more detail with reference to FIG. 4. This figure is a sectional view along a section plane passing through the lever 34 and the magnet 30. The lever 34 is made of a magnetic material, preferably ferromagnetic. The magnet 30 and the lever 34 are arranged facing each other so that the magnet 30 constantly urges the lever 34 towards its unlocked position. The portion of the lever 34 facing the magnet 30 and the magnet 30 form an air gap 341. In this description, the term "air gap" denotes the space, typically filled with air, which separates two magnetic pieces vis-à-vis and through which the field lines of a magnetic circuit are looped. Moreover, here, the "zone of contact" between the two moving magnetic parts with respect to each other is also referred to as "air gap" when they have come into mechanical contact with one another as a result of their displacement. The lever 34 tends to position itself with the magnet 30 so that the reluctance of the air gap 341 is as low as possible. In order to further increase the bias of the lever 34 towards its unlocking position, the lever 34 is shaped so that the reluctance of the gap 341 decreases as the lever 34 rotates from its locking position to its position of unlocking. The reluctance of an air gap is defined by the following relation: R = E / (po.S) where, - R is the reluctance of the gap, - E is the thickness of the gap, - po is the permeability of the vacuum, and S is the cross section of the faces facing each side of the air gap. Here, the lever 34 is shaped so that the thickness E of the air gap 341 decreases as the lever 34 rotates. For this purpose, the lower end of the lever 34 forms a foot 342 comprising a bevel 346 vis-à-vis the magnet 30. The bevel 346 is inclined so that the distance between the bevel 346 and the magnet 30 decreases as lever 34 rotates clockwise. In the example, the reluctance of the gap 341 is minimum when the lever 34 is in the unlocking position. The lever 34 also comprises a flat 348 disposed on an upper end 350 of the lever 34. This flat 348 forms a stop for the bar 28 opposing the displacement of the member 10 when the lever 34 is in the locking position and that the member 10 moves from its blocking position to its retracted position. The lever 34 further comprises a pin 352 repositioning the lever 34 which extends from the foot 342 in the Z direction. The arm 38 will now be described in more detail with reference to FIG. 5. The arm 38 has a hoop 42 which extends from a lower end of the arm 38. The hoop 42 and the tooth 33b form an air gap 44 through which loops a magnetic circuit Cl connecting the two poles. opposed to the magnet 30. The magnetic circuit C1 exerts a magnetic force F1 on the arm 38.
Ce circuit Cl passe successivement par : - un entrefer 45 entre l'aimant 30 et la face en vis-à-vis de l'arceau 42, - l'arceau 42, - l'entrefer 44, puis - la dent 33b pour se reboucler sur l'aimant 30. [0055] Pour simplifier les figures, les circuits magnétiques présentés dans cette description ne sont illustrés pour chacun que sur une seule figure. Cependant, ces circuits magnétiques existent dans toutes les positions représentées sur les figures et varient suivant la position du bras 38 et du levier 34. Par ailleurs, toujours dans le but de simplifier les figures, seul les circuits magnétiques prépondérants ont été représentés. Cependant, une infinité de circuits magnétiques se rebouclent à l'intérieur de la serrure décrite. [0056] L'arceau 42 est conformé de manière à ce que la réluctance de l'entrefer 44 diminue lorsque le bras 38 se déplace de sa position de repos vers sa position de mémorisation. Ici, la forme de l'arceau 42 est telle que l'épaisseur de l'entrefer 44 diminue au fur et à mesure que le bras 38 tourne de sa position de repos vers sa position de mémorisation. Dans ces conditions, le bras 38 est sollicité par l'aimant 30 vers sa position de mémorisation sans consommation d'énergie. [0057] Dans l'exemple, l'arceau 42 présente une face concave 420 en vis-à-vis de l'aimant 30 et de la dent 33b. Le profil de la face 420 peut être approximé, en première approche, par un arc de cercle qui s'étend sur une portion angulaire supérieure ou égale à 10 degrés et, de préférence, supérieure ou égale à 20, 30, ou 40 degrés. La position de cet arc de cercle est, par exemple, ajustée par la méthode des moindres carrés pour minimiser les écarts entre cet arc de cercle et le profil réel de la face 420. Dans l'exemple décrit, le profil de la face 420 n'est pas rigoureusement un arc de cercle puisque son extrémité libre est légèrement plus incurvée vers l'intérieur. [0058] Dans cet exemple, le bras 38 est conformé de manière à ce qu'en tout point S de la face 420, le centre 422 du cercle osculateur 424 en ce point S se situe toujours du même côté d'un plan 426 contenant l'axe 36 et le point S. De préférence, le centre 422 n'appartient pas au plan 426 et se situe en dessous de celui-ci dans cet exemple. Dans ces conditions, la force F1 crée un moment M qui peut déplacer le bras 38 de sa position de repos à sa position de mémorisation. Dans la description on désigne par « moment d'une force magnétique » le moment de la force magnétique apte à faire pivoter le bras 38 autour de l'axe 36. Une condition pour qu'une force magnétique exerce un moment sur le bras 38 est que cette force soit dirigée selon une direction non sécante avec l'axe 36. [0059] Dans l'exemple illustré, le bras 38 est avantageusement conformé de manière à ce que l'épaisseur de l'entrefer 45 diminue également à mesure que le bras 38 se déplace de sa position de repos à sa position de mémorisation. [0060] Le bras 38 comprend par ailleurs une butée 51 apte à maintenir le levier 34 en position de verrouillage à l'encontre de la sollicitation exercée par l'aimant 30 lorsque le bras 38 est en position de repos. Dans l'exemple, la butée 51 est une saillie disposée sur l'arceau 42. Ici, la butée 51 s'étend radialement sur le rayon intérieur de l'arceau 42. Lorsque le bras 38 est en position de repos, la butée 51 maintient le levier 34 en position de verrouillage par l'intermédiaire du plot 352 disposé sur le levier 34. [0061] La figure 6 représente le bras 38 dans sa position de repos. En position de repos, une extrémité arrière 41 de l'arceau 42 est en appui contre le butoir 40. Le 40 butoir 40 empêche la rotation du bras 38 dans le sens inverse des aiguilles d'une 12 montre. Avantageusement, le butoir 40 est biseauté de manière à maximiser la force magnétique exercée entre le butoir 40 et l'extrémité 41. [0062] Le butoir 40 forme avec l'extrémité 41 un entrefer 46 par l'intermédiaire duquel se reboucle un circuit magnétique C2 reliant les deux pôles opposés de l'aimant 30. Ce circuit magnétique C2 passe successivement par le doigt 33a, l'entrefer 41, l'arceau 42 et l'entrefer 45. La réluctance de l'entrefer 46 est minimisée lorsque le bras 38 est en position de repos. Le bras 38 et le support 33 sont conformés de manière à ce que lorsque le bras 38 est en position de repos, la réluctance de l'entrefer 46 est inférieure à la réluctance de l'entrefer 44. [0063] On note F2 la force magnétique exercée par le circuit magnétique C2 sur le bras 38. [0064] La figure 7 représente le bras 38 en train de tourner de sa position de repos vers sa position de mémorisation. Dans cette position, la réluctance de l'entrefer 44 est inférieure à la réluctance de l'entrefer 46. [0065] La figure 8 représente le bras 38 en position de mémorisation. Dans cette position, l'extrémité supérieure 39 du bras 38 et le talon 29 forment un entrefer 48 par l'intermédiaire duquel se reboucle un troisième circuit magnétique C3 qui relie les deux pôles opposés de l'aimant 30. Ce circuit C3 passe successivement par l'entrefer 45, l'arceau 42, le bras 36, l'entrefer 45, la barrette 28 et la dent 33b. This circuit C1 successively passes through: an air gap 45 between the magnet 30 and the face facing the arch 42, the arch 42, the air gap 44, and the tooth 33b for loop back on the magnet 30. To simplify the figures, the magnetic circuits presented in this description are illustrated for each one in a single figure. However, these magnetic circuits exist in all the positions shown in the figures and vary according to the position of the arm 38 and the lever 34. Furthermore, still for the purpose of simplifying the figures, only the predominant magnetic circuits have been represented. However, an infinity of magnetic circuits are looped inside the described lock. The hoop 42 is shaped so that the reluctance of the gap 44 decreases when the arm 38 moves from its rest position to its storage position. Here, the shape of the arch 42 is such that the thickness of the air gap 44 decreases as the arm 38 rotates from its rest position to its storage position. Under these conditions, the arm 38 is biased by the magnet 30 to its storage position without energy consumption. In the example, the arch 42 has a concave face 420 vis-à-vis the magnet 30 and the tooth 33b. The profile of the face 420 may be approximated, at first approach, by an arc which extends over an angular portion greater than or equal to 10 degrees and, preferably, greater than or equal to 20, 30, or 40 degrees. The position of this arc is, for example, adjusted by the least squares method to minimize the differences between this arc and the actual profile of the face 420. In the example described, the profile of the face 420 It is not strictly an arc since its free end is slightly curved inwards. In this example, the arm 38 is shaped so that at any point S of the face 420, the center 422 of the osculating circle 424 at this point S is always on the same side of a plane 426 containing the axis 36 and the point S. Preferably, the center 422 does not belong to the plane 426 and is below it in this example. Under these conditions, the force F1 creates a moment M which can move the arm 38 from its rest position to its storage position. In the description, the term "moment of a magnetic force" designates the moment of the magnetic force capable of pivoting the arm 38 about the axis 36. A condition for a magnetic force exerting a moment on the arm 38 is that this force is directed in a non-intersecting direction with the axis 36. In the example illustrated, the arm 38 is advantageously shaped so that the thickness of the air gap 45 also decreases as the arm 38 moves from its rest position to its storage position. The arm 38 further comprises a stop 51 adapted to maintain the lever 34 in the locking position against the bias exerted by the magnet 30 when the arm 38 is in the rest position. In the example, the stop 51 is a projection disposed on the arch 42. Here, the stop 51 extends radially on the inner radius of the arch 42. When the arm 38 is in the rest position, the stop 51 maintains the lever 34 in the locking position through the stud 352 disposed on the lever 34. [0061] Figure 6 shows the arm 38 in its rest position. In the rest position, a rear end 41 of the arch 42 bears against the stopper 40. The stopper 40 prevents rotation of the arm 38 in the opposite direction of the hands of a watch. Advantageously, the stopper 40 is beveled so as to maximize the magnetic force exerted between the stopper 40 and the end 41. The stopper 40 forms with the end 41 an air gap 46 through which a magnetic circuit loops. C2 connecting the two opposite poles of the magnet 30. This magnetic circuit C2 successively passes through the finger 33a, the air gap 41, the arch 42 and the gap 45. The reluctance of the gap 46 is minimized when the arm 38 is in the rest position. The arm 38 and the support 33 are shaped so that when the arm 38 is in the rest position, the reluctance of the air gap 46 is less than the reluctance of the gap 44. [0063] The force F 2 is noted. magnetic effect exerted by the magnetic circuit C2 on the arm 38. [0064] Figure 7 shows the arm 38 rotating from its rest position to its storage position. In this position, the reluctance of the air gap 44 is less than the reluctance of the gap 46. FIG. 8 represents the arm 38 in the storage position. In this position, the upper end 39 of the arm 38 and the heel 29 form an air gap 48 through which loops a third magnetic circuit C3 which connects the two opposite poles of the magnet 30. This circuit C3 passes successively through the gap 45, the arch 42, the arm 36, the gap 45, the bar 28 and the tooth 33b.
Avantageusement, l'extrémité 39 et le talon 29 sont conformés de manière à ce que lorsque le bras 38 est dans sa position de mémorisation, la réluctance de l'entrefer 48 soit inférieure à la réluctance des entrefers 44 et 46. A cet effet, dans ce mode de réalisation, l'extrémité 39 est en appui contre le talon 29 lorsque le bras 38 est dans sa position de mémorisation. [0066] On note F3 la force magnétique exercée par le circuit magnétique C3 sur le bras 38. [0067] Le fonctionnement de la serrure va maintenant être présenté en référence à la figure 9. [0068] Lors d'une étape 60 préliminaire, la serrure est dans un état verrouillé. Dans cet état verrouillé, les logements 24 et 26 sont en vis-à-vis et l'organe 10 est dans sa position de blocage. Le bras 38 est en position de repos (figure 6). Lorsque le bras 38 est en position de repos, l'entrefer 46 étant moins épais que les entrefers 44 et 48, le moment de la force magnétique F2 est plus fort que le moment des forces magnétiques F1 et F3. Par ailleurs, ce moment de la force magnétique F2 sollicite le bras 38 dans le sens anti-horaire. Le bras 38 est ainsi maintenu contre le butoir 40. [0069] De plus, le levier 34 est maintenu dans sa position de verrouillage par l'intermédiaire de la butée 51 et du plot 352. [0070] Lors d'une étape 62, un utilisateur introduit la clé 5 dans le canal 6 de la serrure. Le circuit 12 lit le code numérique porté par la clé 5. Si ce code numérique 40 est erroné, le mécanisme 9 reste dans l'état verrouillé. Ainsi, lorsque l'utilisateur tente 13 de tourner le rotor 4, l'organe 10 s'enfonce dans le logement 24 jusqu'à ce que le jeu 37a s'annule. L'organe 10 est alors en butée contre le levier 34. L'organe 10 ne pouvant atteindre sa position escamotée, le rotor 4 ne peut pas tourner et la serrure reste dans l'état verrouillé. La serrure retourne donc à l'étape 60. [oo71] Si le code numérique porté par la clé est correct, un ordre de déverrouillage du mécanisme 9 est généré lors d'une étape 64. [0072] Lors de cette étape 64, en réponse à l'ordre de déverrouillage, une impulsion électrique est générée aux bornes de la source 52. La source 52 rayonne alors un champ électromagnétique se soustrayant au champ magnétique permanent de l'aimant 30 dans le doigt 33a. Ici, la source 52 annule le flux du champ magnétique dans le doigt 33a. Ainsi, l'intensité du flux magnétique dans l'entrefer 46 devient inférieure à l'intensité du flux magnétique dans l'entrefer 44. Dans ces conditions, le moment de la force magnétique F1 devient plus fort que celui de la force F2. Le moment de la force magnétique F1 déclenche alors le déplacement du bras 38 de sa position de repos vers sa position de mémorisation (figure 7). Une fois la rotation du bras 38 déclenchée, la source 52 n'est plus alimentée puisque la conformation du bras 38 en arceau permet au bras 38 de tourner vers sa position de mémorisation sans consommation électrique. La durée de l'impulsion est déterminée pour que l'alimentation de la source 52 s'achève à un moment où le bras 38 a déjà suffisamment tourné pour que le moment de la force F1 soit plus fort que celui de la force F2. Ainsi, malgré l'arrêt de l'alimentation de la source 52, le bras 38 poursuit son déplacement vers sa position de mémorisation. [0073] Le déplacement du bras 38 se poursuit jusqu'à ce que l'entrefer 48 soit moins épais que les entrefers 44 et 46. A cet instant, le moment de la force magnétique F3 est plus fort que le moment de la force magnétique F2. Le moment de la force F3 maintient l'extrémité 39 du bras 38 contre le talon 29 (figure 8). [0074] Par ailleurs, lorsque le bras 38 quitte sa position de repos, la saillie 51 ne maintient plus le levier 34 dans sa position de verrouillage par l'intermédiaire du plot 352. Le levier 34 est alors déverrouillé. Si le levier 34 n'est pas immobilisé par l'organe 10 au moment où l'ordre de déverrouillage est généré, le bras 38 se positionne dans sa position de mémorisation comme décrit plus haut et le levier 34 est sollicité vers sa position de déverrouillage par l'aimant 30. [0075] Si une rotation du rotor 4 précède l'ordre de déverrouillage électrique, le levier 34 est immobilisé par l'organe 10 au moment où l'ordre de déverrouillage est généré. Dans ces conditions, le bras 38 mémorise l'ordre en se positionnant dans sa position de mémorisation. Une fois que le levier 34 n'est plus immobilisé, par exemple parce que l'utilisateur replace la clé de manière à ce que le rotor 4 n'exerce plus une force sur l'organe 10, le levier 34 est sollicité vers sa position de déverrouillage par l'aimant 30. Le mécanisme 9 est déverrouillé. [0076] Lors d'une étape 66, l'utilisateur tourne le rotor 4 dans le stator 7 par l'intermédiaire de la clé 5. La rotation du rotor 4 entraîne le déplacement de l'organe 10 de blocage dans sa position escamotée, l'organe 10 n'étant plus bloqué par le levier 34. La serrure est alors déverrouillée. [0077] Lors d'une étape 68, l'utilisateur verrouille la serrure. L'utilisateur repositionne le rotor 4 dans le stator 7 par l'intermédiaire de la clé 5 de manière à ce que les logements 24 et 26 soit en vis-à-vis. L'organe 10 est alors sollicité par le ressort 50 de sa position escamotée vers sa position de blocage. Le bras 38 est ramené de sa position de mémorisation vers sa position de repos par l'intermédiaire du talon 29 qui remonte. Le levier 34 est ramené de sa position de déverrouillage vers sa position de verrouillage par l'intermédiaire de la saillie 51 et du plot 352. La serrure retourne alors dans l'état verrouillé. [0078] La figure 10 illustre un mécanisme de verrouillage 100 identique au mécanisme 9 à l'exception du fait que le support 33 est remplacé par un support 102. Advantageously, the end 39 and the heel 29 are shaped so that when the arm 38 is in its storage position, the reluctance of the gap 48 is less than the reluctance of the gaps 44 and 46. For this purpose, in this embodiment, the end 39 is in abutment against the heel 29 when the arm 38 is in its storage position. F3 denotes the magnetic force exerted by the magnetic circuit C3 on the arm 38. The operation of the lock will now be presented with reference to FIG. 9. During a preliminary step 60, the lock is in a locked state. In this locked state, the housings 24 and 26 are vis-à-vis and the member 10 is in its blocking position. The arm 38 is in the rest position (FIG. 6). When the arm 38 is in the rest position, the gap 46 being thinner than the air gaps 44 and 48, the moment of the magnetic force F2 is stronger than the moment of the magnetic forces F1 and F3. Moreover, this moment of the magnetic force F2 urges the arm 38 counter-clockwise. The arm 38 is thus held against the stopper 40. In addition, the lever 34 is held in its locking position via the abutment 51 and the stud 352. During a step 62, a user enters the key 5 in the channel 6 of the lock. The circuit 12 reads the digital code carried by the key 5. If this digital code 40 is wrong, the mechanism 9 remains in the locked state. Thus, when the user tries to turn the rotor 4, the member 10 sinks into the housing 24 until the clearance 37a vanishes. The member 10 is then in abutment against the lever 34. The member 10 can not reach its retracted position, the rotor 4 can not rotate and the lock remains in the locked state. The lock therefore returns to step 60. [oo71] If the numerical code carried by the key is correct, an unlocking command of the mechanism 9 is generated during a step 64. In this step 64, in response to the unlocking command, an electrical pulse is generated at the terminals of the source 52. The source 52 then radiates an electromagnetic field to subtract from the permanent magnetic field of the magnet 30 in the finger 33a. Here, the source 52 cancels the flux of the magnetic field in the finger 33a. Thus, the intensity of the magnetic flux in the gap 46 becomes less than the intensity of the magnetic flux in the gap 44. Under these conditions, the moment of the magnetic force F1 becomes stronger than that of the force F2. The moment of the magnetic force F1 then triggers the movement of the arm 38 from its rest position to its storage position (FIG. 7). Once the rotation of the arm 38 is triggered, the source 52 is no longer energized since the conformation of the arm 38 in the arch allows the arm 38 to turn to its storage position without power consumption. The duration of the pulse is determined so that the supply of the source 52 is completed at a time when the arm 38 has already turned enough so that the moment of the force F1 is stronger than that of the force F2. Thus, despite stopping the supply of the source 52, the arm 38 continues its movement towards its storage position. The movement of the arm 38 continues until the air gap 48 is less thick than the air gaps 44 and 46. At this moment, the moment of the magnetic force F3 is stronger than the moment of the magnetic force. F2. The moment of the force F3 holds the end 39 of the arm 38 against the heel 29 (FIG. 8). Furthermore, when the arm 38 leaves its rest position, the projection 51 no longer maintains the lever 34 in its locking position via the stud 352. The lever 34 is then unlocked. If the lever 34 is not immobilized by the member 10 at the moment when the unlocking command is generated, the arm 38 is positioned in its storage position as described above and the lever 34 is biased towards its unlocking position by the magnet 30. If a rotation of the rotor 4 precedes the electrical unlocking command, the lever 34 is immobilized by the member 10 at the moment when the unlocking command is generated. Under these conditions, the arm 38 stores the order by positioning itself in its storage position. Once the lever 34 is no longer immobilized, for example because the user places the key so that the rotor 4 no longer exerts a force on the member 10, the lever 34 is biased towards its position Unlocking by the magnet 30. The mechanism 9 is unlocked. In a step 66, the user rotates the rotor 4 in the stator 7 by means of the key 5. The rotation of the rotor 4 causes the displacement member 10 to move in its retracted position, the member 10 is no longer blocked by the lever 34. The lock is then unlocked. In a step 68, the user locks the lock. The user repositioned the rotor 4 in the stator 7 by means of the key 5 so that the housings 24 and 26 are vis-à-vis. The member 10 is then biased by the spring 50 from its retracted position to its locking position. The arm 38 is returned from its storage position to its rest position via the heel 29 which goes up. The lever 34 is returned from its unlocking position to its locking position via the projection 51 and the stud 352. The lock then returns to the locked state. FIG. 10 illustrates a locking mechanism 100 identical to the mechanism 9, except that the support 33 is replaced by a support 102.
Ce support 102 est identique au support 33 à l'exception du fait que la dent 33b est remplacée par une dent 102b. L'arceau 42 du bras 38 et la dent 102b forment un entrefer 104. La dent 102b est conformée de manière à ce que la surface de la face de l'arceau 42 en vis-à-vis de la dent 102b augmente au fur et à mesure que le bras 38 tourne de sa position de repos vers sa position de mémorisation. A cet effet, ici la section transversale de la dent 102b s'évase, dans la direction Z, en allant du coude vers l'extrémité libre de la dent 102b. Grâce à cette conformation, la surface de l'entrefer 104 augmente dans une direction parallèle à l'axe de rotation du bras, et donc sa réluctance diminue, au fur et à mesure que le bras 38 tourne vers sa position de mémorisation. Dans ce mode de réalisation, il n'est donc plus nécessaire que l'épaisseur de l'entrefer 104 diminue au fur et à mesure de la rotation du bras 38. [0079] La figure 11 illustre un mécanisme de verrouillage 80 identique au mécanisme de verrouillage 9 à l'exception du fait que l'aimant 30 est remplacé par un aimant permanent 82 disposé sur l'arceau 42. Le support 33 est remplacé par un support 84 identique au support 33 à l'exception du fait que la dent 33b est remplacée par une dent 84b. Cette dent 84b est conformée de manière à ce que lorsque le bras 38 se déplace de sa position de repos vers sa position de mémorisation l'épaisseur d'un entrefer 86 formé par l'aimant 30 et la dent 84b en vis-à-vis diminue. [0080] La figure 12 illustre un mécanisme de verrouillage 90 identique au mécanisme de verrouillage 80 à l'exception du fait que le bras de mémorisation 38 est remplacé par un bras de mémorisation 92 dans lequel l'arceau 42 est omis. De plus, l'aimant 82 est remplacé par un aimant 95 disposé sur une extrémité 93 du bras 92. Enfin, le support 84 est remplacé par un support 94 qui est conformé de manière à ce que la face de ce support 94 en vis-à-vis de l'aimant 95 forme un arceau 97. 15 [0081] L'arceau 97 est conformé de manière à ce que lorsque le bras se déplace de sa position de repos à sa position de mémorisation, l'épaisseur d'un entrefer 99 formé par l'aimant 95 et la face de l'arceau 97 en vis-à-vis de l'aimant 95 diminue. [0082] De nombreux autres modes de réalisation sont possibles. Par exemple, il est possible d'utiliser plusieurs aimants au lieu d'un seul aimant permanent pour créer le champ magnétique qui déplace le bras. [0083] De même, un autre aimant peut être ajouté pour déplacer le levier. [0084] D'autres mécanismes de maintien peuvent être utilisés en complément ou en remplacement pour maintenir le bras dans sa position de repos et/ou dans sa position 10 de mémorisation. Par exemple, des aimants ou ressorts peuvent être utilisés. [0085] Le pied du levier de verrouillage peut avoir la forme d'un arceau. [0086] L'organe 10 de blocage du stator n'est pas nécessairement en matériau magnétique. Il peut être en plastique. [0087] En variante, l'espace du bras 38 entre l'axe 36 et le rayon intérieur de 15 l'arceau 42 est plein. [0088] Enfin, l'aimant et l'arceau peuvent être conformés pour que l'épaisseur de l'entrefer formé par l'aimant et l'arceau soit constante ou augmente lors de la rotation du bras vers la position de mémorisation. This support 102 is identical to the support 33 except that the tooth 33b is replaced by a tooth 102b. The arch 42 of the arm 38 and the tooth 102b form an air gap 104. The tooth 102b is shaped so that the surface of the face of the arch 42 vis-à-vis the tooth 102b increases as and when as the arm 38 rotates from its rest position to its storage position. For this purpose, here the cross section of the tooth 102b flares, in the direction Z, from the elbow to the free end of the tooth 102b. With this conformation, the surface of the air gap 104 increases in a direction parallel to the axis of rotation of the arm, and therefore its reluctance decreases, as the arm 38 rotates to its storage position. In this embodiment, it is therefore no longer necessary for the thickness of the air gap 104 to decrease as the arm 38 is rotated. [0079] FIG. 11 illustrates a locking mechanism 80 identical to the mechanism 9 except for the fact that the magnet 30 is replaced by a permanent magnet 82 disposed on the arch 42. The support 33 is replaced by a support 84 identical to the support 33 with the exception that the tooth 33b is replaced by a tooth 84b. This tooth 84b is shaped so that when the arm 38 moves from its rest position to its storage position the thickness of an air gap 86 formed by the magnet 30 and the tooth 84b vis-à-vis decreases. [0080] Figure 12 illustrates a locking mechanism 90 identical to the locking mechanism 80 except that the storage arm 38 is replaced by a storage arm 92 in which the hoop 42 is omitted. In addition, the magnet 82 is replaced by a magnet 95 disposed on an end 93 of the arm 92. Finally, the support 84 is replaced by a support 94 which is shaped so that the face of this support 94 facing Magnet 95 forms a hoop 97. The hoop 97 is shaped so that when the arm moves from its rest position to its storage position, the thickness of a air gap 99 formed by the magnet 95 and the face of the arch 97 vis-à-vis the magnet 95 decreases. Many other embodiments are possible. For example, it is possible to use several magnets instead of a single permanent magnet to create the magnetic field that moves the arm. Similarly, another magnet can be added to move the lever. Other holding mechanisms may be used in addition or in replacement to keep the arm in its rest position and / or in its storage position. For example, magnets or springs may be used. The foot of the locking lever may have the shape of a hoop. The stator blocking member 10 is not necessarily magnetic material. It can be plastic. [0087] In a variant, the space of the arm 38 between the axis 36 and the inside radius of the arch 42 is full. Finally, the magnet and the hoop can be shaped so that the thickness of the gap formed by the magnet and the hoop is constant or increases during the rotation of the arm to the storage position.