FR2949822A1 - Carbon dioxide release decreasing process for engine i.e. internal combustion engine, of car, involves heating carbon dioxide released from outlet side of engine with hydrocarbon in heat exchanger - Google Patents

Carbon dioxide release decreasing process for engine i.e. internal combustion engine, of car, involves heating carbon dioxide released from outlet side of engine with hydrocarbon in heat exchanger Download PDF

Info

Publication number
FR2949822A1
FR2949822A1 FR0904278A FR0904278A FR2949822A1 FR 2949822 A1 FR2949822 A1 FR 2949822A1 FR 0904278 A FR0904278 A FR 0904278A FR 0904278 A FR0904278 A FR 0904278A FR 2949822 A1 FR2949822 A1 FR 2949822A1
Authority
FR
France
Prior art keywords
engine
carbon dioxide
hydrocarbon
heat exchanger
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0904278A
Other languages
French (fr)
Inventor
Jacques Raphael Benzaria
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR0904278A priority Critical patent/FR2949822A1/en
Publication of FR2949822A1 publication Critical patent/FR2949822A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The process involves heating carbon dioxide released from an outlet side of an engine (1) with hydrocarbon (8) in a heat exchanger, and directly connecting a catalytic engine to an exit of engine exhaust pipes. The catalytic engine is indirectly heated by combustion gases before connecting to a muffler.

Description

On sait que les moteurs à combustion interne qui sont utilisés pour produire de l'énergie mécanique, notamment dans les automobiles, fonctionnent par combustion au moyen d'air et d'un carburant à base d'hydrocarbures. Les gaz de combustion résultant contiennent principalement de la vapeur d'eau et de l'azote et du dioxyde de carbone entre 12% etl4% puis sont rejetés dans l'atmosphère après passage éventuel dans un convertisseur catalytique destiné à réduire certains rejets nocifs comme l'oxyde de carbone et les carburants imbrulés It is known that internal combustion engines that are used to produce mechanical energy, especially in automobiles, operate by combustion using air and a hydrocarbon-based fuel. The resulting flue gas contains mainly water vapor and nitrogen and carbon dioxide between 12% and 14% and is released into the atmosphere after passage in a catalytic converter intended to reduce certain harmful discharges such as water. carbon monoxide and unburned fuels

La présente invention propose un procédé et un dispositif permettant de valoriser le dioxyde de carbone habituellement rejeté à l'atmosphère, en le convertissant en un deuxième carburant additionnel au moteur en utilisant le CO2 qui a été ' généré.par le premier carburant principal limitant ainsi l'apport de carbone fossile pour l'alimentation du moteur . Le procédé consiste à faire fonctionner un moteur à combustion interne au moyen d'air et au moins deux carburants externes, l'un appelé carburant principal étant un carburant usuel à base d'hydrocarbure tel que l'essence, le gas-oil ou du méthane et un autre appelé carburant additionnel étant obtenu à partir des gaz d'échappement issus du moteur Un séparateur de dioxyde de carbone recueille d'une part un premier gaz enrichi en dioxyde de carbone et appauvri en azote et d'autre part un second ' az appauvri en dioxyde de carbone et enrichi en azote et en rejetant le dit second gaz comme a l'ordinaire b) en mélangeant le dit premier gaz avec au-moins un hydrocarbure et en faisant passer le mélange résultant au contact d'un catalyseur de conversion le mélange de dioxyde de carbone et d'hydrocarbure, conduit a un mélange de monoxyde de carbone et d'hydrogène, dans des conditions de température permettant la dite conversion, ce dernier mélange constituant le deuxième carburant additionnel précité qui alimente le moteur. Le séparateur de dioxyde ou carbone est d'un nouveau type à membrane mixte polymère 25 céramique à porosité controlée dont les pores de la céramique sont garnis de polymères de la famille -polyimidiques résistant à une température de 350 °_400°C On pourrait par exemple utiliser un support en aluminosilicate ou en métal ou alliage de métaux poreux capable de résister aux températures élevées de l'ordre de 400 ° C et traités de la façon décrite précédemment. 30 On pourra aussi utiliser ces séparateurs à basse température à la double condition de refroidir le gaz d'échappement à la sortie du moteur, avant admission au séparateur puis de les réchauffer ensuite avant leur passage dans le convertisseur catalytique. Ceci peut être réalisé et spécifiquement a cet endroit en récupérant la chaleur au niveau des pipes d'échappement à travers un `échangeur a contrecourant des gaz chaud sortant du moteur avant entrée dans le séparateur, et le gaz issu du 35 séparateur avant entrée dans le convertisseur. Cet échange peut avoir lieu dans un échangeur de chaleur à paroi de type classique .ce dispositif seul placé a cet endroit permet de maintenir le catalyseur à une température suffisamment élevée sans avoir recours à un chauffage électrique. Cette disposition augmente le rendement énergétique global du moteur en utilisant cette source Les catalyseurs de conversion de l'étape (b) ci-dessus sont des catalyseurs de conversion tel 40 que ceux utilisés actuellement dans les convertisseurs catalytique des véhicules automobile, notamment à base de platine ou de palladium. Les catalyseurs à base de nickel ou autre sont également décrits dans les brevets EP 494 550 du 15 Juin 1994 ou US 6251 30 227 du 26 Juin 2001. La température de conversions est habituellement de l'ordre de 450 à 600° C mais peut varier en plus ou en moins. Dans une forme de réalisation les gaz chauds issus du moteur sont utilisés pour chauffer indirectement la zone de conversion catalytique. Le catalyseur est alors placé d'un premier côté d'une enceinte à double paroi, les gaz chauds passent de l'autre côté de la première paroi, avant de rejoindre le séparateur de CO2. Il convient de noter que les gaz d'échappement à la sortie du moteur renferment, outre CO2 et N2, de la vapeur d'eau et un peu de monoxyde de carbone. Selon le type de séparateur et sa sélectivité, le courant enrichi en dioxyde de carbone issu du séparateur pourra contenir, outre le CO2, et N2 une certaine quantité de vapeur d'eau et de monoxyde de carbone. Cela ne constitue généralement pas un inconvénient et la vapeur d'eau peut même être utile comme réactif dans le convertisseur. L'invention concerne entre autres un dispositif de production d'énergie mécanique comportant un moteur à combustion interne d'hydrocarbure au moyen d'air, le dit moteur produisant de l'énergie mécanique caractérisé en ce qu'il comporte dans l'ordre une conduite d'évacuation de gaz de combustion vers un séparateur de dioxyde de carbone fournissant un courant de gaz de combustion enrichi en dioxyde de carbone, un convertisseur catalytique de dioxyde, de carbone en monoxyde de carbone et hydrogène en mélange avec un hydrocarbure et une conduite de renvoi du mélange de monoxyde de carbone et d'hydrogène à l'alimentation du moteur. L'invention est illustrée à titre par les figures 1 et 2. Sur la figure 1, le moteur est schématiquement représenté par un cercle (1). Il est alimenté par un mélange principal d'hydrocarbure et d'air (2) et par un courant du deuxième carburant additionnel (3). Le gaz d'échappement (9) est envoyé au séparateur de dioxyde de carbone (4). Les gaz appauvris au CO2 sont rejetés à l'atmosphère par la conduite (5) tandis que les gaz enrichis en CO2 (6) sont envoyés au convertisseur catalytique (7). Il reçoit une quantité d'hydrocarbure (8) suffisante pour assurer la conversion au moins partielle de CO2 en CO et hydrogène. Le gaz obtenu, enrichi en CO et hydrogène constitue le deuxième carburant additionnel (3). Le dispositif de la figure (2) est un perfectionnement Il permet notamment d'utiliser une membrane fonctionnant à température relativement basse, ce qui nécessite un refroidissement de gaz d'échappement et leur réchauffage ultérieur. Dans ce cas les gaz d'échappement chauds (9a) passent dans un échangeur à paroi (10) à contre-courant des gaz relativement froids (11) issues du séparateur à membrane (4) et de l'hydrocarbure additionnel (8a). Après refroidissement le gaz refroidis passent par la conduite (9b) dans le dit séparateur à basse température (4) et la conduite (11) puis sont réchauffés dans l'échangeur (10) comme expliqué ci-dessus. Après réchauffage ils sont envoyés par la conduite (12) dans le convertisseur (7). Ils sont ensuite renvoyés au moteur comme carburant additionnel par la conduite (3). En variante l'hydrocarbure additionnel peut être injecté directement dans le convertisseur, par la conduite (8b) dans ce cas la conduite (8a) n'est pas utilisée, ou encore l'hydrocarbure est injecté en partie dans chacune de ces conduites. Bien qu'on ait représenté une alimentation au courant d'hydrocarbure additionnel (8,8a, 8b) au convertisseur (7) distincte de l'alimentation en courant de gaz enrichi en CO2 (6 ou 12) on préfère mélanger intimement ces deux courants avant entrée dans le convertisseur. Cela peut être réalisé avec un mélangeur statique. L'hydrocarbure utilisé peut être de même type que celui alimentant le moteur, ou peut être différant. On préfère les hydrocarbures légers, saturés ou insaturés, par exemple de Cl à C8. The present invention provides a method and a device for recovering the carbon dioxide usually released into the atmosphere by converting it into a second additional fuel to the engine by using the CO2 which has been generated by the first limiting main fuel and the contribution of fossil carbon for the motor supply. The method includes operating an internal combustion engine with air and at least two external fuels, one referred to as a primary fuel being a conventional hydrocarbon fuel such as gasoline, diesel or diesel fuel. methane and another called additional fuel being obtained from the exhaust gas from the engine A carbon dioxide separator collects firstly a first gas enriched in carbon dioxide and depleted in nitrogen and secondly a second and wherein said first gas is mixed with at least one hydrocarbon and the resulting mixture is contacted with conversion of the mixture of carbon dioxide and hydrocarbon, led to a mixture of carbon monoxide and hydrogen, under temperature conditions for said conversion, the latter mixture being the second additional aforementioned fuel that powers the engine. The carbon dioxide separator is of a new type with controlled porosity ceramic polymer membrane whose pores of the ceramic are lined with polymers of the family -polyimide resistant to a temperature of 350 ° _400 ° C. For example, use a support aluminosilicate or metal or metal alloy porous capable of withstanding high temperatures of the order of 400 ° C and treated as previously described. These low-temperature separators may also be used under the dual condition of cooling the exhaust gas at the engine outlet before admission to the separator and then reheating them before they pass into the catalytic converter. This can be done and specifically at this location by recovering heat at the exhaust pipes through a countercurrent exchanger of hot gases exiting the engine before entering the separator, and gas from the separator before entering the separator. converter. This exchange can take place in a conventional wall-type heat exchanger. This device alone placed at this point makes it possible to maintain the catalyst at a sufficiently high temperature without resorting to electric heating. This arrangement increases the overall energy efficiency of the engine by using this source. The conversion catalysts of step (b) above are conversion catalysts such as those currently used in catalytic converters of motor vehicles, especially those based on platinum or palladium. Catalysts based on nickel or other are also described in EP 494 550 of June 15, 1994 or US 6251 30 227 of June 26, 2001. The conversion temperature is usually of the order of 450 to 600 ° C but may vary in more or less. In one embodiment, the hot gases from the engine are used to indirectly heat the catalytic conversion zone. The catalyst is then placed on a first side of a double-walled enclosure, the hot gases pass on the other side of the first wall, before joining the CO2 separator. It should be noted that the exhaust gases at the engine outlet contain, in addition to CO2 and N2, water vapor and a little carbon monoxide. Depending on the type of separator and its selectivity, the enriched carbon dioxide stream from the separator may contain, in addition to CO2, and N2 a certain amount of water vapor and carbon monoxide. This is not generally a disadvantage and the water vapor can even be useful as a reagent in the converter. The invention relates inter alia to a device for producing mechanical energy comprising an internal combustion engine of hydrocarbon by means of air, said engine producing mechanical energy characterized in that it comprises in the order flue gas discharge conduit to a carbon dioxide separator providing a combustion gas stream enriched with carbon dioxide, a catalytic converter of carbon dioxide, carbon monoxide and hydrogen mixed with a hydrocarbon and a pipe returning the mixture of carbon monoxide and hydrogen to the engine supply. The invention is illustrated by Figures 1 and 2. In Figure 1, the motor is schematically represented by a circle (1). It is fed with a main mixture of hydrocarbon and air (2) and with a stream of the second additional fuel (3). The exhaust gas (9) is sent to the carbon dioxide separator (4). The CO2-depleted gases are released to the atmosphere via line (5) while the CO2-enriched gases (6) are sent to the catalytic converter (7). It receives a quantity of hydrocarbon (8) sufficient to ensure at least partial conversion of CO2 to CO and hydrogen. The gas obtained, enriched in CO and hydrogen constitutes the second additional fuel (3). The device of Figure (2) is an improvement It allows in particular to use a membrane operating at a relatively low temperature, which requires a cooling of exhaust gas and their subsequent reheating. In this case the hot exhaust gases (9a) pass through a wall exchanger (10) countercurrent relatively cold gases (11) from the membrane separator (4) and the additional hydrocarbon (8a). After cooling the cooled gas passes through the pipe (9b) in said low temperature separator (4) and the pipe (11) and is then heated in the exchanger (10) as explained above. After reheating, they are sent via line (12) to the converter (7). They are then returned to the engine as additional fuel by the pipe (3). Alternatively the additional hydrocarbon can be injected directly into the converter, through the pipe (8b) in this case the pipe (8a) is not used, or the hydrocarbon is injected in part in each of these pipes. Although an additional hydrocarbon feed (8,8a, 8b) has been shown to the converter (7) separate from the CO2 enriched gas feed (6 or 12), it is preferred to intimately mix these two streams. before entering the converter. This can be achieved with a static mixer. The hydrocarbon used may be of the same type as the one feeding the engine, or may be different. Light, saturated or unsaturated hydrocarbons, for example from C1 to C8, are preferred.

De la description qui précède il ressort clairement l'avantage de l'invention, à savoir qu'elle permet de convertir au moins une partie du dioxyde de carbone issu du moteur carburant additionnel pour une même puissance délivrée par le moteur. On pourra donc réduire la quantité de carburant fossile introduite dans le moteur soit par injection directe soit par le carburateur. From the foregoing description it is clear the advantage of the invention, namely that it can convert at least a portion of the carbon dioxide from the additional fuel engine for the same power delivered by the engine. We can reduce the amount of fossil fuel introduced into the engine either by direct injection or by the carburetor.

Les modifications à apporter à un moteur classique sont minimes. Le carburateur ou les injecteurs usuels peuvent être conservés et le courant de gaz combustible additionnel peut être introduit, par exemple, dans la (ou les) conduite(s) d'admission d'air ou de mélange carburé au moteur. Un dispositif de régulation des divers courants, par exemple, un dispositif électronique, permettra d'ajuster les proportions d'air et de carburants nécessaires à une bonne combustion dans le moteur. Modifications to a conventional engine are minimal. The carburetor or the usual injectors can be kept and the additional fuel gas stream can be introduced, for example, into the (or the) duct (s) for admission of air or fuel mixture to the engine. A device for regulating the various currents, for example an electronic device, will make it possible to adjust the proportions of air and fuels necessary for good combustion in the engine.

Le procédé et le dispositif de l'invention sont compatibles avec l'utilisation, maintenant usuelle dans certains véhicules de convertisseurs catalytiques. Ces derniers peuvent avantagesement être placés entre le moteur et le séparateur de CO2 ou encore à la sortie du séparateur, sur 20 la conduite (5) des figures 1 et 2. The method and the device of the invention are compatible with the use, now customary in some vehicles of catalytic converters. These can advantageously be placed between the engine and the CO2 separator or at the outlet of the separator, on the pipe (5) of FIGS. 1 and 2.

Claims (7)

Revendications1. Procédé permettant de diminuer les rejets du CO2 émis par un moteur, dans l'atmosphère, par conversion d'une partie du CO2 produit en carburant. Revendications1. A method of reducing the emission of CO2 emitted by an engine into the atmosphere by converting a portion of the CO2 produced into fuel. 2. Procédé selon la revendication 1, mis en oeuvre dans un ordre bien défini comprenant la concentration du CO2 produit par le moteur suivi du passage sur un catalyseur de conversion chauffé à la sortie du moteur avec un hydrocarbure dans un échangeur de calories. 2. Method according to claim 1, implemented in a well-defined order comprising the concentration of CO2 produced by the engine followed by passing over a conversion catalyst heated at the engine outlet with a hydrocarbon in a heat exchanger. 3. Procédé suivant la revendication 2 dans lequel le réacteur de catalyse est directement relié à la sortie des pipes d'échappement du moteur où la 15 température est située entre 450 et 600 degrés centigrades. 3. The process of claim 2 wherein the catalyst reactor is directly connected to the outlet of the engine exhaust pipes where the temperature is between 450 and 600 degrees centigrade. 4. Procédé suivant les revendications 1 à 3 en ce que le réacteur catalytique est chauffé indirectement par les gaz de sortie de combustion avant le raccordement sur le pot d'échappement. 4. Process according to claims 1 to 3 in that the catalytic reactor is heated indirectly by the combustion exhaust gases before connection to the exhaust pipe. 5. Procédé suivant les revendications de 1 à 4 caractérisé en ce que le mélange de carburants élaborés est gazeux, provient d'un carbone ayant déjà produit de l'énergie et est à base de CO2 converti. 25 5. Process according to claims 1 to 4 characterized in that the mixture of fuels is gaseous, comes from a carbon that has already produced energy and is based on converted CO2. 25 6. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 5, suivant lequel le séparateur de CO2 est en céramique, aluminosilicate ou en alliage de métaux poreux dont les porosités de la surface sont recouvertes d'un film polymère de la famille polyimidique. 30 6. Apparatus for carrying out the method according to any one of claims 1 to 5, wherein the CO2 separator is ceramic, aluminosilicate or porous metal alloy whose porosities of the surface are covered with a film polymer of the polyimidic family. 30 7. Utilisation du procédé selon l'une quelconque des revendications 1 à 5 sur les moteurs thermiques pour diminuer les rejets de CO2 dans l'atmosphère. 20 7. Use of the method according to any one of claims 1 to 5 on heat engines to reduce the release of CO2 into the atmosphere. 20
FR0904278A 2009-09-09 2009-09-09 Carbon dioxide release decreasing process for engine i.e. internal combustion engine, of car, involves heating carbon dioxide released from outlet side of engine with hydrocarbon in heat exchanger Withdrawn FR2949822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0904278A FR2949822A1 (en) 2009-09-09 2009-09-09 Carbon dioxide release decreasing process for engine i.e. internal combustion engine, of car, involves heating carbon dioxide released from outlet side of engine with hydrocarbon in heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0904278A FR2949822A1 (en) 2009-09-09 2009-09-09 Carbon dioxide release decreasing process for engine i.e. internal combustion engine, of car, involves heating carbon dioxide released from outlet side of engine with hydrocarbon in heat exchanger

Publications (1)

Publication Number Publication Date
FR2949822A1 true FR2949822A1 (en) 2011-03-11

Family

ID=43618476

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0904278A Withdrawn FR2949822A1 (en) 2009-09-09 2009-09-09 Carbon dioxide release decreasing process for engine i.e. internal combustion engine, of car, involves heating carbon dioxide released from outlet side of engine with hydrocarbon in heat exchanger

Country Status (1)

Country Link
FR (1) FR2949822A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339634A (en) * 1992-03-05 1994-08-23 Southwest Research Institute Fuel supply system for engines and combustion processes therefor
US6079373A (en) * 1997-05-13 2000-06-27 Isuzu Ceramics Research Institute Co., Ltd. Gas engine with a gas fuel reforming device
JP2003293867A (en) * 2002-04-01 2003-10-15 Nissan Motor Co Ltd Fuel reforming gas engine
JP2005069005A (en) * 2003-08-21 2005-03-17 Tokyo Gas Co Ltd Internal combustion engine and method for controlling combustion
US20050086931A1 (en) * 2003-10-23 2005-04-28 Ke Liu Intermittent application of syngas to NOx trap and/or diesel engine
US20080022680A1 (en) * 2006-07-26 2008-01-31 Gingrich Jess W Apparatus and method for increasing the hydrogen content of recirculated exhaust gas in fuel injected engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339634A (en) * 1992-03-05 1994-08-23 Southwest Research Institute Fuel supply system for engines and combustion processes therefor
US6079373A (en) * 1997-05-13 2000-06-27 Isuzu Ceramics Research Institute Co., Ltd. Gas engine with a gas fuel reforming device
JP2003293867A (en) * 2002-04-01 2003-10-15 Nissan Motor Co Ltd Fuel reforming gas engine
JP2005069005A (en) * 2003-08-21 2005-03-17 Tokyo Gas Co Ltd Internal combustion engine and method for controlling combustion
US20050086931A1 (en) * 2003-10-23 2005-04-28 Ke Liu Intermittent application of syngas to NOx trap and/or diesel engine
US20080022680A1 (en) * 2006-07-26 2008-01-31 Gingrich Jess W Apparatus and method for increasing the hydrogen content of recirculated exhaust gas in fuel injected engines

Similar Documents

Publication Publication Date Title
US9297530B2 (en) Oxygenated fuel
CN1133578C (en) Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6655130B1 (en) System and controls for near zero cold start tailpipe emissions in internal combustion engines
EP1409859B1 (en) Fuel supply system of an internal combustion engine
US20050132650A1 (en) Fast light-off catalytic reformer
FR2957383A1 (en) Internal combustion engine e.g. petrol engine, for vehicle i.e. car, has production unit producing hydrogen by catalytic reforming of fuel and placed in main flow of exhaust gases, and recirculation circuit equipped with gas flow connector
US8784095B2 (en) Oxygenated fuel
FR2880657A1 (en) Exhaust gas recirculation system for internal combustion engine, has hydrogen reformer that is disposed on gaseous flux connection and includes catalytic module comprising catalytic block maintained at high temperature
JP5014797B2 (en) Method of operating a compression ignition internal combustion engine combined with a catalytic reformer
WO2001000310A3 (en) Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas
WO2001000320A1 (en) Catalyst and method for reforming ethanol and fuel cell system using same
US7047909B1 (en) Methods of operating a compression ignition engine and a vehicle system
JPWO2009101715A1 (en) Hydrogen supply device for internal combustion engine and operation method of internal combustion engine
BE1009707A6 (en) Gas turbine thermal energy system with a catalytic partial fuel oxidation
US7700070B2 (en) Process and apparatus for catalytic conversion of hydrocarbons for generating a gas rich in hydrogen
GB2342390A (en) Providing an oxygen-rich atmosphere in the combustion chamber of a gas-fuelled compression-ignition engine
FR2860455A1 (en) System for the production and utilization of hydrogen on board a motor vehicle by the dehydrogenation of organic compounds
FR2949822A1 (en) Carbon dioxide release decreasing process for engine i.e. internal combustion engine, of car, involves heating carbon dioxide released from outlet side of engine with hydrocarbon in heat exchanger
FR2941015A1 (en) Exhaust gas recirculation device for internal combustion engine e.g. petrol engine, of motor vehicle, has adjustment device adjusting air proportion in air and fuel mixture according to oxygen quantity in exhaust gas for enrichment of gas
GB2513223A (en) Method for treatment of an exhaust gas from an engine and exhaust gas system
FR2875265A1 (en) Device for separating exhaust gases from energy production unit supplied with liquefied natural gas comprises low-temperature collector through which gas pipes pass and in which exhaust gases are condensed
US9032708B2 (en) Method of operating a fuel processor
EP1417997B1 (en) Catalytic depollution process for motor vehicle engine and associated process for hydrogen production
FR2933750A1 (en) METHOD OF CONTROLLING THE TEMPERATURE OF GASES IN AN EXHAUST CIRCUIT OF EXHAUST GAS
FR2844782A1 (en) System incorporating a selective cracking catalyser for feeding hydrogen to a fuel cell for the production of electrical energy, notably for electrically propelled vehicles

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20150529