FR2942069A1 - ELECTRICAL CONTACT, METHOD FOR WELDING A CONTACT PAD ON A METAL SUPPORT TO MAKE SUCH CONTACT. - Google Patents

ELECTRICAL CONTACT, METHOD FOR WELDING A CONTACT PAD ON A METAL SUPPORT TO MAKE SUCH CONTACT. Download PDF

Info

Publication number
FR2942069A1
FR2942069A1 FR0900517A FR0900517A FR2942069A1 FR 2942069 A1 FR2942069 A1 FR 2942069A1 FR 0900517 A FR0900517 A FR 0900517A FR 0900517 A FR0900517 A FR 0900517A FR 2942069 A1 FR2942069 A1 FR 2942069A1
Authority
FR
France
Prior art keywords
contact
layer
silver
mass percentage
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0900517A
Other languages
French (fr)
Other versions
FR2942069B1 (en
Inventor
Guy Gastaldin
Marcel Capelli
Tissot Jean Paul Favre
Frank Garcia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Priority to FR0900517A priority Critical patent/FR2942069B1/en
Priority to EP20100354005 priority patent/EP2216795B1/en
Priority to ES10354005.0T priority patent/ES2543213T3/en
Priority to PL10354005T priority patent/PL2216795T3/en
Publication of FR2942069A1 publication Critical patent/FR2942069A1/en
Application granted granted Critical
Publication of FR2942069B1 publication Critical patent/FR2942069B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0231Composite material having a noble metal as the basic material provided with a solder layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/027Composite material containing carbon particles or fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)

Abstract

Contact électrique (100) fixe comprenant un support métallique (1) assemblé à une pastille de contact (2) précomprimée. La pastille de contact (2) précomprimée comporte une couche de contact (8) comportant un agent conducteur composé d'argent (Ag), le pourcentage massique d'argent (Ag) étant compris entre 92 et 99% de la masse totale, de nickel (Ni), le pourcentage massique de nickel (Ni) étant compris entre 0 et 3%, et de carbone (C), le pourcentage massique de carbone (C) étant compris entre 0,5 et 5%. La pastille de contact (2) précomprimée comporte une sous-couche réactive (9) comportant un pseudo-alliage à base d'Argent (Ag) et de Cuivre (Cu) mélangés à un agent décapant, ladite sous-couche ayant une température de fusion inférieure à celle de la couche de contact.Fixed electrical contact (100) comprising a metal support (1) assembled to a precompressed contact pad (2). The precompressed contact pad (2) comprises a contact layer (8) comprising a conducting agent composed of silver (Ag), the mass percentage of silver (Ag) being between 92 and 99% of the total mass, of nickel (Ni), the mass percentage of nickel (Ni) being between 0 and 3%, and carbon (C), the weight percentage of carbon (C) being between 0.5 and 5%. The precompressed contact pad (2) comprises a reactive sub-layer (9) comprising a pseudo-alloy based on silver (Ag) and copper (Cu) mixed with a pickling agent, said underlayer having a temperature of lower melting than that of the contact layer.

Description

CONTACT ELECTRIQUE, PROCEDE D'ASSEMBLAGE PAR SOUDURE D'UNE PASTILLE DE CONTACT SUR UN SUPPORT METALLIQUE POUR REALISER UN TEL CONTACT DOMAINE TECHNIQUE DE L'INVENTION L'invention est relative à un contact électrique fixe comprenant un support métallique assemblé à une pastille de contact précomprimée. L'invention est aussi relative à un procédé d'assemblage par frittage direct d'une pastille de contact précomprimée sur un support métallique pour réaliser un contact électrique fixe selon l'invention. TECHNICAL FIELD OF THE INVENTION The invention relates to a fixed electrical contact comprising a metal support assembled to a contact pad. precompressed. The invention also relates to a method of assembling by direct sintering of a precompressed contact pad on a metal support to make a fixed electrical contact according to the invention.

ETAT DE LA TECHNIQUE Les procédés d'assemblage par résistance sont largement exploités pour la fixation des pièces métalliques utilisées notamment dans la fabrication de contacts électriques d'appareillages électriques comme décrit dans le document FR2665026. Ces procédés de soudure par résistance peuvent être utilisés avec un apport de matière telle que notamment de la brasure. L'apport de matière est utilisé pour augmenter la qualité de la liaison entre les pièces métalliques à assembler. En outre, la tenue mécanique des soudures est notamment dépendante de la nature des deux métaux ou alliages présents. Les pastilles de contact destinées à être utilisées dans les contacts électriques, 20 peuvent être constituées de trois couches de matériau. Chaque couche de matériau joue un rôle différent. Les pastilles de contact peuvent comporter : - Une première couche constituée d'un matériau de contact notamment à base d'argent ou de cuivre. De part ses propriétés de non-soudabilité et de résistance à l'érosion sous arc électrique, la première couche permet l'établissement et la 25 coupure du courant. Une seconde couche intermédiaire notamment à base d'argent permet une bonne compatibilité d'assemblage entre le matériau de contact et un support métallique du contact électrique. - Une troisième couche constituée de brasure, intégrée ou pas à la pastille de contact. La troisième couche est notamment à base d'argent et de cuivre et est de faible épaisseur. Ladite troisième couche tend à améliorer la qualité d'assemblage entre la seconde couche intermédiaire et le support métallique. La brasure présente la particularité d'avoir une température de fusion inférieure à celle du matériau de contact et du support métallique à assembler. Le support métallique du contact électrique est généralement réalisé à base de cuivre. io Un échauffement extérieur aux pastilles de contact notamment par résistance, induction ou flamme permet de passer en fusion la brasure et de créer un accrochage entre le matériau de contact et son support lors du refroidissement. L'utilisation de sous-couche et de brasure à base d'argent entraine cependant une inflation non négligeable des couts de fabrication des contacts électriques. 15 Les procédés d'assemblage d'une pièce de contact électrique comportant un support cuivreux et une pastille de contact de forte surface, notamment de surface supérieure à 180 mm2 comprend une première phase où la pastille est fabriquée par colaminage, biextrusion, ou frittage puis une seconde phase, où la pastille est fixée sur son support en une opération séparée de brasage. Généralement, 20 compte tenu de la taille de la pastille, la soudure est réalisée par chauffage par induction ou à la flamme. L'obtention de la pastille par colaminage, bi-extrusion ou frittage tend à augmenter le temps global de fabrication de la pièce de contact. En effet, l'obtention par colaminage, bi-extrusion ou frittage de la pastille comporte 25 plusieurs étapes de fabrication, généralement quatre. En outre, l'opération de découpe finale de la pastille dans le cas du colaminage ou de la bi-extrusion peut provoquer des décohésions entre les couches au niveau du pourtour de découpe. Ces décohésions en bord de pastille sont dues au différentiel de dilatation thermique lors des étapes de recuit qui engendre un différentiel des contraintes 2 résiduelles et donc de déformation des différentes couches au moment de la découpe. Lors d'une deuxième phase, le support cuivreux est enduit de décapant pour désoxyder et activer la surface d'assemblage. De la brasure sous la forme de paillon ou en pâte est déposée sur le support ou la pastille. Ladite pastille est positionnée sur le support cuivreux puis maintenue à l'aide d'un outillage dans un inducteur ou une flamme qui chauffe l'ensemble. La chauffe est maintenue jusqu'à la fusion de la brasure. Ces opérations manuelles de pose d'une part de décapant et d'autre part de brasure augmentent le temps de fabrication d'une pièce de 7o contact électrique. En outre, avec l'utilisation de pastilles colaminées et biextrudées, la qualité de l'assemblage est très difficile à maîtriser notamment à cause de phénomène de cloquage en surface des pastilles ou d'irrégularité de joint de brasure. EXPOSE DE L'INVENTION 15 L'invention vise donc à remédier aux inconvénients de l'état de la technique, de manière à proposer un procédé d'assemblage entre une pastille de contact de grande section et un support métallique. La pastille de contact précomprimée du contact électrique fixe selon l'invention comporte une couche de contact comportant un agent conducteur composé 20 d'argent, le pourcentage massique d'argent étant compris entre 92 et 99% de la masse totale, de nickel, le pourcentage massique de nickel étant compris entre 0 et 3%, et de carbone, le pourcentage massique de carbone étant compris entre 0,5 et 5%. La pastille de contact précomprimée comporte une sous-couche réactive comportant un pseudo-alliage à base d'Argent et de Cuivre mélangés à 25 un agent décapant, ladite sous-couche ayant une température de fusion inférieure à celle de la couche de contact. Avantageusement, la couche de contact comporte une fraction de particules réfractaires, lesdites particules réfractaires étant choisies parmi des particules de carbure de tungstène, de tungstène ou de nitrure de titane. STATE OF THE ART Resistance assembly methods are widely used for fixing metal parts used in particular in the manufacture of electrical contacts of electrical equipment as described in document FR2665026. These resistance welding processes can be used with a supply of material such as in particular solder. The contribution of material is used to increase the quality of the connection between the metal parts to be assembled. In addition, the mechanical strength of the welds is particularly dependent on the nature of the two metals or alloys present. The contact pads for use in the electrical contacts may consist of three layers of material. Each layer of material plays a different role. The contact pads may comprise: a first layer consisting of a contact material, in particular based on silver or copper. Due to its non-weldability and arc erosion resistance properties, the first layer allows for the setting and breaking of the current. A second intermediate layer, especially based on silver, allows good assembly compatibility between the contact material and a metal support of the electrical contact. - A third layer made of solder, integrated or not to the contact patch. The third layer is especially based on silver and copper and is thin. Said third layer tends to improve the quality of assembly between the second intermediate layer and the metal support. The solder has the particularity of having a lower melting temperature than that of the contact material and the metal support to be assembled. The metal support of the electrical contact is generally made of copper. Heating outside the contact pads, in particular by resistance, induction or flame makes it possible to melt the solder and to create a bonding between the contact material and its support during cooling. The use of underlayer and silver brazing, however, causes a significant inflation of the manufacturing costs of the electrical contacts. The methods of assembling an electrical contact piece comprising a cuprous support and a large surface contact pad, in particular with an area greater than 180 mm 2, comprises a first phase where the pellet is manufactured by coaxing, extrusion or sintering. a second phase, where the pellet is fixed on its support in a separate brazing operation. Generally, given the size of the pellet, the welding is done by induction or flame heating. Obtaining the pellet by bonding, bi-extrusion or sintering tends to increase the overall manufacturing time of the contact piece. Indeed, obtaining by bending, bi-extrusion or sintering of the pellet comprises several manufacturing steps, generally four. In addition, the final cutting operation of the pellet in the case of coiling or bi-extrusion can cause decohesion between the layers at the cutting edge. These decohesions at the edge of the pellet are due to the thermal expansion differential during the annealing steps which generates a differential of the residual stresses 2 and therefore of deformation of the different layers at the time of cutting. In a second phase, the cuprous support is coated with a stripper to deoxidize and activate the assembly surface. Solder in the form of paillon or paste is deposited on the support or the pellet. Said pellet is positioned on the cuprous support and then maintained using a tool in an inductor or a flame that heats the assembly. The heating is maintained until the fusion of the solder. These manual operations of laying on the one hand a stripper and on the other hand a solder increase the manufacturing time of a piece of electrical contact. In addition, with the use of coiled and biextruded pellets, the quality of the assembly is very difficult to control, particularly because of blistering phenomenon on the surface of the pellets or irregularity of the solder joint. SUMMARY OF THE INVENTION The invention therefore aims to remedy the disadvantages of the state of the art, so as to propose a method of assembly between a large section contact pad and a metal support. The precompressed contact pad of the fixed electrical contact according to the invention comprises a contact layer comprising a conducting agent composed of silver, the mass percentage of silver being between 92 and 99% of the total mass of nickel, the mass percentage of nickel being between 0 and 3%, and carbon, the mass percentage of carbon being between 0.5 and 5%. The precompressed contact pad comprises a reactive underlayer comprising a pseudo-alloy based on silver and copper mixed with a pickling agent, said underlayer having a melting temperature lower than that of the contact layer. Advantageously, the contact layer comprises a fraction of refractory particles, said refractory particles being chosen from particles of tungsten carbide, tungsten or titanium nitride.

Avantageusement, la couche de contact comporte une fraction d'éléments antisoudure, lesdits éléments anti-soudure étant choisis parmi des particules Nickel ou du graphite. Avantageusement, la couche de contact comporte une fraction éléments 5 gazogènes, lesdits éléments gazogènes comportant de la fibre de carbone. Selon un mode de réalisation de l'invention, le pseudo-alliage de la sous-couche réactive est composé de cuivre, le pourcentage massique de cuivre étant compris entre 15 et 99% de la masse totale, d'argent, le pourcentage massique d'argent étant compris entre 0,5 et 85%, et de phosphore, le pourcentage massique de 1 o phosphore étant compris entre 0,5 et 8%. De préférence, la sous-couche réactive a une température de fusion comprise entre 620 et 800°C Celsius. De préférence, la surface de la section de contact de la pastille de contact du contact électrique est supérieure ou égale à 180 mm2. 15 De préférence, le support métallique est constitué de cuivre. Le procédé d'assemblage par frittage direct d'une pastille de contact précomprimée sur un support métallique pour réaliser un contact électrique tel que défini ci-dessus comprend un compactage à froid de la couche de contact et la sous-couche réactive obtenues respectivement par mélange de poudres, un 20 maintien du support métallique et de la pastille de contact en contact entre deux mors en éléments réfractaires, un chauffage de la pastille de contact et du support métallique à une température de soudure, une application d'une force de compression à travers les mors. Avantageusement, le chauffage est réalisé par des moyens de chauffage par 25 induction. Selon un mode de développement de l'invention, l'agent conducteur contenu dans la couche de contact est composé d'argent, le pourcentage massique d'argent étant compris entre 92 et 99% de la masse totale, de nickel, le pourcentage massique de nickel étant compris entre 0 et 3%, et de carbone (C), le pourcentage massique de carbone étant compris entre 0,5 et 5%. Selon un mode de développement de l'invention, le pseudo-alliage de la sous-couche réactive est composé de cuivre, le pourcentage massique de cuivre étant compris entre 15 et 99% de la masse totale, d'argent, le pourcentage massique d'argent étant compris entre 0,5 et 85%, et de phosphore, le pourcentage massique de phosphore étant compris entre 0,5 et 8%. BREVE DESCRIPTION DES FIGURES D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre d'un mode particulier de réalisation de l'invention, donné à titre d'exemple non limitatif, et représenté aux dessins annexés sur lesquels : la figure 1 représente une étape du procédé de fixation d'une pastille de contact et d'un support métallique selon un premier mode de réalisation préférentiel de l'invention ; la figure 2 représente une vue en perspective d'un contact électrique selon un mode préférentiel de réalisation de l'invention. DESCRIPTION DETAILLEE D'UN MODE DE REALISATION Le procédé d'assemblage par frittage direct d'une pastille de contact précomprimée 2 sur un support métallique 1, selon un mode préférentiel de réalisation de l'invention consiste à maintenir le support métallique 1 et la pastille de contact 2 en contact entre deux mors de serrage 3. Comme représenté sur la figure 1, les deux mors de serrage 3 sont destinés à appliquer sur les deux pièces à assembler une force de compression FP. Un premier mors de serrage 3 est placé en contact avec la pastille de contact 2 et un second mors de serrage 3est placé en contact avec le support métallique. Lesdits mors de serrage 3 sont de préférence réalisés à base d'éléments en matériau réfractaire. On entend par frittage direct, un procédé qui autorise à la fois le frittage de la pastille de contact précomprimée et son assemblage sur le support. La chauffe qui résulte du procédé d'assemblage permet simultanément de fritter la couche de contact en établissant des liaisons métallurgiques entre les grains qui composent la couche de contact et d'assurer une liaison entre la pastille de contact et son support. Ce procédé selon l'invention est particulièrement destiné à l'assemblage de la pastille de contact 2 ayant une section de contact importante. On entend par section de contact importante des sections supérieures ou égales à 180 mm2. Selon un mode de réalisation préféré de l'invention, ces pastilles de contacts à io forte section sont particulièrement destinées à des contacts fixes d'appareillage de coupure tels que des disjoncteurs basse-tension destinés à supporter des courants de court-circuit de 150 kilo ampères. En exprimant la densité de courant électrique en ampères par unité de surface de pastille, une pastille de contact 3 selon l'invention est destinée à supporter des courants crêtes de court-circuit 15 compris entre 100 et 1000 ampères par millimètre carré de pastille. Le support métallique 1 est constitué d'un matériau conducteur comprenant du cuivre et/ou de l'acier. A titre d'exemple de réalisation, le support est réalisé en cuivre. La pastille de contact 2 comprend une première couche dite couche de contact 8 20 comportant au moins 30% d'un agent conducteur à base de cuivre ou d'argent. La couche de contact est destiné à rentrer en contact avec une autre couche de contact d'une autre pastille afin d'assurer la liaison électrique. Selon un mode préférentiel de réalisation, l'agent conducteur contenu dans la couche de contact 8 est composé d'argent Ag dont le pourcentage massique est 25 compris entre 82 et 99% de la masse totale. De préférence, l'agent conducteur comprend aussi du nickel Ni dont le pourcentage massique est compris entre 0,5 et 3%. Enfin, l'agent conducteur comprend du carbone C dont le pourcentage massique est compris entre 0,5 et 5%. La somme des masses des trois composants forme la masse totale de la couche de contact 8. 30 A titre d'exemple de réalisation, un compromis idéal dans le choix des proportions des matériaux pour ce type d'application, consiste à utiliser un matériau conducteur de la couche de contact 8 comprenant 94% d'argent Ag, 2% de nickel Ni et 4% de carbone C. En outre, la couche de contact 8 comporte de préférence une fraction de particules réfractaires. Les particules réfractaires sont choisies parmi des particules de carbure de tungstène (CW), de tungstène (W) ou de nitrure de titane (TiN). En outre, la couche de contact 8 comporte de préférence une fraction d'éléments anti-soudure. Les éléments anti-soudure sont choisis parmi des particules Nickel 10 (Ni) ou du graphite. En outre, la couche de contact 8 comporte de préférence une fraction d'éléments éléments gazogènes. Les éléments gazogènes comportent de la fibre de carbone. La pastille de contact 2 comprend une seconde couche dite sous-couche réactive 9 comportant un pseudo-alliage à base d'Argent Ag et de Cuivre Cu 15 mélangés à un agent décapant. Ladite sous-couche 9 a une température de fusion inférieure à celle de la couche de contact 8. A titre d'exemple, la température de fusion de la sous-couche réactive 9 est comprise entre 620 et 800°C Celsius. Selon un mode préférentiel de réalisation, le pseudo-alliage de la sous-couche réactive 9 est composé de cuivre Cu dont le pourcentage massique est compris 20 entre 15 et 99% de la masse totale. Le pseudo-alliage comprend aussi de l'argent Ag dont le pourcentage massique est compris entre 0,5 et 85%. Enfin, le pseudo-alliage de la sous-couche réactive comprend du phosphore P dont le pourcentage massique est compris entre 0,5 et 8 %. A titre d'exemple de réalisation, un compromis idéal dans le choix des 25 proportions des matériaux pour ce type d'application, consiste à utiliser un pseudo-alliage de la sous-couche réactive 9 comprenant 80% de cuivre, 17% d'argent Ag et 3% de phosphore P. La pastille est obtenue préalablement à la phase d'assemblage par un compactage à froid de la couche de contact 8 et la sous-couche réactive 9. Les deux couches sont obtenues respectivement par mélange de poudres. Les poudres utilisées pour la réalisation des mélanges ont des grains d'une taille variant de dix à cent micromètres. La taille des grains n'est pas modifiée au cours de la phase de compactage à froid. L'interface entre les 2 couches peut être irrégulière. Après avoir placé la pastille de contact 2 et le support métallique 1 entre les mors 3, l'ensemble est chauffé. Les mors 3 appliquent alors une force de compression FP. A titre d'exemple, la force de compression FP est de l'ordre de 1 à 5 kilogrammes par centimètres carré (1 à 5 kg/cm2). Des moyens de chauffages chauffent la pastille de contact 2 et le support métallique 1 à une température de brasage. Selon un mode préférentiel de réalisation, le chauffage est réalisé par des moyens de chauffage par induction. Selon une variante de réalisation de cette étape de procédé, le chauffage peut être réalisé par des moyens de chauffage à la flamme. La température de chauffage au niveau de la surface à assembler doit être comprise entre 620°C et 800°C et est maintenue jusqu'à fusion complète de la sous-couche réactive. Comme représenté sur la figure 2, l'invention est relative à un contact électrique fixe 100 destiné à être en contact avec un contact mobile d'un appareillage électrique de coupure. Le contact électrique fixe selon l'invention comprend un support métallique 1 et une pastille de contact 2 assemblés selon le procédé tel que défini ci-dessus. Le support métallique 1 est constitué de cuivre Cu. La pastille de contact 2 de contact électrique 100 comporte une couche de contact 8 et une sous-couche réactive 9. La surface de la section de contact de la pastille de contact du contact électrique 100 selon l'invention est supérieure ou égale à 180 mm2. La couche de contact 8 comporte un agent conducteur composé d'argent Ag dont le pourcentage massique est compris entre 92 et 99% de la masse totale. Advantageously, the contact layer comprises a fraction of anti-welding elements, said anti-welding elements being selected from nickel particles or graphite. Advantageously, the contact layer comprises a fraction gasogenic elements, said gasogenic elements comprising carbon fiber. According to one embodiment of the invention, the pseudo-alloy of the reactive sub-layer is composed of copper, the mass percentage of copper being between 15 and 99% of the total mass, of silver, the mass percentage of silver being between 0.5 and 85%, and phosphorus, the mass percentage of 1 o phosphorus being between 0.5 and 8%. Preferably, the reactive underlayer has a melting temperature of between 620 and 800 ° Celsius. Preferably, the surface of the contact section of the contact pad of the electrical contact is greater than or equal to 180 mm 2. Preferably, the metal support consists of copper. The method of assembly by direct sintering of a precompressed contact pad on a metal support to make an electrical contact as defined above comprises a cold compacting of the contact layer and the reactive underlayer respectively obtained by mixing of powders, holding the metal support and the contact pad in contact between two jaws made of refractory elements, heating the contact pad and the metal support at a soldering temperature, applying a compression force to through the bit. Advantageously, the heating is carried out by induction heating means. According to one embodiment of the invention, the conductive agent contained in the contact layer is composed of silver, the mass percentage of silver being between 92 and 99% of the total mass, nickel, the mass percentage. nickel is between 0 and 3%, and carbon (C), the mass percentage of carbon being between 0.5 and 5%. According to a mode of development of the invention, the pseudo-alloy of the reactive sub-layer is composed of copper, the mass percentage of copper being between 15 and 99% of the total mass, of silver, the mass percentage of copper. silver being between 0.5 and 85%, and phosphorus, the mass percentage of phosphorus being between 0.5 and 8%. BRIEF DESCRIPTION OF THE FIGURES Other advantages and features will emerge more clearly from the following description of a particular embodiment of the invention, given by way of non-limiting example, and represented in the accompanying drawings, in which: FIG. 1 represents a step of the method of fixing a contact pad and a metal support according to a first preferred embodiment of the invention; FIG. 2 represents a perspective view of an electrical contact according to a preferred embodiment of the invention. DETAILED DESCRIPTION OF AN EMBODIMENT The method of assembly by direct sintering of a precompressed contact pad 2 on a metal support 1, according to a preferred embodiment of the invention consists in maintaining the metal support 1 and the pellet. contact 2 in contact between two clamping jaws 3. As shown in Figure 1, the two clamping jaws 3 are intended to apply on the two parts to assemble a compression force FP. A first clamping jaw 3 is placed in contact with the contact pad 2 and a second clamping jaw 3 is placed in contact with the metal support. Said clamping jaws 3 are preferably made of elements made of refractory material. By direct sintering is meant a process that allows both the sintering of the precompressed contact pad and its assembly on the support. The heating resulting from the assembly process simultaneously sinter the contact layer by establishing metallurgical bonds between the grains that make up the contact layer and ensure a connection between the contact pad and its support. This method according to the invention is particularly intended for the assembly of the contact pad 2 having a large contact section. By major contact section is meant sections greater than or equal to 180 mm 2. According to a preferred embodiment of the invention, these high-section contact pads are particularly intended for fixed switchgear contacts such as low-voltage circuit breakers intended to withstand 150 kilo short-circuit currents. amps. By expressing the electrical current density in amperes per pellet surface area, a contact pad 3 according to the invention is intended to withstand short-circuit peak currents of between 100 and 1000 amperes per square millimeter of pellet. The metal support 1 is made of a conductive material comprising copper and / or steel. As an exemplary embodiment, the support is made of copper. The contact pad 2 comprises a first layer called contact layer 8 comprising at least 30% of a conductive agent based on copper or silver. The contact layer is intended to come into contact with another contact layer of another wafer in order to ensure the electrical connection. According to a preferred embodiment, the conductive agent contained in the contact layer 8 is composed of silver Ag whose mass percentage is between 82 and 99% of the total mass. Preferably, the conductive agent also comprises nickel Ni whose mass percentage is between 0.5 and 3%. Finally, the conductive agent comprises carbon C whose mass percentage is between 0.5 and 5%. The sum of the masses of the three components forms the total mass of the contact layer 8. As an exemplary embodiment, an ideal compromise in the choice of the proportions of the materials for this type of application consists in using a conductive material of the contact layer 8 comprising 94% silver Ag, 2% nickel Ni and 4% carbon C. In addition, the contact layer 8 preferably comprises a fraction of refractory particles. The refractory particles are chosen from particles of tungsten carbide (CW), tungsten (W) or titanium nitride (TiN). In addition, the contact layer 8 preferably comprises a fraction of anti-welding elements. The anti-welding elements are selected from nickel (Ni) particles or graphite. In addition, the contact layer 8 preferably comprises a fraction of gasogenic element elements. The gas generating elements comprise carbon fiber. The contact pad 2 comprises a second layer called reactive sub-layer 9 comprising a pseudo-alloy based on Ag Silver and Cu Copper mixed with a pickling agent. Said sub-layer 9 has a melting temperature lower than that of the contact layer 8. For example, the melting temperature of the reactive sub-layer 9 is between 620 and 800 ° C. Celsius. According to a preferred embodiment, the pseudoalloy of the reactive sub-layer 9 is composed of Cu copper, the percentage of which is between 15 and 99% of the total mass. The pseudoalloy also comprises silver Ag whose mass percentage is between 0.5 and 85%. Finally, the pseudoalloy of the reactive sub-layer comprises phosphorus P whose mass percentage is between 0.5 and 8%. As an exemplary embodiment, an ideal compromise in the choice of the proportions of the materials for this type of application consists in using a pseudo-alloy of the reactive sub-layer 9 comprising 80% of copper, 17% of silver Ag and 3% phosphorus P. The pellet is obtained prior to the assembly phase by cold compaction of the contact layer 8 and the reactive sub-layer 9. The two layers are obtained respectively by mixing powders. The powders used for producing the mixtures have grains ranging in size from ten to one hundred micrometers. The grain size is not changed during the cold compaction phase. The interface between the 2 layers may be irregular. After placing the contact pad 2 and the metal support 1 between the jaws 3, the assembly is heated. The jaws 3 then apply a compression force FP. By way of example, the FP compression force is of the order of 1 to 5 kilograms per square centimeter (1 to 5 kg / cm 2). Heating means heat the contact pad 2 and the metal support 1 at a soldering temperature. According to a preferred embodiment, the heating is carried out by induction heating means. According to an alternative embodiment of this process step, the heating can be carried out by flame heating means. The heating temperature at the surface to be joined must be between 620 ° C and 800 ° C and is maintained until complete melting of the reactive underlayer. As shown in Figure 2, the invention relates to a fixed electrical contact 100 intended to be in contact with a movable contact of an electrical switchgear. The fixed electrical contact according to the invention comprises a metal support 1 and a contact pad 2 assembled according to the method as defined above. The metal support 1 is made of Cu copper. The contact pad 2 of electrical contact 100 comprises a contact layer 8 and a reactive sub-layer 9. The surface of the contact section of the contact pad of the electrical contact 100 according to the invention is greater than or equal to 180 mm 2 . The contact layer 8 comprises a conducting agent composed of silver Ag whose mass percentage is between 92 and 99% of the total mass.

L'agent conducteur est composé de nickel Ni dont le pourcentage massique est compris entre 0,5 et 3%. L'agent conducteur comprend aussi du carbone C dont le pourcentage massique est compris entre 0,5 et 5%. La somme des masses des trois composants forme la masse totale de la couche de contact 8. The conductive agent is composed of nickel Ni whose mass percentage is between 0.5 and 3%. The conductive agent also comprises carbon C whose mass percentage is between 0.5 and 5%. The sum of the masses of the three components forms the total mass of the contact layer 8.

La sous-couche réactive 9 comporte un pseudo-alliage à base d'Argent Ag et de Cuivre Cu mélangés à un agent décapant. Selon un mode de réalisation du contact fixe, le pseudo-alliage de la sous-couche réactive 9 est composé de cuivre Cu dont le pourcentage massique est compris entre 15 et 99% de la masse totale. Le pseudo-alliage comprend de io l'argent Ag dont le pourcentage massique est compris entre 0,5 et 85%. Enfin, le pseudo-alliage comprend du phosphore P dont le pourcentage massique est compris entre 0,5 et 8%. De préférence l'épaisseur de la sous-couche réactive 9 est comprise entre 100 et 500pm. The reactive sub-layer 9 comprises a pseudo-alloy based on Ag Silver and Cu Copper mixed with a etchant. According to one embodiment of the fixed contact, the pseudo-alloy of the reactive sub-layer 9 is composed of Cu copper whose mass percentage is between 15 and 99% of the total mass. The pseudoalloy comprises silver Ag, the mass percentage of which is between 0.5 and 85%. Finally, the pseudo-alloy comprises phosphorus P whose mass percentage is between 0.5 and 8%. Preferably, the thickness of the reactive sub-layer 9 is between 100 and 500 μm.

Claims (11)

REVENDICATIONS1. Contact électrique (100) fixe comprenant un support métallique (1) assemblé à une pastille de contact (2) précomprimée, caractérisé en ce que la pastille de contact (2) précomprimée comporte : - une couche de contact (8) comportant un agent conducteur composé : d'argent (Ag), le pourcentage massique d'argent (Ag) étant compris entre 92 et 99% de la masse totale, de nickel (Ni), le pourcentage massique de nickel (Ni) étant compris entre 0 et 3%, et de carbone (C), le pourcentage massique de carbone (C) étant compris entre 0,5 et 5%, une sous-couche réactive (9) comportant un pseudo-alliage à base d'Argent (Ag) et de Cuivre (Cu) mélangés à un agent décapant, ladite sous-couche ayant une température de fusion inférieure à celle de la couche de contact. REVENDICATIONS1. Fixed electrical contact (100) comprising a metal support (1) assembled to a precompressed contact pad (2), characterized in that the precompressed contact pad (2) comprises: - a contact layer (8) comprising a conductive agent compound: silver (Ag), the mass percentage of silver (Ag) being between 92 and 99% of the total mass, nickel (Ni), the mass percentage of nickel (Ni) being between 0 and 3 %, and carbon (C), the mass percentage of carbon (C) being between 0.5 and 5%, a reactive sub-layer (9) comprising a pseudo-alloy containing silver (Ag) and Copper (Cu) mixed with a etchant, said underlayer having a melting temperature lower than that of the contact layer. 2. Contact électrique selon la revendication 1, caractérisé en ce que la couche de contact (3) comporte une fraction de particules réfractaires, lesdites particules réfractaires étant choisies parmi des particules de carbure de tungstène (CW), de tungstène (W) ou de nitrure de titane (TiN). 2. Electrical contact according to claim 1, characterized in that the contact layer (3) comprises a fraction of refractory particles, said refractory particles being selected from particles of tungsten carbide (CW), tungsten (W) or titanium nitride (TiN). 3. Contact électrique selon la revendication 1, caractérisé en ce que la couche de contact (8) comporte une fraction d'éléments anti-soudure, lesdits éléments anti-soudure étant choisis parmi des particules Nickel (Ni) ou du graphite. 3. Electrical contact according to claim 1, characterized in that the contact layer (8) comprises a fraction of anti-welding elements, said anti-welding elements being selected from nickel particles (Ni) or graphite. 4. Contact électrique selon la revendication 1, caractérisé en ce que la couche de contact (8) comporte une fraction éléments gazogènes, lesdits éléments 25 gazogènes comportant de la fibre de carbone. 4. Electrical contact according to claim 1, characterized in that the contact layer (8) comprises a gasogenic fraction, said gas-forming elements comprising carbon fiber. 5. Contact électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que le pseudo-alliage de la sous-couche réactive (9) est composé : - de cuivre (Cu), le pourcentage massique de cuivre étant compris entre 15 30 et 99% de la masse totale, 10- d'argent (Ag), le pourcentage massique d'argent étant compris entre 0,5 et 85%, et - de phosphore (P), le pourcentage massique de phosphore étant compris entre 0,5 et 8%. 5. Electrical contact according to any one of the preceding claims, characterized in that the pseudo-alloy of the reactive sub-layer (9) is composed of: - copper (Cu), the mass percentage of copper being between 30 and 99% of the total mass, 10- silver (Ag), the mass percentage of silver being between 0.5 and 85%, and - phosphorus (P), the mass percentage of phosphorus being between 0 , 5 and 8%. 6. Contact électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que la sous-couche réactive (9) a une température de fusion comprise entre 620 et 800°C Celsius. 6. Electrical contact according to any one of the preceding claims, characterized in that the reactive sub-layer (9) has a melting temperature between 620 and 800 ° Celsius. 7. Contact électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface de la section de contact de la pastille de 10 contact (2) du contact électrique (100) est supérieure ou égale à 180 mm2. Electrical contact according to one of the preceding claims, characterized in that the surface of the contact section of the contact pad (2) of the electrical contact (100) is greater than or equal to 180 mm 2. 8. Contact électrique selon l'une quelconque des revendications précédentes, caractérisé en ce que le support métallique (1) est constitué de cuivre (Cu). 8. Electrical contact according to any one of the preceding claims, characterized in that the metal support (1) consists of copper (Cu). 9. Procédé d'assemblage par frittage direct d'une pastille de contact (2) précomp rimée sur un support métallique (1) pour réaliser un contact électrique, 15 procédé 'caractérisé en ce qu'il comprend : • un compactage à froid d'une couche de contact (8) et d'une sous- couche réactive (9) obtenues respectivement par mélange de poudres, la couche de contact (8) comportant un agent conducteur composé : 20 ^ d'argent (Ag), le pourcentage massique d'argent (Ag) étant compris entre 92 et 99% de la masse totale, ^ de nickel (Ni), le pourcentage massique de nickel (Ni) étant compris entre 0 et 3%, et ^ de carbone (C), le pourcentage massique de carbone (C) 25 étant compris entre 0,5 et 5% la sous-couche réactive (9) comportant un pseudo-alliage à base d'Argent (Ag) et de Cuivre (Cu) mélangés à un agent décapant, ladite sous-couche ayant une température de fusion inférieure à celle de la couche de contact. 30 • un maintien du support métallique (1) et de la pastille de contact (2) en contact entre deux mors (3) en éléments réfractaires, • un chauffage de la pastille de contact (2) et du support métallique (1) à ure température de soudure, • ure application d'une force de compression (FP) à travers les mors (3). 9. A method of assembling by direct sintering of a precompacted contact pad (2) on a metal support (1) to make an electrical contact, characterized in that it comprises: a cold compacting of a contact layer (8) and a reactive underlayer (9) respectively obtained by mixing powders, the contact layer (8) comprising a conducting agent composed of: 20% silver (Ag), the percentage mass of silver (Ag) being between 92 and 99% of the total mass, nickel (Ni), the mass percentage of nickel (Ni) being between 0 and 3%, and carbon (C), the weight percentage of carbon (C) being between 0.5 and 5%, the reactive sub-layer (9) comprising a pseudo-alloy based on silver (Ag) and copper (Cu) mixed with a cleaning agent; said underlayer having a lower melting temperature than that of the contact layer. Holding the metal support (1) and the contact pad (2) in contact between two jaws (3) in refractory elements, • heating the contact pad (2) and the metal support (1) to ure welding temperature, • ure application of a compressive force (FP) through the jaws (3). 10. Procédé d'assemblage selon la revendication 9, caractérisé en ce que le chauffage: est réalisé par des moyens de chauffage par induction. 10. The assembly method according to claim 9, characterized in that the heating is performed by means of induction heating. 11. Procédé d'assemblage selon la revendication 9 ou 10, caractérisé en ce que le pseudo-alliage de la sous-couche réactive (9) est composé : - de cuivre (Cu), le pourcentage massique de cuivre étant compris entre 15 et 99% de la masse totale, io - d'argent (Ag), le pourcentage massique d'argent étant compris entre 0,5 et 85%, et - de phosphore (P), le pourcentage massique de phosphore étant compris entre 0,5 et 8%. 11. An assembly method according to claim 9 or 10, characterized in that the pseudo-alloy of the reactive sub-layer (9) is composed of: - copper (Cu), the mass percentage of copper being between 15 and 99% of the total mass, io - silver (Ag), the mass percentage of silver being between 0.5 and 85%, and - of phosphorus (P), the mass percentage of phosphorus being between 0, 5 and 8%.
FR0900517A 2009-02-06 2009-02-06 ELECTRICAL CONTACT, METHOD FOR WELDING A CONTACT PAD ON A METAL SUPPORT TO MAKE SUCH CONTACT. Expired - Fee Related FR2942069B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR0900517A FR2942069B1 (en) 2009-02-06 2009-02-06 ELECTRICAL CONTACT, METHOD FOR WELDING A CONTACT PAD ON A METAL SUPPORT TO MAKE SUCH CONTACT.
EP20100354005 EP2216795B1 (en) 2009-02-06 2010-01-29 Electrical contact, method for assembly by welding a contact pad to a metal support in order to make said contact
ES10354005.0T ES2543213T3 (en) 2009-02-06 2010-01-29 Electrical contact, assembly procedure by welding a contact pad on a metal support to make said contact
PL10354005T PL2216795T3 (en) 2009-02-06 2010-01-29 Electrical contact, method for assembly by welding a contact pad to a metal support in order to make said contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0900517A FR2942069B1 (en) 2009-02-06 2009-02-06 ELECTRICAL CONTACT, METHOD FOR WELDING A CONTACT PAD ON A METAL SUPPORT TO MAKE SUCH CONTACT.

Publications (2)

Publication Number Publication Date
FR2942069A1 true FR2942069A1 (en) 2010-08-13
FR2942069B1 FR2942069B1 (en) 2012-02-10

Family

ID=41016786

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0900517A Expired - Fee Related FR2942069B1 (en) 2009-02-06 2009-02-06 ELECTRICAL CONTACT, METHOD FOR WELDING A CONTACT PAD ON A METAL SUPPORT TO MAKE SUCH CONTACT.

Country Status (4)

Country Link
EP (1) EP2216795B1 (en)
ES (1) ES2543213T3 (en)
FR (1) FR2942069B1 (en)
PL (1) PL2216795T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571988B (en) * 2021-07-09 2024-01-30 陕西斯瑞新材料股份有限公司 Welding method for copper conductive connection structure of traction transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668758A (en) * 1971-07-08 1972-06-13 Richard H Krock Bonding of metallic members with alkali metals and alkali metal containing alloys
DE3212005A1 (en) * 1982-03-31 1983-10-06 Siemens Ag Process for producing a two-layer sintered contact point based on silver and copper
EP0806782A2 (en) * 1996-05-06 1997-11-12 DODUCO GmbH Method of joining a solder foil to contact pieces for electrical switches

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665026B1 (en) 1990-07-19 1992-09-18 Merlin Gerin METHOD FOR WELDING CONNECTION OF A FLEXIBLE CONDUCTOR TO A CONTACT FINGER, AND ELECTRICAL CONTACT STRUCTURE WITH MULTIPLE BLADES.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668758A (en) * 1971-07-08 1972-06-13 Richard H Krock Bonding of metallic members with alkali metals and alkali metal containing alloys
DE3212005A1 (en) * 1982-03-31 1983-10-06 Siemens Ag Process for producing a two-layer sintered contact point based on silver and copper
EP0806782A2 (en) * 1996-05-06 1997-11-12 DODUCO GmbH Method of joining a solder foil to contact pieces for electrical switches

Also Published As

Publication number Publication date
EP2216795B1 (en) 2015-05-13
FR2942069B1 (en) 2012-02-10
PL2216795T3 (en) 2015-10-30
ES2543213T3 (en) 2015-08-17
EP2216795A1 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
Feng et al. Microstructure and properties of Cu/Al joints brazed with Zn–Al filler metals
EP2066598B1 (en) Method for assembling refractory ceramic parts by means of spark plasma sintering (sps)
KR101550082B1 (en) Joint product
WO2013129281A1 (en) Method for joining metal materials
FR2957543A1 (en) METHOD FOR ASSEMBLING NON-REACTIVE BRAZING SIC-BASED MATERIAL PARTS, BRAZING COMPOSITIONS, AND JOINT AND ASSEMBLY OBTAINED THEREBY
TW201004003A (en) Thermoelectric conversion module and method of manufacturing the same
CN110364673A (en) Cell substrate and its manufacturing method with local welding tie point
US20120034474A1 (en) Joined product
WO2006016479A1 (en) Heat sink member and method for manufacture thereof
US6984358B2 (en) Diffusion bonding process of two-phase metal alloys
JP2012505757A (en) Solder alloy
CN102489871A (en) Welding method of copper and copper alloy
FR2912675A1 (en) Bonding porous carbon and copper-rich workpieces, e.g. for use in heat exchangers, involves soldering using alloy based on copper and silicon, ensuring good heat transfer
EP2216795B1 (en) Electrical contact, method for assembly by welding a contact pad to a metal support in order to make said contact
WO2018180306A1 (en) Molded body for joining and method for manufacturing same
EP2919939B1 (en) Aluminium/copper heterogeneous welding
EP3338311B1 (en) Improved thermoelectric element and thermoelectric converter including at least one such element
RU204342U1 (en) ELECTRODE FOR PLASMA ARC BURNER
Kumar et al. Influence of solid-state interfacial reactions on the tensile strength of Cu/electroless Ni–P/Sn–3.5 Ag solder joint
TWI645930B (en) Package sealing method and sealing paste
KR102148297B1 (en) Method for hybrid transient liquid phase sintering bonding for dissimilar material bonding
JP6156693B2 (en) Manufacturing method of semiconductor device
TWI655717B (en) Sealing paste, hard soldering material, manufacturing method thereof, sealing cover material, manufacturing method thereof, and package sealing method
Voiculescu Brazing Behaviour of Ag-Cu Filler Materials
RU2607299C1 (en) Method of producing composite branch of thermoelement operating in range of temperatures from room to 900 °c

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 7

ST Notification of lapse

Effective date: 20161028