FR2942321A1 - Procede de determination du pouvoir calorifique inferieur d'un carburant - Google Patents

Procede de determination du pouvoir calorifique inferieur d'un carburant Download PDF

Info

Publication number
FR2942321A1
FR2942321A1 FR0950969A FR0950969A FR2942321A1 FR 2942321 A1 FR2942321 A1 FR 2942321A1 FR 0950969 A FR0950969 A FR 0950969A FR 0950969 A FR0950969 A FR 0950969A FR 2942321 A1 FR2942321 A1 FR 2942321A1
Authority
FR
France
Prior art keywords
fuel
catalyst
engine
temperature
temperature data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0950969A
Other languages
English (en)
Other versions
FR2942321B1 (fr
Inventor
Pierre Lafenetre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR0950969A priority Critical patent/FR2942321B1/fr
Publication of FR2942321A1 publication Critical patent/FR2942321A1/fr
Application granted granted Critical
Publication of FR2942321B1 publication Critical patent/FR2942321B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2817Oils, i.e. hydrocarbon liquids using a test engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention se rapporte à un procédé de détermination du pouvoir calorifique inférieur d'un carburant, le procédé comprenant les étapes d'injection (30) d'une carburant prédéfinie dans une ligne de gaz, de mesure (32) d'une donnée de température d'un catalyseur en sortie du moteur, et de détermination (34) du pouvoir calorifique inférieur du carburant à partir de la quantité de carburant et de la donnée de température mesurée. L'invention permet d'obtenir un procédé de détermination du pouvoir calorifique inférieur d'un carburant utilisé dans un moteur qui soit plus simple à mettre en oeuvre.

Description

PROCEDE DE DETERMINATION DU POUVOIR CALORIFIQUE INFERIEUR D'UN CARBURANT [000l] La présente invention concerne un procédé de détermination du pouvoir calorifique inférieur d'un carburant utilisé dans un moteur. [0002] L'ensemble des paramètres de fonctionnement d'un moteur constitue une cartographie du moteur. L'optimisation de la cartographie du moteur afin de minimiser la consommation et les émissions de polluants du moteur est généralement réalisée par des tests effectués en laboratoires. La cartographie optimale peut fortement varier selon les conditions de fonctionnement. En particulier, le pouvoir calorifique inférieur influe sur la cartographie optimale. Le pouvoir calorifique inférieur (aussi désigné sous l'acronyme PCI) est la quantité de chaleur que peut fournir un kilogramme de carburant pendant la combustion. [0003] Du fait de la multiplication des carburants disponibles à l'achat, il devient de plus en plus difficile de prévoir la qualité du carburant utilisé par l'utilisateur et donc de connaître la cartographie optimale pour le moteur. En particulier, les points de fonctionnements du moteur peuvent être décalés si le carburant employé est différent du carburant utilisé pour réaliser les tests d'optimisation de cartographie. Pour un même couple moteur demandé par l'utilisateur, le débit à injecter dépend du carburant utilisé. Injecter trop de carburant augmente les émissions de polluants et la consommation de carburant. Ne pas connaître la nature du carburant peut également poser d'autres problèmes. L'utilisation de certains carburants nécessite la mise en oeuvre de stratégie de protection du moteur. C'est notamment le cas des carburants se détériorant rapidement. De telles stratégies de protection peuvent augmenter la consommation de carburant lorsqu'elles ne sont pas optimisées. En ignorant la qualité du carburant employé, il existe aussi un risque de perturbation du fonctionnement du filtre à particules. [0004 Il est donc souhaitable de pouvoir déterminer la qualité du carburant, et notamment le pouvoir calorifique inférieur du carburant utilisé. [0005] Il est ainsi connu du document FR-A-2 909 126 un procédé de détermination de la quantité de carburant de régénération à injecter dans une ligne d'échappement d'un véhicule équipé d'un filtre à particules, d'un catalyseur d'oxydation et d'au moins un injecteur d'échappement, en vue de régénérer le filtre à particules. Une consigne de quantité de carburant de régénération à injecter dans la ligne d'échappement par l'injecteur d'échappement est déterminée. A partir de mesures un exotherme mesuré du catalyseur d'oxydation est déterminé. A partir d'une modélisation un exotherme modélisé du catalyseur d'oxydation est déterminée. Une comparaison de données déduites de l'exotherme mesuré à des données déduites de l'exotherme modélisé est effectuée. La consigne en fonction de la comparaison est corrigée. [0006] Le document FR-A-2 872 201 décrit un procédé de dosage du carburant dans au moins un canal de gaz d'échappement d'un moteur à combustion interne transformé par une réaction exothermique pour augmenter la température d'un composant à chauffer. Selon le procédé, on prédéfinit une température de consigne du composant à chauffer ou des gaz d'échappement en amont du composant à chauffer. La quantité dosée du carburant est calculée en utilisant un modèle de réaction exothermique pour atteindre la température de consigne prédéfinie. [0007] Le brevet JP-A-2003328800 décrit un moteur et un procédé de contrôle d'un tel moteur. [000s] Mais, les solutions des documents précités sont des solutions complexes à mettre en oeuvre. [000s] Il existe donc un besoin pour un procédé de détermination du pouvoir calorifique inférieur d'un carburant utilisé dans un moteur qui soit plus simple à mettre en oeuvre. [ooio] Pour cela, l'invention propose un procédé de détermination du pouvoir calorifique inférieur d'un carburant, le procédé comprenant les étapes d' injection d'une quantité de carburant prédéfinie dans une ligne (16) de gaz d'échappement en amont d'un catalyseur (18), de mesure d'une donnée de température du catalyseur (18), et de détermination du pouvoir calorifique inférieur du carburant à partir de la quantité de carburant et de la donnée de température mesurée. [0011] Dans une variante, la donnée de température est choisie dans un groupe comprenant la variation de température en aval du catalyseur dans le sens d'écoulement des gaz d'échappement, la différence entre une température mesurée en amont du catalyseur dans le sens d'écoulement des gaz d'échappement et une température mesurée en aval du catalyseur dans le sens d'écoulement des gaz d'échappement. [0012] Dans une variante, la quantité de carburant injectée est définie par la durée de l'étape d'injection. [0013] Dans une variante, la ligne d'échappement comprend en outre un injecteur de carburant en amont du catalyseur, l'injecteur de carburant injectant la quantité de carburant prédéfinie dans la ligne d'échappement. [0014] L'invention a également pour objet un procédé de contrôle moteur comprenant la détermination du pouvoir calorifique inférieur d'un carburant utilisé dans le moteur selon le procédé décrit précédemment, et comportant en outre une étape d'optimisation des paramètres de fonctionnement du moteur en fonction du pouvoir calorifique inférieur déterminé. [0015] Dans une variante, les paramètres de fonctionnement incluent l'injection de carburant. [0016] L'invention a également pour objet un véhicule comprenant un moteur, une ligne de gaz d'échappement du moteur comportant un catalyseur, un injecteur de carburant en amont du catalyseur et au moins un capteur de température mesurant une donnée de température du catalyseur, caractérisé en ce que le véhicule comporte en outre un calculateur mettant en oeuvre les procédés décrits précédemment. [0017] Dans une variante, un des capteurs de température est en aval du catalyseur dans le sens d'écoulement des gaz d'échappement du moteur, la donnée de température étant la variation de la température mesurée par le capteur. [0018] Dans une variante, un capteur de température est en aval du catalyseur dans le sens d'écoulement des gaz d'échappement du moteur et un autre capteur de température est en amont du catalyseur dans le sens d'écoulement des gaz d'échappement du moteur, la donnée de température étant la différence entre la température mesurée par le capteur en amont et la température mesurée par le capteur en aval. [0019] D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit des modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui montrent : • figure 1, une vue schématique d'un véhicule, et • figure 2, un organigramme d'un exemple de mise en oeuvre du procédé de détermination. [0020] Il est proposé un procédé de détermination du pouvoir calorifique inférieur d'un carburant comprenant une étape injection d'une quantité de carburant prédéfinie dans une ligne de gaz d'échappement en amont d'un catalyseur. Le procédé comporte en outre une étape de mesure d'une donnée de température d'un catalyseur en sortie du moteur et une étape de détermination du pouvoir calorifique inférieur du carburant à partir de la quantité de carburant et de la donnée de température mesurée. [0021] Le procédé de détermination permet d'obtenir une valeur du pouvoir calorifique inférieur d'un carburant. Une information sur la qualité du carburant est ainsi connue. Un tel procédé peut être mis en oeuvre avec des éléments communément employés dans les moteurs. La mise en oeuvre du procédé est ainsi facilitée puisque aucun nouvel élément n'est ajouté pour pouvoir mettre en oeuvre le procédé. Un tel procédé de détermination peut en outre être utilisé dans un procédé de contrôle du moteur dans le but d'optimiser les paramètres de fonctionnement du moteur. [0022] Le procédé de détermination peut être mis en oeuvre dans un véhicule 10 comme illustré dans la vue schématique de la figure 1. Le véhicule 10 comprend un moteur 12 qui peut être tout type de moteur. Le moteur 12 peut en particulier utiliser tout carburant comme l'essence, le Diesel, les biocarburants ou le GPL. Un catalyseur 18 permettant de réduire la quantité de polluants émise vers l'extérieur est placé en sortie du moteur 12. Le catalyseur 18 tel que représenté sur la figure 1 est dans une ligne 16 d'échappement qui conduit les gaz d'échappement du moteur 12 vers l'extérieur. [0023] La ligne 16 comporte en outre un injecteur 14 de carburant en amont du catalyseur 18. L'injecteur 14 de carburant peut injecter du carburant dans la ligne 16, notamment pour la régénération d'un filtre à particules non représenté sur la figure [0024] Dans l'exemple de la figure 1, deux capteurs 20, 22 de température sont placés dans la ligne 16 d'échappement, le capteur 20 en amont, l'autre capteur 22 en aval. A titre d'exemple, les capteurs 20, 22 peuvent être des thermocouples. Dans d'autres exemples de configurations, l'un seulement des capteurs 20, 22 de température peut être présent. [0025] Le véhicule 10 comporte également un calculateur 24 pouvant mettre en oeuvre le procédé de détermination. Le calculateur 24 peut contrôler l'injecteur 14, et notamment la durée d'ouverture de l'injecteur 14. Le calculateur 24 peut en outre recevoir des mesures réalisées par les capteurs 20, 22. Les liens entre le calculateur 24 et l'injecteur 14, les capteurs 20, 22 sont indiqués par des traits en pointillés sur la figure 1. Le calculateur 24 est par exemple un ordinateur embarqué. [0026] La figure 2 est un organigramme qui illustre un exemple de mise en oeuvre du procédé de détermination. [0027] Le procédé de détermination comprend une étape 30 d'injection d'une quantité de carburant prédéfinie dans la ligne 16 en amont du catalyseur 18. [0028] La quantité de carburant injectée peut être définie par la durée de l'étape 30 d'injection de carburant dans la ligne 16. La durée d'injection de carburant peut ainsi être bien contrôlée puisqu'il est facile de maîtriser la durée d'injection de carburant. [0029] Notamment, la quantité de carburant prédéfinie peut être injectée par l'injecteur 14. L'étape 30 de détermination du procédé est alors facile à mettre en oeuvre puisqu'il suffit de programmer différemment le calculateur 24 qui contrôle l'injecteur 14. Cela présente en outre l'avantage que l'étape d'injection peut être effectuée dans toutes les conditions. A titre d'illustration, lorsque le moteur 12 fonctionne à pleine charge, il est possible d'injecter du carburant dans la ligne 16 par l'injecteur 14 alors qu'il n'est pas possible d'injecter plus de carburant dans la chambre de combustion. [0030] Le procédé de détermination comporte également une étape 32 de mesure d'une donnée de température du catalyseur 18 en sortie du moteur 12. La mesure de la donnée de température donne accès à l'exotherme généré sur le catalyseur 18 par la quantité de carburant injectée à l'étape 32. L'exotherme généré sur le catalyseur 18 est représentatif de la quantité d'énergie transmise par le carburant injecté au catalyseur 18. La quantité d'énergie transmise au catalyseur 18 dépend de la quantité de carburant introduite et du pouvoir calorifique inférieur du carburant utilisé. [0031] Afin de caractériser l'exotherme généré sur le catalyseur 18, la donnée de température mesurée peut correspondre à des mesures différentes. La donnée de température peut notamment être la variation de température en aval du catalyseur 18 dans le sens d'écoulement des gaz d'échappement du moteur 12. Cela permet d'utiliser un seul capteur 20 de température placé en aval du catalyseur 18 dans le sens d'écoulement des gaz d'échappement du moteur 12. [0032] La donnée de température mesurée peut aussi être la différence entre une température mesurée en amont du catalyseur 18 dans le sens d'écoulement des gaz d'échappement du moteur 12 et une température mesurée en aval du catalyseur 18 dans le sens d'écoulement des gaz d'échappement du moteur 12. Notamment, le capteur 20 de température placé en aval du catalyseur 18 dans le sens d'écoulement des gaz d'échappement du moteur 12 et le capteur 22 de température placé en amont du catalyseur 18 dans le sens d'écoulement des gaz d'échappement du moteur 12 peuvent permettre de réaliser une telle mesure. La différence entre une température mesurée en amont du catalyseur 18 d'échappement du moteur 12 et une température mesurée en aval du catalyseur 18 est un bon indicateur de l'évolution de l'exotherme du catalyseur 18. [0033] Le procédé comprend en outre une étape 34 de détermination du pouvoir calorifique inférieur du carburant à partir de la quantité de carburant et de la donnée de température mesurée. L'étape de détermination est aisée à mettre en oeuvre parce qu'une donnée de température est utilisée pour la détermination au lieu d'une donnée de pression, d'une donnée de taux d'oxygène ou d'une donnée spectroscopique. Le lien entre la donnée de température mesurée et la quantité de carburant d'une part et le pouvoir calorifique inférieur du carburant d'autre part est en effet simple. Peu de calculs sont à effectuer par le calculateur 24 pour obtenir le pouvoir calorifique inférieur du carburant utilisé. La détermination du pouvoir calorifique inférieur est donc facilitée. [0034] Le procédé de détermination permet ainsi d'obtenir aisément une valeur du pouvoir calorifique inférieur du carburant utilisé dans le moteur 12. Le procédé permet ainsi de connaître le type de carburant utilisé du point de vue du pouvoir calorifique inférieur. Le procédé utilise des capteurs (capteurs 20, 22 de température), des actionneurs (injecteur 14) et un calculateur 24 communément utilisés dans les moteurs. La mise en oeuvre du procédé est ainsi plus simple. Aucun élément supplémentaire n'est ajouté pour pouvoir mettre en oeuvre le procédé. Une simple modification de la programmation du calculateur 24 suffit pour mettre en oeuvre le procédé. Comme mentionné précédemment, l'emploi d'un injecteur 14 dans la ligne 16 présente en outre l'avantage que le procédé de détermination peut être effectuée dans toutes les conditions, y compris lorsque le moteur 12 fonctionne à pleine charge. [0035] Le procédé de détermination du pouvoir calorifique inférieur décrit précédemment peut être utilisé pour un procédé de contrôle du moteur 12. Le procédé de contrôle peut également être mis en oeuvre avec le calculateur 24. [0036] Le procédé de contrôle comprend les étapes du procédé de détermination du pouvoir calorifique inférieur d'un carburant utilisé dans le moteur 12 précédemment décrites. Le procédé de contrôle comporte en outre une étape d'optimisation des paramètres de fonctionnement du moteur 12 en fonction du pouvoir calorifique inférieur déterminé. [0037] Le procédé de contrôle permet de connaître les réglages optimaux pour le fonctionnement du moteur 12 sans utiliser des cartographies spécifiques obtenues après des tests réalisés en laboratoire. Le procédé de contrôle permet donc d'adapter la cartographie du moteur 12 à la nature du carburant utilisé. La réaction de combustion est ainsi optimisée. Les décalages des points de fonctionnement du moteur dus à l'emploi de carburant différent des carburants utilisés lors des tests pour l'optimisation de la cartographie du moteur 12 sont en particulier évités. La consommation de carburant et les émissions de polluants dans l'atmosphère sont de ce fait réduites. En outre, certains carburants peuvent se dégrader rapidement et risquent de dégrader le moteur 12. A titre d'exemple, les biodiesel ont la particularité d'avoir une mauvaise stabilité à l'oxydation ayant un impact sur la qualité du carburant. L'utilisation de carburant instable peut causer plusieurs types de dysfonctionnements dans le circuit carburant du moteur 12, notamment la formation de dépôts dans le réservoir. Déterminer que de tels carburants sont utilisés implique des précautions particulières d'emploi afin d'éviter tout risque pour le moteur 12. Il peut ainsi être utile de purger le carburant en cas d'utilisation prolongée. De plus, les risques de perturbations du fonctionnement du filtre à particules sont fortement diminués. Cela assure également une meilleure réduction des polluants émis par le moteur. [0038] Un des paramètres de fonctionnement optimisés peut être l'injection de carburant. Le contrôle permet en effet de maîtriser la richesse du mélange air-carburant introduit dans le moteur 12 et donc d'optimiser le rendement de la combustion et de limiter la production de polluants. [0039] La mise en oeuvre des procédés de détermination et de contrôle peut se faire à différents instants du fonctionnement du véhicule 10. Il est en particulier intéressant de mettre en oeuvre de tels procédés lors de la première utilisation du moteur après un remplissage du réservoir de carburant ou régulièrement lors de la consommation d'un réservoir rempli.

Claims (9)

  1. REVENDICATIONS1. Un procédé de détermination du pouvoir calorifique inférieur d'un carburant, le procédé comprenant les étapes d' injection d'une quantité de carburant prédéfinie dans une ligne (16) de gaz d'échappement en amont d'un catalyseur (18), de mesure d'une donnée de température du catalyseur (18), et de détermination du pouvoir calorifique inférieur du carburant à partir de la quantité de carburant et de la donnée de température mesurée.
  2. 2. Le procédé selon la revendication 1, dans lequel la donnée de température est choisie dans un groupe comprenant la variation de température en aval du catalyseur (18) dans le sens d'écoulement des gaz d'échappement, la différence entre une température mesurée en amont du catalyseur (18) dans le sens d'écoulement des gaz d'échappement et une température mesurée en aval du catalyseur (18) dans le sens d'écoulement des gaz d'échappement.
  3. 3. Le procédé selon l'une des revendications 1 à 2, dans lequel la quantité de carburant injectée est définie par la durée de l'étape (30) d'injection.
  4. 4. Le procédé selon l'une des revendications 1 à 3, dans lequel la ligne d'échappement comprend en outre un injecteur (14) de carburant en amont du catalyseur (18), l'injecteur (14) de carburant injectant la quantité de carburant prédéfinie dans la ligne (16) d'échappement.
  5. 5. Un procédé de contrôle d'un moteur (12), le procédé de contrôle comprenant la détermination du pouvoir calorifique inférieur d'un carburant utilisé dans le moteur (12) selon le procédé de l'une des revendications 1 à 4, et comportant en outre une étape d'optimisation des paramètres de fonctionnement du moteur (12) en fonction du pouvoir calorifique inférieur déterminé.
  6. 6. Le procédé selon la revendication 5, dans lequel les paramètres de fonctionnement incluent l'injection de carburant.
  7. 7. Un véhicule (10) comprenant un moteur (12), une ligne (16) de gaz d'échappement du moteur comportant un catalyseur (18), un injecteur (14) de carburant en amont du catalyseur (18) et au moins un capteur (20, 22) de température mesurant une donnée de température du catalyseur (18), caractérisé en ce que le véhicule comporte en outre un calculateur (24) mettant en oeuvre les procédés selon l'une des revendications 1 à 6.
  8. 8. Le véhicule (10) selon la revendication 7, dans lequel un des capteurs (20) de température est en aval du catalyseur (18) dans le sens d'écoulement des gaz d'échappement du moteur (12), la donnée de température étant la variation de la température mesurée par le capteur (20).
  9. 9. Le véhicule (10) selon la revendication 7, dans lequel un capteur (20) de température est en aval du catalyseur (18) dans le sens d'écoulement des gaz d'échappement du moteur (12) et un autre capteur (22) de température est en amont du catalyseur (18) dans le sens d'écoulement des gaz d'échappement du moteur (12), la donnée de température étant la différence entre la température mesurée par le capteur (22) en amont et la température mesurée par le capteur (20) en aval.
FR0950969A 2009-02-16 2009-02-16 Procede de determination du pouvoir calorifique inferieur d'un carburant Expired - Fee Related FR2942321B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0950969A FR2942321B1 (fr) 2009-02-16 2009-02-16 Procede de determination du pouvoir calorifique inferieur d'un carburant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0950969A FR2942321B1 (fr) 2009-02-16 2009-02-16 Procede de determination du pouvoir calorifique inferieur d'un carburant

Publications (2)

Publication Number Publication Date
FR2942321A1 true FR2942321A1 (fr) 2010-08-20
FR2942321B1 FR2942321B1 (fr) 2011-02-11

Family

ID=41130341

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0950969A Expired - Fee Related FR2942321B1 (fr) 2009-02-16 2009-02-16 Procede de determination du pouvoir calorifique inferieur d'un carburant

Country Status (1)

Country Link
FR (1) FR2942321B1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115356A (ja) * 1981-12-29 1983-07-09 Yamatake Honeywell Co Ltd ガス用カロリ−メ−タ
DE3833123A1 (de) * 1987-09-29 1989-04-13 Mitsubishi Electric Corp Vorrichtung zur erfassung der kraftstoffeigenschaften fuer eine brennkraftmaschine mit innerer verbrennung
DE19913268C1 (de) * 1999-03-24 2000-08-03 Daimler Chrysler Ag Überwachungsvorrichtung
DE10240977A1 (de) * 2002-09-05 2004-03-18 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine selbst
WO2008146108A1 (fr) * 2007-05-01 2008-12-04 Toyota Jidosha Kabushiki Kaisha Dispositif de commande pour moteur à combustion interne

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115356A (ja) * 1981-12-29 1983-07-09 Yamatake Honeywell Co Ltd ガス用カロリ−メ−タ
DE3833123A1 (de) * 1987-09-29 1989-04-13 Mitsubishi Electric Corp Vorrichtung zur erfassung der kraftstoffeigenschaften fuer eine brennkraftmaschine mit innerer verbrennung
DE19913268C1 (de) * 1999-03-24 2000-08-03 Daimler Chrysler Ag Überwachungsvorrichtung
DE10240977A1 (de) * 2002-09-05 2004-03-18 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine selbst
WO2008146108A1 (fr) * 2007-05-01 2008-12-04 Toyota Jidosha Kabushiki Kaisha Dispositif de commande pour moteur à combustion interne

Also Published As

Publication number Publication date
FR2942321B1 (fr) 2011-02-11

Similar Documents

Publication Publication Date Title
FR3029973A1 (fr) Procede de surveillance d'un dispositif de catalyse d'oxydation
FR2874236A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
EP2092168B1 (fr) Procede de determination de la quantite de carburant a injecter dans une ligne d'echappement en vue de regenerer un filtre a particules
FR2872201A1 (fr) Procede de dosage du carburant dans le canal des gaz d'echappement d'un moteur a combustion interne et dispositif pour sa mise en oeuvre
EP2423477B1 (fr) Procédé de détermination de l'état physique d'un filtre à particules
EP2438285A1 (fr) Procede et systeme de stimulation d'un catalyseur
FR2864146A1 (fr) Procede de determination en temps reel de la masse de particules presente dans un filtre a particules de vehicule automobile
EP1739291B1 (fr) Système d'aide à la régénération des moyens de dépollution intègres dans une ligne d'échappement d'un moteur de véhicule automobile
EP3077637B1 (fr) Procédé d'optimisation de la détection d'un catalyseur défaillant
EP1807610B1 (fr) Système d'aide à la régénération de moyens de dépollution pour moteur de véhicule automobile
EP2545261B1 (fr) Procede de regulation de la temperature de regeneration d'un filtre a particules
EP2479409B1 (fr) Procede pour une maitrise de la temperature des gaz d'echappement pour optimiser la regeneration d'un filtre a particules
FR2942321A1 (fr) Procede de determination du pouvoir calorifique inferieur d'un carburant
EP3482052B1 (fr) Procede d'adaptation d'une estimation d'une vitesse de combustion des suies d'un filtre a particules de moteur thermique
WO2021078998A1 (fr) Procédé de régulation d'une pression dans un système d'injection d'eau pour un moteur à combustion interne
EP1413720B1 (fr) Procédé de détermination de la température interne d'un filtre à particules, procédé de commande de la génération du filtre à particules, système de commande et filtre à particules correspondant
FR2942320A1 (fr) Procede de determination du pouvoir calorifique inferieur d'un carburant
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
FR2971812A1 (fr) Procede et dispositif pour determiner la capacite de conversion d'un catalyseur servant a nettoyer les gaz d'echappement
FR2927372A1 (fr) Procede de commande d'alimentation en carburant d'une ligne d'echappement d'un moteur a combustion et dispositif mettant en oeuvre le procede
EP2147200B1 (fr) Procede et dispositif d'adaptation d'un estimateur de temperature d'un systeme de post-traitement des gaz d'echappement
FR2990237A1 (fr) Ligne d'echappement avec un systeme de depollution adapte au travail en conditions de sur-enrichissement et procede de depollution d'une telle ligne
FR2872204A1 (fr) Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur
FR3127023A1 (fr) Procede de pilotage d’un ensemble thermique de vehicule automobile
FR2952122A1 (fr) Procede de controle des emissions polluantes d'un moteur a combustion

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20131031