FR2963027A1 - CHEVREL PHASES WALL FOR SELECTIVE ELECTROLYTIC CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD. - Google Patents

CHEVREL PHASES WALL FOR SELECTIVE ELECTROLYTIC CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD. Download PDF

Info

Publication number
FR2963027A1
FR2963027A1 FR1056067A FR1056067A FR2963027A1 FR 2963027 A1 FR2963027 A1 FR 2963027A1 FR 1056067 A FR1056067 A FR 1056067A FR 1056067 A FR1056067 A FR 1056067A FR 2963027 A1 FR2963027 A1 FR 2963027A1
Authority
FR
France
Prior art keywords
wall
transfer
electrolyte
cations
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1056067A
Other languages
French (fr)
Other versions
FR2963027B1 (en
Inventor
Sakina Seghir
Jean-Marie Lecuire
Clotilde Boulanger
Sebastien Diliberto
Valerie Bouquet
Maryline Guilloux-Viry
Michel Potel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite De Rennes Fr
Centre National de la Recherche Scientifique CNRS
Universite de Lorraine
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Universite Paul Verlaine-Metz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1, Universite Paul Verlaine-Metz filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR1056067A priority Critical patent/FR2963027B1/en
Priority to PCT/FR2011/051403 priority patent/WO2012010761A1/en
Publication of FR2963027A1 publication Critical patent/FR2963027A1/en
Application granted granted Critical
Publication of FR2963027B1 publication Critical patent/FR2963027B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/04Diaphragms; Spacing elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Une paroi de séparation d'électrolytes comporte une couche active (22) en matériau à phases de Chevrel sulfurées (Mo S ou M Mo S ) pour le transfert sélectif de cations à travers la paroi et un support poreux (21) dans un matériau poreux servant de support à la couche active (22). Un procédé de transfert sélectif de cations utilise une telle paroi de transfert (2) Selon un procédé de fabrication d'une telle paroi de transfert (2), on enduit la surface d'une pastille en matériau poreux d'une solution de précurseurs polymères contenant le molybdène et on procède à une sulfuration et une réduction à chaud de la solution.An electrolyte separation wall has an active layer (22) of sulphurous Chevrel phase material (Mo S or M Mo S) for the selective transfer of cations through the wall and a porous support (21) in a porous material. serving as support for the active layer (22). A selective cation transfer process uses such a transfer wall (2) According to a method of manufacturing such a transfer wall (2), the surface of a pellet of porous material is coated with a solution of polymer precursors containing the molybdenum and is carried out a sulphurization and a hot reduction of the solution.

Description

Paroi à phases de Chevrel pour le transfert électrolytique sélectif de cations à travers la paroi, procédé de fabrication et procédé de transfert. DOMAINE DE L'INVENTION L'invention concerne une paroi à phases de Chevrel pour le transfert sélectif de cations à travers la paroi par un procédé électrolytique, un procédé de fabrication de ladite paroi et un procédé de transfert sélectif de cations à travers ladite paroi. L'invention concerne en outre un procédé de type électrolytique assurant un transport de cations, au travers d'une paroi adaptée, depuis une première solution d'électrolyte contenant une ou plusieurs catégories d'ions de même charge ou de charge différente, vers une deuxième solution électrolytique. TECHNIQUE ANTÉRIEURE On connaît déjà un procédé de ce type utilisant comme paroi de séparation une paroi formée de chalcogénures à cluster de molybdène, notamment les phases Mo6X8 appelées phases de Chevrel, décrit dans la demande de brevet internationale WO 2009/007598. Ce procédé a fait également l'objet des publications suivantes : - Electrochemical reactions of reversible intercalation in Chevrel compounds for cationic transfer Principle and application on Col+ ion ; S. Seghir, C. Boulanger, S. Diliberto, J.M. Lecuire, M. Potel, O. Merdrignac- Conanec ; dans Electrochemistry Communications, 10, 2008, 1505-1508. - Selective transfer of cations between two electrolytes using the intercalation properties of Chevrel phases ; S. Seghir, C. Boulanger, S. Diliberto, M. Potel, J-M. Chevrel phase wall for the selective electrolytic transfer of cations through the wall, manufacturing process and transfer process. FIELD OF THE INVENTION The invention relates to a Chevrel phase wall for the selective transfer of cations through the wall by an electrolytic process, a method of manufacturing said wall and a method of selectively transferring cations through said wall. The invention further relates to an electrolytic-type process for transporting cations, through a suitable wall, from a first electrolyte solution containing one or more categories of ions of the same charge or charge, to a second electrolytic solution. PRIOR ART A method of this type is already known using, as separating wall, a wall formed of molybdenum cluster chalcogenides, especially the Mo6X8 phases called Chevrel phases, described in international patent application WO 2009/007598. This process has also been the subject of the following publications: - Electrochemical reactions of reversible intercalation in Chevrel compounds for cationic transfer Principle and application on Col + ion; S. Seghir, C. Boulanger, S. Diliberto, J. M. Lecuire, M. Potel, O. Merdrignac-Conanec; in Electrochemistry Communications, 10, 2008, 1505-1508. - Selective transfer of cations between two electrolytes using the intercalation properties of Chevrel phases; S. Seghir, C. Boulanger, S. Diliberto, M. Potel, JM.

Lecuire dans Electrochimica Acta, 55, 2010, 1097- 1106. Lecuire in Electrochimica Acta, 55, 2010, 1097-1106.

Ces documents exposent que des cations peuvent être transportés à travers la paroi en matériau de formule Mo6X8 (avec X= S, Se, Te) dénommé Phases de Chevrel où se produisent des systèmes d'oxydoréduction réversibles du type : Mo6X8 + xMn+ + xn e- MXMo6X8 Ces systèmes sont diversifiés par la nature du cation Mn+, du chalcogène X et de la stoechiométrie x du ternaire. Dans un montage expérimental mettant en oeuvre le procédé de transfert sélectif, la paroi de transfert est placée entre deux compartiments comportant respectivement une électrode en titane platiné qui fonctionne en anode et une électrode en inox qui fonctionne en cathode. Le premier compartiment contient un premier électrolyte qui contient différents cations d'un effluent à traiter. Le deuxième compartiment contient un deuxième électrolyte destiné à recevoir les cations transférés. These documents disclose that cations can be transported through the wall of material of formula Mo6X8 (with X = S, Se, Te) called Phases de Chevrel where occur reversible redox systems of the type: Mo6X8 + xMn + + xn e These systems are diversified by the nature of the Mn + cation, chalcogen X and stoichiometry x of the ternary. In an experimental setup implementing the selective transfer method, the transfer wall is placed between two compartments respectively comprising a platinized titanium electrode which operates as anode and a stainless steel electrode which operates as a cathode. The first compartment contains a first electrolyte which contains different cations of an effluent to be treated. The second compartment contains a second electrolyte for receiving the transferred cations.

Un courant électrique continu est établi entre l'anode et la cathode. Dans le fonctionnement électrochimique global de l'ensemble des deux compartiments, il se produit l'intercalation du cation à l'interface MXMo6S8/ premier électrolyte (effluent à traiter, mélange des cations Mn+, M' n+, M'' n+ par exemple), selon : Mo6X8 + xMn+ + xn e- = MXMo6X8 La désintercalation de ce même cation Mn+ à l'interface MXMo6S8/ deuxième électrolyte (solution de valorisation de Mn+ par exemple) s'effectue réciproquement selon MXMo6X8 = Mo6X8 + XII e + xMn+ A continuous electric current is established between the anode and the cathode. In the overall electrochemical operation of all the two compartments, intercalation of the cation occurs at the interface MXMo6S8 / first electrolyte (effluent to be treated, mixture of Mn + cations, M 'n +, M' 'n + for example) , according to: Mo6X8 + xMn + + xn e- = MXMo6X8 The deintercalation of this same cation Mn + at the interface MXMo6S8 / second electrolyte (recovery solution of Mn + for example) is carried out reciprocally according to MXMo6X8 = Mo6X8 + XII e + xMn +

La mobilité du cation métallique dans la phase de Chevrel permet ainsi le transfert du cation Mn+ désolvaté d'un milieu à l'autre sans transfert d'aucune autre espèce chimique de l'un ou de l'autre des compartiments. The mobility of the metal cation in the Chevrel phase thus makes it possible to transfer the desolvated Mn + cation from one medium to another without transferring any other chemical species from one or the other of the compartments.

3 3

Une paroi de transfert sous forme de pastille est obtenue par frittage à chaud d'un mélange de poudre de composition adaptée à la stoechiométrie du matériau désiré. On obtient ainsi des disques de matière active d'une épaisseur de 2 à 5 millimètres. Les essais avec des parois composées de phases séléniées et sulfurées ont montré qu'en particulier les cations des métaux suivants peuvent être transférées d'un électrolyte à l'autre : fer, manganèse, cobalt, nickel chrome, cuivre, zinc, cadmium. Les limites de densités de courant obtenues sont comprises entre 10 et 20 A/m2, avec des rendements faradiques supérieurs à 90%, voire supérieurs à 98%, et avec une très bonne sélectivité. Les essais ont aussi démontré que la vitesse de transfert avait une limite, mais qu'il était possible de repousser cette limite en diminuant l'épaisseur de la paroi, ce qui permet des densités de courant plus élevées. Cependant, la tenue mécanique nécessaire de la paroi limite la diminution de son épaisseur. A pellet-shaped transfer wall is obtained by hot sintering a mixture of powder of composition adapted to the stoichiometry of the desired material. This produces discs of active material with a thickness of 2 to 5 millimeters. The tests with walls composed of selenated and sulphurized phases have shown that in particular the cations of the following metals can be transferred from one electrolyte to another: iron, manganese, cobalt, nickel chromium, copper, zinc, cadmium. The limits of current densities obtained are between 10 and 20 A / m2, with faradic yields greater than 90%, or even greater than 98%, and with very good selectivity. The tests also showed that the transfer rate had a limit, but that it was possible to push back this limit by decreasing the thickness of the wall, which allows higher current densities. However, the necessary mechanical strength of the wall limits the decrease in its thickness.

OBJECTIFS DE L'INVENTION L'invention vise donc à fournir une paroi de transfert sélectif à phases de Chevrel permettant une bonne vitesse de transfert. EXPOSÉ DE L'INVENTION Avec ces objectifs en vue, l'invention a pour objet une paroi de séparation d'électrolytes comportant une couche active en matériau à phases de Chevrel sulfurées pour le transfert sélectif de cations à travers la paroi, caractérisée en ce qu'elle comporte un support poreux constituée d'un matériau poreux servant de support à la couche active. Les inventeurs ont réussi à réaliser une paroi avec un support poreux qui apporte la tenue mécanique et une couche active dont l'épaisseur peut être très réduite. OBJECTIVES OF THE INVENTION The invention therefore aims to provide a Chevrel phase selective transfer wall allowing a good transfer speed. SUMMARY OF THE INVENTION With these objectives in view, the subject of the invention is an electrolyte separation wall comprising an active layer made of sulphurous Chevrel phase material for the selective transfer of cations through the wall, characterized in that it comprises a porous support made of a porous material serving as a support for the active layer. The inventors have succeeded in producing a wall with a porous support which provides the mechanical strength and an active layer whose thickness can be very small.

Ils ont constaté que le support poreux ne faisait pas They found that the porous support was not

4 4

obstacle aux réactions électrochimiques qui se produisent au niveau de la couche active. En diminuant l'épaisseur de la couche active, la vitesse de transfert atteinte est largement supérieure à la limite de vitesse selon l'art antérieur, ce qui est l'un des objectifs de l'invention. Le matériau poreux est choisi par exemple parmi la mullite, la silice, la fibre de verre, le quartz ou une céramique. Ces matériaux présentent les qualités nécessaires pour remplir le rôle de la paroi, à savoir la résistance mécanique, la résistance aux produits contenus dans les électrolytes et la porosité. Ils résistent également à la température nécessaire pour la synthèse de la couche active. La porosité du matériau poreux est comprise par exemple entre 0,4 et 0,6. Cette valeur exprime le taux de matière par rapport au volume occupé. Elle constitue un bon compromis entre le volume de l'électrolyte présent dans le support poreux et la résistance mécanique dudit support. obstacle to the electrochemical reactions that occur at the level of the active layer. By reducing the thickness of the active layer, the transfer speed reached is much greater than the speed limit according to the prior art, which is one of the objectives of the invention. The porous material is chosen for example from mullite, silica, fiberglass, quartz or a ceramic. These materials have the necessary qualities to fulfill the role of the wall, namely the mechanical strength, the resistance to the products contained in the electrolytes and the porosity. They also resist the temperature necessary for the synthesis of the active layer. The porosity of the porous material is, for example, between 0.4 and 0.6. This value expresses the material ratio in relation to the volume occupied. It constitutes a good compromise between the volume of the electrolyte present in the porous support and the mechanical strength of said support.

Selon un procédé de fabrication de la paroi de transfert, on prépare une solution de précurseurs polymères contenant du molybdène et un autre métal sous forme de cations, on étend la solution sur le support poreux et on procède à une sulfuration et une réduction à chaud de la solution. La solution de précurseurs de polymères permet de former un support au molybdène et au cation métallique. Du fait de sa consistance, la solution de précurseurs polymères est répartie régulièrement et de manière contrôlée, ce qui permet de contrôler la composition cationique, et par conséquent la composition finale de MXMo6S8r et la quantité de la couche active finale. On procède à une sulfuration suivie d'un réduction à chaud de la couche de précurseurs déposée, ce qui permet d'apporter le soufre de façon contrôlée et de former la phase de Chevrel . L'autre métal M de la phase MXMo6S8 est par exemple choisi parmi du cuivre, du nickel, du cobalt ou du zinc. Tout métal conduisant à une phase de Chevrel ternaire peut convenir, en particulier si le cation a un rayon ionique inférieur à 0,1 nm. 5 De manière particulière, l'étape de sulfuration est précédée d'une étape de calcination des composés organiques. Les composés organiques qui forment les précurseurs de polymères ne sont plus nécessaires pour la suite, et ils peuvent donc être éliminés. La calcination le fait en laissant en place le molybdène et le métal. Par exemple, l'étape de sulfuration est réalisée sous un flux d'un mélange d'hydrogène (H2) et d'hydrogène sulfuré (H2S). On constate que le soufre s'associe avec le molybdène et le métal pour former un mélange de composés de formule MoS2r Cu2S et éventuellement MXMoS2. De manière complémentaire, l'étape de sulfuration est suivie d'une étape de réduction sous flux d'hydrogène (H2). A l'issue de cette étape, un composé de formule MXMo6S8 est formé. According to a method of manufacturing the transfer wall, a solution of polymeric precursors containing molybdenum and another metal in the form of cations is prepared, the solution is spread on the porous support and a sulphurization and a hot reduction of the solution. The polymer precursor solution makes it possible to form a support for molybdenum and the metal cation. Because of its consistency, the polymer precursor solution is distributed evenly and in a controlled manner, thereby controlling the cationic composition, and hence the final composition of MXMo6S8r and the amount of the final active layer. Sulfurization followed by a hot reduction of the precursor layer deposited, which provides sulfur in a controlled manner and form the Chevrel phase. The other metal M of the MXMo6S8 phase is for example chosen from copper, nickel, cobalt or zinc. Any metal leading to a ternary Chevrel phase may be suitable, particularly if the cation has an ionic radius less than 0.1 nm. In particular, the sulfurization step is preceded by a step of calcining the organic compounds. The organic compounds that form the polymer precursors are no longer necessary for the future, and they can be eliminated. Calcination does this by leaving the molybdenum and the metal in place. For example, the sulphurization step is carried out under a stream of a mixture of hydrogen (H2) and hydrogen sulphide (H2S). It is found that the sulfur associates with the molybdenum and the metal to form a mixture of compounds of formula MoS2r Cu2S and possibly MXMoS2. In a complementary manner, the sulphurization step is followed by a reduction step under hydrogen flow (H2). At the end of this step, a compound of formula MXMo6S8 is formed.

A titre d'exemple, la solution comprend un sel soluble de molybdène hexavalent, qui conduit à un oxyde par dégradation thermique, tel que l'heptamolybdate d'ammonium tétra-hydraté (NH4) 6Mo7024, 4H20 pour apporter le molybdène, et un sel soluble de l'autre métal tel que du nitrate ou de l'acétate. Ce dernier sel soluble est par exemple du nitrate de cuivre hydraté (Cu(NO3)2,2.5H20) pour apporter du cuivre. Dans une dernière étape, on procède à la désintercalation électrochimique ou chimique de l'autre métal M. Selon le cation que l'on souhaite transférer, la présence de l'autre métal M n'est pas souhaitable. On peut alors l'éliminer facilement dans cette étape. La paroi active est alors composée de Mo6S8. La désintercalation chimique est réalisée par exemple par une attaque avec de l'acide chlorhydrique. La solution est répartie par exemple par By way of example, the solution comprises a soluble salt of molybdenum hexavalent, which leads to an oxide by thermal degradation, such as ammonium heptamolybdate tetrahydrate (NH4) 6Mo7024, 4H20 to provide molybdenum, and a salt soluble of the other metal such as nitrate or acetate. The latter soluble salt is, for example, copper nitrate hydrate (Cu (NO 3) 2, 2, 5H 2 O) to provide copper. In a final step, the electrochemical or chemical deintercalation of the other metal M is carried out. Depending on the cation that it is desired to transfer, the presence of the other metal M is undesirable. It can then be easily removed in this step. The active wall is then composed of Mo6S8. The chemical deintercalation is carried out for example by an attack with hydrochloric acid. The solution is distributed for example by

6 6

centrifugation. Le support est mis en rotation autour d'un axe perpendiculaire à l'une de ses surfaces et la solution est déposée sur ladite surface au centre de rotation. Elle se répartit de manière homogène sur toute la surface. De manière particulière, la viscosité de la solution est comprise entre 20 et 60 cP. En ajustant la viscosité, on peut contrôler l'épaisseur du film formé par la solution déposée sur le support poreux. centrifugation. The support is rotated about an axis perpendicular to one of its surfaces and the solution is deposited on said surface at the center of rotation. It is distributed evenly over the entire surface. In particular, the viscosity of the solution is between 20 and 60 cP. By adjusting the viscosity, it is possible to control the thickness of the film formed by the solution deposited on the porous support.

L'invention a aussi pour objet un procédé d'extraction sélective de cations par transfert électrochimique caractérisé en ce qu'on utilise comme paroi de séparation des électrolytes une paroi de transfert telle que décrite précédemment, et on assure un transfert des cations à travers ladite paroi de transfert en générant une différence de potentiel entre d'une part le premier électrolyte, et d'autre part le deuxième électrolyte ou ladite paroi de transfert, de manière à provoquer une intercalation des cations dans la paroi de transfert du côté du premier électrolyte, une diffusion des cations dans celle-ci, puis leur désintercalation dans le deuxième électrolyte. Selon d'autres caractéristiques : - au moins un des électrolytes est non aqueux. Les électrolytes peuvent être différents entre les compartiments, notamment par différentiation de la nature des sels de fond, par le niveau d'acidité, par la présence de complexants, par la nature des solvants notamment solvants non aqueux organiques ou minéraux tels que par exemple DMSO, DMF, liquides ioniques, électrolytes solides, etc... - la paroi de transfert est raccordée électriquement à un appareil de mesure du potentiel entre ladite paroi et des électrodes de référence situées respectivement dans chaque électrolyte et on ajuste en conséquence le potentiel appliqué entre lesdits électrolytes. - la différence de potentiel est générée entre le premier électrolyte et la paroi de transfert, et la désintercalation des cations du côté du deuxième électrolyte est une désintercalation chimique par un oxydant chimique dans le deuxième électrolyte. - on assure une succession de transferts de cations à travers des parois de transfert disposées successivement entre des électrolytes d'extrémité, et avec un ou des électrolytes intermédiaires entre les différentes parois de transfert. - le métal transféré est électrodéposé sur une cathode. BRÈVE DESCRIPTION DES FIGURES L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels : - la figure 1 est une vue en coupe d'une paroi de transfert conforme à l'invention ; - la figure 2 est un graphique d'analyse par diffraction de rayons X du matériau poreux pour la fabrication d'une paroi selon la figure 1 ; - les figures 3 et 4 sont des vues schématiques d'un montage d'essai pour vérifier la porosité ou l'étanchéité de la paroi de la figure 1 ; - la figure 5 est un schéma de principe du dispositif pour mettre en oeuvre le procédé de transfert sélectif ; - la figure 6 illustre une disposition utilisant plusieurs compartiments et parois de transfert en série. DESCRIPTION DETAILLÉE Une paroi de transfert sous forme de pastille 2 conforme à l'invention est formée d'un support poreux 21 sur lequel une fine couche active 22 est déposée. La fabrication de pastilles étanches est effectuée en une première phase de fabrication du support poreux 21, et une deuxième phase d'application de la couche active 22 sur le support 21. The subject of the invention is also a process for the selective extraction of cations by electrochemical transfer, characterized in that a transfer wall as described above is used as the electrolyte separation wall, and cation transfer is ensured through said electrolyte transfer wall. transfer wall by generating a potential difference between firstly the first electrolyte, and secondly the second electrolyte or said transfer wall, so as to cause intercalation of the cations in the transfer wall on the side of the first electrolyte , diffusion of the cations in it, and their deintercalation in the second electrolyte. According to other characteristics: at least one of the electrolytes is non-aqueous. The electrolytes may be different between the compartments, in particular by differentiation of the nature of the base salts, by the level of acidity, by the presence of complexing agents, by the nature of the solvents, in particular organic or inorganic non-aqueous solvents such as, for example, DMSO , DMF, ionic liquids, solid electrolytes, etc ... - the transfer wall is electrically connected to a device for measuring the potential between said wall and reference electrodes situated respectively in each electrolyte and the potential applied between said electrolytes. the difference in potential is generated between the first electrolyte and the transfer wall, and the deintercalation of the cations on the side of the second electrolyte is a chemical deintercalation by a chemical oxidant in the second electrolyte. a succession of transfers of cations is ensured through transfer walls arranged successively between end electrolytes, and with one or more electrolytes intermediate between the different transfer walls. the transferred metal is electrodeposited on a cathode. BRIEF DESCRIPTION OF THE FIGURES The invention will be better understood and other features and advantages will become apparent on reading the description which follows, the description referring to the appended drawings in which: FIG. 1 is a sectional view of a transfer wall according to the invention; FIG. 2 is an X-ray diffraction analysis graph of the porous material for the manufacture of a wall according to FIG. 1; FIGS. 3 and 4 are schematic views of a test assembly for checking the porosity or the tightness of the wall of FIG. 1; FIG. 5 is a block diagram of the device for implementing the selective transfer method; - Figure 6 illustrates an arrangement using several compartments and transfer walls in series. DETAILED DESCRIPTION A transfer wall in the form of a tablet 2 according to the invention is formed of a porous support 21 on which a thin active layer 22 is deposited. The manufacture of sealed pellets is carried out in a first phase of manufacture of the porous support 21, and a second phase of application of the active layer 22 on the support 21.

Elaboration du support poreux Le support poreux 21 peut se trouver dans le commerce en mullite, en quartz ou en céramique. A titre d'exemple, un mode de réalisation est détaillé ci-après, qui est issu du protocole donné par l'article de Garcia- Gabaldon et coll. sur la fabrication de membranes céramiques à base de kaolin et d'alumine développant une porosité modulable pour leur application en tant que membrane de séparation en électrochimie Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in electrochemical reactors, Journal of Membranes Sciences 280 (2006) 536-544. Le protocole est le suivant : dans un premier temps un mélange prévu pour 5 g de matériau est constitué de : - 2,52 g de Kaolin (silicate d'aluminium hydraté Al2Si2O5(OH)4, - 3,80 g d'Alumine Al203 - 1 g de fécule de pomme de terre commerciale. Le mélange des poudres est homogénéisé dans un mortier en porcelaine puis mouillé avec un volume minimal d'acétone pour éviter la formation d'agrégats. Ce mélange est séché à l'air libre durant 14 h. La poudre obtenue est ensuite rebroyée manuellement au mortier durant 10 min puis par fraction d'environ 1 g, elle est mise en forme de pastille par pressage dans une matrice de 25 mm de diamètre sous une pression de 2 tonnes pendant 5 min. Les pastilles compactées forment un disque de 1 mm d'épaisseur. Les échantillons sont soumis à deux traitements thermiques successifs. Preparation of the porous support The porous support 21 may be commercially available in mullite, quartz or ceramic. By way of example, an embodiment is detailed below, which is derived from the protocol given by the article by Garcia-Gabaldon et al. on the production of ceramic membranes based on kaolin and alumina developing a flexible porosity for their application as separation membrane in electrochemistry. Membranes Sciences 280 (2006) 536-544. The protocol is as follows: initially a mixture provided for 5 g of material consists of: - 2.52 g of Kaolin (hydrated aluminum silicate Al2Si2O5 (OH) 4, - 3.80 g of alumina Al203 - 1 g of commercial potato starch The mixture of the powders is homogenized in a porcelain mortar and then wetted with a minimum volume of acetone to avoid the formation of aggregates.This mixture is dried in the open air during 14 h) The powder obtained is then regrinded manually with the mortar for 10 minutes and then by fraction of about 1 g, it is shaped into a pellet by pressing into a matrix of 25 mm diameter at a pressure of 2 tons for 5 min. The compacted pellets form a disc of 1 mm thickness The samples are subjected to two successive heat treatments.

Un premier chauffage à 300°C permet l'oxydation à A first heating at 300 ° C allows the oxidation to

9 9

l'air de la fécule de pomme de terre. Ce liant organique est éliminé en 1 heure et crée ainsi la porosité. Un traitement supplémentaire à 1100°C durant 8 à 24 heures permet d'assurer une tenue mécanique satisfaisante. Après ce traitement thermique, on obtient des disques de 24 mm de diamètre et de 1 mm d'épaisseur. La surface est de 4,5 cm2. Une analyse par diffraction des rayons X a été réalisée sur la pastille poreuse (Figure 2). Le spectre enregistré montre l'absence d'impuretés ainsi que la formation d'une phase d'alumine et d'une phase de mullite. L'évaluation de la porosité de la pastille a été testée à l'aide de papier pH et d'acide nitrique HNO3 de la manière suivante représentée sur le schéma de la figure 3 : le virage du papier pH a permis de confirmer une bonne porosité de la pastille. Les contrôles de porosité donnent des valeurs moyennes de 0,553 en volume pour des teneurs initiales de 10% en fécule et de 0,501 pour des teneurs de 5%. La deuxième phase de la fabrication de la pastille consiste en l'enduction de ce support poreux avec une couche active selon le procédé qui est décrit ci-après. the air of potato starch. This organic binder is removed in 1 hour and thus creates porosity. An additional treatment at 1100 ° C for 8 to 24 hours ensures satisfactory mechanical strength. After this heat treatment, discs 24 mm in diameter and 1 mm in thickness are obtained. The surface is 4.5 cm2. X-ray diffraction analysis was performed on the porous pellet (Figure 2). The recorded spectrum shows the absence of impurities as well as the formation of an alumina phase and a mullite phase. The evaluation of the porosity of the pellet was tested using pH paper and nitric acid HNO3 in the following manner represented in the diagram of FIG. 3: the turning of the pH paper made it possible to confirm a good porosity of the pellet. The porosity controls give average values of 0.553 by volume for initial contents of 10% of starch and 0.501 for contents of 5%. The second phase of the manufacture of the pellet consists of coating this porous support with an active layer according to the method which is described below.

Elaboration de la couche active On prépare une solution de dépôt par une méthode de précurseurs polymères, basée sur le procédé Pechini. On mélange du nitrate de cuivre hydraté et de l'heptamolybdate d'ammonium tétra-hydraté avec de l'acide citrique mono-hydraté en milieu aqueux, et on agite le mélange sous une température comprise entre 80 et 90°C. On ajoute alors de l'éthylène-glycol. On ajuste la viscosité de la solution entre 20 et 60 cP, soit par chauffage pour l'augmenter, soit par ajout d'eau distillée pour la diminuer. Elaboration of the Active Layer A deposition solution is prepared by a polymer precursor method, based on the Pechini method. Hydrated copper nitrate and tetrahydrated ammonium heptamolybdate are mixed with monohydrated citric acid in an aqueous medium, and the mixture is stirred at a temperature between 80 and 90 ° C. Ethylene glycol is then added. The viscosity of the solution is adjusted between 20 and 60 cP, either by heating to increase it or by adding distilled water to reduce it.

10 10

On étale ensuite cette solution sur une face plane en forme de disque du support poreux 21. Pour cela, on place le support poreux 21 en rotation autour de l'axe du disque, et on dépose la quantité nécessaire de la solution au centre du disque à l'aide d'une micropipette. La vitesse de rotation est de 1000 tours par minute pendant quelques secondes, puis de 4000 à 5000 tours par minute pendant 10 à 20 secondes pour homogénéiser la répartition de la solution sur le disque. This solution is then spread on a flat disk-shaped surface of the porous support 21. For this, the porous support 21 is placed in rotation around the axis of the disk, and the necessary quantity of the solution is deposited in the center of the disk. using a micropipette. The rotation speed is 1000 rpm for a few seconds, then 4000 to 5000 rpm for 10 to 20 seconds to homogenize the distribution of the solution on the disc.

La paroi est placée dans un four et subit : - une étape de calcination à une température comprise entre 400 et 450°C pour éliminer les composés organiques ; - une étape de sulfuration par un mélange d'hydrogène et d'hydrogène sulfuré à une température comprise entre 500 et 650°C ; et - une étape de réduction par de l'hydrogène à une température comprise entre 500 et 650°C. Une couche active 22 de phase de Chevrel Cu,Mo6S8 est ainsi synthétisée. La variation de la viscosité permet de faire varier l'épaisseur de la couche active ainsi réalisée. L'épaisseur obtenue est typiquement comprise entre quelques micromètres et 25 }gym. On place alors une bordure étanche à la périphérie de la paroi et on vérifie l'étanchéité de la couche active 22 avec le montage de la figure 4 : le papier pH ne vire pas, ce qui signifie que la couche active 22 est étanche. Pour la synthèse finale de la phase binaire Mo6S8r on procède à une désintercalation chimique du cuivre par voie électrochimique ou chimique après la réalisation de l'enduction. Procédé de transfert sélectif Le schéma de la figure 5 montre un dispositif pour mettre en oeuvre un procédé de transfert sélectif The wall is placed in an oven and undergoes: a calcination step at a temperature between 400 and 450 ° C to remove the organic compounds; a sulphurization step with a mixture of hydrogen and hydrogen sulphide at a temperature of between 500 and 650 ° C .; and a reduction step with hydrogen at a temperature of between 500 and 650 ° C. A phase 22 active layer of Chevrel Cu, Mo6S8 is thus synthesized. The variation of the viscosity makes it possible to vary the thickness of the active layer thus produced. The thickness obtained is typically between a few microns and 25 microns. A sealed edge is then placed at the periphery of the wall and the tightness of the active layer 22 is checked with the assembly of FIG. 4: the pH paper does not turn, which means that the active layer 22 is sealed. For the final synthesis of the Mo6S8r binary phase, a chemical deintercalation of the copper is carried out electrochemically or chemically after the completion of the coating. Selective transfer method The diagram of FIG. 5 shows a device for implementing a selective transfer method

11 11

utilisant des parois de transfert selon l'invention. Le dispositif comporte une cuve 1 comportant deux compartiments 11 et 12, adaptés pour recevoir un électrolyte et séparés par une cloison de séparation 13 dans laquelle est placée une paroi de transfert 2 constituée d'une pastille 2 en forme de disque, montée dans la cloison 13 de manière étanche. Le dispositif comporte aussi une anode Al placée dans le premier compartiment 11 et une cathode C2 placée dans le deuxième compartiment 12. Une différence de potentiel AE peut être appliquée entre l'anode Al et la cathode C2 par des moyens connus en soi, afin d'imposer et de contrôler un courant i entre les électrolytes El et E2. using transfer walls according to the invention. The device comprises a tank 1 having two compartments 11 and 12, adapted to receive an electrolyte and separated by a partition wall 13 in which is placed a transfer wall 2 consisting of a disc-shaped pellet 2, mounted in the partition 13 tightly. The device also comprises an anode A1 placed in the first compartment 11 and a cathode C2 placed in the second compartment 12. A potential difference AE can be applied between the anode A1 and the cathode C2 by means known per se, in order to impose and control a current i between electrolytes E1 and E2.

La couche active 22 est placée du côté du premier compartiment 11, même si le système fonctionne aussi lorsqu'elle est du côté du deuxième compartiment 12. Un système de contact mobile à ressort 44 assure une connexion électrique avec le contour de la pastille 2 recouvert de laque de graphite, et permet de relier celle-ci à un appareil de contrôle, adapté notamment pour mesurer le potentiel d'interface Ei1, Ei2 de la pastille par rapport à des électrodes de référence 33, 34 disposées respectivement dans chaque compartiment 11, 12 de la cuve 1, comme illustré figure 5. La mise en oeuvre du dispositif s'effectue typiquement de la manière suivante : On remplit les compartiments 11 et 12 avec l'électrolyte souhaité, par exemple, et de manière nullement limitative, 100 ml Na2SO4 0,5 M + M(i) SO4 comme premier électrolyte El dans le premier compartiment 11, et 100 ml Na2SO4 0,5 M comme deuxième électrolyte E2 dans le deuxième compartiment 12, avec M(i) étant un ou plusieurs cations métalliques que l'on souhaite séparer. The active layer 22 is placed on the side of the first compartment 11, even if the system also functions when it is on the side of the second compartment 12. A spring loaded contact system 44 provides an electrical connection with the contour of the covered chip 2 graphite lacquer, and makes it possible to connect it to a control apparatus, adapted in particular for measuring the interface potential Ei1, Ei2 of the chip with respect to reference electrodes 33, 34 respectively arranged in each compartment 11, 12 of the tank 1, as shown in Figure 5. The implementation of the device is typically as follows: The compartments 11 and 12 are filled with the desired electrolyte, for example, and in no way limiting, 100 ml Na2SO4 0.5 M + M (i) SO4 as the first electrolyte E1 in the first compartment 11, and 100 ml 0.5 M Na2SO4 as the second electrolyte E2 in the second compartment 12, with M (i) being an o u several metal cations that one wishes to separate.

On place l'anode Al dans le premier compartiment 11 et la cathode C2 dans le deuxième compartiment 12, et on relie The anode A1 is placed in the first compartment 11 and the cathode C2 in the second compartment 12, and

12 12

le contact 44 de la pastille avec des moyens de contrôle potentiométrique, raccordés aux électrodes de référence 33, 34 plongées dans les électrolytes El et E2. On peut ainsi contrôler les potentiels d'interface et ajuster en conséquence le potentiel global AE appliqué entre l'anode Al et la cathode C2, de manière à obtenir une densité de courant rapportée à la surface opérationnelle de la paroi de transfert 2, ou de l'ensemble des parois de transfert disposées en parallèle, comprise par exemple entre 2 et 200 A/m2. Un régime intensiostatique global est établi entre l'anode Al et la cathode C2. Dans le fonctionnement électrochimique global de l'ensemble des deux compartiments, l'électrolyte El étant une solution d'origine à traiter comportant un mélange des cations de différents métaux et de charges identiques ou différentes, Mn+, M' n+, M''' + par exemple, et l'électrolyte E2 étant une solution de valorisation du métal M, il se produit . - l'intercalation du cation Mn+ à l'interface de la couche active 22 avec l'électrolyte El, selon : Mo6S8 + x Mn+ + xn e = MXMo6S8 - la désintercalation de ce même cation à l'interface de la couche active 22 avec l'électrolyte E2 (solution de valorisation de Mn+ par exemple), qui s'effectue réciproquement selon MXMo6S8 = Mo6S8 + xn e + x Mn+ La mobilité du cation métallique dans la phase de Chevrel permet ainsi le transfert du cation Mn+ désolvaté d'un milieu à l'autre sans transfert d'aucune autre espèce chimique de l'un ou de l'autre des compartiments. On notera encore de manière générale que les électrolytes placés dans les deux compartiments 11, 12 comportant l'anode Al et la cathode C2 peuvent être différents, notamment par la nature des sels de fond, par le niveau d'acidité, par la présence de complexants, par the contact 44 of the pellet with potentiometric control means, connected to the reference electrodes 33, 34 immersed in electrolytes E1 and E2. It is thus possible to control the interface potentials and to adjust accordingly the global potential AE applied between the anode A1 and the cathode C2, so as to obtain a current density related to the operational surface of the transfer wall 2, or to the set of transfer walls arranged in parallel, for example between 2 and 200 A / m2. An overall intensiostatic regime is established between the anode A1 and the cathode C2. In the overall electrochemical operation of all the two compartments, the electrolyte E1 being an original solution to be treated comprising a mixture of the cations of different metals and identical or different charges, Mn +, M 'n +, M' '' + for example, and the electrolyte E2 is a recovery solution of the metal M, it occurs. the intercalation of the cation Mn + at the interface of the active layer 22 with the electrolyte El, according to: Mo6S8 + xMn + + xn e = MXMo6S8 - the deintercalation of this same cation at the interface of the active layer 22 with the electrolyte E2 (recovery solution of Mn + for example), which is carried out reciprocally according to MXMo6S8 = Mo6S8 + xn e + x Mn + The mobility of the metal cation in the Chevrel phase thus allows the transfer of the Mn + cation desolvated from a medium to another without transfer of any other chemical species from one or the other of the compartments. It will also generally be noted that the electrolytes placed in the two compartments 11, 12 comprising the anode A1 and the cathode C2 may be different, in particular by the nature of the base salts, by the level of acidity, by the presence of complexing, by

13 13

la nature des solvants, notamment solvants non aqueux organiques ou minéraux (DMSO, DMF, liquides ioniques, électrolytes solides, etc.). On peut ainsi par exemple effectuer un transfert ionique d'un milieu sulfate à un milieu chlorure sans diffusion dudit milieu. Dans la variante de la figure 6, la cuve comporte trois compartiments. Les deux compartiments extrêmes 11', 12' sont équivalents aux compartiments 11 et 12 de l'exemple représenté figure 1. Un compartiment supplémentaire 15, contenant un électrolyte E3 est situé entre les deux compartiments 11' et 12' et séparé de ceux-ci par des cloisons de séparation 13', 13" comportant chacune une ou des parois de transfert 2', 2" selon l'invention. Ces parois de transfert 2', 2" peuvent être de même nature, pour simplement accroître la sélectivité du transfert du compartiment 11' au compartiment 12'. Elles peuvent être gérées de manière différente par un contrôle spécifique des potentiels appliqués entre les divers compartiments par exemple, pour effectuer une séparation de différents cations. Par exemple, on peut transférer deux types de cations du compartiment 11' au compartiment 15, et un seul du compartiment 15 au compartiment 12'. Dans le cas de la variante de la figure 6, le ou les électrolytes intermédiaires E3 peuvent aussi être identiques ou différents de l'un ou des deux électrolytes El ou E2. Exemple 1 Une pastille poreuse 21 recouverte d'une couche active 22 à base de phase de Chevrel sulfurée est utilisée comme paroi de transfert 2, telle que décrite précédemment, dans un montage conforme à la figure 5. Le transfert de cations entre le premier compartiment 11 contenant le premier électrolyte El (solution de cation the nature of the solvents, in particular organic or inorganic non-aqueous solvents (DMSO, DMF, ionic liquids, solid electrolytes, etc.). It is thus possible, for example, to carry out ionic transfer of a sulphate medium to a chloride medium without diffusion of said medium. In the variant of Figure 6, the vessel has three compartments. The two end compartments 11 ', 12' are equivalent to the compartments 11 and 12 of the example shown in FIG. 1. An additional compartment 15 containing an electrolyte E3 is situated between the two compartments 11 'and 12' and separated therefrom. by partition walls 13 ', 13 "each having one or two transfer walls 2', 2" according to the invention. These transfer walls 2 ', 2 "may be of the same type, simply to increase the selectivity of the transfer from the compartment 11' to the compartment 12 ', They can be managed differently by a specific control of the potentials applied between the various compartments by For example, two types of cations can be transferred from compartment 11 'to compartment 15, and only one from compartment 15 to compartment 12'. In the case of the variant of FIG. the intermediate electrolyte (s) E3 may also be identical or different from one or both electrolytes E1 or E2 Example 1 A porous pellet 21 covered with an active layer 22 based on sulphurous Chevrel phase is used as a transfer wall 2, as previously described, in an arrangement according to FIG. 5. The transfer of cations between the first compartment 11 containing the first electrol yte El (cation solution

14 14

M2+ 0, 1 M en milieu Na2SO4 0,1 M, H2SO4 0,1 M) et le deuxième compartiment 12 contenant le deuxième électrolyte E2 de valorisation à 0,1 M de Na2SO4, et 0,1 M de H2SO4 a été étudié pour la paroi réalisée tel que décrit précédemment à base de Mo6S8, et à différentes densités de courant. L'étude s'est attachée à vérifier pour différents cations Mn+ les rendements faradiques des transferts, à déterminer les conditions limites et à évaluer la limite de vitesse de transfert. Le procédé de transfert repose sur un conditionnement préalable avec une quantité de cation intercalé estimé à partir de la masse Mo6S8 déposé pour une stoechiométrie de My 2Mo6S8. Le tableau 1 montre les résultats obtenus pour une densité de courant de 90 A/m2. Métal M Col+ Ni + Fe2+ ce Zn2+ Mn2+ Cul+ Rendement 96 95 98 97 96 97 94 faradique de transfert (%) Vitesse de 1,7 1,8 2,0 3,3 1,64 4,02 4,44 transfert (mol/h/m2) Tableau 1. On constate que les rendements faradiques sont intéressants en étant supérieurs à 94% et qu'on atteint une vitesse de transfert très supérieure à la limite de vitesse de l'art antérieur, qui était de l'ordre de 0,29 mol/h/m2. Sélectivité Dans le procédé de transfert sélectif des cations, le premier électrolyte El contient un mélange de cations dont seul un type est transféré à travers la paroi. La sélectivité découle du fait que pendant l'opération d'électrolyse, la tension appliquée entre les deux faces de la couche active 22 ne permet l'intercalation et la désintercalation que d'un type de cations. Pour transférer les autres cations, il faudrait appliquer un potentiel plus élevé, ce qui n'est pas le but du procédé. Le type de cation qui est transféré a un potentiel d'intercalation minimal et un potentiel de désintercalation maximal qui sont exprimés par rapport au potentiel de référence donné par une électrode au calomel saturée (ECS). Des expérimentations de transfert ont été exécutées pour des mélanges synthétiques de cations tels que Cd/Zn et Co/Ni, réalisés à partir de mélanges de deux cations équimolaires (0,1 M). La sélectivité du transfert est exprimée par un taux de sélectivité de transfert du cation Mn+ représenté par le rapport Mtn+ / E Min+ de la quantité de cations transférés Mtn+ à la somme des cations transférés dans le compartiment 2, par exemple Cot/ (Cot+Nit) pour le mélange Col+ + Nie+ Ce rapport est donc d'autant plus proche de 100% que la sélectivité est grande et prend une valeur de 50% si aucune sélectivité ne se développe. Le tableau 2 récapitule les taux de sélectivité obtenus pour les différents mélanges. Les valeurs indiquées correspondent à la moyenne des taux de sélectivité obtenus à chaque heure pendant l'électrolyse de 1 à 7 heures. Mélanges Matériau actif de la paroi de transfert : Mo6S8 Cation Autre Potentiel Potentiel Sélectivité pour une transféré cation intercalation désintercalation densité de courant minimal maximal 90 A/m2 (mV/ECS) (mV/ECS) (%) Cd Zn -566 -285 99 Co Ni -624 -251 98 Tableau 2. On constate que malgré la faible épaisseur de la couche active 22, la sélectivité n'est pas affectée. Par contre la vitesse de transfert est grandement améliorée, passant de 0,29 à 1,7 mol/h/m2 environ. M2 + 0.1M in 0.1M Na2SO4 medium, 0.1M H2SO4) and the second compartment 12 containing the second recovery electrolyte E2 at 0.1M Na2SO4, and 0.1M H2SO4 was studied for the wall made as described above based on Mo6S8, and at different current densities. The study focused on verifying, for different Mn + cations, the faradic yields of the transfers, determining the boundary conditions and evaluating the transfer speed limit. The transfer method is based on preconditioning with an amount of intercalated cation estimated from the mass Mo6S8 deposited for a stoichiometry of My 2Mo6S8. Table 1 shows the results obtained for a current density of 90 A / m2. Metal M Col + Ni + Fe2 + ce Zn2 + Mn2 + Cul + Yield 96 95 98 97 96 97 94 Faradic Transfer (%) Speed 1.7 1.8 2.0 3.3 1.64 4.02 4.44 Transfer (mol / h / m2) Table 1. It is noted that faradic yields are interesting by being greater than 94% and that a transfer speed very much higher than the speed limit of the prior art, which was of the order 0.29 mol / h / m2. Selectivity In the selective cation transfer process, the first electrolyte E1 contains a mixture of cations of which only one type is transferred through the wall. The selectivity results from the fact that during the electrolysis operation, the voltage applied between the two faces of the active layer 22 allows intercalation and deintercalation of only one type of cation. To transfer the other cations, a higher potential should be applied, which is not the purpose of the process. The type of cation that is transferred has a minimum intercalation potential and a maximum deintercalation potential that is expressed relative to the reference potential given by a saturated calomel electrode (SCE). Transfer experiments were performed for synthetic mixtures of cations such as Cd / Zn and Co / Ni, made from mixtures of two equimolar cations (0.1 M). The selectivity of the transfer is expressed by a transfer selectivity rate of the cation Mn + represented by the ratio Mtn + / E min + of the quantity of transferred cations Mtn + to the sum of the cations transferred in compartment 2, for example Cot / (Cot + Nit ) for the mixture Col + + Nie + This ratio is therefore closer to 100% that the selectivity is large and takes a value of 50% if no selectivity develops. Table 2 summarizes the selectivity levels obtained for the different mixtures. The values indicated correspond to the average of the selectivity rates obtained every hour during the electrolysis of 1 to 7 hours. Mixtures Active material of the transfer wall: Mo6S8 Cation Other Potential Potential Selectivity for a transfer cation intercalation deintercalation maximum minimum current density 90 A / m2 (mV / ECS) (mV / ECS) (%) Cd Zn -566 -285 99 Table 2. It is found that despite the small thickness of the active layer 22, the selectivity is not affected. On the other hand, the transfer rate is greatly improved from 0.29 to 1.7 mol / h / m 2 approximately.

Claims (18)

REVENDICATIONS1. Paroi de séparation d'électrolytes comportant une couche active (22) en matériau à phases de Chevrel sulfurées (MonSn+2 ou MXMonSn+2) pour le transfert sélectif de cations à travers la paroi, caractérisée en ce qu'elle comporte un support poreux (21) constituée d'un matériau poreux servant de support à la couche active (22). REVENDICATIONS1. Electrolyte separation wall comprising an active layer (22) made of sulphurous Chevrel phase material (MonSn + 2 or MXMonSn + 2) for the selective transfer of cations through the wall, characterized in that it comprises a porous support (21) made of a porous material serving as a support for the active layer (22). 2. Paroi selon la revendication 1, dans laquelle le matériau poreux (21) est choisi parmi la mullite, la silice, la fibre de verre, le quartz ou une céramique. 2. Wall according to claim 1, wherein the porous material (21) is selected from mullite, silica, fiberglass, quartz or a ceramic. 3. Paroi selon la revendication 1, dans laquelle la porosité du matériau poreux (21) est comprise entre 0,4 et 0, 6. 3. Wall according to claim 1, wherein the porosity of the porous material (21) is between 0.4 and 0.6. 4. Procédé de fabrication d'une paroi selon l'une des revendications 1 à 3, selon lequel on prépare une solution de précurseurs polymères contenant du molybdène et un autre métal sous forme de cations, on étend la solution sur le support poreux (21) et on procède à une sulfuration et une réduction à chaud de la solution pour former une couche active (22) sur le support poreux (21). 4. A method of manufacturing a wall according to one of claims 1 to 3, wherein a solution is prepared of polymeric precursors containing molybdenum and another metal in the form of cations, the solution is extended on the porous support (21). ) and the solution is sulphurized and heat reduced to form an active layer (22) on the porous support (21). 5. Procédé selon la revendication 4, selon lequel l'étape de sulfuration est précédée d'une étape de calcination des composés organiques. 5. The method of claim 4, wherein the sulfurization step is preceded by a step of calcining the organic compounds. 6. Procédé selon la revendication 4, selon lequel l'étape de sulfuration est réalisée sous un flux d'un mélange d'hydrogène (H2) et d'hydrogène sulfuré (H2S). 6. Process according to claim 4, wherein the sulphurization step is carried out under a stream of a mixture of hydrogen (H2) and hydrogen sulphide (H2S). 7. Procédé selon la revendication 4, selon lequel l'étape de sulfuration est suivie d'une étape de réduction sous flux d'hydrogène (H2). 7. The method of claim 4, wherein the sulfurization step is followed by a reduction step under hydrogen flow (H2). 8. Procédé selon la revendication 4, selon lequel la solution comprend le molybdène sous la forme d'un sel soluble de molybdène hexavalent tel que de l'heptamolybdate d'ammonium tétra-hydraté (NH4) 6Mo7024r 4H20. 17 The process according to claim 4, wherein the solution comprises molybdenum in the form of a soluble hexavalent molybdenum salt such as tetrahydrated ammonium heptamolybdate (NH4) 6Mo7024r 4H20. 17 9. Procédé selon la revendication 4, selon lequel l'autre métal est choisi parmi du cuivre, du nickel, du cobalt ou du zinc. 9. The method of claim 4, wherein the other metal is selected from copper, nickel, cobalt or zinc. 10. Procédé selon la revendication 9, selon lequel la solution comprend l'autre métal sous la forme d'un sel soluble tel que du nitrate ou de l'acétate. The method of claim 9, wherein the solution comprises the other metal in the form of a soluble salt such as nitrate or acetate. 11. Procédé selon la revendication 10, selon lequel on procède à la désintercalation électrochimique ou chimique de l'autre métal en dernière étape. 11. The method of claim 10, wherein one carries out the electrochemical or chemical deintercalation of the other metal in the last step. 12. Procédé selon la revendication 4, selon lequel la solution est répartie par exemple par centrifugation. 12. The method of claim 4, wherein the solution is distributed for example by centrifugation. 13. Procédé selon la revendication 4, selon lequel la viscosité de la solution est comprise entre 20 et 60 cP. 13. The method of claim 4, wherein the viscosity of the solution is between 20 and 60 cP. 14. Procédé d'extraction sélective de cations par transfert électrochimique, caractérisé en ce qu'on utilise comme paroi de séparation des électrolytes, une paroi de transfert (2) selon l'une des revendication 1 à 3, et on assure un transfert des cations à travers la dite paroi de transfert (2) en générant une différence de potentiel (DE) entre d'une part le premier électrolyte (El), et d'autre part le deuxième électrolyte (E2) ou ladite paroi de transfert (2), de manière à provoquer une intercalation des cations dans la paroi de transfert (2) du côté du premier électrolyte, une diffusion des cations dans celle-ci, puis leur désintercalation dans le deuxième électrolyte (E2). 14. A process for the selective extraction of cations by electrochemical transfer, characterized in that a transfer wall (2) according to one of claims 1 to 3 is used as the electrolyte separation wall, and the transfer is ensured. cations through said transfer wall (2) by generating a potential difference (DE) between first electrolyte (El) and second electrolyte (E2) or transfer wall (2). ), so as to cause intercalation of the cations in the transfer wall (2) on the side of the first electrolyte, diffusion of the cations therein, and their deintercalation in the second electrolyte (E2). 15. Procédé selon la revendication 14, selon lequel au moins un des électrolytes (El, E2) est non aqueux. 15. The method of claim 14, wherein at least one of the electrolytes (E1, E2) is non-aqueous. 16. Procédé selon la revendication 14, selon lequel la paroi de transfert (2) est raccordée électriquement à un appareil de mesure du potentiel entre la dite paroi et des électrodes de référence (33, 34) situées respectivement dans chaque électrolyte (El, E2) et on ajuste en conséquence le potentiel appliqué entre lesdits électrolytes (El, E2). 16. The method of claim 14, wherein the transfer wall (2) is electrically connected to a device for measuring the potential between said wall and reference electrodes (33, 34) located respectively in each electrolyte (E1, E2). ) and the potential applied between said electrolytes (E1, E2) is adjusted accordingly. 17. Procédé selon la revendication 14, selon lequel la différence de potentiel (DE) est générée entre le premier électrolyte (El) et la paroi de transfert (2), et la désintercalation des cations du côté du deuxième électrolyte (E2) est une désintercalation chimique par un oxydant chimique dans le deuxième électrolyte. 17. The method of claim 14, wherein the potential difference (DE) is generated between the first electrolyte (El) and the transfer wall (2), and the deintercalation of the cations on the side of the second electrolyte (E2) is a chemical deintercalation by a chemical oxidant in the second electrolyte. 18. Procédé selon la revendication 14, selon lequel le métal transféré est électrodéposé sur une cathode. 18. The method of claim 14, wherein the transferred metal is electrodeposited on a cathode.
FR1056067A 2010-07-23 2010-07-23 CHEVREL PHASES WALL FOR SELECTIVE ELECTROLYTIC CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD. Active FR2963027B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1056067A FR2963027B1 (en) 2010-07-23 2010-07-23 CHEVREL PHASES WALL FOR SELECTIVE ELECTROLYTIC CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD.
PCT/FR2011/051403 WO2012010761A1 (en) 2010-07-23 2011-06-20 Chevrel phase wall for the selective electrolytic transfer of cations through the wall, and associated manufacturing method and transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1056067A FR2963027B1 (en) 2010-07-23 2010-07-23 CHEVREL PHASES WALL FOR SELECTIVE ELECTROLYTIC CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD.

Publications (2)

Publication Number Publication Date
FR2963027A1 true FR2963027A1 (en) 2012-01-27
FR2963027B1 FR2963027B1 (en) 2012-08-17

Family

ID=42942116

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1056067A Active FR2963027B1 (en) 2010-07-23 2010-07-23 CHEVREL PHASES WALL FOR SELECTIVE ELECTROLYTIC CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD.

Country Status (2)

Country Link
FR (1) FR2963027B1 (en)
WO (1) WO2012010761A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179138A1 (en) 2012-06-01 2013-12-05 Université De Rennes 1 Sulfur-molybdenum cluster and method for manufacturing the same
FR3002527A1 (en) * 2013-02-26 2014-08-29 Univ Lorraine ELECTROLYTE SEPARATION WALL FOR SELECTIVE CATION TRANSFER THROUGH THE WALL AND PROCESS FOR PRODUCING SAID WALL

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421973A (en) * 1992-09-08 1995-06-06 Iowa State University Research Foundation, Inc. Reactive sputter deposition of lead chevrel phase thin films
FR2765811A1 (en) * 1997-07-11 1999-01-15 Elf Antar France HYDROTREATMENT CATALYST INCLUDING CHEVREL PHASES AND MANUFACTURING PROCESS
FR2918079A1 (en) * 2007-06-27 2009-01-02 Univ Paul Verlaine METHOD AND A DEVICE FOR SELECTIVE EXTRACTION OF CATIONS BY ELECTROCHEMICAL TRANSFER IN SOLUTION AND APPLICATIONS OF THIS PROCESS.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421973A (en) * 1992-09-08 1995-06-06 Iowa State University Research Foundation, Inc. Reactive sputter deposition of lead chevrel phase thin films
FR2765811A1 (en) * 1997-07-11 1999-01-15 Elf Antar France HYDROTREATMENT CATALYST INCLUDING CHEVREL PHASES AND MANUFACTURING PROCESS
FR2918079A1 (en) * 2007-06-27 2009-01-02 Univ Paul Verlaine METHOD AND A DEVICE FOR SELECTIVE EXTRACTION OF CATIONS BY ELECTROCHEMICAL TRANSFER IN SOLUTION AND APPLICATIONS OF THIS PROCESS.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. HAREL-MICHAUD: "Nickel Chevrel phase supported on porous alumina", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 317-318, 2001, pages 195 - 200, XP002605988, ISSN: 0925-8388 *

Also Published As

Publication number Publication date
WO2012010761A1 (en) 2012-01-26
FR2963027B1 (en) 2012-08-17

Similar Documents

Publication Publication Date Title
CA2722656C (en) Method and device for selective cation extraction by electrochemical transfer in solution and applications of said method
FR3080957A1 (en) MESOPOROUS ELECTRODES FOR THIN-FILM ELECTROCHEMICAL DEVICES
WO2010012951A2 (en) Use of an oxyhydroxy salt related to the family of lamellar double hydroxides for the design and manufacture of an electrode with a view to storing electrical energy
CN111095627A (en) Methods, systems, and compositions for liquid phase deposition of thin films onto surfaces of battery electrodes
EP2683478A1 (en) Novel fluorinated material usable as an active electrode material
FR3069461A1 (en) NANOSTRUCTURE MATERIAL AND METHOD FOR PREPARING THE SAME
EP3721497A1 (en) Method for producing a graphene oxide-based compound for an air electrode of a metal-air battery and associated compound
FR2963026A1 (en) ELECTROLYTE SEPARATION WALL FOR SELECTIVE CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD.
FR2963027A1 (en) CHEVREL PHASES WALL FOR SELECTIVE ELECTROLYTIC CATION TRANSFER THROUGH THE WALL, MANUFACTURING METHOD, AND TRANSFER METHOD.
JP7116159B2 (en) Electrochemically active powder metallization process
EP2961697B1 (en) Electrolyte-separating membrane for selective transfer of cations through the membrane and process for manufacturing said membrane
Kozawa et al. Solution‐Based Approach for the Continuous Fabrication of Thin Lithium‐Ion Battery Electrodes by Wet Mechanochemical Synthesis and Electrophoretic Deposition
EP3281244A1 (en) Method for manufacturing a material having nanoelements
EP3629400A1 (en) Method for preparing lithium transition metal oxides
Nikiforidis et al. Effective Ways to Stabilize Polysulfide Ions for High‐Capacity Li− S Batteries Based on Organic Chalcogenide Catholytes
CN114072948A (en) Solution phase deposition of thin films on conversion anodes in lithium ion batteries
FR3043697A1 (en) METHOD OF MANUFACTURING SNSB INTERMETALLIC PHASE AND MATERIAL OBTAINED THEREBY
US20230077180A1 (en) Electrode, energy storage device and method
WO2021260175A1 (en) Graphite/lithium hybrid negative electrode
FR3112031A1 (en) POROUS NEGATIVE ELECTRODE
FR3112029A1 (en) SURFACE TREATED ELECTRODE, THE ELEMENTS, MODULES AND BATTERIES INCLUDING IT
Li et al. Three Birds with One Stone: Multifunctional Separators Based on SnSe Nanosheets Enable High‐Performance Li‐, Na‐and K‐Sulfur Batteries

Legal Events

Date Code Title Description
TQ Partial transmission of property

Owner name: UNIVERSITE DE LORRAINE, FR

Effective date: 20120629

Owner name: UNIVERSITE DE RENNES 1, FR

Effective date: 20120629

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (, FR

Effective date: 20120629

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

TQ Partial transmission of property

Owner name: UNIVERSITE DE RENNES, FR

Effective date: 20231128

Owner name: UNIVERSITE DE LORRAINE, FR

Effective date: 20231128

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (, FR

Effective date: 20231128