FR2949459A1 - AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING - Google Patents

AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING Download PDF

Info

Publication number
FR2949459A1
FR2949459A1 FR0955907A FR0955907A FR2949459A1 FR 2949459 A1 FR2949459 A1 FR 2949459A1 FR 0955907 A FR0955907 A FR 0955907A FR 0955907 A FR0955907 A FR 0955907A FR 2949459 A1 FR2949459 A1 FR 2949459A1
Authority
FR
France
Prior art keywords
enzyme
polypeptide
strain
bacteria
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0955907A
Other languages
French (fr)
Other versions
FR2949459B1 (en
Inventor
Anne Sophie Lepeuple
Gilberte Gaval
Cecile Persillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veolia Water Solutions and Technologies Support SAS
Original Assignee
OTV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTV SA filed Critical OTV SA
Priority to FR0955907A priority Critical patent/FR2949459B1/en
Priority to FR1051300A priority patent/FR2949460A1/en
Priority to PCT/EP2010/062257 priority patent/WO2011023659A1/en
Priority to PCT/EP2010/062259 priority patent/WO2011023660A1/en
Publication of FR2949459A1 publication Critical patent/FR2949459A1/en
Application granted granted Critical
Publication of FR2949459B1 publication Critical patent/FR2949459B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/12Prevention of foaming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

La présente invention porte sur un agent de lyse d'au moins une souche de bactéries filamenteuses caractérisé en ce qu'il comprend au moins un polypeptide choisi parmi les polypeptides suivants : e) polypeptide dont la séquence d'acides aminés est l'une des séquences SEQ ID N°9 ou SEQ ID N° 11; f) polypeptide ayant une activité lytique et dont la séquence d'acides aminés présente au moins 80 % d'identité avec l'une des séquences SEQ ID N°9 ou SEQ ID N°11; g) polypeptide ayant une activité lytique et dont la séquence d'acides aminés est celle d'un fragment de l'une des séquences SEQ ID N°9 ou SEQ ID N°11; h) polypeptide comprenant au moins un polypeptide tel que défini en e), f) ou g).The present invention relates to an agent for lysing at least one strain of filamentous bacteria, characterized in that it comprises at least one polypeptide chosen from the following polypeptides: e) a polypeptide whose amino acid sequence is one of the sequences SEQ ID No. 9 or SEQ ID No. 11; f) a polypeptide having a lytic activity and whose amino acid sequence has at least 80% identity with one of the sequences SEQ ID No. 9 or SEQ ID No. 11; g) a polypeptide having a lytic activity and whose amino acid sequence is that of a fragment of one of the sequences SEQ ID No. 9 or SEQ ID No. 11; h) polypeptide comprising at least one polypeptide as defined in e), f) or g).

Description

AGENT DE PREVENTION ET/OU DE LUTTE CONTRE LE MOUSSAGE BIOLOGIQUE La présente invention concerne le domaine du traitement des eaux. En particulier, la présente invention est relative à des agents de prévention et/ou de lutte contre les bactéries filamenteuses et à leur utilisation notamment pour la prévention et/ou la lutte contre le moussage biologique impliquant des bactéries filamenteuses. Les bactéries filamenteuses sont susceptibles de se développer au sein de stations de traitements d'eaux mettant en oeuvre différents types de procédés incluant notamment des biofiltres, des membranes immergées et tout particulièrement des boues activées. Ces bactéries sont associées à certains dysfonctionnements de ces stations de traitements d'eaux qui se manifestent principalement sous deux formes : le foisonnement et le moussage biologique. Le foisonnement induit une mauvaise décantation des boues activées suite à une augmentation du volume occupé par celles-ci. Le moussage biologique se caractérise par la formation d'une couche épaisse de mousse biologique en surface des ouvrages. Les principales bactéries présentes dans les mousses biologiques appartiennent aux genres Microthrix, Nocardia et Gordonia. En particulier, Nocardia amarae a été identifiée comme étant l'espèce bactérienne majeure responsable du moussage biologique (Pagilla et al., 2002, water science and technology, vol. 46, p519-524 ; Iwahori et al., 2001, J. Bioscience Bioengineering, p 77-79). En outre, ces phénomènes de foisonnement et de moussage biologique s'accompagnent le plus souvent de départs de matières en suspension dans l'eau traitée pouvant conduire, en plus des problèmes opérationnels sur les stations de traitements des eaux, à une détérioration de la qualité de l'eau traitée et ainsi à des dépassements plus ou moins importants des normes de rejet. Le développement de solutions techniques permettant de contrôler le développement des bactéries filamenteuses constitue donc un enjeu majeur pour assurer le bon fonctionnement des installations de traitements d'eaux et en particulier des installations d'assainissements d'eaux. BACKGROUND OF THE INVENTION The present invention relates to the field of water treatment. In particular, the present invention relates to agents for preventing and / or combating filamentous bacteria and to their use, in particular for the prevention and / or the fight against biological foaming involving filamentous bacteria. The filamentous bacteria are likely to develop in water treatment stations using different types of processes including including biofilters, submerged membranes and especially activated sludge. These bacteria are associated with certain malfunctions of these water treatment plants, which manifest themselves mainly in two forms: swelling and organic foaming. The swelling induces a bad decantation of the activated sludge following an increase of the volume occupied by these. Organic foaming is characterized by the formation of a thick layer of organic foam on the surface of the structures. The main bacteria present in organic foams belong to the genera Microthrix, Nocardia and Gordonia. In particular, Nocardia amarae has been identified as the major bacterial species responsible for biological foaming (Pagilla et al., 2002, Water Science and Technology, Vol 46, p519-524, Iwahori et al., 2001, J. Bioscience Bioengineering, pp 77-79). In addition, these phenomena of expansion and biological foaming are most often accompanied by start-ups of suspended solids in the treated water which, in addition to the operational problems on the water treatment plants, may lead to a deterioration of the quality. treated water and thus to greater or lesser exceedances of discharge standards. The development of technical solutions to control the development of filamentous bacteria is therefore a major challenge to ensure the proper functioning of water treatment facilities and in particular water purification facilities.

Les moyens de lutte contre les bactéries filamenteuses dont disposent actuellement les exploitants de stations de traitement d'eaux impliquent essentiellement l'utilisation d'oxydants chimiques (tels que le chlore et ses dérivés, le peroxyde d'hydrogène, l'acide péracétique), l'utilisation de composés floculants (tels que les sels métalliques, le chlorure de fer, le talc, les carbonates de calcium) ou encore l'utilisation de moyens mécaniques (tels que la cavitation). Toutefois, ces différents moyens ne sont pas spécifiques des bactéries filamenteuses et présentent des efficacités très variables en fonction du type de dysfonctionnement rencontré. En outre, ces moyens ne sont pas toujours sans conséquences sur la qualité des eaux traitées et notamment sur l'activité de la biomasse épuratrice lors de traitements biologiques. En outre, certains de ces moyens présentent l'inconvénient d'utiliser des produits ne respectant pas l'environnement et/ou dont la mise en oeuvre peut être coûteuse en énergie. L'utilisation de ces agents, notamment chimiques, peut également se révéler contraignante. En effet, certains de ces agents présentant des effets secondaires particulièrement indésirables (par exemple en étant toxique vis-à-vis de micro-organismes bénéfiques), leur utilisation (dose, point d'injection, durée) requiert un contrôle rigoureux et constant. Enfin, la mise au point de procédés mettant en oeuvre ces agents peut être longue, coûteuse et difficilement adaptable aux différentes situations de dysfonctionnements rencontrés dans les stations de traitement d'eaux. Il existe donc un besoin pour des agents permettant de lutter efficacement et spécifiquement contre les bactéries filamenteuses présentes dans les eaux à traiter, en particulier les eaux usées et les boues activées, tout en préservant la qualité du traitement des eaux, en particulier de l'assainissement des eaux usées, ainsi que les microorganismes bénéfiques, assurant éventuellement le traitement desdites eaux, et tout en étant simple d'utilisation. Les inventeurs ont maintenant découvert l'efficacité d'agents biologiques permettant de résoudre en tout ou partie les problèmes évoqués ci-dessus. Ces agents sont des enzymes ayant la capacité de lyser au moins une souche de bactéries filamenteuses présentes aussi bien dans des cultures bactériennes que dans des eaux à traiter, en particulier des eaux usées, que dans des boues activées ou encore dans des mousses biologiques. En effet, les inventeurs ont montré de manière surprenante que ces enzymes conservent leur activité enzymatique dans des milieux aussi déstabilisants que des mousses biologiques, des boues activées et des eaux à traiter. En outre, les inventeurs ont mis en évidence que de manière inattendue, ces enzymes ont la capacité de lyser non seulement la souche de bactéries filamenteuses dont elles sont issues (soit du génome bactérien de ladite souche, soit du génome d'un bactériophage infectant ladite souche), mais également d'autres souches impliquées dans le moussage biologique, notamment des souches appartenant à l'espèce Gordonia amarae. Or, il a été démontré que Gordonia amarae est l'espèce bactérienne majeure responsable du moussage biologique (Pagilla et al., 2002, water science and technology, vol. 46, p519-524 ; Iwahori et al., 2001, J. Bioscience Bioengineering, p 77-79). Ainsi selon un premier aspect, l'invention a pour objet un premier type d'agent de lyse d'au moins une souche de bactéries filamenteuses comprenant : - au moins un premier type de polypeptide selon l'invention choisi parmi les polypeptides suivants : a) polypeptide dont la séquence d'acides aminés est l'une des séquences SEQ ID N°5 ou SEQ ID N°7 ; b) polypeptide ayant une activité lytique et dont la séquence d'acides aminés présente au moins 80 % d'identité avec l'une des séquences SEQ ID N°5, ou SEQ ID N°7 ; c) polypeptide ayant une activité lytique et dont la séquence d'acides aminés est celle d'un fragment de l'une des séquences SEQ ID N°5, ou SEQ ID N°7 ; d) polypeptide comprenant au moins un polypeptide tel que défini en a), b) ou c) ; - et/ou au moins un premier type de polynucléotide selon l'invention dont la séquence d'acides nucléiques est l'une des séquences SEQ ID N°6 ou SEQ ID N°8. La séquence SEQ ID N°5 correspond à une séquence identifiée jusqu'à présent comme celle d'une putative enzyme lytique du phage GTES de Gordonia terme, ci-après désignée Gter. La séquence SEQ ID N°7 correspond à la séquence SEQ ID N°5 dans laquelle a été insérée après le premier résidu méthionine, la séquence d'acides aminés suivante HHHHHHIEGR correspondant à une étiquette polyhistidine ( 6x-HisTAG ) suivie d'un site de clivage protéolytique pour le facteur Xa, afin de faciliter la purification de la protéine. Avantageusement, ledit premier type de polypeptide selon l'invention est constitué de la séquence SEQ ID N°5 ou de la séquence SEQ ID N°7, en particulier de la séquence SEQ ID N°5. The means of fight against the filamentous bacteria currently available to the operators of water treatment plants essentially involve the use of chemical oxidants (such as chlorine and its derivatives, hydrogen peroxide, peracetic acid), the use of flocculating compounds (such as metal salts, iron chloride, talc, calcium carbonates) or the use of mechanical means (such as cavitation). However, these different means are not specific to filamentous bacteria and have very variable efficiencies depending on the type of dysfunction encountered. In addition, these means are not always without consequences on the quality of the treated water and in particular on the activity of the purifying biomass during biological treatments. In addition, some of these means have the disadvantage of using products that do not respect the environment and / or whose implementation can be expensive in energy. The use of these agents, especially chemical agents, can also be restrictive. Indeed, some of these agents having particularly undesirable side effects (for example being toxic towards beneficial microorganisms), their use (dose, injection point, duration) requires a rigorous and constant control. Finally, the development of processes using these agents can be long, expensive and difficult to adapt to different situations of malfunctions encountered in water treatment plants. There is therefore a need for agents that make it possible to fight effectively and specifically against the filamentous bacteria present in the waters to be treated, in particular wastewater and activated sludge, while preserving the quality of water treatment, in particular the treatment of water. sanitation of wastewater, as well as beneficial microorganisms, possibly ensuring the treatment of said water, and while being easy to use. The inventors have now discovered the effectiveness of biological agents to solve all or part of the problems mentioned above. These agents are enzymes with the capacity to lyse at least one strain of filamentous bacteria present in bacterial cultures as well as in water to be treated, in particular wastewater, than in activated sludge or in organic foams. Indeed, the inventors have surprisingly shown that these enzymes retain their enzymatic activity in such destabilizing environments as biological foams, activated sludge and water to be treated. In addition, the inventors have demonstrated that, unexpectedly, these enzymes have the capacity to lyse not only the strain of filamentous bacteria from which they originate (either from the bacterial genome of said strain or from the genome of a bacteriophage infecting said strain), but also other strains involved in the biological foaming, including strains belonging to the species Gordonia amarae. However, it has been shown that Gordonia amarae is the major bacterial species responsible for biological foaming (Pagilla et al., 2002, Water Science and Technology, Vol 46, p519-524, Iwahori et al., 2001, J. Bioscience Bioengineering, pp 77-79). Thus according to a first aspect, the subject of the invention is a first type of lysing agent for at least one strain of filamentous bacteria comprising: at least one first type of polypeptide according to the invention chosen from the following polypeptides: a polypeptide whose amino acid sequence is one of SEQ ID NO: 5 or SEQ ID NO: 7; b) a polypeptide having a lytic activity and whose amino acid sequence has at least 80% identity with one of the sequences SEQ ID NO: 5, or SEQ ID NO: 7; c) a polypeptide having a lytic activity and whose amino acid sequence is that of a fragment of one of the sequences SEQ ID NO: 5, or SEQ ID NO: 7; d) a polypeptide comprising at least one polypeptide as defined in a), b) or c); and / or at least one first type of polynucleotide according to the invention, the nucleic acid sequence of which is one of the sequences SEQ ID No. 6 or SEQ ID No. 8. The sequence SEQ ID No. 5 corresponds to a sequence identified so far as that of a putative lytic enzyme of GTGE phage of Gordonia term, hereinafter designated Gter. The sequence SEQ ID No. 7 corresponds to the sequence SEQ ID No. 5 in which was inserted after the first methionine residue, the following amino acid sequence HHHHHHIEGR corresponding to a polyhistidine label (6x-HisTAG) followed by a site proteolytic cleavage for factor Xa, to facilitate purification of the protein. Advantageously, said first type of polypeptide according to the invention consists of the sequence SEQ ID No. 5 or the sequence SEQ ID No. 7, in particular of the sequence SEQ ID No. 5.

La séquence SEQ ID N°6 correspond à une séquence d'acides nucléiques codant l'enzyme de séquence SEQ ID N°5. La séquence SEQ ID N° 8 correspond à une séquence d'acides nucléiques codant l'enzyme de séquence SEQ ID N°7. L'invention a également pour objet un deuxième type d'agent de lyse d'au moins une souche de bactéries filamenteuses comprenant : - au moins un deuxième type de polypeptide selon l'invention choisi parmi les polypeptides suivants : e) polypeptide dont la séquence d'acides aminés est l'une des séquences SEQ ID N°9 ou SEQ ID N°11; f) polypeptide ayant une activité lytique et dont la séquence d'acides aminés présente au moins 80 % d'identité avec l'une des séquences SEQ ID N°9 ou SEQ ID N°11; g) polypeptide ayant une activité lytique et dont la séquence d'acides aminés est celle d'un fragment de l'une des séquences SEQ ID N°9 ou SEQ ID N°11; h) polypeptide comprenant au moins un polypeptide tel que défini en e), f) ou g) ; - et/ou au moins un deuxième type de polynucléotide selon l'invention dont la séquence d'acides nucléiques est l'une des séquences SEQ ID N°10 ou SEQ ID N°12. La séquence SEQ ID N°9 correspond à une séquence identifiée jusqu'à présent comme celle d'une putative N-acetyl muramoyl-L-alanine amidase de Nocardia farcinica, ci-après désignée NFar. La séquence SEQ ID N°11 correspond à la séquence SEQ ID N°9 dans laquelle a été insérée après le premier résidu méthionine, la séquence d'acides aminés suivante HHHHHHIEGR correspondant à une étiquette polyhistidine ( 6x-HisTAG ) suivie d'un site de clivage protéolytique pour le facteur Xa, afin de faciliter la purification de la protéine. Avantageusement, ledit deuxième type de polypeptide selon l'invention est constitué de la séquence SEQ ID N°9 ou de la séquence SEQ ID N°11, en particulier de la séquence SEQ ID N°9. La séquence SEQ ID N°10 correspond à une séquence d'acides nucléiques codant l'enzyme de séquence SEQ ID N°9. The sequence SEQ ID No. 6 corresponds to a nucleic acid sequence encoding the enzyme of sequence SEQ ID No. 5. The sequence SEQ ID No. 8 corresponds to a nucleic acid sequence encoding the enzyme of sequence SEQ ID No. 7. The subject of the invention is also a second type of agent for lysing at least one strain of filamentous bacteria comprising: at least one second type of polypeptide according to the invention chosen from the following polypeptides: e) polypeptide whose sequence amino acid is one of SEQ ID NO: 9 or SEQ ID NO: 11; f) a polypeptide having a lytic activity and whose amino acid sequence has at least 80% identity with one of the sequences SEQ ID No. 9 or SEQ ID No. 11; g) a polypeptide having a lytic activity and whose amino acid sequence is that of a fragment of one of the sequences SEQ ID No. 9 or SEQ ID No. 11; h) a polypeptide comprising at least one polypeptide as defined in e), f) or g); and / or at least one second type of polynucleotide according to the invention, the nucleic acid sequence of which is one of the sequences SEQ ID No. 10 or SEQ ID No. 12. The sequence SEQ ID No. 9 corresponds to a sequence identified hitherto as that of a putative N-acetyl muramoyl-L-alanine amidase of Nocardia farcinica, hereinafter referred to as NFar. The sequence SEQ ID No. 11 corresponds to the sequence SEQ ID No. 9 in which was inserted after the first methionine residue, the following amino acid sequence HHHHHHIEGR corresponding to a polyhistidine label (6x-HisTAG) followed by a site proteolytic cleavage for factor Xa, to facilitate purification of the protein. Advantageously, said second type of polypeptide according to the invention consists of the sequence SEQ ID No. 9 or the sequence SEQ ID No. 11, in particular of the sequence SEQ ID No. 9. The sequence SEQ ID NO: 10 corresponds to a nucleic acid sequence encoding the enzyme of sequence SEQ ID No. 9.

La séquence SEQ ID N° 12 correspond à une séquence d'acides nucléiques codant l'enzyme de séquence SEQ ID N°11. Le premier type d'agent de lyse selon l'invention peut comprendre en outre au moins un deuxième type de polypeptide selon l'invention et/ou au moins un deuxième type de polynucléotide selon l'invention. Avantageusement, dans les premier et deuxième types d'agents de lyse selon l'invention, les premier et deuxième types de polynucléotides selon l'invention sont compris dans un vecteur d'expression. Les vecteurs d'expression utilisables peuvent être sous toute forme appropriée selon l'application visée. Les inventeurs ont maintenant montré que les enzymes Gter et Nfar dans lesquelles a été insérée ou non une étiquette ( HHHHHHIEGR ) ont une activité lytique et en particulier ont la capacité de lyser au moins une souche de bactéries filamenteuses, notamment impliquées dans le moussage biologique. De telles enzymes sont donc particulièrement intéressantes pour lyser au moins une souche de bactéries filamenteuses, notamment impliquées dans le moussage biologique. Ainsi, l'invention a également pour objet l'utilisation non thérapeutique d'au moins un premier ou deuxième type de polypeptide selon l'invention et/ou d'au moins un premier ou deuxième type de polynucléotide selon l'invention, pour lyser au moins une souche de bactéries filamenteuses, en particulier une souche de bactéries filamenteuses impliquées dans le moussage biologique. Ces enzymes lytiques (lysines) Gter et Nfar, dans lesquelles a été insérée ou non une étiquette ( HHHHHHIEGR ), peuvent également être utilisées dans des compositions pour le traitement prophylactique et thérapeutique d'infections causées par des bactéries filamenteuses et en particulier des bactéries du genre Nocardia ou Gordonia. En effet, les bactéries des familles Nocardia et Gordonia sont des pathogènes opportunistes responsables d'infections d'origine pulmonaire et peuvent conduire à des infections systémiques ou à localisations secondaires. Elles sont aussi responsables de nocardioses sous-cutanées pouvant se produire d'emblée chez des sujets sains et succédant à des piqûres ou des blessures. Ainsi, ces enzymes lytiques peuvent être des alternatives aux antibiotiques conventionnels. Elles peuvent avoir des applications pour le nettoyage de plaies ou être utilisées en prévention lorsqu'elles sont appliquées sur des pansements. Ces enzymes lytiques peuvent également être utilisées pour le nettoyage de matériel médical et en particulier des cathéters afin d'éviter les infections. Enfin, ces enzymes lytiques Gter et Nfar peuvent avoir des applications dans l'hygiène dentaire pour le traitement et la prévention de maladies péridentaires, des caries et plaques dentaires dues à certaines bactéries incluant Actinomyces et Nocardia. Selon un autre aspect, l'invention a également pour objet un agent de prévention et/ou de lutte contre le moussage biologique impliquant au moins une souche de bactéries filamenteuses comprenant : - au moins une enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - au moins un organisme exprimant ladite enzyme ; et/ou - au moins un lysat bactérien comprenant ladite enzyme. Lesdits agents de prévention et/ou de lutte contre le moussage biologique selon l'invention présentent notamment les avantages suivants : - Ils sont efficaces et spécifiques d'au moins une souche de bactéries filamenteuses et préservent ainsi les autres microorganismes assurant éventuellement le traitement des eaux ; - Ils sont sans conséquences négatives sur la qualité des eaux traitées ; - Ils sont respectueux de l'environnement ; - Leur mise en oeuvre est simple, rapide et peu coûteuse en énergie. On entend par moussage biologique au sens de la présente invention, la formation de mousse biologique liée à la prolifération d'au moins une souche de bactéries filamenteuses. On entend par mousse biologique au sens de la présente invention, la mousse formée, liée à la prolifération d'au moins une souche de bactéries filamenteuses. On entend par lysat bactérien au sens de la présente invention, le produit de la lyse cellulaire bactérienne. Il est possible d'obtenir un lysat bactérien selon toute technique bien connue de l'Homme du Métier telle que par exemple par sonication, French press, ou encore en utilisant des tampons de lyse (tels que : 100mM KC1, 25mM Hepes pH 7.6, 0.1 mM EDTA, 12.5mM MgC12, 10% glycérol, 0.1% Nonidet P40, 0.5 mg/mL lysozyme). Lesdites enzymes capables de lyser au moins une souche de bactéries filamenteuses peuvent être des enzymes lytiques, en particulier des enzymes autolytiques encore dénommées lysines et autolysines respectivement. Les gènes codant lesdites enzymes peuvent être issus de génomes de bactériophages ou de micro-organismes, en particulier de génomes bactériens. The sequence SEQ ID NO: 12 corresponds to a nucleic acid sequence encoding the enzyme of sequence SEQ ID No. 11. The first type of lysing agent according to the invention may further comprise at least one second type of polypeptide according to the invention and / or at least one second type of polynucleotide according to the invention. Advantageously, in the first and second types of lysing agents according to the invention, the first and second types of polynucleotides according to the invention are included in an expression vector. The expression vectors that can be used can be in any form that is appropriate for the intended application. The inventors have now shown that the Gter and Nfar enzymes in which a label has been inserted or not (HHHHHHIEGR) have a lytic activity and in particular have the capacity to lyse at least one strain of filamentous bacteria, in particular involved in the biological foaming. Such enzymes are therefore particularly advantageous for lysing at least one strain of filamentous bacteria, in particular involved in the biological foaming. Thus, the subject of the invention is also the non-therapeutic use of at least a first or second type of polypeptide according to the invention and / or of at least a first or second type of polynucleotide according to the invention, for lysing at least one strain of filamentous bacteria, in particular a strain of filamentous bacteria involved in the biological foaming. These lytic enzymes (lysines) Gter and Nfar, in which has been inserted or not a label (HHHHHHIEGR), can also be used in compositions for the prophylactic and therapeutic treatment of infections caused by filamentous bacteria and in particular bacteria of the like Nocardia or Gordonia. In fact, the bacteria of the Nocardia and Gordonia families are opportunistic pathogens responsible for pulmonary infections and can lead to systemic infections or secondary localizations. They are also responsible for subcutaneous nocardiosis that can occur immediately in healthy subjects and succeeds to bites or injuries. Thus, these lytic enzymes may be alternatives to conventional antibiotics. They may have applications for cleaning wounds or be used in prevention when applied to dressings. These lytic enzymes can also be used for cleaning medical equipment and especially catheters to prevent infections. Finally, these lytic enzymes Gter and Nfar may have applications in dental hygiene for the treatment and prevention of peritoneal diseases, caries and dental plaque due to certain bacteria including Actinomyces and Nocardia. According to another aspect, the subject of the invention is also an agent for preventing and / or combating biological foaming involving at least one strain of filamentous bacteria comprising: at least one enzyme capable of lysing at least one strain of filamentous bacteria involved in organic foaming; and / or - at least one organism expressing said enzyme; and / or at least one bacterial lysate comprising said enzyme. The said agents for preventing and / or combatting the biological foaming according to the invention have the following advantages in particular: they are effective and specific for at least one strain of filamentous bacteria and thus preserve the other microorganisms which may provide the water treatment; ; - They have no negative impact on the quality of treated water; - They are respectful of the environment; - Their implementation is simple, fast and inexpensive in energy. For the purposes of the present invention, the term "biological foaming" refers to the formation of biological foam bound to the proliferation of at least one strain of filamentous bacteria. For the purposes of the present invention, the term "organic foam" means the foam formed, bound to the proliferation of at least one strain of filamentous bacteria. For the purposes of the present invention, bacterial lysate is understood to mean the product of bacterial cell lysis. It is possible to obtain a bacterial lysate according to any technique well known to those skilled in the art such as, for example, by sonication, French press, or else by using lysis buffers (such as: 100mM KC1, 25mM Hepes pH 7.6, 0.1mM EDTA, 12.5mM MgCl2, 10% glycerol, 0.1% Nonidet P40, 0.5mg / mL lysozyme). Said enzymes capable of lysing at least one strain of filamentous bacteria may be lytic enzymes, in particular autolytic enzymes, also called lysines and autolysins respectively. The genes encoding said enzymes may be derived from genomes of bacteriophages or microorganisms, in particular from bacterial genomes.

En particulier, lesdites enzymes ont la capacité de lyser non seulement la souche de bactéries filamenteuses dont elles sont issues (soit du génome bactérien de ladite souche, soit du génome d'un bactériophage infectant ladite souche), mais également d'autres souches impliquées dans le moussage biologique, notamment des souches appartenant au même ordre bactérien et en particulier des souches appartenant à l'espèce Nocardia amarae. Lesdites enzymes selon l'invention, capables de lyser au moins une souche de bactéries filamenteuses peuvent être identifiées par des procédés comprenant : - la sélection d'enzymes putatives ou déjà décrites capables de lyser au moins une souche de bactéries filamenteuses, par des études in silico et/ou bibliographiques suivie de tests de l'activité enzymatique recherchée, à partir des enzymes putatives ou décrites ainsi sélectionnées. Lesdites enzymes selon l'invention capables de lyser au moins une souche de bactéries filamenteuses peuvent également être identifiées sur la base de banques génomiques construites à partir d'échantillons de cultures bactériennes ou d'échantillons d'eaux à traiter, en particulier d'eaux usées ou de boues activées, ou encore de mousses biologiques, présentant au moins une souche de bactéries filamenteuses. Selon cette seconde approche, il est possible à partir d'échantillons de cultures bactériennes ou d'échantillons d'eaux à traiter, en particulier d'eaux usées ou de boues activées, ou encore de mousses biologiques, après induction ou non de cycle lytique de bactériophages (par exemple par la mitomycine) : - d'une part de construire une banque métagénomique et de la cribler pour l'activité enzymatique recherchée ; et - d'autre part d'isoler des bactériophages à partir de plages de lyse, de construire des banques génomiques des phages ainsi isolés et de les cribler pour l'activité enzymatique recherchée. L'activité enzymatique recherchée, à savoir la capacité de lyser au moins une souche de bactéries filamenteuses peut être déterminée par des tests bien connus de l'Homme du Métier. A titre d'exemple, on peut citer, l'utilisation d'un spectrophotomètre par mesure de la densité optique (à 600 nm avec une dilution d'une suspension bactérienne), ou l'observation microscopique associée à des colorations de la structure, morphologie des filaments ou encore l'utilisation de kits de viabilité bactériennes comme le kit LIVE/DEAD Bacterial Viability Kit ( BacLightTM) de chez Molecular Probes. Les tests enzymatiques peuvent être réalisés sur des échantillons de cultures bactériennes ou sur des échantillons d'eaux à traiter, en particulier d'eaux usées ou de boues activées, ou encore de mousses biologiques susceptibles de comprendre au moins une souche de bactéries filamenteuses cibles. La présente invention englobe les enzymes conformes à l'invention qui sont natives, synthétiques, hémi-synthétiques, recombinantes et leurs analogues. En particulier, ladite enzyme selon l'invention peut se présenter sous la forme d'une protéine de fusion (protéine chimérique) comprenant au moins un domaine enzymatique ayant la capacité de lyser au moins une souche de bactéries filamenteuses, ledit domaine étant lié de manière opérationnelle à au moins un autre polypeptide. Ledit autre polypeptide peut être par exemple une étiquette permettant le marquage de la protéine de fusion. Cette étiquette peut permettre la détection, la purification de la protéine de fusion et/ou l'immobilisation de la protéine de fusion sur un support. À titre d'exemple de telles étiquettes, on peut citer celles bien connues de l'Homme du Métier telles que GST, His-Tag, Tag-V5. La protéine de fusion comprenant une étiquette His-Tag pourra ainsi être avantageusement immobilisée et/ou purifiée sur un support comportant des cations divalents (Nickel, Cobalt, cuivre). Ledit autre polypeptide peut également comprendre un domaine de liaison à un substrat, favorisant ainsi l'immobilisation de la protéine de fusion sur un support comportant ledit substrat. Ainsi ledit second polypeptide peut comprendre un domaine de liaison au maltose ( Maltose Binding Protein ) qui permettra à la protéine de fusion d'être avantageusement immobilisée sur un support présentant des molécules de maltose. Par ailleurs, ledit autre polypeptide peut comprendre par exemple au moins un domaine enzymatique ayant la capacité de lyser au moins une souche de bactéries filamenteuses. Ainsi avantageusement, ladite enzyme selon l'invention peut se présenter sous la forme d'une protéine de fusion (protéine chimérique) comprenant plusieurs sites actifs, plusieurs domaines enzymatiques ayant la capacité de lyser différentes souches de bactéries filamenteuses. En particulier, ladite au moins une enzyme selon l'invention peut comprendre un polypeptide choisi parmi les polypeptides suivants : - ledit premier type de polypeptide selon l'invention tel que défini ci-dessus ; - ledit deuxième type de polypeptide selon l'invention tel que défini ci-dessus ; - un troisième type de polypeptide selon l'invention, ledit troisième type de polypeptide étant choisi parmi les polypeptides suivants : i) polypeptide dont la séquence d'acides aminés est l'une des séquences SEQ ID N°l ou SEQ ID N°3 ; j) polypeptide ayant une activité lytique et dont la séquence d'acides aminés présente au moins 80 %, de préférence au moins 85 %, encore plus préférentiellement au moins 90 % et de manière préférée entre toutes au moins 95 % d'identité avec l'une des séquences SEQ ID N°l ou SEQ ID N°3 ; k) polypeptide ayant une activité lytique et dont la séquence d'acides aminés est celle d'un fragment de l'une des séquences SEQ ID N°l ou SEQ ID N°3 ; 1) polypeptide comprenant au moins un polypeptide tel que défini en i), j) ou k). Avantageusement, ledit troisième type de polypeptide selon l'invention est constitué de la séquence SEQ ID N°l ou de la séquence SEQ ID N°3, en particulier de la séquence SEQ ID N°1. La séquence SEQ ID N°l correspond à la séquence d'une lysine du phage AV-1 d'Actinomyces viscosus, ci-après désignée Av-1. La séquence SEQ ID N°3 correspond à la séquence SEQ ID N°l dans laquelle a été insérée après le premier résidu méthionine, la séquence d'acides aminés suivante HHHHHHIEGR correspondant à une étiquette polyhistidine ( 6x-HisTAG ) suivie d'un site de clivage protéolytique pour le facteur Xa, afin de faciliter la purification de la protéine. De manière surprenante, les inventeurs ont mis en évidence que les trois enzymes Av-1, Gter et Nfar, dans lesquelles a été insérée ou non une étiquette ( HHHHHHIEGR ), ont la capacité de lyser la souche de bactéries filamenteuses dont elles sont issues (soit du génome bactérien de ladite souche, soit du génome du bactériophage infectant ladite souche), mais également d'autres souches impliquées dans le moussage biologique, en particulier des souches de bactéries filamenteuses appartenant aux familles Nocardiaceae, Gordoniaceae et au genre Microthrix et tout particulièrement des souches appartenant à l'espèce Nocardia amarae. En outre, les inventeurs ont montré que de manière inattendue, ces enzymes conservent leur activité dans des milieux aussi déstabilisants que des eaux à traiter, en particulier des eaux usées, des boues activées, ou encore des mousses biologiques. Les fragments des séquences SEQ ID N°1, SEQ ID N°3, SEQ ID N°5, SEQ ID N°7, SEQ ID N°9, SEQ ID N°11 ont des tailles minimales permettant de conserver l'activité lytique et en particulier de conserver la capacité de lyser au moins une souche de bactéries filamenteuses, de préférence impliquées dans le moussage biologique. En particulier, ladite enzyme selon l'invention comprend un des domaines enzymatiques des séquences SEQ ID N°1, SEQ ID N°5 et SEQ ID N°9 qui ont la capacité de lyser au moins une souche de bactéries filamenteuses. En particulier, ladite enzyme selon l'invention peut être une protéine de fusion comprenant au moins un des domaines enzymatiques des séquences SEQ ID N°1, SEQ ID N°5 et SEQ ID N°9 qui ont la capacité de lyser au moins une souche de bactéries filamenteuses. Avantageusement, ledit agent de prévention et/ou de lutte contre le moussage biologique selon l'invention peut comprendre au moins une enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; ladite au moins une enzyme comprenant un polypeptide choisi parmi les polypeptides suivants : - ledit premier type de polypeptide selon l'invention tel que défini ci-dessus ; - ledit deuxième type de polypeptide selon l'invention tel que défini ci-dessus ; - ledit troisième type de polypeptide selon l'invention tel que défini ci-dessus. Avantageusement, ledit agent de prévention et/ou de lutte contre le moussage biologique selon l'invention peut comprendre : i)- au moins une première enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - au moins un organisme exprimant ladite première enzyme ; et/ou - au moins un lysat bactérien comprenant ladite première enzyme ; ladite au moins une première enzyme comprenant un premier type de polypeptide selon l'invention tel que défini ci-dessus ; et ii)- au moins une deuxième enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - au moins un organisme exprimant ladite deuxième enzyme ; et/ou - au moins un lysat bactérien comprenant ladite deuxième enzyme ; ladite au moins une deuxième enzyme comprenant un deuxième type de polypeptide selon l'invention tel que défini ci-dessus ; et iii)- au moins une troisième enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - au moins un organisme exprimant ladite troisième enzyme ; et/ou - au moins un lysat bactérien comprenant ladite troisième enzyme ; ladite au moins une troisième enzyme comprenant un troisième type de polypeptide selon l'invention tel que défini ci-dessus. Avantageusement, ledit agent de prévention et/ou de lutte contre le moussage biologique selon l'invention peut comprendre : i)- au moins une première enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; ladite au moins une première enzyme comprenant un premier type de polypeptide selon l'invention tel que défini ci-dessus ; et ii)- au moins une deuxième enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; ladite au moins une deuxième enzyme comprenant un deuxième type de polypeptide selon l'invention tel que défini ci-dessus ; et iii)- au moins une troisième enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; ladite au moins une troisième enzyme comprenant un troisième type de polypeptide selon l'invention tel que défini ci-dessus. La mise en oeuvre de ces premier, deuxième et troisième types de polypeptides selon l'invention dans ledit agent de prévention et/ou de lutte contre le moussage biologique selon l'invention, présente l'avantage d'obtenir un large spectre d'activité vis-à-vis des souches de bactéries filamenteuses. Ledit organisme exprimant l'enzyme selon l'invention, peut être un microorganisme unicellulaire ou pluricellulaire. En particulier, ledit organisme exprimant l'enzyme peut être choisi parmi les bactéries et les champignons. In particular, said enzymes have the capacity to lyse not only the strain of filamentous bacteria from which they originate (either from the bacterial genome of said strain, or from the genome of a bacteriophage infecting said strain), but also from other strains involved in organic foaming, including strains belonging to the same bacterial order and in particular strains belonging to the species Nocardia amarae. Said enzymes according to the invention, capable of lysing at least one strain of filamentous bacteria can be identified by methods comprising: - the selection of putative or already described enzymes capable of lysing at least one strain of filamentous bacteria, by means of studies in silico and / or bibliographic followed by tests of the desired enzymatic activity, from the putative or described enzymes thus selected. Said enzymes according to the invention capable of lysing at least one strain of filamentous bacteria can also be identified on the basis of genomic libraries constructed from samples of bacterial cultures or samples of water to be treated, in particular water or activated sludge, or organic foams, having at least one strain of filamentous bacteria. According to this second approach, it is possible from samples of bacterial cultures or samples of water to be treated, in particular wastewater or activated sludge, or even biological foams, after induction or not of a lytic cycle. bacteriophages (for example by mitomycin): on the one hand, to construct a metagenomic library and to screen it for the desired enzymatic activity; and on the other hand to isolate bacteriophages from lysis plaques, to construct genomic libraries of the phages thus isolated and to screen them for the desired enzymatic activity. The desired enzymatic activity, namely the ability to lyse at least one strain of filamentous bacteria can be determined by tests well known to those skilled in the art. By way of example, mention may be made of the use of a spectrophotometer by measuring the optical density (at 600 nm with a dilution of a bacterial suspension), or the microscopic observation associated with colorations of the structure, morphology of the filaments or the use of bacterial viability kits such as the kit LIVE / DEAD Bacterial Viability Kit (BacLightTM) from Molecular Probes. The enzymatic tests can be carried out on samples of bacterial cultures or on samples of water to be treated, in particular wastewater or activated sludge, or organic foams capable of comprising at least one strain of target filamentous bacteria. The present invention encompasses the enzymes according to the invention which are native, synthetic, semisynthetic, recombinant and their analogues. In particular, said enzyme according to the invention may be in the form of a fusion protein (chimeric protein) comprising at least one enzymatic domain having the capacity to lyse at least one strain of filamentous bacteria, said domain being linked in a manner operable to at least one other polypeptide. Said other polypeptide may for example be a label allowing the labeling of the fusion protein. This tag may allow detection, purification of the fusion protein and / or immobilization of the fusion protein on a support. Examples of such labels include those well known to those skilled in the art such as GST, His-Tag, Tag-V5. The fusion protein comprising a His-Tag tag can thus be advantageously immobilized and / or purified on a support comprising divalent cations (nickel, cobalt, copper). Said other polypeptide may also comprise a substrate binding domain, thus promoting the immobilization of the fusion protein on a support comprising said substrate. Thus said second polypeptide may comprise a maltose binding domain (Maltose Binding Protein) which will allow the fusion protein to be advantageously immobilized on a support having maltose molecules. Moreover, said other polypeptide may comprise, for example, at least one enzymatic domain having the capacity to lyse at least one strain of filamentous bacteria. Thus, advantageously, said enzyme according to the invention can be in the form of a fusion protein (chimeric protein) comprising several active sites, several enzyme domains having the ability to lyse different strains of filamentous bacteria. In particular, said at least one enzyme according to the invention may comprise a polypeptide chosen from the following polypeptides: said first type of polypeptide according to the invention as defined above; said second type of polypeptide according to the invention as defined above; a third type of polypeptide according to the invention, said third type of polypeptide being chosen from the following polypeptides: i) polypeptide whose amino acid sequence is one of the sequences SEQ ID No. 1 or SEQ ID No. 3 ; j) a polypeptide having a lytic activity and whose amino acid sequence has at least 80%, preferably at least 85%, even more preferably at least 90% and most preferably at least 95% identity with one of the sequences SEQ ID No. 1 or SEQ ID No. 3; k) a polypeptide having a lytic activity and whose amino acid sequence is that of a fragment of one of the sequences SEQ ID No. 1 or SEQ ID No. 3; 1) a polypeptide comprising at least one polypeptide as defined in i), j) or k). Advantageously, said third type of polypeptide according to the invention consists of the sequence SEQ ID No. 1 or the sequence SEQ ID No. 3, in particular of the sequence SEQ ID No. 1. The sequence SEQ ID No. 1 corresponds to the sequence of a lysine of the Actinomyces viscosus AV-1 phage, hereinafter designated Av-1. The sequence SEQ ID No. 3 corresponds to the sequence SEQ ID No. 1 in which was inserted after the first methionine residue, the following amino acid sequence HHHHHHIEGR corresponding to a polyhistidine label (6x-HisTAG) followed by a site proteolytic cleavage for factor Xa, to facilitate purification of the protein. Surprisingly, the inventors have demonstrated that the three enzymes Av-1, Gter and Nfar, in which a label has been inserted or not (HHHHHHIEGR), have the capacity to lyse the strain of filamentous bacteria from which they originate ( either the bacterial genome of said strain or the genome of the bacteriophage infecting said strain), but also other strains involved in the biological foaming, in particular strains of filamentous bacteria belonging to the families Nocardiaceae, Gordoniaceae and genus Microthrix and especially strains belonging to the species Nocardia amarae. In addition, the inventors have shown that, unexpectedly, these enzymes retain their activity in environments as destabilizing as water to be treated, in particular wastewater, activated sludge, or organic foams. The fragments of the sequences SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 have minimum sizes making it possible to retain the lytic activity. and in particular to retain the ability to lyse at least one strain of filamentous bacteria, preferably involved in the biological foaming. In particular, said enzyme according to the invention comprises one of the enzymatic domains of the sequences SEQ ID No. 1, SEQ ID No. 5 and SEQ ID No. 9 which have the capacity to lyse at least one strain of filamentous bacteria. In particular, said enzyme according to the invention may be a fusion protein comprising at least one of the enzymatic domains of the sequences SEQ ID No. 1, SEQ ID No. 5 and SEQ ID No. 9 that have the capacity to lyse at least one strain of filamentous bacteria. Advantageously, said agent for preventing and / or combating biological foaming according to the invention may comprise at least one enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; said at least one enzyme comprising a polypeptide selected from the following polypeptides: said first type of polypeptide according to the invention as defined above; said second type of polypeptide according to the invention as defined above; said third type of polypeptide according to the invention as defined above. Advantageously, said agent for preventing and / or combating biological foaming according to the invention may comprise: i) - at least one first enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; and / or - at least one organism expressing said first enzyme; and / or at least one bacterial lysate comprising said first enzyme; said at least one first enzyme comprising a first type of polypeptide according to the invention as defined above; and ii) - at least one second enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; and / or - at least one organism expressing said second enzyme; and / or - at least one bacterial lysate comprising said second enzyme; said at least one second enzyme comprising a second type of polypeptide according to the invention as defined above; and iii) - at least one third enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; and / or - at least one organism expressing said third enzyme; and / or at least one bacterial lysate comprising said third enzyme; said at least one third enzyme comprising a third type of polypeptide according to the invention as defined above. Advantageously, said agent for preventing and / or combating biological foaming according to the invention may comprise: i) - at least one first enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; said at least one first enzyme comprising a first type of polypeptide according to the invention as defined above; and ii) - at least one second enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; said at least one second enzyme comprising a second type of polypeptide according to the invention as defined above; and iii) - at least one third enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; said at least one third enzyme comprising a third type of polypeptide according to the invention as defined above. The use of these first, second and third types of polypeptides according to the invention in the said agent for preventing and / or preventing biological foaming according to the invention has the advantage of obtaining a broad spectrum of activity. against strains of filamentous bacteria. Said organism expressing the enzyme according to the invention may be a unicellular or multicellular microorganism. In particular, said organism expressing the enzyme may be chosen from bacteria and fungi.

En particulier, ledit organisme exprimant l'enzyme est un microorganisme capable de dégrader au moins partiellement, les substances organiques présentes dans les eaux à traiter ; l'utilisation d'un tel microorganisme permet d'optimiser le traitement des eaux. Lesdites eaux à traiter incluent notamment : - les eaux usées ; - les eaux usées à tous les stades d'épuration et au stade post-épuration ; - les eaux destinées à être traitées en vue de leur potabilisation telles que les eaux de surface, les eaux karstiques, les eaux souterraines, l'eau de mer ; - les eaux à tous les stades de potabilisation et au stade post-potabilisation. On entend par bactérie filamenteuse au sens de la présente invention, toute bactérie capable de former un filament bactérien. Un filament bactérien est une colonie de cellules qui, après division cellulaire, ne se séparent pas. Cette colonie croît selon un axe unique ou ramifié, formant ainsi un filament. L'identification des bactéries filamenteuses repose sur des critères morphologiques associés le plus souvent à des colorations (Eikelboom, 1975) et/ou sur des homologies de séquences phylogénétiques (basé par exemple sur l'homologie de séquences de l'ADN 16S). En particulier, ladite souche de bactéries filamenteuses peut être incluse dans le groupe comprenant les souches de bactéries de l'ordre des Actinomycetales. En particulier, ladite souche de bactéries filamenteuses peut être incluse dans le groupe comprenant : - les souches de bactéries de la famille des Nocardiaceae; - les souches de bactéries de la famille des Gordoniaceae; - les souches de bactéries de la famille incluant le genre Microthrix ; - les souches de bactéries de la famille incluant le type d'Eikelboom 0675 ; - les souches de bactéries de la famille incluant le type d'Eikelboom 0581. En particulier, ladite souche de bactéries filamenteuses peut être incluse dans le groupe comprenant : - les souches de bactéries du genre Nocardia ; - les souches de bactéries du genre Gordonia, - les souches de bactéries du genre Microthrix ; - les souches de bactéries du genre incluant le type d'Eikelboom 0675 ; - les souches de bactéries du genre incluant le type d'Eikelboom 0581. In particular, said organism expressing the enzyme is a microorganism capable of degrading at least partially the organic substances present in the water to be treated; the use of such a microorganism optimizes water treatment. Said waters to be treated include in particular: - wastewater; - wastewater at all stages of treatment and at the post-treatment stage; - water intended to be treated for the purpose of purification, such as surface water, karstic waters, groundwater, seawater; - water at all stages of potabilisation and the post-potabilisation stage. For the purposes of the present invention, the term "filamentous bacterium" means any bacterium capable of forming a bacterial filament. A bacterial filament is a colony of cells that, after cell division, do not separate. This colony grows along a single or branched axis, forming a filament. The identification of filamentous bacteria is based on morphological criteria most often associated with staining (Eikelboom, 1975) and / or on phylogenetic sequence homologies (based, for example, on the homology of 16S DNA sequences). In particular, said strain of filamentous bacteria may be included in the group comprising bacterial strains of the order Actinomycetales. In particular, said strain of filamentous bacteria may be included in the group comprising: strains of bacteria of the family Nocardiaceae; - strains of bacteria of the family Gordoniaceae; strains of bacteria of the family including genus Microthrix; - strains of bacteria of the family including the type of Eikelboom 0675; strains of bacteria of the family including the type of Eikelboom 0581. In particular, said strain of filamentous bacteria may be included in the group comprising: strains of bacteria of the genus Nocardia; strains of bacteria of the genus Gordonia; strains of bacteria of the genus Microthrix; strains of bacteria of the genus including the type of Eikelboom 0675; strains of bacteria of the genus including the type of Eikelboom 0581.

Plus particulièrement, ladite souche de bactéries filamenteuses peut être incluse dans le groupe comprenant : - les souches de bactéries des espèces Nocardia farcinica, Nocardia formes ; - les souches de bactéries des espèces Gordonia terme, Gordonia amarae ; - les souches de bactéries de l'espèce Microthrix parvicella ; - les souches de bactéries du type d'Eikelboom 0675 ; - les souches de bactéries du type d'Eikelboom 0581. Dans ledit agent de prévention et/ou de lutte contre le moussage biologique selon l'invention, ladite au moins une enzyme et/ou ledit au moins un organisme exprimant l'enzyme selon l'invention peuvent être immobilisés sur un support. L'utilisation d'un support présente notamment les avantages de protéger les enzymes de la biodégradation par des protéases ou des micro-organismes susceptibles d'être présents dans les eaux. L'utilisation d'un support est donc particulièrement intéressante dans le cas du traitement biologique des eaux tels que les procédés à boues activées mettant en oeuvre des micro-organismes. En outre l'immobilisation sur un support permet de limiter la dénaturation et/ou l'inactivation de l'enzyme qui peut être due à des variations de pH, des températures élevées, des agents dénaturants, des métaux lourds, des acides gras ou encore des sels de biles. L'utilisation d'un support peut également avoir l'avantage de permettre la récupération de l'enzyme, du système d'expression selon l'invention après usage. La stabilité sur le support de l'enzyme et/ou de l'organisme exprimant ladite enzyme selon l'invention peut en outre être améliorée en modifiant son microenvironnement, ce qui peut être réalisé : - en bloquant les groupements chimiques restés libres sur le support après immobilisation de l'enzyme ou du système d'expression; - en greffant à proximité de l'enzyme ou du système d'expression des macromolécules hydrophiles ; - en immobilisant l'enzyme sur le support via un espaceur. Ainsi, l'immobilisation de l'enzyme sur le support peut être directe ou indirecte via un espaceur (lieur, linker ). À titre d'exemples d'espaceurs utilisables on peut citer l'aldéhyde dextran, le PEG diamine, l'amino dextran, l'albumine et l'acide 6 amino caproique. More particularly, said strain of filamentous bacteria may be included in the group comprising: strains of bacteria of the species Nocardia farcinica, Nocardia forms; - strains of bacteria of the species Gordonia term, Gordonia amarae; strains of bacteria of the species Microthrix parvicella; strains of bacteria of the type of Eikelboom 0675; strain of bacteria of the Eikelboom type 0581. In said agent for preventing and / or fighting against the biological foaming according to the invention, said at least one enzyme and / or said at least one organism expressing the enzyme according to the invention. invention can be immobilized on a support. The use of a support has the particular advantages of protecting the enzymes from biodegradation by proteases or microorganisms that may be present in the water. The use of a support is therefore particularly advantageous in the case of biological treatment of water such as activated sludge processes using microorganisms. In addition, immobilization on a support makes it possible to limit the denaturation and / or the inactivation of the enzyme, which may be due to pH variations, high temperatures, denaturants, heavy metals, fatty acids or salts of biles. The use of a support may also have the advantage of allowing the recovery of the enzyme, the expression system according to the invention after use. The stability on the support of the enzyme and / or the organism expressing said enzyme according to the invention can be further improved by modifying its microenvironment, which can be achieved by: - blocking the chemical groups left free on the support after immobilization of the enzyme or expression system; by grafting hydrophilic macromolecules near the enzyme or the expression system; by immobilizing the enzyme on the support via a spacer. Thus, the immobilization of the enzyme on the support can be direct or indirect via a spacer (linker, linker). Examples of usable spacers include aldehyde dextran, PEG diamine, amino dextran, albumin and 6 amino-caproic acid.

L'immobilisation de l'enzyme ou du système d'expression de ladite enzyme sur le support peut être réalisée selon toute technique bien connue de l'Homme du métier telle que par liaison covalente, par adsorption, par greffage, par cross-linking covalent avec des réactifs poly-fonctionnels ou encore par un système ligand-récepteur. L'immobilisation par adsorption présente l'avantage d'être un procédé simple et peu coûteux, mais repose sur des liaisons faibles. Il est toutefois possible d'éviter les problèmes de désorption en réalisant un cross-linking , au glutaraldéhyde par exemple, après l'adsorption (Greenberg et Mahoney, 1981, Proc. Biochem., Feb/March : 2-8). L'immobilisation covalente présente l'avantage, lorsqu'elle implique des groupements fonctionnels situés à l'écart du site actif de l'enzyme, d'obtenir une meilleure activité spécifique et un meilleur rendement que lors de l'immobilisation par adsorption. Il existe en outre des méthodes permettant de choisir les groupements impliqués dans la liaison au support (Cano et al., 2006, J. Membrane Sci., 280(1-2) :383-388). En outre, cette technique permet l'utilisation d'espaceurs (lieurs, linkers ) permettant de créer un micro environnement hydrophile et ainsi d'optimiser la stabilité et l'activité enzymatique. L'immobilisation par un système ligand-récepteur repose sur l'affinité d'un récepteur pour un ligand placé sur le support. Cette technique peut permettre également la purification de l'enzyme. À titre d'exemples, il est possible d'utiliser le système streptavidine-biotine , dans lequel l'enzyme est biotynilée in vitro et la streptavidine est greffée sur le support. On peut également citer les systèmes maltose et His-Tag décrits ci-dessus. Ce système ligand-récepteur permet d'améliorer l'activité enzymatique et d'augmenter la durée de vie de l'enzyme par rapport aux techniques d'immobilisation par adsorption ou covalente. Ledit support selon l'invention peut présenter au moins une des caractéristiques suivantes : - une densité inférieure à celle desdites eaux et le cas échéant à celle des boues activées, en particulier une densité inférieure à 1 ; - des pores ayant un diamètre au moins égal au diamètre des bactéries filamenteuses, en particulier au moins égal à 10 m, plus particulièrement au moins égal à 20 m et tout particulièrement au moins égal à 50 m ; - non biodégradable, en particulier non dégradable par les micro-organismes présents dans lesdites eaux ; - insoluble dans l'eau ; - une résistance mécanique suffisante pour permettre une manipulation aisée ; - une taille suffisante pour permettre sa récupération après usage ; - des propriétés géométriques conduisant à une surface disponible supérieure à 1500 m2/m3. En particulier, ledit support peut être adapté afin de permettre son utilisation en surface des bassins de traitements des eaux, où sont localisées les mousses biologiques impliquant au moins une souche de bactéries filamenteuses. En particulier, ledit support peut comprendre au moins un matériau choisi dans le groupe comprenant : l'argile frittée en particulier l'argile frittée expansée, le polystyrène en particulier le polystyrène expansé, le polyuréthane, l'alumine, le verre, le nylon, le polyester, la laine de roche, le silicate, le liège, la céramique, la polysulfone, les copolymères d'alcool vinylique et de vinyl-butyral, les polymères de polyamine, polyazetidine, polyphénylalaninelysine, polyéther-oléfinique. Certains matériaux peuvent être utilisés pour une immobilisation directe. Dans ce cas, ledit support peut comprendre au moins un matériau choisi dans le groupe comprenant l'argile frittée expansée, le polystyrène expansé, le polyuréthane, l'alumine, le verre, le nylon, le polyester, la laine de roche, le silicate, le liège, la céramique, le polysulfone, les copolymères d'alcool vinylique et de vinyl-butyral, de préférence l'argile frittée expansée, le polystyrène expansé, le polyuréthane, l'alumine, le verre, le nylon et le liège. D'autres matériaux peuvent être utilisés pour une immobilisation indirecte. Dans ce cas, ledit support peut comprendre un premier matériau recouvert d'un second matériau comprenant des polymères. Ainsi, l'enzyme ou le système d'expression selon l'invention peuvent être immobilisés sur au moins un polymère choisi dans le groupe comprenant les polymères de polyamine (notamment polyéthylène-imine), polyazetidine, polyphénylalaninelysine, polyéther-oléfinique, polysulfone, ledit au moins un polymère étant déposé sur au moins un matériau choisi dans le groupe comprenant le polystyrène, l'alumine, le verre, le nylon, le polyester. Ledit support peut être sous toute forme adaptée à l'application visée. En particulier, ledit support peut être un support solide sous forme sphérique telle qu'une bille, une balle, un granulé, de préférence de taille supérieure à 5 mm et de densité inférieure à 1, ou sous forme d'une bâche telles qu'une membrane, une fibre, un tissu. The immobilization of the enzyme or of the expression system of said enzyme on the support can be carried out according to any technique well known to those skilled in the art such as by covalent bonding, by adsorption, by grafting, by covalent cross-linking. with polyfunctional reagents or with a ligand-receptor system. Immobilization by adsorption has the advantage of being a simple and inexpensive process, but relies on weak bonds. However, it is possible to avoid desorption problems by cross-linking, for example glutaraldehyde, after adsorption (Greenberg and Mahoney, 1981, Proc Biochem., Feb / March: 2-8). Covalent immobilization has the advantage, when it involves functional groups located away from the active site of the enzyme, to obtain a better specific activity and a better yield than during immobilization by adsorption. In addition, there are methods for selecting the groups involved in the binding to the support (Cano et al., 2006, J. Membrane Sci., 280 (1-2): 383-388). In addition, this technique allows the use of spacers (linkers, linkers) to create a hydrophilic micro environment and thus optimize stability and enzymatic activity. Immobilization by a ligand-receptor system relies on the affinity of a receptor for a ligand placed on the support. This technique can also allow the purification of the enzyme. As examples, it is possible to use the streptavidin-biotin system, in which the enzyme is biotinylated in vitro and the streptavidin is grafted onto the support. Mention may also be made of the maltose and His-Tag systems described above. This ligand-receptor system makes it possible to improve the enzymatic activity and to increase the lifetime of the enzyme relative to adsorption or covalent immobilization techniques. Said support according to the invention may have at least one of the following characteristics: a density lower than that of said water and, if appropriate, that of activated sludge, in particular a density of less than 1; pores having a diameter at least equal to the diameter of the filamentous bacteria, in particular at least 10 m, more particularly at least 20 m and more particularly at least 50 m; - not biodegradable, in particular not degradable by the micro-organisms present in said waters; - insoluble in water; a sufficient mechanical strength to allow easy handling; - sufficient size to allow recovery after use; geometric properties leading to an available surface area greater than 1500 m2 / m3. In particular, said support can be adapted to allow its use on the surface of the water treatment basins, where are located the biological foams involving at least one strain of filamentous bacteria. In particular, said support may comprise at least one material chosen from the group comprising: sintered clay, in particular expanded sintered clay, polystyrene, in particular expanded polystyrene, polyurethane, alumina, glass, nylon, polyester, rockwool, silicate, cork, ceramic, polysulfone, copolymers of vinyl alcohol and vinyl-butyral, polyamine polymers, polyazetidine, polyphenylalaninelysine, polyether-olefinic polymers. Some materials may be used for direct immobilization. In this case, said support may comprise at least one material chosen from the group comprising expanded sintered clay, expanded polystyrene, polyurethane, alumina, glass, nylon, polyester, rockwool, silicate , cork, ceramic, polysulfone, copolymers of vinyl alcohol and vinyl-butyral, preferably expanded sintered clay, expanded polystyrene, polyurethane, alumina, glass, nylon and cork. Other materials may be used for indirect immobilization. In this case, said support may comprise a first material covered with a second material comprising polymers. Thus, the enzyme or the expression system according to the invention may be immobilized on at least one polymer chosen from the group comprising polyamine (especially polyethyleneimine), polyazetidine, polyphenylalanine, polyether-olefinic and polysulfone polymers, at least one polymer being deposited on at least one material selected from the group consisting of polystyrene, alumina, glass, nylon, polyester. Said support may be in any form adapted to the intended application. In particular, said support may be a solid support in spherical form such as a ball, a bale, a granule, preferably greater than 5 mm in size and with a density of less than 1, or in the form of a tarpaulin such as a membrane, a fiber, a fabric.

Selon un mode de réalisation particulier dudit agent de prévention et/ou de lutte contre le moussage biologique selon l'invention, ladite au moins une enzyme et/ou ledit au moins un organisme exprimant l'enzyme et/ou ledit au moins un lysat bactérien selon l'invention peuvent être lyophilisés. En effet, les inventeurs ont montré que les trois enzymes Av-1, Gter et Nfar dans lesquelles a été insérée ou non une étiquette ( HHHHHHIEGR ), conservent leur activité lytique même lorsqu'elles ont été lyophilisées. La forme lyophilisée présente les avantages de stabiliser l'enzyme et de réduire les volumes d'enzyme et/ou dudit organisme exprimant l'enzyme et/ou dudit lysat bactérien à utiliser. Selon un autre aspect, l'invention a pour objet un kit de prévention et/ou de lutte contre le moussage biologique impliquant au moins une souche de bactéries filamenteuses comprenant : - au moins un agent de prévention et/ou de lutte contre le moussage biologique impliquant au moins une souche de bactéries filamenteuses selon l'invention, ledit agent étant défini ci-dessus ; et - au moins un support apte à immobiliser ledit agent. Ledit support peut être tout support tel que défini ci-dessus. La présente invention a également pour objet l'utilisation d'au moins une enzyme selon l'invention capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - d'au moins un organisme exprimant ladite enzyme ; et/ou - d'au moins un lysat bactérien comprenant ladite enzyme ; en tant qu'agent de prévention et/ou de lutte contre le moussage biologique impliquant au moins une souche de bactéries filamenteuses. Ladite au moins une enzyme selon l'invention est telle que définie ci-dessus. En particulier, ladite au moins une enzyme peut comprendre un polypeptide choisi parmi les polypeptides suivants: - ledit premier type de polypeptide selon l'invention tel que défini ci-dessus ; - ledit deuxième type de polypeptide selon l'invention tel que défini ci-dessus ; - ledit troisième type de polypeptide selon l'invention tel que défini ci-dessus. L'invention a également pour objet un procédé de traitement d'eaux incluant une étape de prévention et/ou de lutte contre le moussage biologique desdites eaux, ledit moussage biologique impliquant au moins une souche de bactéries filamenteuses, ladite étape comprenant la mise en contact desdites eaux avec au moins un agent de prévention et/ou de lutte contre au moins une souche de bactéries filamenteuses selon l'invention ; ledit agent selon l'invention étant tel que défini ci-dessus. Lesdites eaux dans les procédés de traitement d'eaux selon l'invention incluent notamment : - les eaux usées ; - les eaux usées à tous les stades d'épuration et au stade post-épuration ; - les eaux destinées à être traitées en vue de leur potabilisation telles que les eaux de surface, les eaux karstiques, les eaux souterraines, l'eau de mer ; - les eaux à tous les stades de potabilisation et au stade post-potabilisation. Ainsi, dans les procédés de traitement d'eaux selon l'invention, ledit agent de prévention et/ou de lutte contre au moins une souche de bactéries filamenteuses peut être mis en contact avec les eaux à traiter, en particulier les eaux usées, les boues activées ou encore les mousses biologiques. Lesdits procédés de traitement d'eaux selon l'invention peuvent être variés et inclure à titre non limitatif des biofiltres, des lits bactériens, des bassins à alimentation séquencée, des membranes immergées, un lagunage naturel ou encore des boues activées. En particulier, lesdits procédés de traitement d'eaux selon l'invention mettent en oeuvre des boues activées. En particulier, dans les procédés de traitement d'eaux selon l'invention, ladite enzyme, ledit organisme exprimant ladite enzyme, ledit lysat bactérien sont tels que définis ci-dessus et peuvent être sous toute forme appropriée à l'application visée. Avantageusement, ladite enzyme, ledit organisme exprimant ladite enzyme ou ledit lysat bactérien comprenant ladite enzyme sont sous forme lyophilisée ; leur mise en contact avec lesdites eaux permettant leur hydratation. La lyophilisation présente les avantages de stabiliser l'enzyme et de réduire les volumes d'enzymes, dudit organisme exprimant ladite enzyme et dudit lysat bactérien selon l'invention à utiliser dans les procédés de traitement d'eaux selon l'invention. According to a particular embodiment of said agent for preventing and / or combating biological foaming according to the invention, said at least one enzyme and / or said at least one organism expressing the enzyme and / or said at least one bacterial lysate according to the invention can be lyophilized. Indeed, the inventors have shown that the three enzymes Av-1, Gter and Nfar in which has been inserted or not a label (HHHHHHIEGR), retain their lytic activity even when they have been lyophilized. The lyophilized form has the advantages of stabilizing the enzyme and reducing the volumes of enzyme and / or said organism expressing the enzyme and / or said bacterial lysate to be used. According to another aspect, the subject of the invention is a kit for preventing and / or combating biological foaming involving at least one strain of filamentous bacteria comprising: at least one agent for preventing and / or combating biological foaming involving at least one strain of filamentous bacteria according to the invention, said agent being defined above; and - at least one support capable of immobilizing said agent. Said support can be any support as defined above. The present invention also relates to the use of at least one enzyme according to the invention capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; and / or - at least one organism expressing said enzyme; and / or - at least one bacterial lysate comprising said enzyme; as an agent for preventing and / or combating biological foaming involving at least one strain of filamentous bacteria. Said at least one enzyme according to the invention is as defined above. In particular, said at least one enzyme may comprise a polypeptide chosen from the following polypeptides: said first type of polypeptide according to the invention as defined above; said second type of polypeptide according to the invention as defined above; said third type of polypeptide according to the invention as defined above. The invention also relates to a water treatment method including a step of preventing and / or fighting against the biological foaming of said water, said biological foaming involving at least one strain of filamentous bacteria, said step comprising contacting said waters with at least one agent for preventing and / or controlling at least one strain of filamentous bacteria according to the invention; said agent according to the invention being as defined above. Said waters in the water treatment methods according to the invention include in particular: wastewater; - wastewater at all stages of treatment and at the post-treatment stage; - water intended to be treated for the purpose of purification, such as surface water, karstic waters, groundwater, seawater; - water at all stages of potabilisation and the post-potabilisation stage. Thus, in the water treatment methods according to the invention, said agent for preventing and / or controlling at least one strain of filamentous bacteria may be brought into contact with the waters to be treated, in particular the wastewater, the activated sludge or organic foams. Said water treatment methods according to the invention may be varied and include, without limitation, biofilters, bacterial beds, sequenced feed tanks, submerged membranes, natural lagooning or activated sludge. In particular, said water treatment methods according to the invention use activated sludge. In particular, in the water treatment methods according to the invention, said enzyme, said organism expressing said enzyme, said bacterial lysate are as defined above and may be in any form suitable for the intended application. Advantageously, said enzyme, said organism expressing said enzyme or said bacterial lysate comprising said enzyme are in freeze-dried form; putting them in contact with said waters for hydration. Lyophilization has the advantages of stabilizing the enzyme and reducing the volumes of enzymes, said body expressing said enzyme and said bacterial lysate according to the invention for use in the water treatment methods according to the invention.

De manière avantageuse, les procédés selon l'invention peuvent mettre en oeuvre au moins un des domaines, de préférence l'ensemble des domaines enzymatiques des séquences SEQ ID N°1, SEQ ID N°5 et SEQ ID N°9 qui ont la capacité de lyser au moins une souche de bactéries filamenteuses. La mise en oeuvre de l'ensemble desdits domaines enzymatiques des séquences SEQ ID N°1, SEQ ID N°5 et SEQ ID N°9 présente l'avantage d'obtenir un large spectre d'activité vis-à-vis des souches de bactéries filamenteuses. Selon un mode de réalisation particulier des procédés de traitement d'eaux selon l'invention, ledit agent est immobilisé sur un support. Ledit support peut être défini tel que ci-dessus. Les méthodes d'immobilisation utilisables peuvent être celles définies ci-dessus. Les avantages liés à l'utilisation d'un support dans les procédés de traitements des eaux selon l'invention sont tels que décrits ci-dessus. Lesdits procédés de traitement d'eaux selon l'invention peuvent comprendre en outre l'étape suivante : - la séparation de ladite enzyme, dudit organisme exprimant l'enzyme et/ou dudit lysat bactérien et desdites eaux. Une telle séparation peut être effectuée par toute technique bien connue de l'Homme du Métier telle que par exemple par immunoprécipitation. Lorsque ladite enzyme et/ou ledit organisme exprimant l'enzyme est immobilisé sur un support, lesdits procédés de traitement d'eaux selon l'invention peuvent comprendre en outre l'étape suivante : - la séparation dudit support et desdites eaux. Selon un autre aspect, l'enzyme, ledit organisme exprimant ladite enzyme et ledit lysat bactérien comprenant ladite enzyme selon l'invention peuvent être utiles pour détecter au moins une souche de bactéries filamenteuses dans des échantillons d'eaux. Ainsi, selon un mode de réalisation particulier, les procédés de traitement d'eaux selon l'invention peuvent comprendre une étape de détection d'au moins une souche de bactéries filamenteuses, ladite étape comprenant les phases suivantes : - la mise en contact d'un échantillon desdites eaux susceptible de comprendre au moins une souche de bactéries filamenteuses avec ledit au moins un agent de prévention et/ou de lutte contre au moins une souche de bactéries filamenteuses selon l'invention ; et - la détection des bactéries lysées et/ou la détection de la lyse des bactéries avec au moins un système de détection approprié. Cette étape de détection d'au moins une souche de bactéries filamenteuses peut être mise en oeuvre avantageusement avant l'étape de lutte contre le moussage biologique dans les procédés de traitement d'eaux selon l'invention. Ainsi, les agents de lutte contre le moussage biologique selon l'invention, peuvent être choisis pour cibler spécifiquement au moins ladite souche de bactéries filamenteuses ainsi détectée. Cette étape permet alors d'optimiser la lutte contre le moussage biologique. À titre d'exemple de système de détection approprié à la détection des bactéries lysées, on peut citer des marqueurs d'ADN fluorescents tels que le Syto 9 (marqueur des bactéries intactes et lysées), l'iodure de propidium (marqueur des bactéries lysées) ou encore la technique d'EMA-PCR tel que décrit dans l'article de Rudi K et al. (2005) (Rudi K, Moen B, Dromtorp SM, Holck AL. Use of ethidium monoazide and PCR in combination for quantification of viable and^dead cells in complex samples. Appl Environ Microbiol. 2005 Feb;71(2):1018-24). À titre d'exemple de système de détection approprié à la détection de la lyse des bactéries, on peut citer l'ATPmétrie tel que décrit dans l'article de Schuch et al. (Schuch R, Nelson D, Fischetti VA.A bacteriolytic agent that detects and kills Bacillus anthracis. Nature. 2002 Aug 22;418(6900):884-9). La présente invention a également pour objet un kit de détection d'au moins une souche de bactéries filamenteuses comprenant : - une enzyme capable de lyser au moins une souche de bactéries filamenteuses ; et/ou - un système d'expression de ladite enzyme ; et/ou - un lysat bactérien comprenant ladite enzyme ; et - un système de détection des bactéries lysées et/ou de la lyse des bactéries. En particulier, dans le kit de détection selon l'invention, ladite enzyme, ledit système d'expression de ladite enzyme, ledit lysat bactérien sont tels que définis ci-dessus et peuvent être sous toute forme appropriée à l'application visée. En particulier, ladite enzyme, ledit système d'expression ou ledit lysat bactérien comprenant ladite enzyme sont sous forme lyophilisée. Selon un mode de réalisation particulier dudit kit de détection selon l'invention, ledit agent est immobilisé sur un support. Ledit support et lesdites méthodes d'immobilisation utilisables peuvent être tels que définis ci-dessus. Advantageously, the processes according to the invention can implement at least one of the domains, preferably all the enzymatic domains of the sequences SEQ ID No. 1, SEQ ID No. 5 and SEQ ID No. 9, which have the ability to lyse at least one strain of filamentous bacteria. The use of all of said enzymatic domains of the sequences SEQ ID No. 1, SEQ ID No. 5 and SEQ ID No. 9 has the advantage of obtaining a broad spectrum of activity with respect to the strains. of filamentous bacteria. According to a particular embodiment of the water treatment methods according to the invention, said agent is immobilized on a support. Said support can be defined as above. The immobilization methods that can be used can be those defined above. The advantages of using a carrier in the water treatment processes according to the invention are as described above. Said water treatment methods according to the invention may further comprise the following step: the separation of said enzyme, said organism expressing the enzyme and / or said bacterial lysate and said waters. Such separation can be performed by any technique well known to those skilled in the art such as for example by immunoprecipitation. When said enzyme and / or said organism expressing the enzyme is immobilized on a support, said water treatment methods according to the invention may further comprise the following step: separation of said support and said waters. In another aspect, the enzyme, said organism expressing said enzyme and said bacterial lysate comprising said enzyme according to the invention may be useful for detecting at least one strain of filamentous bacteria in water samples. Thus, according to a particular embodiment, the water treatment methods according to the invention may comprise a step of detecting at least one strain of filamentous bacteria, said step comprising the following phases: contacting the a sample of said waters capable of comprising at least one strain of filamentous bacteria with said at least one agent for preventing and / or controlling at least one strain of filamentous bacteria according to the invention; and detecting the lysed bacteria and / or detecting the lysis of the bacteria with at least one appropriate detection system. This step of detecting at least one strain of filamentous bacteria can advantageously be implemented before the step of controlling the biological foaming in the water treatment methods according to the invention. Thus, the anti-foaming agents according to the invention may be chosen to specifically target at least said strain of filamentous bacteria thus detected. This step then makes it possible to optimize the fight against organic foaming. As an example of a detection system suitable for the detection of lysed bacteria, mention may be made of fluorescent DNA markers such as Syto 9 (marker of intact and lysed bacteria) and propidium iodide (lysed bacteria marker). ) or the EMA-PCR technique as described in the article by Rudi K et al. (2005) (Rudi K, Moen B, Dromtorp SM, Holck AL.) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex probes Appl Environ Microbiol 2005 Feb; 71 (2): 1018- 24). As an example of a detection system suitable for detecting the lysis of bacteria, mention may be made of ATPmetry as described in the article by Schuch et al. (Schuch R, Nelson D, Fischetti VA.A bacteriolytic agent that detects and kills Bacillus anthracis, Nature, Aug. 2002; 418 (6900): 884-9). The present invention also relates to a kit for detecting at least one strain of filamentous bacteria comprising: an enzyme capable of lysing at least one strain of filamentous bacteria; and / or - a system for expressing said enzyme; and / or - a bacterial lysate comprising said enzyme; and a system for detecting lysed bacteria and / or lysing bacteria. In particular, in the detection kit according to the invention, said enzyme, said system for expressing said enzyme, said bacterial lysate are as defined above and may be in any form appropriate to the intended application. In particular, said enzyme, said expression system or said bacterial lysate comprising said enzyme are in freeze-dried form. According to a particular embodiment of said detection kit according to the invention, said agent is immobilized on a support. Said support and said immobilization methods that may be used may be as defined above.

La présente invention a également pour objet une méthode de diagnostic in vitro, de la présence d'au moins une souche de bactéries filamenteuses dans un échantillon, comprenant les étapes suivantes : - la mise en contact d'un échantillon susceptible de comprendre au moins une souche de bactéries filamenteuses avec : - une enzyme capable de lyser au moins une souche de bactéries filamenteuses selon l'invention ; et/ou - un système d'expression de ladite enzyme ; et/ou - un lysat bactérien comprenant ladite enzyme ; - la détection des bactéries lysées et/ou de la lyse des bactéries avec au moins un système de détection approprié. D'autres avantages et caractéristiques de l'invention apparaîtront au regard des exemples qui suivent. Ces exemples sont donnés à titre illustratif et non limitatif. La figure 1 illustre l'activité lytique des enzymes Gter, Av-1 et Nfar et du mélange de ces trois enzymes ( mix lysines ) sur la souche Gordonia amarae ATCC 27809 isolée à partir de mousses biologiques prélevées en station de traitement d'eaux, avant lyophilisation desdites enzymes. La figure 2 illustre l'activité lytique du mélange des trois enzymes ( mix lysines ) sur la souche Gordonia amarae ATCC 27809 isolée à partir de mousses biologiques prélevées en station de traitement d'eaux, après lyophilisation des enzymes. La figure 3 représente l'effet de la dose (100 l, 200 pi et 300 l) du mélange des trois enzymes Gter, Av-1 et Nfar ( mix lysines ) sur l'inhibition de la croissance de la souche pure Gordonia amarae ATCC 27809 isolée à partir de mousses biologiques prélevées en station de traitement d'eaux. La figure 4 illustre l'absence d'activité d'inhibition de la croissance du mélange ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar, sur la bactérie Escherichia coli. La figure 5 illustre l'absence d'activité d'inhibition de la croissance du mélange ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar sur la bactérie Bacillus subtilis. The subject of the present invention is also a method for the in vitro diagnosis of the presence of at least one strain of filamentous bacteria in a sample, comprising the following steps: contacting a sample that may comprise at least one sample strain of filamentous bacteria with: an enzyme capable of lysing at least one strain of filamentous bacteria according to the invention; and / or - a system for expressing said enzyme; and / or - a bacterial lysate comprising said enzyme; detection of the lysed bacteria and / or lysis of the bacteria with at least one appropriate detection system. Other advantages and features of the invention will become apparent from the following examples. These examples are given for illustrative and not limiting. FIG. 1 illustrates the lytic activity of the Gter, Av-1 and Nfar enzymes and the mixture of these three enzymes (lysine mix) on the strain Gordonia amarae ATCC 27809 isolated from biological foams collected in a water treatment station, before lyophilization of said enzymes. FIG. 2 illustrates the lytic activity of the mixture of the three enzymes (lysine mix) on the strain Gordonia amarae ATCC 27809 isolated from biological foams taken in a water treatment station, after lyophilization of the enzymes. Figure 3 shows the effect of the dose (100 l, 200 μl and 300 l) of the mixture of the three enzymes Gter, Av-1 and Nfar (lysine mix) on inhibition of growth of the pure strain Gordonia amarae ATCC 27809 isolated from biological moss collected in a water treatment plant. FIG. 4 illustrates the absence of activity of inhibition of the growth of the mixture (lysine mix) of the three enzymes Gter, Av-1 and Nfar, on the bacterium Escherichia coli. FIG. 5 illustrates the absence of inhibition activity of the growth of the mixture (lysine mix) of the three enzymes Gter, Av-1 and Nfar on the Bacillus subtilis bacterium.

La figure 6 illustre l'activité d'inhibition de la croissance du mélange ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar sur la souche Gordonia amarae ATCC 27809 isolée à partir de mousses biologiques prélevées en station de traitement d'eaux. La figure 7 représente l'état des membranes des bactéries appartenant à la souche Gordonia amarae ATCC 27809 en l'absence du mélange des trois enzymes Gter, Av-1 et Nfar, mix lysines . La figure 8 représente l'état des membranes des bactéries appartenant à la souche Gordonia amarae ATCC 27809 en présence du mélange des trois enzymes Gter, Av-1 et Nfar, mix lysines , pendant 30 minutes, 95 minutes ou 1595 minutes. La figure 9 illustre l'activité lytique de l'enzyme Av-1 non lyophilisée sur différentes mousses biologiques diluées prélevées en station de traitement d'eaux et sur la souche Gordonia amarae ATCC 27809 (témoin). La figure 10 illustre l'activité lytique de l'enzyme Gter non lyophilisée sur différentes mousses biologiques diluées prélevées en station de traitement d'eaux et sur la souche Gordonia amarae ATCC 27809 (témoin). La figure 11 illustre l'activité lytique de l'enzyme Nfar non lyophilisée sur différentes mousses biologiques diluées prélevées en station de traitement d'eaux et sur la souche Gordonia amarae ATCC 27809 (témoin). La figure 12 illustre l'activité lytique du mélange des trois enzymes Gter, Av-1 et Nfar mix lysines non lyophilisé sur différentes mousses biologiques diluées prélevées en station de traitement d'eaux et sur la souche Gordonia amarae ATCC 27809 (témoin). La figure 13 (A et B) représente l'effet du mélange des trois enzymes Gter, Av-1 et Nfar mix lysines lyophilisé sur un échantillon de mousses biologiques non diluées prélevées en station de traitement d'eaux ; La figure 13A représente un échantillon de mousses biologiques non diluées prélevées en station de traitement d'eaux en l'absence du mix lysines , ledit échantillon étant observé au microscope après marquage Baclight ; La figure 13B représente un échantillon de mousses biologiques non diluées prélevées en station de traitement d'eaux après 180 minutes d'incubation avec le mix lysines , ledit échantillon étant observé au microscope après marquage Baclight . FIG. 6 illustrates the activity of inhibition of the growth of the mixture (lysine mix) of the three enzymes Gter, Av-1 and Nfar on the strain Gordonia amarae ATCC 27809 isolated from biological foams collected in a water treatment station . FIG. 7 represents the state of the membranes of the bacteria belonging to the strain Gordonia amarae ATCC 27809 in the absence of the mixture of the three enzymes Gter, Av-1 and Nfar, lysine mix. FIG. 8 represents the state of the membranes of the bacteria belonging to the strain Gordonia amarae ATCC 27809 in the presence of the mixture of the three enzymes Gter, Av-1 and Nfar, lysine mix, for 30 minutes, 95 minutes or 1595 minutes. FIG. 9 illustrates the lytic activity of the non-lyophilized Av-1 enzyme on various diluted biological foams collected in a water treatment station and on the strain Gordonia amarae ATCC 27809 (control). FIG. 10 illustrates the lytic activity of the non-lyophilized Gter enzyme on various diluted biological foams collected in a water treatment station and on the strain Gordonia amarae ATCC 27809 (control). FIG. 11 illustrates the lytic activity of the non-lyophilized Nfar enzyme on various diluted biological foams collected in a water treatment station and on the strain Gordonia amarae ATCC 27809 (control). FIG. 12 illustrates the lytic activity of the mixture of the three non-lyophilized Gter, Av-1 and Nfar mix lysine enzymes on various diluted biological foams taken from the water treatment station and on the strain Gordonia amarae ATCC 27809 (control). Figure 13 (A and B) shows the effect of mixing the three lyophilized Gter, Av-1 and Nfar mix lysine enzymes on a sample of undiluted organic foams taken from a water treatment plant; FIG. 13A represents a sample of undiluted organic foams taken from a water treatment station in the absence of the lysine mixture, said sample being observed under a microscope after Baclight labeling; FIG. 13B represents a sample of undiluted organic foams collected in a water treatment station after 180 minutes of incubation with the lysine mixture, said sample being observed under a microscope after Baclight labeling.

Exemples 1. Exemple 1 : Evaluation de l'activité lytique des enzymes Gter, Av-1, Nfar sur des souches pures de bactéries filamenteuses Les séquences des enzymes Gter, Av-1 et Nfar, à savoir les séquences SEQ ID N°4, SEQ ID N°8 et SEQ ID N°12 (optimisées pour l'expression dans Escherichia coli) ont été clonées et exprimées dans Escherichia coli pour permettre la synthèse des protéines correspondantes. L'activité lytique de ces trois enzymes ainsi produites a été testée sur les deux types de souches cibles suivantes : - des souches pures de bactéries filamenteuses dont les trois enzymes Gter, Nfar et Av-1 sont normalement spécifiques, à savoir les espèces Gordonia terrae, Nocardia farcinica et Actinomyces viscosus. En effet, l'enzyme Gter a été identifiée dans le génome du phage GTE5 ayant pour cible Gordonia terrae, l'enzyme Av-1 a été identifiée dans le génome d'un phage spécifique d'Actinomyces viscosus et l'enzyme Nfar a été identifiée chez Nocardia farcinica ; et - des souches pures de bactéries filamenteuses isolées à partir de mousses biologiques prélevées en station de traitement d'eaux, à savoir les souches Gordonia amarae DSM 43392 et Gordonia amarae ATCC 27809. En effet, Gordonia amarae a été identifiée comme l'espèce bactérienne prédominante dans les mousses biologiques. En outre, il a été démontré que Gordonia amarae est l'espèce bactérienne majeure responsable du moussage biologique (Pagilla et al., 2002, water science and technology, vol. 46, p519-524 ; Iwahori et al., 2001, J. Bioscience Bioengineering, p 77-79). L'activité lytique de ces trois enzymes a été évaluée par détermination de la cinétique de lyse des souches pures de bactéries filamenteuses par mesure de la densité optique à 600 nm (DO60o). Une diminution régulière dans le temps de la densité optique à 600 nm (DO60o) reflète l'efficacité des enzymes à lyser les souches cibles de bactéries filamenteuses. Cette mesure est effectuée avec un spectrophotomètre UV-Visible dans des microplaques à 96 puits (puits de 200 L). Les conditions de réalisation des mesures sont exposées dans le tableau 1. 22 Tube témoin Tube test Mix lysines - 100 L BSA 100 L - cultures pures 400 L 400 L diluées dans du tampon Tableau 1 : Composition des milieux réactionnels pour l'évaluation de l'activité des lysines EXAMPLES 1. EXAMPLE 1 Evaluation of the lytic activity of the Gter, Av-1, Nfar enzymes on pure strains of filamentous bacteria The sequences of the Gter, Av-1 and Nfar enzymes, namely the sequences SEQ ID No. 4, SEQ ID NO: 8 and SEQ ID NO: 12 (optimized for expression in Escherichia coli) were cloned and expressed in Escherichia coli to allow synthesis of the corresponding proteins. The lytic activity of these three enzymes thus produced was tested on the following two types of target strains: pure strains of filamentous bacteria whose three enzymes Gter, Nfar and Av-1 are normally specific, namely the species Gordonia terrae , Nocardia farcinica and Actinomyces viscosus. In fact, the Gter enzyme has been identified in the GTE5 phage genome targeting Gordonia terrae, the Av-1 enzyme has been identified in the genome of a specific Actinomyces viscosus phage and the Nfar enzyme has been identified in Nocardia farcinica; and - pure strains of filamentous bacteria isolated from biological moss collected in a water treatment plant, namely the strains Gordonia amarae DSM 43392 and Gordonia amarae ATCC 27809. Indeed, Gordonia amarae has been identified as the bacterial species predominant in organic foams. In addition, it has been demonstrated that Gordonia amarae is the major bacterial species responsible for biological foaming (Pagilla et al., 2002, Water Science and Technology, Vol 46, p519-524, Iwahori et al., 2001, J. Bioscience Bioengineering, pp 77-79). The lytic activity of these three enzymes was evaluated by determining the kinetics of lysis of the pure strains of filamentous bacteria by measuring the optical density at 600 nm (OD60o). A steady decrease in optical density at 600 nm (OD60o) over time reflects the efficiency of the enzymes to lyse target strains of filamentous bacteria. This measurement is carried out with a UV-Visible spectrophotometer in 96 well microplates (200 L wells). The conditions for carrying out the measurements are set out in Table 1. Control tube Test tube Mix lysines - 100 L BSA 100 L - pure cultures 400 L 400 L diluted in buffer TABLE 1 Composition of the reaction media for the evaluation of the lysine activity

Des mesures de la densité optique à 600nm sont effectuées en cinétique toutes les minutes sur les puits témoin et test. Les résultats sont exprimés en Delta DO 600 = f (t), sachant que : Delta DO à 600nm = DO test (avec lysines) û DO témoin (sans lysines, avec BSA) En retranchant, la valeur de la densité optique à 600nm (DO 600) du témoin négatif à celle de l'essai avec lysines, les interférences éventuelles liées à l'échantillon sont éliminées. Dans le cas d'une efficacité avérée des lysines, le delta DO est donc censé être négatif. L'activité lytique des enzymes est ainsi déterminée en calculant en présence d'une enzyme ( enzyme ) et en absence d'une enzyme ( témoin ), la différence de la densité optique à 600 nm (D0600) à un temps donné t (Dot) par rapport auto (DOto), comme ci-après: (Dot- DOto)enzyme-(Dot- DOto)témoin Les résultats de ces tests sont indiqués dans le tableau 2 suivant : Souches cibles Lysine Gter Lysine Av-1 Lysine Nfar Gordonia terme + + + Nocardia farcinica + +/- +/- Actinomyces viscosus - + - Gordonia amarae + + + DSM 43392 Gordonia amarae + + + ATCC 27809 Tableau 2 : Activité lytique des trois enzymes sur différentes souches pures de bactéries filamenteuses. (+) représente une importante activité lytique ; (+/-) représente une faible activité lytique ; (-) représente l'absence d'activité lytique. Comme le montre le tableau 2 ci-dessus, les trois enzymes Gter, Av-1 et Nfar produites dans E. coli présentent une activité lytique non seulement vis-à-vis des bactéries filamenteuses dont elles sont normalement spécifiques, à savoir respectivement Gordonia terme, Actinomyces viscosus et Nocardia farcinica, mais également vis-à-vis de souches pures de bactéries filamenteuses isolées à partir de mousses biologiques prélevées en station de traitement d'eaux, telles que la souche Gordonia amarae ATCC 27809. Cette expérience montre l'efficacité de chacune des trois enzymes Gter, Av-1 et Nfar à inhiber la croissance de bactéries filamenteuses impliquées dans le moussage biologique, dont notamment la souche Gordonia amarae ATCC 27809. II. Exemple 2 : Évaluation de l'effet de la lyophilisation sur l'activité des lysines L'effet de la lyophilisation sur l'activité lytique des trois enzymes Gter, Av-1 et Nfar a été testé. L'activité lytique des différentes enzymes Gter, Av-1 et Nfar ainsi que d'un mélange de ces trois enzymes (dénommé mix lysines ) a ainsi été testée sur la souche pure Gordonia amarae ATCC 27809 isolée à partir de mousses biologiques prélevées en station de traitement d'eaux, avant (figure 1) et après (figure 2) lyophilisation desdites enzymes. L'activité lytique des enzymes a été déterminée comme indiqué ci-dessus à l'exemple 1. Les résultats sont présentés sur les figures 1 et 2. Comme le montrent les figures 1 et 2, la lyophilisation des lysines n'a pas d'impact sur l'activité lytique des différentes enzymes. Cette expérience démontre que l'activité lytique des enzymes Gter, Av-1 et Nfar a été conservée après lyophilisation de celles-ci. III. Exemple 3 : Effet de la dose du mélange des trois enzymes Gter, Av-1 et Nfar ( mix lysines ) sur la souche Gordonia amarae ATCC 27809 Différentes doses (100, 200 et 300 l) du mélange ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar, ont été testées sur la souche pure Gordonia amarae ATCC 27809 isolée à partir de mousses biologiques prélevées en station de traitement d'eaux. L'efficacité d'inhibition de la croissance a été mesurée. Dans les témoins négatifs correspondants, les enzymes ont été remplacées par de la BSA (Serum Albumine Bovine). Optical density measurements at 600 nm are made in kinetics every minute on the control and test wells. The results are expressed in Delta DO 600 = f (t), knowing that: Delta DO at 600 nm = OD test (with lysines) - control OD (without lysines, with BSA) By subtracting, the value of the optical density at 600 nm ( OD 600) of the negative control to that of the lysine test, any interferences related to the sample are eliminated. In the case of a proven efficiency of lysines, the delta DO is supposed to be negative. The lytic activity of the enzymes is thus determined by calculating in the presence of an enzyme (enzyme) and in the absence of an enzyme (control), the difference in optical density at 600 nm (D0600) at a given time t (Dot ) relative to auto (DOto), as hereinafter: (Dot-DOto) enzyme- (Dot-DOto) control The results of these tests are shown in the following Table 2: Target strains Lysine Gter Lysine Av-1 Lysine Nfar Gordonia term + + + Nocardia farcinica + +/- +/- Actinomyces viscosus - + - Gordonia amara + + + DSM 43392 Gordonia amarae + + + ATCC 27809 Table 2: Lytic activity of the three enzymes on different pure strains of filamentous bacteria. (+) represents an important lytic activity; (+/-) represents a weak lytic activity; (-) represents the absence of lytic activity. As shown in Table 2 above, the three Gter, Av-1 and Nfar enzymes produced in E. coli exhibit lytic activity not only with respect to the filamentous bacteria of which they are normally specific, namely respectively Gordonia term , Actinomyces viscosus and Nocardia farcinica, but also vis-à-vis pure strains of filamentous bacteria isolated from biological moss collected in a water treatment plant, such as the strain Gordonia amarae ATCC 27809. This experiment shows the effectiveness of each of the three enzymes Gter, Av-1 and Nfar to inhibit the growth of filamentous bacteria involved in the biological foaming, including the strain Gordonia amarae ATCC 27809. II. EXAMPLE 2 Evaluation of the Effect of Lyophilization on Lysine Activity The effect of lyophilization on the lytic activity of the three enzymes Gter, Av-1 and Nfar was tested. The lytic activity of the various enzymes Gter, Av-1 and Nfar as well as a mixture of these three enzymes (called lysine mix) was thus tested on the pure strain Gordonia amarae ATCC 27809 isolated from organic moss collected in the station. water treatment, before (Figure 1) and after (Figure 2) lyophilization of said enzymes. The lytic activity of the enzymes was determined as indicated above in Example 1. The results are shown in FIGS. 1 and 2. As shown in FIGS. 1 and 2, the lyophilization of the lysines does not have any impact on the lytic activity of the different enzymes. This experiment demonstrates that the lytic activity of the Gter, Av-1 and Nfar enzymes has been preserved after lyophilization of these enzymes. III. Example 3: Effect of the dose of the mixture of the three enzymes Gter, Av-1 and Nfar (lysine mix) on the strain Gordonia amarae ATCC 27809 Different doses (100, 200 and 300 l) of the mixture (lysine mix) of the three enzymes Gter , Av-1 and Nfar, were tested on the pure strain Gordonia amarae ATCC 27809 isolated from biological moss collected in a water treatment plant. The growth inhibition efficiency was measured. In the corresponding negative controls, the enzymes were replaced by BSA (Bovine Serum Albumin).

La cinétique de croissance de la souche pure Gordonia amarae ATCC 27809 a été déterminée par mesure au spectrophotomètre de la densité optique à 600 nm (DO60o) sur 8 jours. Les résultats sont présentés sur la figure 3. Comme le montre la figure 3, dès l'application d'une dose de 200 l du mélange ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar, la croissance de la bactérie filamenteuse Gordonia amarae ATCC 27809 est totalement inhibée. Cette expérience confirme l'efficacité des enzymes Gter, Av-1 et Nfar à inhiber la croissance de bactéries filamenteuses impliquées dans le moussage biologique. IV. Exemple 4 : Évaluation de la spécificité du mélanges ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar, L'activité lytique du mélange ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar a été étudiée sur des micro-organismes utiles à l'épuration, incluant deux micro-organismes modèles : Escherichia coli (Bactérie Gram négatif) et Bacillus subtilis (Bactérie Gram positif). L'expérience contrôle a été effectuée sur la souche Gordonia amarae ATCC 27809. Les bactéries ont été incubées avec le mélange mix lysines pendant 7 ou 13 jours. Dans les témoins négatifs correspondants, les enzymes ont été remplacées par de la BSA (Serum Albumine Bovine). La cinétique de croissance des différentes bactéries a été déterminée par mesure au spectrophotomètre de la densité optique à 600 nm (DO60o) sur 7 ou 13 jours. Les résultats sont présentés sur les figures 4 à 6. Comme le montrent les figures 4 à 6, l'addition du mix lysines au moment de l'inoculation des cultures des différentes souches pures bactériennes montre que si le mix lysines inhibe efficacement la croissance de la souche G. amarae 27809 même après 7 jours d'incubation avec ledit mix lysines , celui-ci n'a aucun impact sur la croissance des bactéries Bacillus subtilis et E. coli et ceci même après 7 ou 13 jours d'incubation. Ces essais démontrent bien que l'action des lysines est spécifique des bactéries filamenteuses, notamment impliquées dans le moussage biologique. Les enzymes Gter, Av-1 et Nfar présentent l'avantage de ne pas avoir d'effet néfaste sur d'autres micro-organismes, notamment sur la biomasse utile au traitement de l'eau. V. Exemple 5 : Évaluation du mode d'action du mélange mix lysines des trois enzymes Gter, Av-1 et Nfar V.1 Inhibition de la croissance Comme le montre la figure 6, le mélange ( mix lysines ) des trois enzymes Gter, Av-1 et Nfar a un effet inhibiteur de la croissance de la souche Gordonia amarae ATCC 27809 lorsqu'il est ajouté au début de la phase de croissance bactérienne et ceci même après 7 jours d'incubation. V.2 Dégradation de la membrane des filaments L'effet du mélange des trois enzymes Gter, Av-1 et Nfar, ( mix lysines ) sur l'intégrité des membranes bactériennes appartenant à la souche Gordonia amarae ATCC 27809 a été étudié à l'aide du kit LIVE/DEAD Bacterial Viability Kit (BacLightTM) de chez Molecular Probes selon les recommandations du fournisseur, combiné à une observation et un dénombrement au microscope. Ce kit LIVE/DEAD Bacterial Viability Kit génère un marquage différentiel qui permet de distinguer des micro-organismes présentant des membranes intègres de ceux dont les membranes sont dégradées. 100 L de milieu réactionnel (cf tableau 1 de l'exemple 1) sont dilués au 1/10 dans du tampon. 3 L de solution de marquage Baclight sont ajoutés à ce mélange et après l5min d'incubation, 5 L sont placés entre lame et lamelles. L'observation se fait au microscope à épifluorescence à un grossissement x 1000. Pour chaque échantillon, les dénombrements des cellules sont effectués sur 20 champs microscopiques puis ramenés au volume initial de mousses ou de culture. Les dénombrements ont ainsi été effectués sur des tubes test et témoin à T0, T+30min, T+90min et T+26h (1595min). Les membranes des bactéries appartenant à la souche Gordonia amarae ATCC 27809 ont été observées 30 minutes (t30), 95 minutes (t95) et 1595 minutes (t1595) après l'addition (figure 8) ou non (figure 7) du mélange des trois enzymes Gter, Av-1 et Nfar, mix lysines aux bactéries. Les résultats sont représentés sur les figures 7 et 8. Comme le montrent les figures 7 et 8, dès 30 minutes d'incubation avec le "mix lysine", les proportions de bactéries présentant une membrane dégradée (par rapport au témoin sans lysines) sont très importantes. Ces résultats indiquent que les lysines Gter, Av-1 et Nfar dégradent la membrane de bactéries filamenteuses, en particulier appartenant à la souche Gordonia amarae ATCC 27809. VI. Exemple 6 : Évaluation de l'efficacité des trois enzymes Gter, Av-1 et Nfar et du mélange de ces trois enzymes mix lysines , sur différents échantillons de mousses biologiques prélevées en station de traitement d'eaux VI.1 Essais réalisés avec des mousses biologiques diluées prélevées en station de traitement d'eaux et des lysines non lyophilisées L'activité lytique des trois enzymes Gter, Av-1 et Nfar et du mélange de ces trois enzymes mix lysines , a été testée sur différents échantillons de mousses biologiques prélevées en station de traitement d'eaux. L'ensemble de ces différents échantillons de mousses biologiques comprend des bactéries appartenant au genre Nocardia et Gordonia à des concentrations variables. Certains de ces échantillons de mousses biologiques comprennent en outre des bactéries appartenant au genre Microthrix. La présence relative des bactéries appartenant aux genres Nocardia, Gordonia et Microthrix dans ces différents échantillons de mousses biologiques est indiquée dans le tableau 3 ci-dessous : Échantillons de mousses Présence de bactéries Présence de bactéries biologiques appartenant aux genres appartenant au genre Nocardia et Gordonia Microthrix Mousse 1 + +++ Mousse 2 +++ - Mousse 3 +++ + Mousse 4 +++ + Tableau 3 : présence relative des bactéries appartenant au genre Nocardia, Gordonia et Microthrix dans les différents échantillons de mousses biologiques testés. (-) absence de bactéries ; (+) présence faible de bactéries ; (+++) présence importante de bactéries. The growth kinetics of the pure strain Gordonia amarae ATCC 27809 was determined by spectrophotometer measurement of the optical density at 600 nm (OD60o) over 8 days. The results are shown in FIG. 3. As shown in FIG. 3, upon the application of a 200-l dose of the mixture (lysine mix) of the three enzymes Gter, Av-1 and Nfar, the growth of the filamentous bacterium Gordonia amarae ATCC 27809 is totally inhibited. This experiment confirms the effectiveness of the enzymes Gter, Av-1 and Nfar in inhibiting the growth of filamentous bacteria involved in the biological foaming. IV. EXAMPLE 4 Evaluation of the Specificity of the Mixtures (Lysine Mix) of the Three Gter, Av-1 and Nfar Enzymes The lytic activity of the mixture (lysine mix) of the three Gter, Av-1 and Nfar enzymes was studied on micro -organisms useful for purification, including two model microorganisms: Escherichia coli (Gram-negative bacterium) and Bacillus subtilis (Gram-positive bacterium). The control experiment was carried out on the strain Gordonia amarae ATCC 27809. The bacteria were incubated with the mixture mix lysines for 7 or 13 days. In the corresponding negative controls, the enzymes were replaced by BSA (Bovine Serum Albumin). The kinetics of growth of the different bacteria was determined by spectrophotometer measurement of the optical density at 600 nm (OD60o) over 7 or 13 days. The results are shown in FIGS. 4 to 6. As shown in FIGS. 4 to 6, the addition of the lysine mix at the moment of inoculation of the cultures of the different pure bacterial strains shows that if the lysine mix effectively inhibits the growth of strain G. amarae 27809 even after 7 days of incubation with said lysine mix, it has no impact on the growth of bacteria Bacillus subtilis and E. coli even after 7 or 13 days of incubation. These tests demonstrate that the action of lysines is specific to filamentous bacteria, in particular involved in the biological foaming. The Gter, Av-1 and Nfar enzymes have the advantage of not having a detrimental effect on other microorganisms, especially on biomass that is useful for treating water. V. EXAMPLE 5 Evaluation of the Mode of Action of the Mixed Lysine Mixture of the Three Enzymes Gter, Av-1 and Nfar V.1 Inhibition of Growth As shown in FIG. 6, the mixture (lysine mix) of the three Gter enzymes, Av-1 and Nfar have an inhibitory effect on the growth of the strain Gordonia amarae ATCC 27809 when added at the beginning of the bacterial growth phase even after 7 days of incubation. V.2 Degradation of the filament membrane The effect of the mixture of the three enzymes Gter, Av-1 and Nfar (lysine mix) on the integrity of the bacterial membranes belonging to the strain Gordonia amarae ATCC 27809 was studied at using the Molecular Probes LIVE / DEAD Bacterial Viability Kit (BacLightTM) kit as recommended by the supplier, combined with microscopic observation and enumeration. This kit LIVE / DEAD Bacterial Viability Kit generates a differential marking that distinguishes microorganisms with intact membranes from those whose membranes are degraded. 100 L of reaction medium (cf Table 1 of Example 1) are diluted 1/10 in buffer. 3 L of Baclight labeling solution are added to this mixture and after 15 min of incubation, 5 L are placed between slide and coverslips. The observation is carried out under an epifluorescence microscope at a magnification × 1000. For each sample, the cell counts are carried out over 20 microscopic fields then brought back to the initial volume of foams or of culture. The counts were thus carried out on test and control tubes at T0, T + 30min, T + 90min and T + 26h (1595min). The membranes of bacteria belonging to the strain Gordonia amarae ATCC 27809 were observed for 30 minutes (t30), 95 minutes (t95) and 1595 minutes (t1595) after the addition (Figure 8) or not (Figure 7) of the mixture of the three Gter, Av-1 and Nfar enzymes, mix lysines with bacteria. The results are shown in FIGS. 7 and 8. As shown in FIGS. 7 and 8, after 30 minutes of incubation with the "lysine mix", the proportions of bacteria having a degraded membrane (relative to the control without lysines) are very important. These results indicate that the lysines Gter, Av-1 and Nfar degrade the membrane of filamentous bacteria, in particular belonging to the strain Gordonia amarae ATCC 27809. VI. EXAMPLE 6 Evaluation of the Efficacy of the Three Gter, Av-1 and Nfar Enzymes and of the Mixture of these Three Lysine Mixing Enzymes on Different Biological Foam Samples taken from the Water Treatment Plant VI.1 Tests with Foams The lytic activity of the three enzymes Gter, Av-1 and Nfar and the mixture of these three lysine-mixed enzymes was tested on different samples of biological foams collected in the water treatment plant and non-lyophilized lysines. water treatment plant. All of these different biological foam samples include bacteria belonging to the genus Nocardia and Gordonia at varying concentrations. Some of these biological foam samples further include bacteria belonging to the genus Microthrix. The relative presence of bacteria belonging to the genera Nocardia, Gordonia and Microthrix in these different biological foam samples is shown in Table 3 below: Moss samples Presence of bacteria Presence of biological bacteria belonging to the genera belonging to the genus Nocardia and Gordonia Microthrix Foam 1 + +++ Foam 2 +++ - Foam 3 +++ + Foam 4 +++ + Table 3: Relative presence of bacteria belonging to the genus Nocardia, Gordonia and Microthrix in the various samples of biological foams tested. (-) absence of bacteria; (+) weak presence of bacteria; (+++) important presence of bacteria.

Les tests ont été réalisés en parallèle avec comme témoin positif les bactéries appartenant à la souche pure Gordonia amarae ATCC 27809. Les échantillons de mousses biologiques (1 à 4) ont été dilués au 1/100 et incubés avec 100 pi d'enzymes Gter, Av-1 ou Nfar ou du mélange de ces trois enzymes mix lysines pendant 90 minutes. La cinétique de lyse des bactéries présentes dans les échantillons de mousses biologiques ou celle des bactéries appartenant à la souche pure Gordonia amarae ATCC 27809 a été déterminée par mesure au spectrophotomètre de la densité optique à 600 nm (DO60o) sur 90 minutes. Cette mesure a été effectuée avec un spectrophotomètre UV-visible dans des cuves jetables dont le trajet optique est de 10 mm. Les conditions de réalisation des mesures sont exposées dans le tableau 4. Tube témoin Tube test Mix lysines - 100 L BSA 100 L - Mousses 400 L 400 L diluées dans du tampon Tableau 4 : Composition des milieux réactionnels pour évaluation de l'activité des lysines Les résultats sont présentés sur les figures 9 à 12. Comme le montrent les figures 9 à 12, les trois lysines Gter, Av-1 et Nfar ainsi que le mélange de ces trois enzymes lysent efficacement les bactéries présentes dans les différentes mousses biologiques prélevées en station de traitement d'eaux. L'utilisation du mélange des trois lysines en simultané ( mix lysines ) met en évidence une activité qui se rapproche de la moyenne des activités individuelles observées. VI.2 Essais réalisées avec des mousses biologiques non diluées prélevées en station de traitement d'eaux et des lysines lyophilisées L'activité lytique du mélange des trois enzymes Gter, Av-1 et Nfar ( mix lysines ) sous forme lyophilisée a été testée sur des échantillons d'un type de mousses biologiques (mousse 5) prélevées en station de traitement d'eaux. The tests were carried out in parallel with as positive control the bacteria belonging to the pure strain Gordonia amarae ATCC 27809. The samples of biological foams (1 to 4) were diluted to 1/100 and incubated with 100 μl of Gter enzymes, Av-1 or Nfar or the mixture of these three enzymes mix lysines for 90 minutes. The kinetics of lysis of the bacteria present in the biological foam samples or that of the bacteria belonging to the pure strain Gordonia amarae ATCC 27809 was determined by spectrophotometer measurement of the optical density at 600 nm (OD60o) over 90 minutes. This measurement was carried out with a UV-visible spectrophotometer in disposable tanks whose optical path is 10 mm. The conditions for carrying out the measurements are set out in Table 4. Control tube Test tube Mix lysines - 100 L BSA 100 L - Foams 400 L 400 L diluted in buffer Table 4: Composition of the reaction media for evaluation of lysine activity The results are shown in Figures 9 to 12. As shown in Figures 9 to 12, the three lysines Gter, Av-1 and Nfar and the mixture of these three enzymes effectively lyse the bacteria present in the different biological foams collected in water treatment plant. The use of the mixture of three lysines simultaneously (lysine mix) shows an activity that is close to the average of the observed individual activities. VI.2 Tests carried out with undiluted organic foams collected in water treatment plants and freeze-dried lysines The lytic activity of the mixture of the three enzymes Gter, Av-1 and Nfar (lysine mix) in freeze-dried form was tested on samples of one type of biological foam (foam 5) collected at a water treatment plant.

La présence relative des bactéries appartenant au genre Nocardia, Gordonia et Microthrix dans ce type de mousses biologiques est indiquée dans le tableau 5 ci-dessous : Échantillons de mousses Présence de bactéries Présence de bactéries biologiques appartenant aux genres appartenant au genre Nocardia et Gordonia Microthrix Mousse 5 ++++++ - Tableau 5 : présence relative des bactéries appartenant au genre Nocardia, Gordonia et Microthrix dans les différents échantillons de mousses biologiques testés. (-) absence de bactéries ; (++++++) présence très importante de bactéries. L'effet des lysines a été évalué par observation de la morphologie des filaments après incubation avec des échantillons d'un type de mousses biologiques (mousse 5) prélevées en station de traitement d'eaux avec le mélange des trois enzymes ( mix lysines ) sous forme lyophilisée et marquage Baclight (marquage différentiel qui permet de distinguer des micro-organismes présentant des membranes intègres de celles dont les membranes sont dégradées) combiné à une observation au microscope. Les résultats après 180 minutes d'incubation sans ou avec le mix lysines sont représentés respectivement sur les figures 13A et 13B. Sur les figures 13A et 13B, la couleur verte apparaît relativement blanche et les couleurs jaune-orangé et rouge apparaissent en gris. Après 180 minutes d'incubation avec le mix lysines , la couleur verte disparaît et des zones colorées en jaune et rouge apparaissent de manière discontinue sur la longueur des filaments, indiquant que le mélange des trois enzymes Gter, Av-1 et Nfar ( mix lysines ) sous la forme lyophilisée dégrade efficacement la membrane des bactéries filamenteuses présentes dans les échantillons de mousses biologiques prélevées en station de traitement d'eaux. Ces résultats indiquent que les enzymes Gter, Av-1 et Nfar ainsi que le mélange de ces trois enzymes mix lysines permet de lutter efficacement contre des bactéries filamenteuses responsables du moussage biologique en inhibant leur croissance et en dégradant leur membrane. The relative presence of bacteria belonging to the genus Nocardia, Gordonia and Microthrix in this type of organic foams is shown in Table 5 below: Moss samples Presence of bacteria Presence of biological bacteria belonging to the genera belonging to the genus Nocardia and Gordonia Microthrix Moss Table 5: Relative presence of bacteria belonging to the genus Nocardia, Gordonia and Microthrix in the different samples of biological foams tested. (-) absence of bacteria; (++++++) very important presence of bacteria. The effect of the lysines was evaluated by observing the morphology of the filaments after incubation with samples of a type of biological foam (foam 5) collected in a water treatment plant with the mixture of the three enzymes (lysine mix) under freeze-dried form and Baclight labeling (differential labeling that distinguishes microorganisms with intact membranes from those with degraded membranes) combined with microscopic observation. The results after 180 minutes of incubation without or with the lysine mix are shown respectively in FIGS. 13A and 13B. In FIGS. 13A and 13B, the green color appears relatively white and the yellow-orange and red colors appear in gray. After 180 minutes of incubation with the lysine mix, the green color disappears and yellow and red colored areas appear discontinuously along the length of the filaments, indicating that the mixture of the three enzymes Gter, Av-1 and Nfar (lysine mix ) in the freeze-dried form effectively degrades the membrane of the filamentous bacteria present in the biological foam samples taken at a water treatment plant. These results indicate that the enzymes Gter, Av-1 and Nfar as well as the mixture of these three enzymes mix lysines makes it possible to fight effectively against filamentous bacteria responsible for the biological foaming by inhibiting their growth and degrading their membrane.

Claims (5)

REVENDICATIONS1. Agent de lyse d'au moins une souche de bactéries filamenteuses caractérisé en ce qu'il comprend au moins un polypeptide choisi parmi les polypeptides suivants : e) polypeptide dont la séquence d'acides aminés est l'une des séquences SEQ ID N°9 ou SEQ ID N°11; f) polypeptide ayant une activité lytique et dont la séquence d'acides aminés présente au moins 80 % d'identité avec l'une des séquences SEQ ID N°9 ou SEQ ID N°11; g) polypeptide ayant une activité lytique et dont la séquence d'acides aminés est celle d'un fragment de l'une des séquences SEQ ID N°9 ou SEQ ID N°11; h) polypeptide comprenant au moins un polypeptide tel que défini en e), f) ou g). REVENDICATIONS1. Agent for lysing at least one strain of filamentous bacteria characterized in that it comprises at least one polypeptide chosen from the following polypeptides: e) polypeptide whose amino acid sequence is one of the sequences SEQ ID No. 9 or SEQ ID NO: 11; f) a polypeptide having a lytic activity and whose amino acid sequence has at least 80% identity with one of the sequences SEQ ID No. 9 or SEQ ID No. 11; g) a polypeptide having a lytic activity and whose amino acid sequence is that of a fragment of one of the sequences SEQ ID No. 9 or SEQ ID No. 11; h) polypeptide comprising at least one polypeptide as defined in e), f) or g). 2. Agent de lyse d'au moins une souche de bactéries filamenteuses selon la revendication 1 caractérisé en ce qu'il comprend de plus au moins un polypeptide choisi parmi les polypeptides suivants : a) polypeptide dont la séquence d'acides aminés est l'une des séquences SEQ ID N°5 ou SEQ ID N°7 ; b) polypeptide ayant une activité lytique et dont la séquence d'acides aminés présente au moins 80 % d'identité avec l'une des séquences SEQ ID N°5, ou SEQ ID N°7 ; c) polypeptide ayant une activité lytique et dont la séquence d'acides aminés est celle d'un fragment de l'une des séquences SEQ ID N°5, ou SEQ ID N°7 ; d) polypeptide comprenant au moins un polypeptide tel que défini en a), b) ou c). 2. Agent for lysis of at least one strain of filamentous bacteria according to claim 1, characterized in that it further comprises at least one polypeptide chosen from the following polypeptides: a) polypeptide whose amino acid sequence is the one of the sequences SEQ ID No. 5 or SEQ ID No. 7; b) a polypeptide having a lytic activity and whose amino acid sequence has at least 80% identity with one of the sequences SEQ ID NO: 5, or SEQ ID NO: 7; c) a polypeptide having a lytic activity and whose amino acid sequence is that of a fragment of one of the sequences SEQ ID NO: 5, or SEQ ID NO: 7; d) a polypeptide comprising at least one polypeptide as defined in a), b) or c). 3. Agent de lyse selon la revendication 1 ou 2 caractérisé en ce qu'il comprend de plus au moins un polypeptide choisi parmi les polypeptides suivants : i) polypeptide dont la séquence d'acides aminés est l'une des séquences SEQ ID N°1 ou SEQ ID N°3 ; j) polypeptide ayant une activité lytique et dont la séquence d'acides aminés présente au moins 80 % d'identité avec l'une des séquences SEQ ID N°1 ou SEQ ID N°3k) polypeptide ayant une activité lytique et dont la séquence d'acides aminés est celle d'un fragment de l'une des séquences SEQ ID N°1 ou SEQ ID N°3 ; 1) polypeptide comprenant au moins un polypeptide tel que défini en i), j) ou k). 3. lysis agent according to claim 1 or 2 characterized in that it further comprises at least one polypeptide selected from the following polypeptides: i) polypeptide whose amino acid sequence is one of the sequences SEQ ID NO. 1 or SEQ ID No. 3; j) polypeptide having a lytic activity and whose amino acid sequence has at least 80% identity with one of the sequences SEQ ID No. 1 or SEQ ID No. 3k) polypeptide having a lytic activity and whose sequence amino acid is that of a fragment of one of SEQ ID NO: 1 or SEQ ID NO: 3; 1) a polypeptide comprising at least one polypeptide as defined in i), j) or k). 4. Utilisation non thérapeutique d'au moins un polypeptide tel que défini selon l'une des revendications 1 ou 2 ou 3 pour lyser au moins une souche de bactéries filamenteuses. 4. Non-therapeutic use of at least one polypeptide as defined in one of claims 1 or 2 or 3 for lysing at least one strain of filamentous bacteria. 5. Agent de prévention et/ou de lutte contre le moussage biologique caractérisé en ce qu'il comprend : - au moins une enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique , ladite au moins une enzyme comprenant un polypeptide tel que défini selon la revendication 1 ; et/ou - au moins un organisme exprimant ladite enzyme ; et/ou - au moins un lysat bactérien comprenant ladite enzyme. 8. Agent de prévention et/ou de lutte contre le moussage biologique selon la revendication 5, caractérisé en ce que ladite au moins une enzyme comprend de plus un polypeptide tel que défini selon la revendication 2 et/ou un polypeptide tel que défini selon la revendication 3. 9. Agent de prévention et/ou de lutte contre le moussage biologique selon l'une des revendications 5 ou 6, caractérisé en ce que ladite souche de bactéries filamenteuses est incluse dans le groupe comprenant : - les souches de bactéries de la famille des Nocardiaceae; - les souches de bactéries de la famille des Gordoniaceae; - les souches de bactéries de la famille incluant le genre ./Wicrothrix ; les souches de bactéries de la famille incluant le type d'Eikelboom 0675 ; - les souches de bactéries de la famille incluant le type d'Eikelboom 0581.8. Agent de prévention et/ou de lutte contre le moussage biologique selon l'une quelconque des revendications 5 à 7, caractérisé en ce que ladite au moins une enzyme et/ou ledit au moins un organisme exprimant l'enzyme est immobilisé sur un support. 9. Agent de prévention et/ou de lutte contre le moussage biologique selon l'une quelconque des revendications 5 à 8, caractérisé en ce que ladite au moins une enzyme et/ou ledit au moins un organisme exprimant l'enzyme et/ou ledit au moins un lysat bactérien est lyophilisé. 10. Agent de prévention et/ou de lutte contre le moussage biologique selon l'une quelconque des revendications 5 à 9, caractérisé en ce qu'il comprend : i)- au moins une première enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - au moins un organisme exprimant ladite première enzyme ; et/ou - au moins un lysat bactérien comprenant ladite première enzyme ; ladite au moins une première enzyme comprenant un polypeptide tel que défini selon la revendication 1 ; et ii)- au moins une deuxième enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - au moins un organisme exprimant ladite deuxième enzyme ; et/ou - au moins un lysat bactérien comprenant ladite deuxième enzyme ; ladite au moins une deuxième enzyme comprenant un polypeptide tel que défini selon la revendication 2 ; et iii)- au moins une troisième enzyme capable de lyser au moins une souche de bactéries filamenteuses impliquées dans le moussage biologique ; et/ou - au moins un organisme exprimant ladite troisième enzyme ; et/ou - au moins un lysat bactérien comprenant ladite troisième enzyme ;ladite au moins une troisième enzyme comprenant un polypeptide tel que défini selon la revendication 3: 11. Kit de prévention et/ou de lutte contre le moussage biologique impliquant au moins une souche de bactéries filamenteuses comprenant : au moins un agent de prévention et/ou de lutte contre le moussage biologique impliquant au moins une souche de bactéries filamenteuses, ledit agent étant défini selon l'une quelconque des revendications 5 à 10; et au moins un support apte à immobiliser ledit agent. 12. Utilisation d'au moins un agent de prévention et/ou de lutte contre le moussage biologique selon l'une quelconque des revendications 5 à 10 dans le cadre d'un procédé de traitement d'eaux incluant une étape de mise en contact desdites eaux avec ledit au moins un agent de prévention et/ou de lutte contre au moins une souche de bactéries filamenteuses. 13. Utilisation selon la revendication 12 caractérisée en ce que ledit procédé de traitement d'eaux met en oeuvre des boues activées. 5. Agent for prevention and / or fight against biological foaming characterized in that it comprises: at least one enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming, said at least one enzyme comprising a polypeptide as defined in claim 1; and / or - at least one organism expressing said enzyme; and / or at least one bacterial lysate comprising said enzyme. 8. Agent for prevention and / or fight against biological foaming according to claim 5, characterized in that said at least one enzyme further comprises a polypeptide as defined in claim 2 and / or a polypeptide as defined according to claim 9. 9. agent for prevention and / or fight against biological foaming according to one of claims 5 or 6, characterized in that said strain of filamentous bacteria is included in the group comprising: - strains of bacteria of the family Nocardiaceae; - strains of bacteria of the family Gordoniaceae; - the strains of bacteria of the family including the genus ./Wicrothrix; strains of bacteria of the family including the type of Eikelboom 0675; - strains of bacteria of the family including the type of Eikelboom 0581.8. Agent for preventing and / or combating biological foaming according to any one of Claims 5 to 7, characterized in that the said at least one enzyme and / or the said at least one organism expressing the enzyme is immobilized on a support. 9. Agent for prevention and / or fight against biological foaming according to any one of claims 5 to 8, characterized in that said at least one enzyme and / or said at least one organism expressing the enzyme and / or said at least one bacterial lysate is lyophilized. 10. Agent for prevention and / or fight against biological foaming according to any one of claims 5 to 9, characterized in that it comprises: i) - at least a first enzyme capable of lysing at least one strain of bacteria filaments involved in organic foaming; and / or - at least one organism expressing said first enzyme; and / or at least one bacterial lysate comprising said first enzyme; said at least one first enzyme comprising a polypeptide as defined in claim 1; and ii) - at least one second enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; and / or - at least one organism expressing said second enzyme; and / or - at least one bacterial lysate comprising said second enzyme; said at least one second enzyme comprising a polypeptide as defined in claim 2; and iii) - at least one third enzyme capable of lysing at least one strain of filamentous bacteria involved in the biological foaming; and / or - at least one organism expressing said third enzyme; and / or - at least one bacterial lysate comprising said third enzyme, said at least one third enzyme comprising a polypeptide as defined according to claim 3: 11. Kit for prevention and / or fight against biological foaming involving at least one strain filamentous bacteria composition comprising: at least one agent for preventing and / or combating biological foaming involving at least one strain of filamentous bacteria, said agent being defined according to any one of claims 5 to 10; and at least one support adapted to immobilize said agent. 12. Use of at least one preventive agent and / or anti-foaming agent according to any one of claims 5 to 10 in the context of a water treatment process including a step of contacting said water with said at least one agent for preventing and / or controlling at least one strain of filamentous bacteria. 13. Use according to claim 12 characterized in that said water treatment process uses activated sludge.
FR0955907A 2009-08-28 2009-08-28 AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING Expired - Fee Related FR2949459B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR0955907A FR2949459B1 (en) 2009-08-28 2009-08-28 AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING
FR1051300A FR2949460A1 (en) 2009-08-28 2010-02-24 AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING
PCT/EP2010/062257 WO2011023659A1 (en) 2009-08-28 2010-08-23 Kit and agent for preventing and/or controlling biological foaming
PCT/EP2010/062259 WO2011023660A1 (en) 2009-08-28 2010-08-23 Agent for preventing and/or controlling biological foaming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0955907A FR2949459B1 (en) 2009-08-28 2009-08-28 AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING

Publications (2)

Publication Number Publication Date
FR2949459A1 true FR2949459A1 (en) 2011-03-04
FR2949459B1 FR2949459B1 (en) 2014-10-17

Family

ID=42199537

Family Applications (2)

Application Number Title Priority Date Filing Date
FR0955907A Expired - Fee Related FR2949459B1 (en) 2009-08-28 2009-08-28 AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING
FR1051300A Withdrawn FR2949460A1 (en) 2009-08-28 2010-02-24 AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING

Family Applications After (1)

Application Number Title Priority Date Filing Date
FR1051300A Withdrawn FR2949460A1 (en) 2009-08-28 2010-02-24 AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING

Country Status (2)

Country Link
FR (2) FR2949459B1 (en)
WO (2) WO2011023659A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109717B (en) * 2022-05-19 2023-05-30 自然资源部第三海洋研究所 Gordonia strain for efficiently degrading polystyrene plastic

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030170877A1 (en) * 1998-12-03 2003-09-11 Tetsuya Yano DNA fragment carrying toluene monooxygenase, gene, recombinant plasmid, transformed microorganism, method for degrading chlorinated aliphatic hydrocarbon compounds and aromatic compounds, and method for environmental remediation
WO2004013054A1 (en) * 2002-07-27 2004-02-12 The Queen's University Of Belfast A method of controlling microthrix parvicella proliferation of waste treatment plants
WO2006072845A2 (en) * 2004-12-02 2006-07-13 Csir Gram positive bacterial cells comprising a disrupted flagellin gene, flagellin-based fusion proteins and use in removal of metal ions from a liquid
US20060177930A1 (en) * 2005-02-04 2006-08-10 Michael Bramucci Method to enhance biodegradation of sulfonated aliphatic-aromatic co-polyesters by addition of a microbial consortium
WO2007028088A2 (en) * 2005-09-02 2007-03-08 Novozymes North America, Inc. Methods for enhancing the dewaterability of sludge with alpha-amylase treatment
WO2008037718A1 (en) * 2006-09-25 2008-04-03 Paolo La Colla Surface active compounds produced by gordonia strains, method of production and use thereof
US20080105614A1 (en) * 2006-09-29 2008-05-08 Malcolm Ezekiel Fabiyi Ozonation of wastewater for reduction of sludge or foam and bulking control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189549B2 (en) * 2002-06-14 2007-03-13 Kosan Biosciences, Inc. Recombinant polynucleotides encoding pro-geldanamycin producing polyketide synthase and accessory proteins, and uses thereof
WO2009155357A1 (en) * 2008-06-17 2009-12-23 Arizona Board Of Regents Nucleic acids, bacteria, and methods for degrading the peptidoglycan layer of a cell wall
EP2157100A1 (en) * 2008-08-19 2010-02-24 Profos AG Artificial peptidoglycan lysing enzymes and peptidoglycan binding proteins

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030170877A1 (en) * 1998-12-03 2003-09-11 Tetsuya Yano DNA fragment carrying toluene monooxygenase, gene, recombinant plasmid, transformed microorganism, method for degrading chlorinated aliphatic hydrocarbon compounds and aromatic compounds, and method for environmental remediation
WO2004013054A1 (en) * 2002-07-27 2004-02-12 The Queen's University Of Belfast A method of controlling microthrix parvicella proliferation of waste treatment plants
WO2006072845A2 (en) * 2004-12-02 2006-07-13 Csir Gram positive bacterial cells comprising a disrupted flagellin gene, flagellin-based fusion proteins and use in removal of metal ions from a liquid
US20060177930A1 (en) * 2005-02-04 2006-08-10 Michael Bramucci Method to enhance biodegradation of sulfonated aliphatic-aromatic co-polyesters by addition of a microbial consortium
WO2007028088A2 (en) * 2005-09-02 2007-03-08 Novozymes North America, Inc. Methods for enhancing the dewaterability of sludge with alpha-amylase treatment
WO2008037718A1 (en) * 2006-09-25 2008-04-03 Paolo La Colla Surface active compounds produced by gordonia strains, method of production and use thereof
US20080105614A1 (en) * 2006-09-29 2008-05-08 Malcolm Ezekiel Fabiyi Ozonation of wastewater for reduction of sludge or foam and bulking control

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J A THOMAS ET AL: "Fighting foam with phages?", WATER SCIENCE & TECHNOLOGY, vol. 46, no. 1-2, 2002, pages 511 - 553, XP002585937, Retrieved from the Internet <URL:http://www.iwaponline.com/wst/04601/0511/046010511.pdf> [retrieved on 20100607] *
P H NIELSEN ET AL: "Identity and ecophysiology of filamentous bacteria in activated sludge", FEMS MICROBIOL REV, vol. 33, no. 6, 22 May 2009 (2009-05-22), pages 969 - 998, XP002585953, Retrieved from the Internet <URL:http://www3.interscience.wiley.com/cgi-bin/fulltext/122402730/PDFSTART> [retrieved on 20100607], DOI: 10.1111/j.1574-6976.2009.00186.x *
ROBERT J SEVIOUR ET AL: "Ecophysiology of the Actinobacteria in activated sludge systems", ANTONIE VAN LEEUWENHOEK, KLUWER ACADEMIC PUBLISHERS, DO, vol. 94, no. 1, 26 February 2008 (2008-02-26), pages 21 - 33, XP019599014, ISSN: 1572-9699 *
WITHEY S ET AL: "Bacteriophages-potential for application in wastewater treatment processes", SCIENCE OF THE TOTAL ENVIRONMENT, ELSEVIER LNKD- DOI:10.1016/J.SCITOTENV.2004.09.021, vol. 339, no. 1-3, 1 March 2005 (2005-03-01), pages 1 - 18, XP004765988, ISSN: 0048-9697 *

Also Published As

Publication number Publication date
FR2949460A1 (en) 2011-03-04
FR2949459B1 (en) 2014-10-17
WO2011023660A1 (en) 2011-03-03
WO2011023659A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
Adav et al. Extracellular polymeric substances and structural stability of aerobic granule
Cunningham et al. Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol
Adav et al. Degradation of phenol by Acinetobacter strain isolated from aerobic granules
Chen et al. Microbial decolorization of azo dyes by Proteus mirabilis
Kulichevskaya et al. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands
Warneke et al. Bacterial degradation of poly (trans-1, 4-isoprene)(gutta percha)
El-Naas et al. Evaluation of the characteristics of polyvinyl alcohol (PVA) as matrices for the immobilization of Pseudomonas putida
EP2483429B1 (en) Bacterial strains and variants capable of degrading poly (lactic acid) and their uses
Ho et al. Degrading high-strength phenol using aerobic granular sludge
Kotresha et al. Phenol degradation in a packed bed reactor by immobilized cells of Pseudomonas aeruginosa MTCC 4997
Xia et al. Effects of CaCl2 freeze-drying and acidic solutions on the reusability of calcium alginate beads; and degradation of phenol by immobilized Acinetobacter sp. PR1
FR2609723A1 (en) PROCESS FOR THE PREPARATION OF AN IMMOBILIZED ENZYME OR MICROORGANISM
Møllebjerg et al. Novel high-throughput screening platform identifies enzymes to tackle biofouling on reverse osmosis membranes
EP1638897A2 (en) Method of degrading tbp using a photosynthetic bacterial strain
TW202012616A (en) Bacterium degrading microorganism, microbial preparation, and method and device for degrading microorganism
FR2949459A1 (en) AGENT FOR PREVENTING AND / OR COMBATTING BIOLOGICAL FOAMING
Cetina et al. Antimicrobial activity of marine bacteria isolated from Gulf of Mexico
Uzunova et al. Thermostable exo-inulinase production by semicontinuous cultivation of membrane-immobilized Bacillus sp. 11 cells
RU2404139C2 (en) Biopreparation for removing oil from sea water
Sahoo et al. A high salt stable ɑ-amylase by Bacillus sp
Jacobsen et al. Growth and survival of Pseudomonas cepacia DBO1 (pRO101) in soil amended with 2, 4-dichlorophenoxyacetic acid
CN112574972B (en) Bacillus belgii AiiA-homologous lactonase, gene and application thereof
Le et al. Mitigation of bactericidal effect of carbon nanotubes by cell entrapment
Kharroub et al. Salicola salis sp. nov., an extremely halophilic bacterium isolated from Ezzemoul sabkha in Algeria
Mary et al. Growth and survival of clinical vs. environmental species of Aeromonas in tap water

Legal Events

Date Code Title Description
CD Change of name or company name

Owner name: VEOLIA WATER SOLUTIONS & TECHNOLOGIES SUPPORT, FR

Effective date: 20120507

CJ Change in legal form

Effective date: 20120507

PLFP Fee payment

Year of fee payment: 7

ST Notification of lapse

Effective date: 20170428