FR2939948A1 - Aircraft i.e. airplane, and shifted runway distance determining method, involves combining heights and alpha angle to obtain distance from aircraft to elevation beacon, and utilizing distance to obtain location point of aircraft in runway - Google Patents

Aircraft i.e. airplane, and shifted runway distance determining method, involves combining heights and alpha angle to obtain distance from aircraft to elevation beacon, and utilizing distance to obtain location point of aircraft in runway Download PDF

Info

Publication number
FR2939948A1
FR2939948A1 FR0807062A FR0807062A FR2939948A1 FR 2939948 A1 FR2939948 A1 FR 2939948A1 FR 0807062 A FR0807062 A FR 0807062A FR 0807062 A FR0807062 A FR 0807062A FR 2939948 A1 FR2939948 A1 FR 2939948A1
Authority
FR
France
Prior art keywords
aircraft
distance
runway
elevation
beacon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR0807062A
Other languages
French (fr)
Inventor
Thierry Boulay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to FR0807062A priority Critical patent/FR2939948A1/en
Publication of FR2939948A1 publication Critical patent/FR2939948A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/44Rotating or oscillating beam beacons defining directions in the plane of rotation or oscillation
    • G01S1/54Narrow-beam systems producing at a receiver a pulse-type envelope signal of the carrier wave of the beam, the timing of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon; Overlapping broad beam systems defining a narrow zone and producing at a receiver a pulse-type envelope signal of the carrier wave of the beam, the timing of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon
    • G01S1/56Timing the pulse-type envelope signals derived by reception of the beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0086Surveillance aids for monitoring terrain
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/882Radar or analogous systems specially adapted for specific applications for altimeters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The method involves determining a height (Ho) at which aircraft i.e. airplane (1), is found, where the height is determined with respect to a point of a shifted track and measured by a radio altimeter (2) of the aircraft. An elevation angle is determined in a microwave landing system mode by using elevation beacon information provided by an elevation beacon of a main runway. Two heights and alpha angle measured by the beacon are combined to obtain a distance from the aircraft to the beacon. The distance is utilized to obtain a location point of the aircraft in a shifted reference runway.

Description

PROCEDE POUR PERMETTRE UN ATTERRISSAGE SUR PISTE DECALEE METHOD FOR PERMITTING DOWNSTREAM LANDING

L'objet de l'invention concerne un procédé pour déterminer une distance 5 entre un aéronef et la balise azimut d'une piste principale équipée de balises en azimut et en élévation pour atterrir sur une piste décalée de la piste principale. L'invention est utilisée, par exemple, dans le domaine de l'aéronautique pour la radionavigation. 10 Dans le cadre des atterrissages automatiques ou semi-automatiques, l'objectif de la radionavigation est d'amener l'aéronef dans un espace, aligné avec l'axe de la piste d'atterrissage et avec une pente de descente de 3° (typique mais programmable). A la connaissance du Demandeur, ceci est 15 réalisé grâce à un équipement embarqué tel qu'un récepteur multi mode, plus connu sous l'abréviation anglo-saxonne MMR (Multi Mode Receiver) qui réceptionne les signaux de différents systèmes de navigation tels que : le système ILS ("Instrument Landing System"), le système MLS (acronyme de l'expression anglo-saxonne "Microwave Landing System"), le système FLS 20 ("Flight landing system") et le système GLS ("Global landing system"). Le système d'atterrissage hyperfréquence, appelé MLS est un système d'aide à l'approche et à l'atterrissage aux instruments destiné à fournir à un aéronef sa position en coordonnées sphériques dans un repère lié à la piste d'atterrissage, c'est-à-dire un angle d'azimut, un angle de site et une 25 distance entre la piste d'atterrissage et l'aéronef. Le MLS, tel que normalisé par l'OACI, transmet des signaux de guidage latéral, c'est-à-dire un angle d'azimut, et de guidage vertical, c'est-à-dire un angle de site, en utilisant une technique de faisceaux battants à temps référencé et un signal multiplexé dans le temps. L'utilisation d'un signal multiplexé dans le temps permet la 30 transmission des signaux de guidage latéral et vertical sur le même canal de radiofréquence sans créer d'interférences entre les signaux de guidage latéral et les signaux de guidage vertical. Les signaux de guidage sont émis sur une fréquence voisine de 5 Giga Hertz (GHz) par une station azimut et The object of the invention relates to a method for determining a distance between an aircraft and the azimuth beacon of a main track equipped with azimuth and elevation beacons for landing on a track offset from the main runway. The invention is used, for example, in the field of aeronautics for radionavigation. In the case of automatic or semi-automatic landings, the objective of the radionavigation is to bring the aircraft into a space, aligned with the axis of the runway and with a descent gradient of 3 ° ( typical but programmable). To the knowledge of the Applicant, this is achieved thanks to an on-board equipment such as a multi-mode receiver, better known by the Anglo-Saxon abbreviation MMR (Multi Mode Receiver), which receives the signals from different navigation systems such as: the ILS system ("Instrument Landing System"), the MLS (Microwave Landing System), the FLS 20 system ("Flight landing system") and the GLS system ("Global landing system"). "). The microwave landing system, called MLS, is an instrument approach and landing aid system intended to provide an aircraft with its position in spherical coordinates in a fixture bound to the airstrip. that is, an azimuth angle, an elevation angle and a distance between the runway and the aircraft. MLS, as standardized by ICAO, transmits lateral guidance signals, ie azimuth angle, and vertical guidance, i.e., elevation angle, using a time-lapse beam technique and a multiplexed signal over time. The use of a time multiplexed signal allows the transmission of lateral and vertical guidance signals on the same radio frequency channel without interfering between the lateral guidance signals and the vertical guidance signals. The guidance signals are transmitted on a frequency close to 5 Giga Hertz (GHz) by an azimuth station and

une station site. La station azimut est placée en fin de piste tandis que la station site est située sur le côté de la piste, à environ 300 mètres du seuil de début de piste. Chaque station transmet un faisceau battant étroit balayant en aller et retour à vitesse angulaire constante l'espace de couverture suivant la coordonnée angulaire considérée. Une antenne et un récepteur de bord de l'aéronef reçoivent le faisceau battant une première fois lors du balayage aller et une deuxième fois lors du balayage retour. Il est ainsi possible de déterminer l'angle d'azimut ou l'angle de site par la relation linéaire suivante : 0=(T-Ta).- (1) où O est l'angle d'azimut ou l'angle de site, T un intervalle de temps entre la réception des passages aller et retour du faisceau battant, To la valeur de l'intervalle de temps T pour un angle 9 nul et v la vitesse angulaire de balayage. To et v sont des constantes définies par les normes internationales sur le MLS. a station site. The azimuth station is placed at the end of the runway while the site station is located on the side of the runway, approximately 300 meters from the runway start. Each station transmits a narrow beating beam sweeping back and forth at constant angular velocity the coverage space along the angular coordinate considered. An aircraft antenna and receiver receive the flying beam a first time in the forward scan and a second time in the reverse scan. It is thus possible to determine the azimuth angle or the elevation angle by the following linear relationship: 0 = (T-Ta) .- (1) where O is the azimuth angle or the angle of site, T a time interval between the reception of the forward and return passages of the beating beam, To the value of the time interval T for a zero angle θ and v the scanning angular velocity. To and v are constants defined by international standards on MLS.

Les approches décalées sont des approches qui sont réalisées en utilisant les signaux MLS de la piste principale (où sont situées les balises MLS), mais pour l'aide à l'atterrissage sur une piste parallèle à cette piste et couverte par les signaux des balises. Ce type d'approche est décrit dans la norme D0226 (précédemment dans la norme DO198), normes connues de l'Homme du métier dans le domaine de la radionavigation. Offset approaches are approaches that are made using MLS signals from the main runway (where the MLS beacons are located), but for landing aid on a runway parallel to that runway and covered by beacon signals. . This type of approach is described in the D0226 standard (previously in the DO198 standard), standards known to those skilled in the field of radionavigation.

Les algorithmes proposés par la norme DO226 imposent d'obtenir une information de distance. Cette information de distance est obtenue soit via un dispositif de mesure plus connu sous l'acronyme anglo-saxon DME (abréviation anglo-saxonne de Distance Mesuring Equipement), soit via des informations GPS (en suivant par exemple le procédé décrit dans la demande déposée par le demandeur FR 07 09035). Une telle manière de The algorithms proposed by the DO226 standard require obtaining distance information. This distance information is obtained either via a measuring device better known by the acronym DME (English abbreviation of Distance Mesuring Equipment), or via GPS information (for example by following the method described in the filed application. by the applicant FR 07 09035). Such a way of

procéder présente notamment inconvénient de devoir équiper l'avion d'un dispositif supplémentaire ce qui peut s'avérer onéreux. This procedure has the disadvantage of having to equip the aircraft with an additional device which can be expensive.

L'idée de la présente invention consiste notamment à obtenir l'information de distance par l'utilisation conjointe d'équipements déjà présents habituellement dans un avion, un équipement MMR et un radioaltimètre qui permet de fournir l'information hauteur de l'aéronef par rapport au point du sol le plus proche. L'invention concerne un procédé pour déterminer la distance d'un aéronef à une piste décalée lors d'un atterrissage par approche décalée, la piste décalée étant située à une distance D par rapport à une piste principale équipée d'au moins une balise élévation, caractérisé en ce qu'il comporte au moins les étapes suivantes : • déterminer la hauteur Ho à laquelle se trouve l'aéronef, hauteur 15 déterminée par rapport à un point de la piste décalée, hauteur mesurée par un radioaltimètre équipant l'aéronef, • déterminer l'angle d'élévation du mode MLS en utilisant les informations de la balise élévation fournie par une balise élévation équipant une piste principale, 20 • combiner les deux valeurs Ho et l'angle alpha mesuré par la balise élévation pour obtenir la distance d de l'avion à la balise élévation, • utiliser ladite distance d afin d'obtenir un point de localisation de l'aéronef dans un repère piste décalée. The idea of the present invention consists in particular in obtaining the distance information by the joint use of equipment already present usually in an aircraft, an MMR equipment and a radio altimeter which makes it possible to provide the information height of the aircraft by relative to the point of the nearest ground. The invention relates to a method for determining the distance of an aircraft to an offset track during an approach approach landing, the offset track being located at a distance D relative to a main track equipped with at least one elevation marker. , characterized in that it comprises at least the following steps: determining the height Ho at which the aircraft is located, height determined with respect to a point of the offset track, height measured by a radioaltimeter equipping the aircraft, • determine the elevation angle of the MLS mode by using the information of the elevation beacon provided by an elevation beacon equipping a main track, 20 • combine the two values Ho and the angle alpha measured by the elevation beacon to obtain the distance d from the aircraft to the elevation beacon, • use said distance d to obtain a location point of the aircraft in an offset track mark.

25 D'autres caractéristiques et avantages du dispositif selon l'invention apparaîtront mieux à la lecture de la description qui suit d'un exemple de réalisation donné à titre illustratif et nullement limitatif annexé des figures qui représentent : • La figure 1 un aéronef équipé d'un radio altimètre, 30 • La figure 2, une représentation d'une piste principale équipée de balises et d'un avion amorçant sa descente au niveau d'une piste décalée de la piste principale équipée, • La figure 3, un schéma montrant une piste d'atterrissage, la couverture de l'antenne, les points de toucher au sol de l'avion, • La figure 4, un schéma de principe pour la reconstruction de la distance de l'avion. Other features and advantages of the device according to the invention will appear better on reading the following description of an example of embodiment given by way of illustration and in no way limiting attached to the figures which represent: • Figure 1 an aircraft equipped with an altimeter radio, 30 • Figure 2, a representation of a main runway equipped with beacons and an aircraft initiating its descent at a track offset from the main equipped runway, • Figure 3, a diagram showing an airstrip, the antenna cover, the airplane's touchdown points, • Figure 4, a schematic diagram for reconstructing the distance of the aircraft.

Sur la figure 1 est représenté un avion 1 équipé d'un radioaltimètre 2 adapté à fournir une information de hauteur Ho, prise comme étant la distance la plus courte entre l'avion 1 et un point S au sol. La distance Ho est une distance considérée comme perpendiculaire au sol lors de l'approche de l'avion pour l'atterrissage. L'avion 1 est aussi équipé d'un dispositif de réception multi mode ou MMR, qui permet d'effectuer des approches radioguidées de piste d'atterrissage. Ce récepteur permet notamment le guidage par de nombreux moyens connus du Domaine, tels que les modes systèmes précités ILS, MLS,MLS- CC,FLS et GLS. L'exemple donné concerne plus particulièrement l'utilisation du mode MLS. Ce mode permet le centrage sur une piste principale grâce à deux balises, une balise azimut 10 et une balise élévation 12. La balise azimut 10 fournit une information d'écart angulaire horizontal par rapport à la piste principale équipée 11 et la balise élévation ou balise site 12 fournit une information d'écart angulaire vertical par rapport au point de pose des roues de l'avion sur la piste. La figure 1 présente aussi le seuil 14 de la piste ou point de toucher des roues de l'avion. La balise azimut 12 permet par exemple une mesure d'angle entre -40° et +40° et la balise élévation (site) entre 0,9° et 15°. Ces valeurs n'étant données qu'à titre indicatif pour illustrer l'invention sans en limiter la portée. L'idée de la présente invention consiste notamment à utiliser la hauteur fournie par le radioaltimètre situé sur l'avion et l'angle fourni par la balise élévation du mode MLS équipant la piste principale afin de déterminer la distance d entre l'avion 1 et la balise azimut 10, ceci afin de permettre son atterrissage sur une piste décalée 15. FIG. 1 shows an aircraft 1 equipped with a radio altimeter 2 adapted to provide information of height Ho, taken as being the shortest distance between the aircraft 1 and a point S on the ground. The distance Ho is a distance considered perpendicular to the ground when approaching the aircraft for landing. The aircraft 1 is also equipped with a multi-mode reception device or MMR, which makes it possible to perform radio-controlled approaches to the landing runway. This receiver notably allows guidance by many means known to the Domain, such as the aforementioned ILS, MLS, MLS-CC, FLS and GLS system modes. The example given relates more particularly to the use of the MLS mode. This mode allows the centering on a main track with two beacons, an azimuth beacon 10 and an elevation beacon 12. The azimuth beacon 10 provides information of horizontal angular deviation with respect to the main track equipped 11 and the beacon or beacon beacon site 12 provides vertical angular deviation information relative to the landing point of the aircraft on the runway. Figure 1 also shows the threshold 14 of the track or touchdown point of the aircraft. The azimuth beacon 12 allows for example an angle measurement between -40 ° and + 40 ° and the elevation beacon (site) between 0.9 ° and 15 °. These values being given only as an indication to illustrate the invention without limiting its scope. The idea of the present invention consists in particular in using the height provided by the radio altimeter located on the aircraft and the angle provided by the elevation beacon of the MLS mode equipping the main runway to determine the distance d between the aircraft 1 and the azimuth beacon 10, in order to allow it to land on an offset track 15.

La figure 3 schématise une piste d'atterrissage Pa, un point de toucher au sol de l'avion Ts, la position de la balise élévation 12 et la position de la balise azimut 10. Elle montre aussi la couverture de l'antenne faisceau balise. FIG. 3 schematizes a landing strip Pa, a touchdown point of the aircraft Ts, the position of the elevation marker 12 and the position of the azimuth marker 10. It also shows the antenna coverage. .

La figure 4 schématise le diagramme de détermination de la distance d=AC lorsque l'avion se trouve au point A, la balise élévation au point C, le point B étant le point sur la piste et pris à la verticale de l'avion. Figure 4 schematizes the determination diagram of the distance d = AC when the aircraft is at point A, the elevation beacon at point C, point B being the point on the runway and taken vertically from the aircraft.

La distance d correspond à la hauteur divisée par le sinus de l'angle a, qui correspond à l'angle a que fait l'avion par rapport à la balise élévation. Cette 10 valeur d'angle est mesurée par la balise élévation. The distance d corresponds to the height divided by the sine of the angle a, which corresponds to the angle a that the plane makes with respect to the elevation marker. This angle value is measured by the elevation tag.

Ce qui conduit à : AB = D.sin(Alpha) et Which leads to: AB = D.sin (Alpha) and

BC = D.cos(Alpha) Soit BC = AB tan(Alpha) donc avec AC`' = AB' + BC' donc d==AC= 1+ 1 .AB tan 2 (Alpha) Une fois la distance d connue entre l'avion et la balise d'élévation, le procédé BC = D.cos (Alpha) Let BC = AB tan (Alpha) so with AC` '= AB' + BC 'so d == AC = 1+ 1 .AB tan 2 (Alpha) Once the distance d known between the aircraft and the elevation beacon, the process

15 peut mettre en oeuvre tout algorithme de reconstruction tel que ceux décrits dans les normes D0198 et D0226 connus de l'Homme du métier pour l'aide à l'atterrissage. Le procédé et le système selon l'invention présentent comme avantages de 20 reconstruire une information de distance à partir des informations conjointes d'équipements déjà présents sur un avion, par exemple un MMR et un 15 can implement any reconstruction algorithm such as those described in standards D0198 and D0226 known to those skilled in the art for landing assistance. The method and system according to the invention have the advantages of reconstructing distance information from the joint information of equipment already present on an aircraft, for example an MMR and an aircraft.

radioaltimètre et d'utiliser cette valeur distance dans les algorithmes de reconstruction connus de l'art antérieur. Ils évitent l'utilisation d'équipements supplémentaires pouvant générer des perturbations électroniques et aussi rendre le dispositif plus coûteux.5 radioaltimeter and use this distance value in the reconstruction algorithms known from the prior art. They avoid the use of additional equipment that can generate electronic disturbances and also make the device more expensive.

Claims (1)

REVENDICATIONS1 ù Procédé pour déterminer la distance d'un aéronef à une piste décalée lors d'un atterrissage par approche décalée, la piste décalée étant située à une distance D par rapport à une piste principale équipée d'au moins une balise élévation, caractérisé en ce qu'il comporte au moins les étapes suivantes : • Déterminer la hauteur Ho à laquelle se trouve l'aéronef, hauteur déterminée par rapport à un point de la piste décalée, hauteur 10 mesurée par un radioaltimètre équipant l'aéronef, • Déterminer l'angle d'élévation du mode MLS en utilisant les informations de la balise élévation fournie par une balise élévation équipant une piste principale, • Combiner les deux valeurs Ho et l'angle alpha mesuré par la balise 15 élévation pour obtenir la distance d de l'avion à la balise élévation, • Utiliser ladite distance d afin d'obtenir un point de localisation de l'aéronef dans un repère piste décalée. 2 ù Procédé selon la revendication 1 caractérisé en ce que l'on utilise la 20 distance d dans un algorithme de reconstruction tel que celui décrit dans la norme DO198 ou DO226. CLAIMS1 - A method for determining the distance of an aircraft to an offset track during an approach approach landing, the offset track being located at a distance D relative to a main track equipped with at least one elevation marker, characterized in it includes at least the following steps: • Determine the Ho height to which the aircraft is located, height determined with respect to a point of the offset track, height 10 measured by a radio altimeter equipping the aircraft, • Determine the elevation angle of the MLS mode using the information of the elevation beacon provided by an elevation beacon equipping a main track, Combine the two values Ho and the angle alpha measured by the elevation beacon to obtain the distance d to the elevation beacon, • Use said distance d to obtain a location point of the aircraft in an offset track mark. 2 - The method of claim 1 characterized in that one uses the distance d in a reconstruction algorithm such as that described in the standard DO198 or DO226.
FR0807062A 2008-12-16 2008-12-16 Aircraft i.e. airplane, and shifted runway distance determining method, involves combining heights and alpha angle to obtain distance from aircraft to elevation beacon, and utilizing distance to obtain location point of aircraft in runway Pending FR2939948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0807062A FR2939948A1 (en) 2008-12-16 2008-12-16 Aircraft i.e. airplane, and shifted runway distance determining method, involves combining heights and alpha angle to obtain distance from aircraft to elevation beacon, and utilizing distance to obtain location point of aircraft in runway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0807062A FR2939948A1 (en) 2008-12-16 2008-12-16 Aircraft i.e. airplane, and shifted runway distance determining method, involves combining heights and alpha angle to obtain distance from aircraft to elevation beacon, and utilizing distance to obtain location point of aircraft in runway

Publications (1)

Publication Number Publication Date
FR2939948A1 true FR2939948A1 (en) 2010-06-18

Family

ID=41161324

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0807062A Pending FR2939948A1 (en) 2008-12-16 2008-12-16 Aircraft i.e. airplane, and shifted runway distance determining method, involves combining heights and alpha angle to obtain distance from aircraft to elevation beacon, and utilizing distance to obtain location point of aircraft in runway

Country Status (1)

Country Link
FR (1) FR2939948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597446A (en) * 2016-12-13 2017-04-26 中国电子科技集团公司第二十研究所 MLS blind spot landing guidance method integrating radio altimeter information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1569759A (en) * 1967-03-17 1969-06-06
US4368517A (en) * 1978-03-16 1983-01-11 Bunker Ramo Corporation Aircraft landing display system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1569759A (en) * 1967-03-17 1969-06-06
US4368517A (en) * 1978-03-16 1983-01-11 Bunker Ramo Corporation Aircraft landing display system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HALL ET AL: "Examination of RTCA/DO-198 Position Reconstruction Algorithms for Area Navigation with the Microwave Landing System", TECHNICAL REPORT PREPARED BY THE MITRE CORPORATION; BEDFORD, MASSACHUSETTS,, vol. ESD-TR-90-308, no. AD-A224 804, 1 June 1990 (1990-06-01), pages 54PP, XP009104064 *
REMER J H ET AL: "Microwave landing system (MLS) area navigation: computed centerline experiments and system accuracy analyses in an RF environment", EFFICIENT CONDUCT OF INDIVIDUAL FLIGHTS AND AIR TRAFFIC OF OPTIMUM UTILIZATION OF MODERN TECHNOLOGY (GUIDANCE, CONTROL, NAVIGATION, COMMUNICATION, SURVEILLANCE AND PROCESSING FACILITIES) FOR THE OVERALL BENEFIT OF CIVIL AND MILITARY AIRSPACE USERS, N, vol. 410, 1 December 1986 (1986-12-01), pages 41 - 1, XP008113571, ISBN: 9789283504030 *
VAN WILLIGEN D ET AL: "Radio Navigation - Air traffic systems", INTERNET CITATION, 29 July 2008 (2008-07-29), pages 51 - 64, XP002490240, Retrieved from the Internet <URL:http://www.pn.ewi.tudelft.nl/education/et4-022/notes/> [retrieved on 20080729] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597446A (en) * 2016-12-13 2017-04-26 中国电子科技集团公司第二十研究所 MLS blind spot landing guidance method integrating radio altimeter information

Similar Documents

Publication Publication Date Title
EP2237067B1 (en) System and method for assisting the deck landing of an aircraft
US7598910B2 (en) Direction finding and mapping in multipath environments
EP2225622B1 (en) Method for aircraft landing assistance using gps and mls in case of calculated axial approach
EP3323028B1 (en) Method for automatically assisting with the landing of an aircraft
JP5537944B2 (en) Atmospheric turbulence position measurement system and method
WO2007063126A1 (en) Autonomous and automatic landing system for drones
EP2253935B1 (en) Method and system for assisting the landing or deck landing of an aircraft
EP3074786B1 (en) Anticollision radar, especially for an aircraft when taxiing, and anticollision system
EP1589351B1 (en) Method and apparatus for landing aids of an aircraft on a runway
FR2878336A1 (en) METHOD AND DEVICE FOR LOCATING AIRCRAFT, IN PARTICULAR FOR THEIR AUTOMATIC LANDING PHASE GUIDANCE
EP2107391B1 (en) Method for using radar to detect a known target capable of being arranged roughly at a given height, near other targets arranged roughly at the same height
RU2685705C1 (en) Method of determining ship own position based on automatic identification system signals and device for its implementation
EP2605037A1 (en) System for assisted piloting of an aircraft, in particular a means for assisted landing and navigation
FR2927455A1 (en) METHODS OF OPTIMIZING THE LOCALIZATION OF AN AIRCRAFT ON THE SOIL AND IN TAKE-OFF AND LANDING PHASES
EP2438455A1 (en) Method for enabling landing on an offset runway
FR2939948A1 (en) Aircraft i.e. airplane, and shifted runway distance determining method, involves combining heights and alpha angle to obtain distance from aircraft to elevation beacon, and utilizing distance to obtain location point of aircraft in runway
FR3064800A1 (en) METHOD FOR GUIDING AN AIR TARGET, IN PARTICULAR IN A VERTICAL LANDING PHASE, AND RADAR SYSTEM USING SUCH A METHOD
WO2021105263A1 (en) Guidance system for leading an aircraft to a reference point; associated guidance method
US20220155460A1 (en) Remote airflow observation device, remote airflow observation method, and program
RU2353552C1 (en) Aircraft landing method
WO2021110868A1 (en) Method and device for measuring the altitude of an aircraft in flight relative to at least one point on the ground
EP0881505B1 (en) Method of repeated position-finding for a mobile object using radar cartographie of uneven terrain
RU2558412C1 (en) Multiposition system for aircraft landing
WO2012175819A1 (en) Multistatic radar system for precisely measuring altitude
FR2688068A1 (en) TWO-FREQUENCY TRANSMISSION DEVICE WITH PHASE SHIFT OF THE AUDIO FREQUENCY MODULATION FOR AN INSTRUMENT LANDING INSTALLATION.