FR2938539A1 - PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE - Google Patents

PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE Download PDF

Info

Publication number
FR2938539A1
FR2938539A1 FR0806448A FR0806448A FR2938539A1 FR 2938539 A1 FR2938539 A1 FR 2938539A1 FR 0806448 A FR0806448 A FR 0806448A FR 0806448 A FR0806448 A FR 0806448A FR 2938539 A1 FR2938539 A1 FR 2938539A1
Authority
FR
France
Prior art keywords
solid
metal
aromatic
mof
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0806448A
Other languages
French (fr)
Other versions
FR2938539B1 (en
Inventor
Thierry Loiseau
Gerard Ferey
Christophe Volkringer
Francis Taulelle
Mohamed Haouas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Versailles Saint Quentin en Yvelines
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Versailles Saint Quentin en Yvelines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR0806448A priority Critical patent/FR2938539B1/en
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Versailles Saint Quentin en Yvelines filed Critical Centre National de la Recherche Scientifique CNRS
Priority to US13/129,733 priority patent/US8907114B2/en
Priority to JP2011543804A priority patent/JP5965643B2/en
Priority to EP09768214.0A priority patent/EP2376504B1/en
Priority to PCT/FR2009/052209 priority patent/WO2010058124A1/en
Priority to ES09768214T priority patent/ES2433417T3/en
Publication of FR2938539A1 publication Critical patent/FR2938539A1/en
Application granted granted Critical
Publication of FR2938539B1 publication Critical patent/FR2938539B1/en
Priority to JP2014262780A priority patent/JP2015129122A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages

Abstract

La présente invention se rapporte à un procédé de préparation d'un solide MOF d'un azocarboxylate aromatique d'aluminium poreux et cristallisé, en milieu organique non aqueux. Elle se rapporte également aux solides constitués de réseaux métal-organiques (MOF) d'azocarboxylates aromatiques d'aluminium susceptibles d'être obtenus par le procédé de l'invention ainsi que leurs utilisations pour le stockage des molécules liquides ou gazeuses, pour la séparation sélective de gaz et pour la catalyse.The present invention relates to a process for preparing an MOF solid of a porous and crystallized aluminum aromatic azocarboxylate, in a nonaqueous organic medium. It also relates to the solids constituted by metal-organic networks (MOF) of aromatic aluminum azocarboxylates obtainable by the process of the invention as well as their uses for the storage of liquid or gaseous molecules, for the separation selective gas and for catalysis.

Description

PROCEDE DE PREPARATION D'AZOCARBOXYLATES AROMATIQUES D'ALUMINIUM POREUX ET CRISTALLISES DE TYPE "METAL-ORGANIC FRAMEWORK" DESCRIPTION Domaine technique La présente invention se rapporte à un procédé de préparation d'un 10 solide MOF d'un azocarboxylate aromatique d'aluminium poreux et cristallisé, en milieu organique non aqueux. Elle se rapporte également aux solides constitués de réseaux métal-organiques (MOF) d'azocarboxylates aromatiques d'aluminium susceptibles d'être obtenus par le procédé de l'invention ainsi que leurs 15 utilisations pour le stockage des molécules liquides ou gazeuses, pour la séparation sélective de gaz et pour la catalyse. TECHNICAL FIELD The present invention relates to a process for the preparation of an MOF solid of a porous aluminum aromatic azocarboxylate and to a process for the preparation of an MOF solid of a porous aluminum aromatic azocarboxylate. crystallized, in a non-aqueous organic medium. It also relates to solids constituted by metal-organic networks (MOF) of aromatic aluminum azocarboxylates obtainable by the process of the invention as well as their uses for the storage of liquid or gaseous molecules, for the selective separation of gas and for catalysis.

Dans la description ci-dessous, les références entre crochets [ ] renvoient à la liste des références présentée à la fin du texte. 20 Etat de la technique Les réseaux métal-organiques ou Metal-Organic Framework en anglais (MOF) constituent une nouvelle classe de solides microporeux (voire mésoporeux pour certains d'entre eux). Elle repose sur le concept 25 de l'assemblage tridimensionnel de ligands organiques rigides (comportant un noyau benzénique, par exemple) avec des centres métalliques. Ces derniers peuvent s'arranger pour former des clusters isolés, des chaînes infinies ou des couches inorganiques qui se connectent les uns les autres par l'intermédiaire des ligands organiques via des liaisons de type 30 carboxylates ou amines. Plusieurs groupes Yaghi [1], Kitagawa [2] et Férey [3], ont exposé ce type de stratégie pour la formation de solides cristallisés5 In the description below, references in brackets [] refer to the list of references at the end of the text. State of the art The metal-organic frameworks (MOFs) constitute a new class of microporous solids (or even mesoporous for some of them). It is based on the concept of three-dimensional assembly of rigid organic ligands (including a benzene ring, for example) with metal centers. The latter can arrange to form isolated clusters, infinite chains or inorganic layers which connect to one another via organic ligands via carboxylate or amine linkages. Several groups Yaghi [1], Kitagawa [2] and Férey [3], have exhibited this type of strategy for the formation of crystallized solids5

offrant des charpentes tridimensionnelles avec des propriétés de porosités exceptionnelles (surface spécifique BET > 3000 m2.g"'). Ce type de matériaux est habituellement caractérisé par leur surface spécifique (qui donne une idée précise de leur porosité accessible pour l'incorporation des molécules). Ces valeurs de surfaces spécifiques (exprimées en m2 par gramme de matériau) sont mesurées par les méthodes Brunauer-Emmett-Teller (ou BET) qui permet d'examiner la surface des pores par chimie-sorption de l'azote à 77 K (modèle multicouche) ou Langmuir qui utilise le même procédé avec un modèle monocouche. Ces nouveaux matériaux s'avèrent être de très bons adsorbants pour les gaz tels que l'hydrogène [4-6], le méthane [7, 8] ou encore le dioxyde de carbone [8]. Ils peuvent donc être utilisés en remplacement des charbons actifs ou encore des zéolithes. De plus, ce type de solides (dont certains d'entre eux sont biocompatibles) peut trouver des applications pour l'encapsulation et le relargage contrôlé de molécules médicamenteuses [9]. D'un point de vue de la valorisation industrielle, plusieurs groupes de recherche se sont particulièrement intéressés à cette nouvelle classe émergente de matériaux poreux. En effet, la compagnie allemande BASF (Ludwigshafen, Allemagne) et le groupe de Yaghi (UCLA, USA) ont développé les procédés de synthèse et la mise en forme de nouveaux solides essentiellement à base d'éléments divalents (1ère série des métaux de transition, alcalino-terreux) ou trivalents (terres rares) combinant des ligands organiques (principalement des carboxylates aromatiques) [10, 11]. offering three-dimensional frameworks with exceptional properties of porosity (BET specific surface> 3000 m2.g ".) This type of material is usually characterized by their specific surface (which gives a precise idea of their accessible porosity for the incorporation of molecules These specific surface values (expressed in m 2 per gram of material) are measured by the Brunauer-Emmett-Teller (or BET) methods which allow the surface of the pores to be examined by chemistry-nitrogen sorption at 77 K (multilayer model) or Langmuir using the same process with a monolayer model.These new materials prove to be very good adsorbents for gases such as hydrogen [4-6], methane [7, 8] or carbon dioxide [8], which can be used as a replacement for activated carbons or zeolites, and this type of solids (some of which are biocompatible) can find applications for encapsulation and controlled release of drug molecules [9]. From a point of view of industrial valorization, several research groups have been particularly interested in this new emerging class of porous materials. Indeed, the German company BASF (Ludwigshafen, Germany) and the Yaghi group (UCLA, USA) have developed the synthesis processes and the shaping of new solids essentially based on divalent elements (1st series of transition metals , alkaline earths) or trivalents (rare earths) combining organic ligands (mainly aromatic carboxylates) [10, 11].

Des procédés de préparation de solides incorporant des métaux comme par exemple l'aluminium et le zinc et des ligands organiques comme par exemple l'acide téréphtalique, l'acide trimésique, l'acide 2,6-naphathalènedicarboxylique ont également été décrits [12, 13]. Depuis plus d'une dizaine d'année, le groupe de Gérard Férey (Versailles) s'est intéressé à la synthèse et la caractérisation de solides poreux de type Metal-Organic Framework (MOF) en développant plusieurs Processes for the preparation of solids incorporating metals such as aluminum and zinc and organic ligands such as, for example, terephthalic acid, trimesic acid, 2,6-naphathalenedicarboxylic acid have also been described [12, 13]. For more than ten years, Gérard Férey's group (Versailles) has been interested in the synthesis and characterization of porous solids of the Metal-Organic Framework (MOF) type by developing several

axes de recherches [3], notamment la synthèse de solides MOF incorporant de l'aluminium. En particulier, la synthèse de carboxylates d'aluminium poreux cristallisés comme par exemple le téréphathalate d'aluminium MIL-53 [14], le naphthalate d'aluminium MIL-69 [15] et les trimésates d'aluminium MIL-96 [16] et MIL-110 [17] ont été décrites. MIL-n signifie Matériaux de l'Institut Lavoisier. Certains de ces solides possèdent des capacités d'adsorption des gaz (H2, CO2, CH4) très intéressantes [5, 8]. Il est à noter que deux autres matériaux de la série, le téréphthalate de zinc MOF-5 [18] et le trimésate de cuivre HKUST-1 [19] ont également été décrits. D'autres matériaux ont été obtenus avec l'acide téréphtalique dans d'autres conditions de synthèse ou d'autres ligands (par exemple l'acide trimésique, l'acide 1,4-naphthalènedicarboxylique, l'acide 1,2,4,5- benzènetétracarboxylique) [20]. La synthèse de carboxylates d'aluminium avec l'acide trimésique en présence de solvant DMF (N,N'-diméthylformamide) [21], avec l'acide fumarique [22] ou encore des carboxylates mixtes aluminium avec un autre métal (par exemple Ti, Mg, La, Mo) [23]. Enfin, un brevet norvégien de l'université d'Oslo [24] fait également état de la préparation de solides de type MIL-53 à partir de l'acide téréphthalique fonctionnalisé avec des groupements amino (-NH2). Parmi les différentes familles de composés étudiés, celle incorporant de l'aluminium est plus particulièrement recherchée par les industriels du fait du faible coût à la production de ce type de matériaux. De plus, en tant qu'élément léger, les matériaux à base d'aluminium peuvent présenter de grandes capacités de stockages de molécules telles que H2, CH4, CO2, etc. A ce jour, parmi les procédés connus pour la préparation des MOF, en particulier des MOF à base d'aluminium, aucun ne décrit la préparation des matériaux MOF à base de ligands azocarboxylates d'aluminium. La areas of research [3], including the synthesis of MOF solids incorporating aluminum. In particular, the synthesis of porous crystallized aluminum carboxylates such as, for example, aluminum terephthalate MIL-53 [14], aluminum naphthalate MIL-69 [15] and aluminum trimésates MIL-96 [16] and MIL-110 [17] have been described. MIL-n means Materials of the Lavoisier Institute. Some of these solids have very interesting gas adsorption capacities (H2, CO2, CH4) [5, 8]. It should be noted that two other materials in the series, zinc terephthalate MOF-5 [18] and copper trimesate HKUST-1 [19] have also been described. Other materials have been obtained with terephthalic acid under other synthetic conditions or other ligands (e.g. trimesic acid, 1,4-naphthalenedicarboxylic acid, 1,2,4-acid, 5-benzenetetracarboxylic) [20]. The synthesis of aluminum carboxylates with trimesic acid in the presence of solvent DMF (N, N'-dimethylformamide) [21], with fumaric acid [22] or mixed carboxylates aluminum with another metal (for example Ti, Mg, La, Mo) [23]. Finally, a Norwegian patent of the University of Oslo [24] also reports the preparation of MIL-53 type solids from terephthalic acid functionalized with amino groups (-NH 2). Among the various families of compounds studied, that incorporating aluminum is particularly sought after by manufacturers because of the low cost of producing this type of material. In addition, as a lightweight element, aluminum-based materials can have large storage capacities for molecules such as H2, CH4, CO2, etc. To date, none of the known methods for the preparation of MOFs, in particular aluminum-based MOFs, describes the preparation of MOF materials based on aluminum azocarboxylate ligands. The

structure de ces matériaux et la topologie des éléments les constituants n'ont pas non plus été étudiées dans l'art antérieur. Or, de manière surprenante les MOF à base d'azocarboxylates d'aluminium, sous une forme cristallisée, se sont révélés particulièrement intéressants en termes de porosité et de pureté. D'une manière générale, il est difficile de contrôler l'organisation structurale et la porosité des matériaux MOF. Ceci peut être liée par exemple aux risques d'interpénétration et d'enchevêtrement des réseaux au cours de la formation de ces matériaux pouvant conduire à un matériau dense avec des pores réduits. Le matériau obtenu pourra donc avoir une structure hétérogène avec une porosité inadaptée. Il est donc intéressant de pouvoir préparer des MOF à base d'azocarboxylates d'aluminium pour lesquels les structures peuvent être contrôlées de façon à obtenir des propriétés spécifiques notamment une structure cristallisée, un diamètre de pores sur mesure , adaptée aux molécules à adsorber, une surface spécifique et/ou une capacité d'adsorption améliorée, etc. Par ailleurs, les solides MOF à base d'aluminium obtenus par la plupart des procédés connus peuvent être non adaptés à l'application souhaitée car ils peuvent comprendre plusieurs phases, être sous forme amorphe ou encore contenir des substances secondaires indésirables obtenues et non éliminées lors de la préparation du solide MOF. De plus, lesdits solides ne présentent pas toujours une porosité et donc une capacité d'adsorption suffisante. The structure of these materials and the topology of the constituent elements have not been studied in the prior art either. Surprisingly, the MOFs based on aluminum azocarboxylates, in a crystallized form, have proved particularly interesting in terms of porosity and purity. In general, it is difficult to control the structural organization and porosity of MOF materials. This may be related for example to the risks of interpenetration and entanglement of the networks during the formation of these materials may lead to a dense material with reduced pores. The material obtained may therefore have a heterogeneous structure with inadequate porosity. It is therefore of interest to be able to prepare MOFs based on aluminum azocarboxylates for which the structures can be controlled so as to obtain specific properties, in particular a crystallized structure, a pore diameter tailored to the molecules to be adsorbed, a surface area and / or improved adsorption capacity, etc. Furthermore, the aluminum-based MOF solids obtained by most known methods may be unsuitable for the desired application because they may comprise several phases, be in amorphous form or contain undesirable secondary substances obtained and not eliminated during of the preparation of the MOF solid. In addition, said solids do not always have a porosity and therefore a sufficient adsorption capacity.

A ce jour, il n'existe pas de procédés de préparation de MOF d'azocarboxylates d'aluminium qui puissent conduire avec de bon rendement à des azocarboxylates d'aluminium de type MOF avec les propriétés de pureté, de porosité et de cristallinité requises. II existe donc un réel besoin d'un procédé de préparation d'azocarboxylates d'aluminium de type réseaux métal-organiques ou MOF To date, there are no processes for the preparation of MOF of aluminum azocarboxylates which can lead in good yield to MOF-type aluminum azocarboxylates with the required purity, porosity and crystallinity properties. There is therefore a real need for a process for the preparation of aluminum azocarboxylates of metal-organic network type or MOF

(Metal-Organic Framework en anglais) qui soit reproductible, et industriellement réalisable. De plus, il existe un besoin réel de disposer d'un procédé de préparation d'azocarboxylates d'aluminium de type réseaux métal- organiques ou MOF qui, sans recourir à des étapes supplémentaires notamment de purification et/ou de cristallisation, puissent conduire à un solide MOF cristallisé, constitué d'une seule phase, d'une grande pureté (débarrassé de tout produit secondaire) et présentant une porosité suffisante et adaptée à l'utilisation à laquelle le MOF sera destinée. (Metal-Organic Framework in English) that is reproducible, and industrially feasible. In addition, there is a real need to have a process for the preparation of aluminum-metal azocarboxylates of the metal-organic or MOF type which, without resorting to additional steps including purification and / or crystallization, may lead to a crystallized MOF solid, consisting of a single phase, of high purity (free of any secondary product) and having a sufficient porosity and adapted to the use to which the MOF will be intended.

Description de l'invention La présente invention a précisément pour but de répondre à ce besoin en fournissant un procédé de préparation d'un solide MOF d'un azocarboxylate aromatique d'aluminium poreux et cristallisé, comprenant au moins les étapes suivantes : (i) on mélange dans un solvant organique non aqueux : - au moins un précurseur inorganique métallique se présentant sous la forme de métal Al, d'un sel de métal AI3+ ou d'un complexe de coordination comprenant l'ion métallique AI3+ ; et - au moins un précurseur organique du ligand L, L étant un ligand azodi-, azotri-, azotétra-carboxylate aromatique de formule R°R'N2(000-) q où R° et R' représentent, indépendemment l'un de l'autre, • un radical aryle mono- ou poly-cyclique, fusionné ou non, comprenant de 6 à 50 atomes de carbone, par exemple de 6 à 27 atomes de carbone, • un radical hétéroaryle mono- ou poly-cyclique, fusionné ou non, comprenant de 4 à 50 atomes de carbone, par exemple de 4 à 20 atomes de carbone, le radical R° étant éventuellement substitué par un ou plusieurs groupes indépendamment choisis dans le groupe comprenant C1_10alkyle, C2.10alcène, C2.10alcyne, C3.10cycloalkyle, Description of the Invention The present invention is specifically intended to meet this need by providing a method for preparing an MOF solid of a porous and crystallized aluminum aromatic azocarboxylate, comprising at least the following steps: (i) mixed in a non-aqueous organic solvent: at least one metal inorganic precursor in the form of Al metal, an AI3 + metal salt or a coordination complex comprising the metal ion AI3 +; and at least one organic precursor of ligand L, L being an aromatic azodi-, azotri-, azotetracarboxylate ligand of formula R ° R'N2 (000-) q where R ° and R 'represent, independently, one of the other, • a mono- or poly-cyclic aryl radical, fused or not, comprising from 6 to 50 carbon atoms, for example from 6 to 27 carbon atoms, • a mono- or poly-cyclic heteroaryl radical, fused or not, comprising from 4 to 50 carbon atoms, for example from 4 to 20 carbon atoms, the radical R ° being optionally substituted with one or more groups independently selected from the group comprising C1_10alkyl, C2.10alkene, C2.10alkyne, C3.10cycloalkyle,

C1_1ohétéroalkyle, C1_1ohaloalkyle, C6_1oaryle, C3_20hétérocyclique, C1_1oalkylC6_1oaryle, Ci_ioalkylC5.1ohétéroaryle, F, Cl, Br, I, -NO2, -CN, -CF3, -CH2CF3, -OH, -CH2OH, -CH2CH2OH, -NH2, -CH2NH2, -NHCHO, -COOH, -CONH2, -SO3H, -PO3H2, •q=2à4; (ii) on chauffe le mélange obtenu en (i) à une température d'au moins 50°C de manière à obtenir ledit solide. Dans le cadre de la présente invention les termes solide cristallisé et solide cristallin peuvent être employés indifféremment pour désigner un solide dans lequel les atomes, les ions ou les molécules forment des arrangements ordonnés à longue distance dans les trois dimensions de l'espace, conduisant à une signature unique constituée par une succession spécifique de pics de diffraction (rayons X par exemple) pour chaque solide. C1-10heteroalkyl, C1-10haloalkyl, C6-1aryl, C3_20heterocyclic, C1-10alkylC6_1aryl, C1-10alkylC5.1heteroaryl, F, Cl, Br, I, -NO2, -CN, -CF3, -CH2CF3, -OH, -CH2OH, -CH2CH2OH, -NH2, -CH2NH2, - NHCHO, -COOH, -CONH 2, -SO 3 H, -PO 3 H 2, q = 2-4; (ii) the mixture obtained in (i) is heated to a temperature of at least 50 ° C so as to obtain said solid. In the context of the present invention, the terms crystallized solid and crystalline solid can be used indifferently to designate a solid in which the atoms, the ions or the molecules form ordered long-distance arrangements in the three dimensions of space, leading to a unique signature consisting of a specific succession of diffraction peaks (X-rays, for example) for each solid.

Un solide amorphe est un solide où les atomes, les ions ou les molécules, bien qu'ordonnés localement, s'empilent de façon désordonnée à longue distance. Il en résulte une signature d'un ou plusieurs pics de diffraction (rayons X par exemple) très larges qui ne permet pas l'identification précise du matériau (puisque plusieurs solides peuvent co-exister et conduire à la même signature par diffraction). Dans de nombreux solides, les atomes, les ions ou les molécules peuvent adopter plusieurs arrangements selon les conditions de leur formation. Ces agencements différents constitutent les différentes phases du solide existantes dans un système chimique donné. Les propriétés physiques comme le point de fusion et la densité des différentes phases se distinguent, ce qui permet la différenciation des solides. On entend par alkyle au sens de la présente invention, un radical carboné linéaire ou ramifié saturé éventuellement substitué, comprenant 1 à 12 atomes de carbone, par exemple 1 à 10 atomes de carbone, par exemple 1 à 8 atomes de carbone, par exemple 1 à 6 atomes de carbone. An amorphous solid is a solid where atoms, ions or molecules, although locally ordered, pile up in a disordered manner at long distances. This results in a signature of one or more diffraction peaks (X-rays for example) very wide which does not allow the precise identification of the material (since several solids can co-exist and lead to the same signature by diffraction). In many solids, atoms, ions or molecules can adopt several arrangements depending on the conditions of their formation. These different arrangements constitute the different phases of the solid existing in a given chemical system. The physical properties such as the melting point and the density of the different phases are different, which allows the differentiation of solids. For the purposes of the present invention, the term "alkyl" means an optionally substituted saturated linear or branched carbon radical comprising 1 to 12 carbon atoms, for example 1 to 10 carbon atoms, for example 1 to 8 carbon atoms, for example 1 at 6 carbon atoms.

Par exemple, un radical alkyle peut-être un radical méthyle, éthyle, n-propyle, isopropyle, n-butyle, sec-butyle, isobutyle, tert-butyle, n-pentyle, sec-pentyle, isopentyle, tert-pentyle, n-hexyle, sec-hexyle ou radicaux similaires. For example, an alkyl radical may be a methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl or tert-pentyl radical. hexyl, sec-hexyl or similar radicals.

On entend par alcène au sens de la présente invention, un radical hydrocarbure insaturé linéaire ou ramifé, cyclique ou acyclique, comprenant au moins une double liaison carbone-carbone. Le radical alcényle peut comprendre de 2 à 20 atomes de carbone, par exemple de 2 à 10 atomes de carbone, plus particulièrement de 2 à 8 atomes de carbone, encore plus particulièrement de 2 à 6 atomes de carbone. Par exemple, un radical alcényle peut-être un radical allyle, éthenyle, propenyle, butenyle, 1-méthyl-2-buten-1-yle ou radicaux similaires. Le terme "alcyne" désigne un radical hydrocarbure insaturé linéaire ou ramifé, cyclique ou acyclique, comprenant au moins une triple liaison carbone-carbone. Le radical alcynyle peut comprendre de 2 à 20 atomes de carbone, de préférence de 2 à 10 atomes de carbone, plus particulièrement de 1 à 8 atomes de carbone, encore plus particulièrement de 2 à 6 atomes de carbone. Par exemple, un radical alcynyle peut-être un radical éthynyle, 2-propynyle (propargyle), 1-propynyle ou radicaux similaires. On entend par aryle au sens de la présente invention, un système aromatique comprenant au moins un cycle satisfaisant la règle d'aromaticité de Hückel. Ledit aryle est éventuellement substitué et peut comprendre de 6 à 50 atomes de carbone, par exemple 6 à 27 atomes de carbone, notamment de 6 à 14 atomes de carbone, plus particulièrement de 6 à 12 atomes de carbone. Par exemple, un radical aryle peut être un groupe phényle, naphthyle, tétrahydronaphthyle, indanyle, indényle ou radicaux similaires. On entend par hétéroaryle au sens de la présente invention, un système comprenant au moins un cycle aromatique de 4 à 50 atomes de carbone, par exemple de 4 à 20 atomes de carbone, et au moins un For the purposes of the present invention, the term "alkene" means a linear or branched, cyclic or acyclic unsaturated hydrocarbon radical comprising at least one carbon-carbon double bond. The alkenyl radical may comprise from 2 to 20 carbon atoms, for example from 2 to 10 carbon atoms, more particularly from 2 to 8 carbon atoms, even more particularly from 2 to 6 carbon atoms. For example, an alkenyl radical may be an allyl, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl or similar radicals. The term "alkyne" refers to a linear or branched, cyclic or acyclic unsaturated hydrocarbon radical comprising at least one carbon-carbon triple bond. The alkynyl radical may comprise from 2 to 20 carbon atoms, preferably from 2 to 10 carbon atoms, more particularly from 1 to 8 carbon atoms, even more particularly from 2 to 6 carbon atoms. For example, an alkynyl radical may be an ethynyl, 2-propynyl (propargyl), 1-propynyl radical or similar radicals. For the purposes of the present invention, the term "aryl" means an aromatic system comprising at least one ring satisfying the Hückel aromaticity rule. Said aryl is optionally substituted and may comprise from 6 to 50 carbon atoms, for example 6 to 27 carbon atoms, especially from 6 to 14 carbon atoms, more particularly from 6 to 12 carbon atoms. For example, an aryl radical may be a phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl or similar group. For the purposes of the present invention, the term "heteroaryl" means a system comprising at least one aromatic ring of 4 to 50 carbon atoms, for example 4 to 20 carbon atoms, and at least one

hétéroatome choisi dans le groupe comprenant notamment le soufre, l'oxygène, l'azote. Ledit hétéroaryle peut être substitué. Par exemple, un radical hétéroaryle peut être un radical pyridyle, pyrazinyle, pyrimidinyle, pyrrolyle, pyrazolyle, imidazolyle, thiazolyle, oxazolyle, isooxazolyle, thiadiazolyle, oxadiazolyle, thiophenyle, furanyle, quinolinyle, isoquinolinyle, et radicaux similaires. On entend par cycloalkyle au sens de la présente invention, un radical carboné cyclique, saturé ou insaturé, éventuellement substitué, qui peut comprendre 3 à 10 atomes de carbone. On peut citer par exemple le cyclopropyl, le cyclobutyle, le cyclopentyle, le cyclohexyle, le cycloheptyle, le cyclooctyle, le 2-methylcyclobutyle, le 2,3-dimethyl-cyclobutyle, le 4-methylcyclobutyle, le 3-cyclopentylpropyle. On entend par haloalkyle au sens de la présente invention, un radical alkyle tel que défini précédemment, ledit système alkyle comprenant au moins un halogène choisi dans le groupe comprenant le fluor, le chlore, le brome, l'iode. On entend par hétéroalkyle au sens de la présente invention, un radical alkyle tel que défini précédemment, ledit système alkyle comprenant au moins un hétéroatome, notamment choisi dans le groupe comprenant le soufre, l'oxygène, l'azote, le phosphore. On entend par hétérocycle au sens de la présente invention, un radical carboné cyclique comprenant au moins un hétéroatome, saturé ou insaturé, éventuellement substitué, et qui peut comprendre 3 à 20 atomes de carbone, de préférence 5 à 20 atomes de carbone, de préférence 5 à 10 atomes de carbone. L'hétéroatome peut être par exemple choisi dans le groupe comprenant le soufre, l'oxygène, l'azote le phosphore. Par exemple, un radical hétérocyclique peut être un groupe pyrrolidinyle, pyrazolinyle, pyrazolidinyle, imidazolinyle, imidazolidinyle, piperidinyle, piperazinyle, oxazolidinyle, isoxazolidinyle, morpholinyle, thiazolidinyle, isothiazolidinyle, ou tetrahydrofuryle. heteroatom selected from the group including sulfur, oxygen, nitrogen. Said heteroaryl may be substituted. For example, a heteroaryl radical may be pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, and similar radicals. For the purposes of the present invention, the term "cycloalkyl" means an optionally substituted cyclic carbon radical, saturated or unsaturated, which may comprise 3 to 10 carbon atoms. There may be mentioned, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 2-methylcyclobutyl, 2,3-dimethylcyclobutyl, 4-methylcyclobutyl and 3-cyclopentylpropyl. For the purposes of the present invention, the term "haloalkyl" means an alkyl radical as defined above, said alkyl system comprising at least one halogen chosen from the group comprising fluorine, chlorine, bromine and iodine. Heteroalkyl in the sense of the present invention, an alkyl radical as defined above, said alkyl system comprising at least one heteroatom, especially selected from the group consisting of sulfur, oxygen, nitrogen, phosphorus. Heterocycle within the meaning of the present invention is understood to mean a cyclic carbon radical comprising at least one optionally substituted saturated or unsaturated heteroatom, which may comprise 3 to 20 carbon atoms, preferably 5 to 20 carbon atoms, preferably 5 to 10 carbon atoms. The heteroatom may for example be selected from the group consisting of sulfur, oxygen, nitrogen and phosphorus. For example, a heterocyclic radical may be pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, or tetrahydrofuryl.

On entend par alkoxy , aryloxy , hétéroalkoxy et hétéroaryloxy au sens de la présente invention, respectivement un radical alkyle, aryle, hétéroalkyle et hétéroaryle liés à un atome d'oxygène. Par exemple, un radical alcoxy peut être un radical méthoxy, éthoxy, propoxy, isopropoxy, n-butoxy, tert-butoxy, neopentoxy, n-hexoxy, ou un radical similaire. Le terme substitué désigne par exemple le remplacement d'un atome d'hydrogène dans une structure donnée par un groupe tel que défini précédemment. Lorsque plus d'une position peut être substituée, les 1 o substituants peuvent être les mêmes ou différents à chaque position. Dans le contexte de l'invention, le solvant organique peut être constitué d'un seul solvant ou d'un mélange de solvants organique(s). Le terme solvant non aqueux se réfère avantageusement à un ou un mélange de solvant(s) contenant au maximum 5 % en poids, de 15 préférence 1% en poids, plus préférentiellement 0,1 % en poids et encore plus préférentiellement au maximum 0,01% en poids d'eau par rapport au poids total de tous les solvants. Le solvant organique non aqueux peut être choisi dans le groupe comprenant le N,N-diméthylformamide (DMF), le N,N-diéthylformamide 20 (DEF), le dioxane, le méthanol, l'éthanol, le n-propanol, l'isopropanol, le nbutanol, l'isobutanol, tert-butanol, le cyclohexanol, la pyridine, le toluène, l'acétate d'éthyle, le diméthyle sulfoxide (DMSO). Le solvant organique non aqueux est plus particulièrement choisi dans le groupe comprenant le DMF, le DEF, le dioxane, le méthanol, 25 l'éthanol, le DMSO. Le précurseur inorganique métallique dans l'étape (i) peut se présenter sous la forme de métal Al, d'un sel de métal AI3+ ou d'un complexe de coordination comprenant l'ion métallique AI3+. Lorsqu'il s'agit de sel de métal , le contre ion peut être un ion inorganique choisi dans le 30 groupe comprenant le sulfate, le nitrate, le nitrite, le sulfite, le bisulfite, le phosphate, le phosphite, le fluorure, le chlorure, le bromure, l'iodure, le Alkoxy, aryloxy, heteroalkoxy and heteroaryloxy for the purposes of the present invention are understood to mean, respectively, an alkyl, aryl, heteroalkyl and heteroaryl radical bonded to an oxygen atom. For example, an alkoxy radical may be methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, tert-butoxy, neopentoxy, n-hexoxy, or a similar radical. The term "substituted" denotes, for example, the replacement of a hydrogen atom in a given structure with a group as defined above. When more than one position may be substituted, the substituents may be the same or different at each position. In the context of the invention, the organic solvent may consist of a single solvent or a mixture of organic solvents. The term non-aqueous solvent advantageously refers to one or a mixture of solvent (s) containing at most 5% by weight, preferably 1% by weight, more preferably 0.1% by weight and even more preferably at most 0, 01% by weight of water relative to the total weight of all the solvents. The non-aqueous organic solvent may be selected from the group consisting of N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), dioxane, methanol, ethanol, n-propanol, and the like. isopropanol, n-butanol, isobutanol, tert-butanol, cyclohexanol, pyridine, toluene, ethyl acetate, dimethyl sulfoxide (DMSO). The non-aqueous organic solvent is more particularly chosen from the group comprising DMF, DEF, dioxane, methanol, ethanol and DMSO. The inorganic metal precursor in step (i) may be in the form of Al metal, an AI3 + metal salt or a coordination complex comprising the Al3 + metal ion. When it is a metal salt, the counterion may be an inorganic ion selected from the group consisting of sulphate, nitrate, nitrite, sulphite, bisulphite, phosphate, phosphite, fluoride, chloride, bromide, iodide,

perchlorate, le carbonate, le bicarbonate. Le contre ion peut également être un ion organique choisi dans le groupe comprenant les acétates, les formates, les oxalates, citrates, éthoxy, isoproxy. De préférence, le précurseur inorganique métallique se présente sous forme d'un sel de métal AI3+ L'organisation spatiale cristalline des solides de la présente invention est à la base des caractéristiques et propriétés particulières de ces matériaux. Elle régit notamment la taille des pores, qui a une influence sur la surface spécifique des matériaux et sur les caractéristiques d'adsorption. perchlorate, carbonate, bicarbonate. The counterion may also be an organic ion selected from the group consisting of acetates, formates, oxalates, citrates, ethoxy, isoproxy. Preferably, the inorganic metal precursor is in the form of an AI3 + metal salt. The crystalline spatial organization of the solids of the present invention is at the basis of the particular characteristics and properties of these materials. In particular, it governs the size of the pores, which has an influence on the specific surface of the materials and on the adsorption characteristics.

Elle régit également la densité des matériaux qui relativement faible, la proportion de métal dans ces matériaux, la stabilité des matériaux, la rigidité et la flexibilité des structures, etc. En outre, la taille des pores peut être ajustée par le choix de ligands L appropriés. Dans le procédé de l'invention, le ligand L est plus particulièrement un azodi- ou azotétra-carboxylique aromatique, choisi dans le groupe comprenant : C12H$N2(CO2)2 (4,4'-azobenzène dicarboxylate), C12H6C12N2(CO2 )2 (dichloro-4,4'-azobenzène dicarboxylate), C12H6N2(CO2)4 (3,3',5,5'-azobenzène tétracarboxylate), C12H6N2(OH)2(CO2")2 (dihydroxo-4,4'-azobenzène dicarboxylate). Dans l'étape (i) le précurseur inorganique métallique et le précurseur organique du ligand L peuvent être mélangés dans un rapport molaire compris entre 1 et 5. Comme déjà indiqué, les solides MOF selon l'invention possèdent une structure cristallisée qui procure à ces matériaux des propriétés spécifiques. Dans le procédé selon l'invention, la cristallisation se fait dans un domaine de température bien précise. Ainsi, dans l'étape (ii), on chauffe le mélange à une température allant de 50°C à 150 °C. Le mélange peut être chauffé pendant 1 à 10 jours. Un jour correspond à 24 heures. Le mélange peut être chauffé dans une cellule close. It also governs the relatively low density of materials, the proportion of metal in these materials, the stability of materials, the stiffness and flexibility of structures, and so on. In addition, the pore size can be adjusted by choosing appropriate ligands L. In the process of the invention, the ligand L is more particularly an aromatic azodi- or azotetracarboxylic acid, chosen from the group comprising: C12H $ N2 (CO2) 2 (4,4'-azobenzene dicarboxylate), C12H6Cl2N2 (CO2) 2 (dichloro-4,4'-azobenzene dicarboxylate), C12H6N2 (CO2) 4 (3,3 ', 5,5'-azobenzene tetracarboxylate), C12H6N2 (OH) 2 (CO2 ") 2 (4,4'-dihydroxo) In step (i), the inorganic metal precursor and the organic precursor of the ligand L can be mixed in a molar ratio of between 1 and 5. As already indicated, the MOF solids according to the invention have a structure crystallized which gives these materials specific properties.In the process according to the invention, the crystallization is carried out in a very precise temperature range.So, in step (ii), the mixture is heated to a temperature of 50.degree. ° C to 150 ° C. The mixture can be heated for 1 to 10 days. The mixture can be heated in a closed cell.

L'étape (ii) peut être réalisée à une pression autogène supérieure à 105 Pa. Une pression autogène correspond à la pression générée par les réactifs à une température donnée dans une cellule de réaction close. Le solide obtenu à l'issue de l'étape (ii) peut, en outre, être soumis à une étape d'activation (iii) dans laquelle ledit solide est chauffé à une température comprise de 100°C à 300°C, de préférence de 100°C à 200°C. Dans cette étape, le solide peut être chauffé pendant 1 à 48 heures. L'étape d'activation (iii) peut éventuellement se faire dans un mélange de solvant(s) choisi(s) dans le groupe comprenant le DMF, le DEF, le méthanol, l'éthanol, le DMSO ou l'eau. Cette étape d'activation (iii) permet notamment de vider les pores du solide MOF de l'invention et de les rendre accessibles pour l'utilisation envisagée dudit solide. Le vidage peut se faire, par exemple, par le départ des molécules d'eau, de solvant et/ou le cas échéant des molécules de ligands L présents dans le milieu réactionnel. Les solides MOF résultant posséderont alors une plus forte capacité d'adsorption et de stockage. Step (ii) can be carried out at an autogenous pressure greater than 105 Pa. Autogenous pressure corresponds to the pressure generated by the reactants at a given temperature in a closed reaction cell. The solid obtained at the end of step (ii) may, in addition, be subjected to an activation step (iii) in which said solid is heated to a temperature of from 100 ° C. to 300 ° C., preferably from 100 ° C to 200 ° C. In this step, the solid can be heated for 1 to 48 hours. The activation step (iii) may optionally be carried out in a mixture of solvent (s) chosen (s) from the group comprising DMF, DEF, methanol, ethanol, DMSO or water. This activation step (iii) makes it possible in particular to empty the pores of the MOF solid of the invention and to make them accessible for the intended use of said solid. The emptying can be done, for example, by the departure of water molecules, solvent and / or optionally L ligand molecules present in the reaction medium. The resulting MOF solids will then have a higher adsorption and storage capacity.

La présente invention a également pour objet un solide MOF d'un azocarboxylate aromatique d'aluminium poreux et cristallisé susceptible d'être obtenu par le procédé selon l'invention, comprenant une succession tridimensionnelle de motifs de formule (I): The subject of the present invention is also an MOF solid of a porous and crystalline aluminum aromatic azocarboxylate obtainable by the process according to the invention, comprising a three-dimensional succession of units of formula (I):

AImOkXILp (I) dans laquelle : ^ Al représente l'ion métallique AI3+ ; ^ m est 1 à 15, par exemple 1 à 8; ^ k est 0 à 15, par exemple 1 à 8; ^ I est 0 à 10, par exemple 1 à 8; ^ p est 1 à 10, par exemple 1 à 5; Wherein: Al represents the metal ion AI3 +; m is 1 to 15, for example 1 to 8; ^ k is 0 to 15, for example 1 to 8; I is 0 to 10, for example 1 to 8; p is 1 to 10, for example 1 to 5;

m, k, I et p sont choisis de façon à respecter la neutralité des charges dudit motif ; ^ X est un anion choisi dans le groupe comprenant OH Cl-, F, 1-, B(, SO42 NO3-, C104-, PF6 , BF3 , R2û(COO")n, R2û(SO3 )n, R2û(PO3 )n, où R2 est un hydrogène, un alkyle en CI à Cie, linéaire ou ramifié, éventuellement substitué, n = 1 à 4 ; ^ L est un ligand tel que défini précédemment. Les solides MOF d'azocarboxylates aromatiques d'aluminium préparés par le procédé de l'invention présentent certains avantages notamment : - il s'agit de solides cristallisés, - avec une grande pureté (aucun produit secondaire comme par exemple l'hydroxyle d'aluminium n'est détecté), et - présentant une porosité significative (surface de Langmuir jusqu'à 3500 m2/g) permettant de contrôler notamment les caractéristiques d'adsorption de certaines molécules. De préférence, X est choisi dans le groupe comprenant OH Cl-, F, CI04. Les solides MOF selon l'invention comprennent de préférence un pourcentage massique d'Al de 5 à 50%. Les solides MOF susceptibles d'être obtenus par le procédé de l'invention possèdent des pores, et plus particulièrement des micro- et/ou des mésopores. Les micropores peuvent être définis comme des pores ayant un diamètre inférieur ou égal à 2 nm (diamètre < 2nm) et les mésopores comme des pores ayant un diamètre supérieur à 2 nm et pouvant aller jusqu'à 50 nm (2nm < diamètre < 50nm). De préférence, le diamètre des pores du solide MOF de l'invention est de 0,2 à 6 nm. La présence des micro- et mésopores peuvent être suivie par des mesures de sorption pour déterminer la capacité du solide MOF à absorber l'azote à 77K selon DIN 66131. m, k, I and p are chosen so as to respect the neutrality of the charges of said pattern; X is an anion selected from the group consisting of OH Cl-, F, 1-, B (, SO42 NO3-, C104-, PF6, BF3, R2O (COO-) n, R2O (SO3) n, R2O (PO3) n, where R2 is hydrogen, a linear or branched, optionally substituted C1-C18 alkyl, n = 1 to 4; L is a ligand as defined above. MOF solids of aromatic aluminum azocarboxylates prepared by the process of the invention has certain advantages in particular: - it is crystallized solids, - with high purity (no secondary product such as aluminum hydroxyl is detected), and - having a significant porosity (Langmuir surface up to 3500 m 2 / g) which makes it possible to control, in particular, the adsorption characteristics of certain molecules, preferably X is selected from the group comprising OH Cl-, F, ClO.sub.4 MOF solids according to the invention preferably comprise a mass percentage of Al of 5 to 50%. The process of the invention has pores, and more particularly micro- and / or mesopores. The micropores can be defined as pores having a diameter less than or equal to 2 nm (diameter <2 nm) and mesopores as pores with a diameter greater than 2 nm and up to 50 nm (2 nm <diameter <50 nm). . Preferably, the pore diameter of the MOF solid of the invention is 0.2 to 6 nm. The presence of micro- and mesopores can be followed by sorption measurements to determine the capacity of the MOF solid to absorb nitrogen at 77K according to DIN 66131.

La surface spécifique des solides constitués de réseaux métal-organiques (MOF) d'azocarboxylates aromatiques d'aluminium poreux et cristallisé susceptibles d'être obtenus par le procédé de l'invention peut être mesurée par la méthode BET et déterminée et calculée par le modèle Langmuir. Lesdits solides peuvent présenter une surface spécifique BET allant de 50 à 4200 m2/g, plus particulièrement de 100 à 3000 m2/g. Ils peuvent également présenter une surface spécifique Langmuir allant de 50 à 6000 m2/g, plus particulièrement de 150 à 3500 m2/g. Les solides MOF selon l'invention présentent avantageusement un volume poreux de à 0,3 à 4 cm3/g. Dans le cadre de l'invention, le volume poreux signifie le volume accessible pour les molécules de gaz ou de liquide. Dans le cadre de la présente invention, les solides MOF peuvent avoir une capacité de charge en gaz de 0,5 à 50 mmol de gaz par gramme de solide sec. La capacité de charge signifie la capacité de stockage de gaz ou la quantité de gaz adsorbé par le solide. Ces valeurs et cette définition s'applique également à la capacité de charge en liquide. Les solides MOF de la présente invention peuvent présenter notamment l'avantage d'avoir une stabilité thermique jusqu'à une température de 500°C. Plus particulièrement, ces solides peuvent présenter une stabilité thermique entre 250°C et 450°C. Les solides MOF de l'invention sont cristallisés et peuvent être, de préférence, sous forme de cristallites avec une longueur qui varie de 0,05 um à 100 m, plus particulièrement de 0,05 m à 20 m. Ils se présentent de préférence, sous formes de petits cristaux présentant une morphologie particulière (aiguilles, plaquettes, octaèdres...) qui permet aussi leur identification précise par examen à l'aide d'un microscope électronique à balayage (MEB). Comme déjà indiqué, les solides MOF selon l'invention possèdent une structure cristallisée et une grande pureté qui procurent à ces matériaux des propriétés spécifiques. The specific surface of the solids constituted by metal-organic networks (MOF) of porous and crystallized aluminum aromatic azocarboxylates that can be obtained by the method of the invention can be measured by the BET method and determined and calculated by the model. Langmuir. Said solids may have a BET specific surface area ranging from 50 to 4200 m 2 / g, more particularly from 100 to 3000 m 2 / g. They can also have a Langmuir specific surface ranging from 50 to 6000 m 2 / g, more particularly from 150 to 3500 m 2 / g. The MOF solids according to the invention advantageously have a pore volume of 0.3 to 4 cm 3 / g. In the context of the invention, the pore volume means the accessible volume for the gas or liquid molecules. In the context of the present invention, the MOF solids may have a gas loading capacity of 0.5 to 50 mmol of gas per gram of dry solid. The carrying capacity means the gas storage capacity or the amount of gas adsorbed by the solid. These values and this definition also apply to the liquid load capacity. The MOF solids of the present invention may in particular have the advantage of having a thermal stability up to a temperature of 500 ° C. More particularly, these solids may have a thermal stability between 250 ° C and 450 ° C. The MOF solids of the invention are crystallized and may preferably be in the form of crystallites with a length that ranges from 0.05 μm to 100 μm, more preferably from 0.05 μm to 20 μm. They are preferably in the form of small crystals having a particular morphology (needles, platelets, octahedra ...) which also allows their precise identification by examination using a scanning electron microscope (SEM). As already indicated, the MOF solids according to the invention have a crystallized structure and a high purity which provide these materials with specific properties.

Contrairement aux solides connus, les solides MOF d'azocarboxylates d'aluminium selon l'invention sont constitués d'une seule phase. Cela signifie que les autres phases pouvant exister dans le système chimique considéré ne sont pas présentes en mélange avec le solide. Les solides MOF d'azocarboxylates d'aluminium susceptibes d'être obtenus par un procédé de préparation tel que décrit précédemment présentant, en outre, un degré de pureté d'au moins 95%, en particulier d'au moins 98 % en masse. La pureté des solides MOF de l'invention peut être déterminée notamment par analyse chimique élémentaire, diffraction des rayons X, microscopie éléctronique à balayage. De ce fait, les solides MOF obtenus, ne comportent pas ou peu de produit secondaire comme par exemple l'hydroxyde d'aluminium de formule AI(OH)3 ou A10(OH) ou encore les autres phases du système chimique considéré apparaissant dans d'autres conditions de synthèse. Les caractéristiques structurales particulières des solides de la présente invention, en font des adsorbants de grande capacité de charge, de grande sélectivité et de grande pureté. Ils rendent donc possible l'adsorption sélective et donc la séparation sélective de molécules de gaz comme par exemple des molécules de NO, N2, H2S, H2, CH4, 02, CO, CO2...). La présente invention a également pour objet, l'utilisation d'un solide constitué de réseau métal-organique (MOF) d'azocarboxylates d'aluminium poreux et cristallisés pour le stockage des molécules liquides ou gazeuses, pour la séparation sélective de gaz [25] ou encore pour la catalyse [26]. Unlike the known solids, the MOF solids of aluminum azocarboxylates according to the invention consist of a single phase. This means that the other phases that may exist in the chemical system in question are not present in a mixture with the solid. The MOF solids of aluminum azocarboxylates that can be obtained by a preparation process as described above also having a degree of purity of at least 95%, in particular of at least 98% by weight. The purity of the MOF solids of the invention can be determined in particular by elemental chemical analysis, X-ray diffraction, scanning electron microscopy. As a result, the MOF solids obtained contain little or no by-product such as, for example, aluminum hydroxide of formula AI (OH) 3 or A10 (OH), or the other phases of the chemical system considered appearing in FIG. other conditions of synthesis. The particular structural characteristics of the solids of the present invention make them adsorbents with high loading capacity, high selectivity and high purity. They thus make possible the selective adsorption and thus the selective separation of gas molecules such as molecules of NO, N2, H2S, H2, CH4, O2, CO, CO2, etc.). The present invention also relates to the use of a solid consisting of a metal-organic network (MOF) of porous and crystallized aluminum azocarboxylates for the storage of liquid or gaseous molecules, for the selective separation of gases [25]. ] or for catalysis [26].

D'autres avantages pourront encore apparaître à l'homme du métier à la lecture des exemples ci-dessous, illustrés par les figures annexées, donnés à titre illustratif. Brève description des figures30 Other advantages may still appear to those skilled in the art on reading the examples below, illustrated by the appended figures, given for illustrative purposes. Brief description of figures30

- La figure 1 représente le diagramme de diffraction RX de la phase MIL-130 (Al) (CuK0). L'abscisse représente la variation angulaire en 20 (°). L'ordonné représente l'intensité relative des pics de diffraction. - La figure 2 représente l' isotherme d'adsorption N2 à 77K de la phase MIL-130. Le rapport p/p° qui correspond à la pression relative est donné en abscisse. Le volume de gaz adsorbé par gramme de produit (cm3.g"') est représenté en ordonné. - La figure 3 représente la courbe de l'analyse thermogravimétrique de MIL-130 (Al) (sous flux d'O2, 3°C.min"1). Le pourcentage de la perte de masse est représenté en ordonné. La vatempérature de chauffage est représentée en abscisse. - La figure 4 représente la photographie (microscopie électronique à balayage) d'un échantillon de MIL-130 (Al) montrant des cristallites sous forme de baguette hexagonale. - La figure 5 représente la photographie (microscopie électronique à balayage) d'un échantillon de MIL-130 (Al) montrant des cristallites sous forme d'agrégats de cristallites ovoides. - La figure 6 représente la photographie (microscopie électronique à balayage) d'un échantillon de MIL-130 (Al) montrant des cristallites sous forme de plaquettes ovoides. FIG. 1 represents the X-ray diffraction pattern of the MIL-130 (Al) (CuKO) phase. The abscissa represents the angular variation in 20 (°). The ordinate represents the relative intensity of the diffraction peaks. FIG. 2 represents the N2 adsorption isotherm at 77K of the MIL-130 phase. The ratio p / p ° which corresponds to the relative pressure is given on the abscissa. The volume of adsorbed gas per gram of product (cm 3 g -1) is plotted as follows: - Figure 3 shows the thermogravimetric analysis curve of MIL-130 (Al) (under O2 flow, 3 ° C) x min "1). The percentage of mass loss is represented on the ordinate. The heating temperature is represented on the abscissa. - Figure 4 shows the photograph (scanning electron microscopy) of a sample of MIL-130 (Al) showing crystallites in the form of hexagonal rod. FIG. 5 represents the photograph (scanning electron microscopy) of a sample of MIL-130 (Al) showing crystallites in the form of aggregates of ovoid crystallites. - Figure 6 shows the photograph (scanning electron microscopy) of a sample of MIL-130 (Al) showing crystallites in the form of ovoid platelets.

EXEMPLES EXAMPLES

Les exemples qui suivent décrivent la synthèse de solides constitués de réseaux métal-organiques (MOF) d'azocarboxylate aromatique d'aluminium microporeux (notés MIL-n) obtenus avec des ligands de type azobenzène carboxylate et plus particulièrement avec le ligand 4,4'-azodibenzènedicarboxylate. Les composés (notés MIL-n) synthétisés ont ensuite été caractérisés par diffraction des rayons X sur poudre, analyse thermogravimétrique, microscopie électronique à balayage (MEB) et leurs surfaces spécifiques ont été mesurées par la méthode BET. The examples which follow describe the synthesis of solids consisting of metal-organic networks (MOF) of microporous aluminum aromatic azocarboxylate (denoted MIL-n) obtained with ligands of azobenzene carboxylate type and more particularly with the 4,4 'ligand. -azodibenzènedicarboxylate. The compounds (denoted MIL-n) synthesized were then characterized by powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy (SEM) and their specific surfaces were measured by the BET method.

Les diagrammes de diffraction ont été enregistrés à l'aide d'un diffractomètre (Siemens D5000) en géométrie Bragg-Brentano en réflexion sur un domaine angulaire en 2theta de 2 à 40° avec un pas et un temps de comptage de 0,02° et de 1 seconde, respectivement (radiation CuKa122)• L'analyse thermogravimétrique (TA Instrument 2050) a été réalisé à partir d'un échantillon de 5 ou 20 mg chauffé sur une balance de 20 à 600°C sous flux d'oxygène avec une vitesse de chauffage de 3°C.min"1. Pour l'examen au microscope électronique à balayage (LEO 1530), les échantillons ont été métallisé avec du carbone puis placé dans une chambre sous vide sous le faisceau d'électrons. Les surfaces spécifiques ont été mésurées sur un appareil Micromeritics ASAP2010 à partir de 100 mg d'échantillons qui ont été préalablement chauffé à 200°C sous vide pendant 12 heures. The diffraction diagrams were recorded using a diffractometer (Siemens D5000) in Bragg-Brentano geometry in reflection on a 2theta angular domain of 2 to 40 ° with a pitch and a counting time of 0.02 ° and 1 second, respectively (CuKa122 radiation) • Thermogravimetric analysis (TA Instrument 2050) was performed from a 5 or 20 mg sample heated on a scale of 20 to 600 ° C under oxygen flow with a heating rate of 3 ° C.min -1 for the scanning electron microscope (LEO 1530), the samples were metallized with carbon and then placed in a vacuum chamber under the electron beam. Specific surfaces were measured on a Micromeritics ASAP2010 instrument from 100 mg of samples that were preheated to 200 ° C under vacuum for 12 hours.

Exemple 1 : Préparation de MIL-130 (Al) Le composé MIL-130 (Al) est obtenu à partir d'un mélange de 3,6 g de nitrate d'aluminium (AI(NO3)3.9H2O), 1,2 g d'acide 4,4'-azodibenzènedicarboxylique et 70 ml de DMF (N,N'-diméthylformamide) placés dans une cellule en téflon d'un volume de 125 ml puis insérée dans un autoclave en acier de marque commerciale Parr (marque déposée). La réaction a lieu à 100°C pendant 7 jours dans un four. 2 g de MIL-130 (Al) est obtenu. Le produit est activé par chauffage à 200°C pendant une nuit. Example 1: Preparation of MIL-130 (Al) The compound MIL-130 (Al) is obtained from a mixture of 3.6 g of aluminum nitrate (Al (NO3) 3.9H2O), 1.2 g of 4,4'-azodibenzenedicarboxylic acid and 70 ml of DMF (N, N'-dimethylformamide) placed in a teflon cell with a volume of 125 ml and then inserted into a steel autoclave of trademark Parr (trademark) . The reaction takes place at 100 ° C for 7 days in an oven. 2 g of MIL-130 (Al) is obtained. The product is activated by heating at 200 ° C overnight.

Une seconde préparation peut être réalisée à partir d'un mélange de 0,36 g de perchlorate d'aluminium (AI(CI04)3.9H2O), 0,1 g d'acide 4,4'-azodibenzènedicarboxylique, 5 ml de DMF (N,N'-diméthylformamide) placés dans une cellule en téflon d'un volume de 23 ml puis un autoclave en acier de type Parr (nom de commerce). La réaction a lieu à 100°C pendant 7 jours dans un four. 0,11 g de MIL-130 (Al) est obtenu. A second preparation can be carried out from a mixture of 0.36 g of aluminum perchlorate (Al (ClO 4) 3 .9H 2 O), 0.1 g of 4,4'-azodibenzenedicarboxylic acid, 5 ml of DMF ( N, N'-dimethylformamide) placed in a teflon cell with a volume of 23 ml and then a Parr-type steel autoclave (trade name). The reaction takes place at 100 ° C for 7 days in an oven. 0.11 g of MIL-130 (Al) is obtained.

Une troisième préparation peut être réalisée à partir d'un mélange de 0,19 g de chlorure d'aluminium hexahydraté (AI(CI)3.6H2O), 0,1 g d'acide 4,4'-azodibenzènedicarboxylique, 5 ml de DMF (N,N'-diméthylformamide) placés dans une cellule en téflon d'un volume de 23 ml puis un autoclave en acier de marque commerciale Parr (marque déposée). La réaction a lieu à 100°C pendant 7 jours dans un four. 0,07 g de MIL-130 (Al) est obtenu. A third preparation can be carried out starting from a mixture of 0.19 g of aluminum chloride hexahydrate (Al (Cl) 3.6H2O), 0.1 g of 4,4'-azodibenzenedicarboxylic acid, 5 ml of DMF. (N, N'-dimethylformamide) placed in a teflon cell with a volume of 23 ml and then a steel autoclave of trademark Parr (trademark). The reaction takes place at 100 ° C for 7 days in an oven. 0.07 g of MIL-130 (Al) is obtained.

Une quatrième préparation peut être réalisée à partir d'un mélange de 0,1 g de chlorure d'aluminium anhydre (AI(CI)3), 0,1 g d'acide 4,4'-azodibenzènedicarboxylique, 5 ml de DMF (N,N'-diméthylformamide) placés dans une cellule en téflon d'un volume de 23 ml puis un autoclave en acier de marque commerciale Parr (marque déposée). La réaction a lieu à 100°C pendant 7 jours dans un four. 0,07 g de MIL-130 (Al) est obtenu. A fourth preparation can be carried out starting from a mixture of 0.1 g of anhydrous aluminum chloride (Al (Cl) 3), 0.1 g of 4,4'-azodibenzenedicarboxylic acid, 5 ml of DMF ( N, N'-dimethylformamide) placed in a teflon cell with a volume of 23 ml and then a steel autoclave of trademark Parr (trademark). The reaction takes place at 100 ° C for 7 days in an oven. 0.07 g of MIL-130 (Al) is obtained.

Une cinquième préparation peut être réalisée à partir d'un mélange de 0,1 g de chlorure d'aluminium anhydre (AI(CI)3), 0,1 g d'acide 4,4'-azodibenzènedicarboxylique, 5 ml de DMF (N,N'-diméthylformamide) placés dans une cellule en téflon d'un volume de 23 ml puis un autoclave en acier de marque commerciale Parr (marque déposée). La réaction a lieu à 100°C pendant 4 heures dans un four. 0,07 g de MIL-130 (Al) est obtenu. A fifth preparation can be made from a mixture of 0.1 g of anhydrous aluminum chloride (Al (Cl) 3), 0.1 g of 4,4'-azodibenzenedicarboxylic acid, 5 ml of DMF ( N, N'-dimethylformamide) placed in a teflon cell with a volume of 23 ml and then a steel autoclave of trademark Parr (trademark). The reaction takes place at 100 ° C for 4 hours in an oven. 0.07 g of MIL-130 (Al) is obtained.

L'examen de ces solides (par exemple, quatrième préparation) au microscope électronique révèle la présence de petits cristaux en forme de baguettes hexagonales avec une taille moyenne de 0,2 à 0,8 micron (figure 4), d'agrégats de cristallites ovoides (figure 5) provenant de la deuxième préparation ou encore de plaquettes ovoides (figure 6) provenant de la première préparation. Examination of these solids (e.g., fourth preparation) under the electron microscope reveals the presence of small hexagonal rod shaped crystals with an average size of 0.2 to 0.8 micron (Figure 4), crystallite aggregates ovoid (Figure 5) from the second preparation or ovoid platelets (Figure 6) from the first preparation.

Les pics de Bragg du diagramme de poudre peuvent correspondre à une maille hexagonale avec les paramètres a = b = 33,264(1) A et c = 4,681(1) A, v = 4417,5(1) A3. Le diffractogramme RX est présenté en figure 1. The Bragg peaks of the powder diagram can correspond to a hexagonal mesh with the parameters a = b = 33.264 (1) A and c = 4.681 (1) A, v = 4417.5 (1) A3. The X-ray diffractogram is presented in FIG.

La surface spécifique BET est de 1770 m2/g et la surface Langmuir est de 3190 m2/g. L'isotherme d'adsorption présente une marche pour p/po = 0,15, caractéristique de cavités ou tunnels mésoporeux (figure 2). L'analyse thermogravimétrique indique que le matériau MIL-100 (Al) est stable jusqu'à 420°C (figure 3). The BET surface area is 1770 m2 / g and the Langmuir surface is 3190 m2 / g. The adsorption isotherm exhibits a step for p / po = 0.15, characteristic of mesoporous cavities or tunnels (Figure 2). Thermogravimetric analysis indicates that the MIL-100 (Al) material is stable up to 420 ° C (Figure 3).

La combinaison de ces différentes analyses de caractérisation (DRX, MEB montre bien qu'il s'agit d'un matériau très bien identifié avec une très grande pureté cristalline. A la suite de l'observation DRX, on peut definir un composé, pour lequel la phase MIL-130(AI) est majoritaire jusqu'à 95% (en masse) au moins. The combination of these different characterization analyzes (DRX, SEM) shows that it is a very well identified material with a very high crystalline purity.As a result of the XRD observation, we can define a compound for which the MIL-130 phase (AI) is predominant up to 95% (by mass) at least.

Listes des références [1] Reticular Synthesis and the Design of New Materials, O.M. Yaghi, M. 5 O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi and J. Kim, Nature, 423, 705-14 (2003). [2] Functional Porous Coordination Polymers, S. Kitagawa, R. Kitaura and S.-I. Noro, Angew. Chem. Int. Ed., 43, 2334-75 (2004). [3] Hybrid Porous Solids: Past, Present, Future, G. Férey, Chem. Soc. 10 Rev., 37, 191-214 (2008). [4] Hydrogen Storage in Microporous Metal-Organic Frameworks, N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe and O.M. Yaghi, Science, 300, 1127-9 (2003). [5] Hydrogen Adsorption in the Nanoporous Metal-benzenedicarboxylate 15 M(OH)(02C-C6H4-CO2) (M = AI3+, Cri+), MIL-53, G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau and A. Percheron- Guégan, Chem. Commun., 2976-7 (2003). [6] Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL- 100 and MIL-101, M. Latroche, S. Surblé, C. Serre, C. Mellot-20 Draznieks, P.L. Llewellyn, J.-H. Lee, J.-S. Chang, S.H. Jhung and G. Férey, Angew. Chem. /nt. Ed., 45, 8227 (2006). [7] Systematic Design of Pore Size and Functionality in Isoreticular MOFs and their Application in Methane Storage, M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O.M. Yaghi, Nature, 25 295, 469-72 (2002). [8] Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47, S. Bourrelly, P. L. Llewellyn, C. Serre, F. Millange, T. Loiseau and G. Férey, J. Am. Chem. Soc., 127, 13519-21 (2005). 20 Reference Lists [1] Reticular Synthesis and the Design of New Materials, O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi and J. Kim, Nature, 423, 705-14 (2003). [2] Functional Porous Coordination Polymers, S. Kitagawa, R. Kitaura and S.-I. Noro, Angew. Chem. Int. Ed., 43, 2334-75 (2004). [3] Porous Solids Hybrid: Past, Present, Future, G. Ferey, Chem. Soc. Rev., 37, 191-214 (2008). [4] Hydrogen Storage in Microporous Metal-Organic Frameworks, N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe and O.M. Yaghi, Science, 300, 1127-9 (2003). [5] Hydrogen Adsorption in the Nanoporous Metal-Benzenedicarboxylate M (OH) (O 2 -C 6 -C 4 -CO 2) (M = Al 3 +, Cr +), MIL-53, G. Ferey, M. Latroche, C. Serre, F. Millange , T. Loiseau and A. Percheron-Guégan, Chem. Commun., 2976-7 (2003). [6] Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101, M. Latroche, S. Surblé, C. Serre, C. Mellot-20 Draznieks, P. L. Llewellyn, J.-H. Lee, J.-S. Chang, S.H. Jhung and G. Ferey, Angew. Chem. / Nt. Ed., 45, 8227 (2006). [7] Systematic Design of Pore Size and Functionality in Isoreticular MOFs and their Application in Methane Storage, M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and OM Yaghi, Nature , 295, 469-72 (2002). [8] Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47, S. Bourrelly, PL Llewellyn, C. Greenhouse, F. Millange, T. Loiseau and G. Ferey, J. Am. Chem. Soc., 127, 13519-21 (2005). 20

[9] Metal-Organic Frameworks as Efficient Materials for Drug Delivery, P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle and G. Férey, Angew. Chem. Int. Ed., 45, 5974 (2006). [10] High Gas Adsorption in a Microporous Metal-Organic Framework with Open-Framework, O.M. Yaghi, WO 2006/110740 (2006). [11] Isoreticular Metal-Organic Framework Process for Forming the Same and Systematic Design of Pore size and Functionality therein, with Application for Gas Storage, WO 02/088148 (2002). [12] Metal-Organic Frameworks ù Prospective Industrial Applications, U. [9] Metal-Organic Frameworks as Efficient Materials for Drug Delivery, P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle and G. Ferey, Angew. Chem. Int. Ed., 45, 5974 (2006). [10] High Gas Adsorption in a Microporous Metal-Organic Framework with Open-Framework, O.M. Yaghi, WO 2006/110740 (2006). [11] Isoreticular Metal-Organic Framework Process for Forming the Same and Systematic Design of Pore Size and Functionality with Application for Gas Storage, WO 02/088148 (2002). [12] Metal-Organic Frameworks - Prospective Industrial Applications, U.

Müller, M. Schubert, F. Teich, H. Putter, K. Schierle-Arndt and J. Pastré, J. Mater. Chem., 16, 626-36 (2006). [13] Shaped Bodies Containing Metal-Organic Frameworks, M. Hesse, U. Müller, O.M. Yaghi, WO 2006/050898 (2006). [14] A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration, T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, Chem. Eur. J., 10, 1373-82 (2004). [15] Hydrothermal Synthesis and Crystal Structure of a New Three-Dimensional Aluminum-Organic Framework MIL-69 with 2,6- Naphthalenedicarboxylate (ndc), AI(OH)(ndc)•H2O, T. Loiseau, C. Mellot-Draznieks, H. Muguerra, G. Férey, M. Haouas and F. Taulelle, C. R. Chimie, Special Issue on Crystalline and Organized Porous Solids, 8, 765-72 (2005). [16] MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and u3-Oxo-Centered Trinuclear Units, T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Férey, M. Haouas, F. Taulelle, S. Bourrelly, P. L. Llewellyn and M. Latroche, J. Am. Chem. Soc., 128, 10223-30 (2006). [17] A Microdiffraction Set-up for Nanoporous Metal-Organic-Framework- Type Solids, C. Volkringer, D. Popov, T. Loiseau, N. Guillou, G. Müller, M. Schubert, F. Teich, H. Putter, K. Schierle-Arndt and J. Pastré, J. Mater. Chem., 16, 626-36 (2006). [13] Shaped Bodies Containing Metal-Organic Frameworks, M. Hesse, U. Müller, O.M. Yaghi, WO 2006/050898 (2006). [14] A Rationale for the Large Breathing of Aluminum Porous Terephthalate (MIL-53) Upon Hydration, T. Loiseau, C. Serre, C. Huguenard, F. Fink, F. Taulelle, M. Henry, T. Bataille and G. Ferey, Chem. Eur. J., 10, 1373-82 (2004). [15] Hydrothermal Synthesis and Crystal Structure of a New Three-Dimensional Aluminum-Organic Framework MIL-69 with 2,6-Naphthalenedicarboxylate (ndc), Al (OH) (ndc) • H2O, T. Loiseau, C. Mellot-Draznieks , H. Muguerra, G. Ferey, M. Haouas and F. Taulelle, CR Chemistry, Special Issue on Crystalline and Organized Porous Solids, 8, 765-72 (2005). [16] MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and U3-Oxo-Centered Trinuclear Units, T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Férey, M. Haouas, F. Taulelle, S. Bourrelly, PL Llewellyn and M. Latroche, J. Am. Chem. Soc., 128, 10223-30 (2006). [17] A Microdiffraction Set-up for Nanoporous Metal-Organic-Framework- Solids Type, C. Volkringer, D. Popov, T. Loiseau, N. Guillou, G.

Férey, M. Haouas, F. Taulelle, C. Mellot-Draznieks, M. Burghammer and C. Riekel, Nature Materials, 6, 760-4 (2007). [18] Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. H. Li, M. Eddaoudi, M. O'Keeffe, O.M. 5 Yaghi, Nature, 402, 276-9 (1999). [19] A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A. Guy Orpen and I.D. Williams, Science, 283, 1148 (1999). [20] Method for Producing Organometallic Framework Materials 10 Containing Main Group Metal Ions, M. Schubert, U. Müller, M. Tonigold, R. Ruetz, WO 2007/023134 (2007). [21] Mesoporous Metal-Organic Framework, M. Schubert, U. Müller, H. Mattenheimer, M. Tonigold, WO 2007/023119 (2007). [22] Organometallic Aluminum Fumarate Backbone Material, C. Kiener, 15 U. Müller, M. Schubert, WO 2007/118841 (2007). [23] Dotierte Metallorganische Gerüstmaterialien, M. Schubert, U. Müller, R. Ruetz, S. Hatscher, DE 10 2005 053 430 (2005). [24] MOF-Compounds as Gas Adsorbers, K.O. Kongshaug, R.H. Heyn, H. Fjellvag, R. Blom, WO 2007/128994 (2007). 20 [25] How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible Chromium terephthalate MIL-53 , P.L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk and G. Férey, Angew. Chem. Int. Ed. 45 7751-4 (2006). [26] Synthesis and catalysis properties of MIL-100(Fe), an iron(III) 25 carboxylate with large pores P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S Chang, J.-M. Grenèche, I. Margiolaki and G. Férey, Chem. Commun. 2820-2 (2007) ; Catalytic properties of MIL-101 A. Henschel, K. Gedrich, R. Kraehnert and S. Kaskel, Chem. Commun. 4192-4 (2008) Amine grafting on coordinatively 30 unsaturated metal centers of MOFs: consequences for catalytis and Férey, M. Haouas, F. Taulelle, C. Mellot-Draznieks, M. Burghammer and C. Riekel, Nature Materials, 6, 760-4 (2007). [18] Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Nature, 402, 276-9 (1999). [19] A Chemically Functionalizable Nanoporous Material [Cu3 (TMA) 2 (H2O) 3] n, S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charming, A. Guy Orpen and I. D. Williams, Science, 283, 1148 (1999). [20] Method for Producing Organometallic Framework Materials Containing Main Group Metal Ions, M. Schubert, U. Müller, M. Tonigold, R. Ruetz, WO 2007/023134 (2007). [21] Mesoporous Metal-Organic Framework, M. Schubert, U. Müller, H. Mattenheimer, M. Tonigold, WO 2007/023119 (2007). [22] Organometallic Aluminum Fumarate Backbone Material, C. Kiener, U. Müller, M. Schubert, WO 2007/118841 (2007). [23] Dotierte Metallorganische Gerüstmaterialien, M. Schubert, U. Müller, R. Ruetz, S. Hatscher, DE 2005 053 430 (2005). [24] MOF-Compounds as Gas Adsorbers, K. O. Kongshaug, R. H. Heyn, H. Fjellvag, R. Blom, WO 2007/128994 (2007). [25] How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible Chromium terephthalate MIL-53, P.L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk and G. Ferey, Angew. Chem. Int. Ed. 45 7751-4 (2006). [26] Synthesis and catalysis properties of MIL-100 (Fe), an iron (III) carboxylate with large pores P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S Chang, J.-M. Grenèche, I. Margiolaki and G. Ferey, Chem. Common. 2820-2 (2007); Catalytic properties of MIL-101 A. Henschel, K. Gedrich, R. Kraehnert and S. Kaskel, Chem. Common. 4192-4 (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalytis and

metal encapsulation Y.K. Hwang, D.-Y. Hong, J.-S. Chang, S.H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre and G. Férey, Angew. Chem. Int. Ed. 47 4144-8 (2008).5 metal encapsulation Y.K. Hwang, D.-Y. Hong, J.-S. Chang, S.H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre and G. Ferey, Angew. Chem. Int. Ed. 47 4144-8 (2008) .5

Claims (23)

REVENDICATIONS1. Procédé de préparation d'un solide MOF d'un azocarboxylate aromatique d'aluminium poreux et cristallisé, comprenant au moins les étapes suivantes : (i) on mélange dans un solvant organique non aqueux : au moins un précurseur inorganique métallique se présentant sous la forme de métal Al, d'un sel de métal AI3+ ou d'un complexe de coordination comprenant l'ion métallique AI3+ ; et - au moins un précurseur organique du ligand L, L étant un ligand azodi-, azotri-, azotétra-carboxylate aromatique de formule R°R1N2(000")q où R° et RI représentent, indépendemment l'un de l'autre, • un radical aryle mono- ou poly-cyclique, fusionné ou non, comprenant de 6 à 50 atomes de carbone, • un radical hétéroaryle mono- ou poly-cyclique, fusionné ou non, comprenant de 4 à 50 atomes de carbone, le radical R° étant éventuellement substitué par un ou plusieurs groupes indépendamment choisis dans le groupe comprenant C1_,oalkyle, C2_10alcène, C2_1oalcyne, C3_1ocycloalkyle, C,_1ohétéroalkyle, C1_iohaloalkyle, C6_1oaryle, C3_20hétérocyclique, C1_1oalkylC6_ioaryle, C,_1oalkylC51ohétéroaryle, F, Cl, Br, I, -NO2, - CN, -CF3, -CH2CF3, -OH, -CH2OH, -CH2CH2OH, -NH2, -CH2NH2, - NHCHO, -000H, -CONH2, -SO3H, -P03H2, • q=2à4; (ii) on chauffe le mélange obtenu en (i) à une température d'au moins 50°C de manière à obtenir ledit solide. REVENDICATIONS1. A method for preparing an MOF solid of a porous and crystallized aluminum aromatic azocarboxylate, comprising at least the following steps: (i) mixing in a nonaqueous organic solvent: at least one metallic inorganic precursor in the form of Al metal, an AI3 + metal salt or a coordination complex comprising the Al3 + metal ion; and at least one organic precursor of the ligand L, L being an aromatic azodi-, azotri-, azotetracarboxylate ligand of formula R ° R1N2 (000 ") q where R ° and R1 represent, independently of one another A mono- or poly-cyclic aryl radical, fused or not, comprising from 6 to 50 carbon atoms, a mono- or poly-cyclic heteroaryl radical, fused or otherwise, comprising from 4 to 50 carbon atoms, radical R ° being optionally substituted with one or more groups independently selected from the group consisting of C1_, oalkyl, C2_10alkene, C2_alkyl, C3_cycloalkyl, C1_oheteroalkyl, C1_iohaloalkyl, C6_1aryl, C3_20heterocyclic, C1-10alkylC6_ioaryl, C1-10alkylC51oheteroaryl, F, Cl, Br, I , -NO2, -NC, -CF3, -CH2CF3, -OH, -CH2OH, -CH2CH2OH, -NH2, -CH2NH2, -NHCHO, -000H, -CONH2, -SO3H, -PO3H2, q = 2-4; the mixture obtained in (i) is heated to a temperature of at least 50 ° C so as to obtain said solid. 2. Procédé selon la revendication 1, dans lequel le solvant organique non aqueux est le DMF, le DEF, le dioxane, le méthanol, l'éthanol, le DMSO. 2. The process according to claim 1, wherein the nonaqueous organic solvent is DMF, DEF, dioxane, methanol, ethanol, DMSO. 3. Procédé selon l'une des revendications 1 ou 2, dans lequel dans l'étape (i) le précurseur inorganique métallique et le précurseur organique du ligand L sont mélangés dans un rapport molaire compris entre 1 et 5. 3. Method according to one of claims 1 or 2, wherein in step (i) the inorganic metal precursor and the organic precursor ligand L are mixed in a molar ratio of between 1 and 5. 4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le précurseur inorganique métallique se présente sous forme d'un sel de métal AI3+ 10 4. Process according to any one of claims 1 to 3, wherein the metal inorganic precursor is in the form of an Al3 + metal salt. 5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel L est un azodi- ou azotétra-carboxylique aromatique, choisi dans le groupe comprenant : C12H$N2(CO2 )2 (4,4'-azobenzène dicarboxylate), C12H6C12N2(CO2)2 (dichloro-4,4'-azobenzène dicarboxylate), 15 C12H6N2(CO2-)4 (3,3',5,5'-azobenzène tétracarboxylate), C12H6N2(OH)2(CO2-)2 (dihydroxo-4,4'-azobenzène dicarboxylate). The process according to any one of claims 1 to 4, wherein L is an aromatic azodi or azotetracarboxylic acid, selected from the group consisting of: C12H $ N2 (CO2) 2 (4,4'-azobenzene dicarboxylate), C12H6Cl2N2 (CO2) 2 (dichloro-4,4'-azobenzene dicarboxylate), C12H6N2 (CO2-) 4 (3,3 ', 5,5'-azobenzene tetracarboxylate), C12H6N2 (OH) 2 (CO2-) 2 ( dihydroxo-4,4'-azobenzene dicarboxylate). 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel dans l'étape (ii) on chauffe le mélange à une température 20 allant de 50°C à 150 °C. 6. A process according to any one of claims 1 to 5 wherein in step (ii) the mixture is heated to a temperature of from 50 ° C to 150 ° C. 7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel dans l'étape (ii) on chauffe le mélange pendant 1 à 10 jours. 25 7. A process according to any one of claims 1 to 6, wherein in step (ii) the mixture is heated for 1 to 10 days. 25 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel l'étape (ii) est réalisée à une pression autogène supérieure à 105 Pa. 8. Process according to any one of claims 1 to 7, wherein step (ii) is carried out at an autogenous pressure greater than 105 Pa. 9. Procédé selon l'une quelconque des revendications 1 à 8, 30 comprenant, en outre, une étape d'activation (iii) dans laquelle le solide obtenu en (ii) est chauffé à une température de 100 à 300°C.5 The process of any one of claims 1 to 8, further comprising an activation step (iii) wherein the solid obtained in (ii) is heated to a temperature of 100 to 300 ° C. 10. Procédé selon la revendication 9, dans lequel l'étape d'activation (iii) se fait dans un mélange de solvants choisis dans le groupe comprenant le DMF, le DEF, le méthanol, l'éthanol, le DMSO ou l'eau. 10. The method of claim 9, wherein the activation step (iii) is in a solvent mixture selected from the group consisting of DMF, DEF, methanol, ethanol, DMSO or water. . 11. Procédé selon l'une des revendication 9 ou 10, comprenant une étape d'activation (iii) dans laquelle le solide obtenu en (ii) est chauffé pendant 1 à 48 heures. 10 11. Method according to one of claims 9 or 10, comprising an activation step (iii) wherein the solid obtained in (ii) is heated for 1 to 48 hours. 10 12. Solide MOF d'un azocarboxylate aromatique d'aluminium poreux et cristallisé susceptible d'être obtenu par le procédé selon l'une quelconque des revendication 1 à 11, comprenant une succession tridimensionnelle de motifs de formule (I): 15 AlmOkXILp (1) dans laquelle : ^ AI représente l'ion métallique AI3+ ; ^ mest1à15; 20 ^ kest0à 15; ^ Iest0à 10; ^ pest1à10; m, k, I et p sont choisis de façon à respecter la neutralité des charges dudit motif ; 25 ^ X est un anion choisi dans le groupe comprenant OH Cr, F, 1-, Br, SO42-, NO3 , CI04 PFs , BF3-, R2ù(COO")n, R2ù(SO3 )n, R2ù(PO3 )n, où R2 est un hydrogène, un alkyle en CI à C12, linéaire ou ramifié, éventuellement substitué, n = 1 à 4 ; ^ L est un ligand tel que défini dans la revendication 1. 30 26 12. MOF solid of a porous and crystallized aluminum aromatic azocarboxylate obtainable by the process according to any one of claims 1 to 11, comprising a three-dimensional succession of units of formula (I): AlmOkXILp (1) in which: AI AI represents the metal ion AI3 +; m is 1 to 15; K is 0 to 15; Is 10 to 10; ^ pest1 to 10; m, k, I and p are chosen so as to respect the neutrality of the charges of said pattern; X is an anion selected from the group consisting of OH Cr, F, 1-, Br, SO42-, NO3, ClO4 PFs, BF3-, R2- (COO-) n, R2- (SO3) n, R2- (PO3) n wherein R2 is hydrogen, linear or branched, optionally substituted C1-C12 alkyl, n = 1 to 4; L is a ligand as defined in claim 1. 13. Solide selon la revendication 12, dans lequel l'anion X est choisi dans le groupe comprenant OH Cr, F, CI04-. 13. Solid according to claim 12, wherein the anion X is selected from the group consisting of OH Cr, F, ClO4-. 14. Solide selon l'une des revendications 12 ou 13, comprenant un pourcentage massique d'Al de 5 à 50%. 14. Solid according to one of claims 12 or 13, comprising a mass percentage of Al from 5 to 50%. 15. Solide selon l'une quelconque des revendications 12 à 14 présentant une surface spécifique BET allant de 100 à 3000 m2/g. 15. A solid according to any one of claims 12 to 14 having a BET surface area ranging from 100 to 3000 m2 / g. 16. Solide selon l'une quelconque des revendications 12 à 15 présentant une surface spécifique Langmuir allant de 150 à 3500 m2/g. 16. A solid according to any one of claims 12 to 15 having a Langmuir surface area ranging from 150 to 3500 m2 / g. 17. Solide selon l'une quelconque des revendications 12 à 16 dans lequel le diamètre de pores dudit solide est de 0,2 à 6 nm. 17. Solid according to any one of claims 12 to 16 wherein the pore diameter of said solid is 0.2 to 6 nm. 18. Solide selon l'une quelconque des revendications 12 à 17 dans lequel ledit solide présente un volume poreux de à 0,3 à 4 cm3/g. 18. Solid according to any one of claims 12 to 17 wherein said solid has a pore volume of 0.3 to 4 cm3 / g. 19. Solide selon l'une quelconque des revendications 12 à 18 20 dans lequel ledit solide présente une stabilité thermique jusqu'à une température de 500°C. 19. A solid according to any one of claims 12 to 18 wherein said solid has a thermal stability up to a temperature of 500 ° C. 20. Solide selon l'une quelconque des revendications 12 à 19 dans lequel ledit solide est sous forme de cristallites avec une longueur qui 25 varie de 0,05 um à 20 m. 20. A solid according to any one of claims 12 to 19 wherein said solid is in the form of crystallites with a length which varies from 0.05 μm to 20 μm. 21. Utilisation d'un solide selon l'une quelconque des revendications 12 à 20 pour le stockage des molécules liquides ou gazeuses. 30 21. Use of a solid according to any one of claims 12 to 20 for the storage of liquid or gaseous molecules. 30 22. Utilisation d'un solide selon l'une quelconque des revendications 12 à 20 pour la séparation sélective de gaz. 22. Use of a solid according to any one of claims 12 to 20 for the selective separation of gas. 23. Utilisation d'un solide selon l'une quelconque des 5 revendications 12 à 20 pour la catalyse. 23. Use of a solid according to any one of claims 12 to 20 for catalysis.
FR0806448A 2008-11-18 2008-11-18 PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE Active FR2938539B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR0806448A FR2938539B1 (en) 2008-11-18 2008-11-18 PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE
JP2011543804A JP5965643B2 (en) 2008-11-18 2009-11-17 Process for producing metal organic structure type crystalline porous aluminum aromatic azocarboxylate
EP09768214.0A EP2376504B1 (en) 2008-11-18 2009-11-17 Method for preparing metal-organic framework crystallised and porous aluminium aromatic azocarboxylates
PCT/FR2009/052209 WO2010058124A1 (en) 2008-11-18 2009-11-17 Method for preparing metal-organic framework crystallised and porous aluminium aromatic azocarboxylates
US13/129,733 US8907114B2 (en) 2008-11-18 2009-11-17 Method for preparing metal-organic framework crystallised and porous aluminium aromatic azocarboxylates
ES09768214T ES2433417T3 (en) 2008-11-18 2009-11-17 Process for preparing porous and crystallized aluminum aromatic azocarboxylates of the "Metal Organic Framework" type
JP2014262780A JP2015129122A (en) 2008-11-18 2014-12-25 Production method for metal-organic structure-type crystalline porous aluminum aromatic azo-carboxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0806448A FR2938539B1 (en) 2008-11-18 2008-11-18 PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE

Publications (2)

Publication Number Publication Date
FR2938539A1 true FR2938539A1 (en) 2010-05-21
FR2938539B1 FR2938539B1 (en) 2012-12-21

Family

ID=40717345

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0806448A Active FR2938539B1 (en) 2008-11-18 2008-11-18 PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE

Country Status (6)

Country Link
US (1) US8907114B2 (en)
EP (1) EP2376504B1 (en)
JP (2) JP5965643B2 (en)
ES (1) ES2433417T3 (en)
FR (1) FR2938539B1 (en)
WO (1) WO2010058124A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938539B1 (en) * 2008-11-18 2012-12-21 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE
CN102731537A (en) * 2011-11-09 2012-10-17 长春工业大学 Zinc furandicarboxylate metal-organic framework with interpenetration structure and preparation method thereof
GB201414114D0 (en) * 2013-11-26 2014-09-24 Texas A & M Univ Sys Aluminium metal organic framework materials
DE102014215568A1 (en) * 2014-08-06 2016-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing an adsorbent from organometallic frameworks (MOF)
CN105542751B (en) * 2015-12-11 2017-09-12 广东工业大学 A kind of metal-organic framework material for launching white light and its synthetic method and application
KR101902618B1 (en) * 2016-05-31 2018-09-28 연세대학교 산학협력단 Porous structure and method of fabricating the same
WO2019010102A1 (en) * 2017-07-01 2019-01-10 Regents Of The University Of California Porous aluminum pyrazoledicarboxylate frameworks
EP3661645A1 (en) * 2017-08-04 2020-06-10 The Regents of The University of California Overcoming two carbon dioxide adsorption steps in diamine-appended metal-organic frameworks
CN109294560B (en) * 2018-11-06 2021-04-27 洛阳师范学院 Supramolecular azobenzene-2, 2' -aluminum diformate metal gel luminescent material and preparation method thereof
CN110065989B (en) * 2019-06-04 2021-07-06 温州大学 Method for adsorbing organic dye in water by utilizing metal organic framework material UIO-67 derivative with microporous structure
CN112295545A (en) * 2019-08-02 2021-02-02 中国石油化工股份有限公司 High-capacity methane storage material and preparation method and application thereof
DE102022106916A1 (en) 2022-03-23 2023-09-28 Christian-Albrechts-Universität zu Kiel, Körperschaft des öffentlichen Rechts POROUS, CRYSTALLINE COMPOUND
GB2620599A (en) 2022-07-12 2024-01-17 Swellfix Uk Ltd Hydrogen sulfide scavenging compositions
CN115819784A (en) * 2022-10-09 2023-03-21 江阴金书简新材料科技有限公司 Preparation method of porous liquid crystal composite material with molecular switch

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2269761T3 (en) 2001-04-30 2007-04-01 The Regents Of The University Of Michigan ISORRETICULAR ORGANOMETAL STRUCTURES, PROCEDURE FOR THEIR FORMATION, AND SYSTEMATIC DESIGN OF THE PITTER CALIBER AND FUNCTIONALITY OF THE SAME, WITH APPLICATION FOR THE STORAGE OF GASES.
US7524444B2 (en) 2004-11-09 2009-04-28 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
MX2007012388A (en) 2005-04-07 2008-03-11 Univ Michigan High gas adsorption in a microporous metal-organic framework with open-metal sites.
DE102005039654A1 (en) 2005-08-22 2007-03-01 Basf Ag Mesoporous organometallic framework
DE102005039623A1 (en) 2005-08-22 2007-03-01 Basf Ag Process for the preparation of organometallic frameworks Main groups containing metal ions
DE102005053430A1 (en) 2005-11-09 2007-05-16 Basf Ag Doped organometallic frameworks
GB2437063A (en) 2006-04-10 2007-10-17 Uni I Oslo A process for oxide gas capture
KR101493529B1 (en) 2006-04-18 2015-02-13 바스프 에스이 Metal organic framework based on aluminum fumarate
FR2929278A1 (en) * 2008-04-01 2009-10-02 Centre Nat Rech Scient POROUS CRYSTALLINE HYBRID SOLID FOR THE ADSORPTION AND RELEASE OF GASES OF BIOLOGICAL INTEREST.
FR2932397B1 (en) * 2008-06-11 2010-07-30 Centre Nat Rech Scient POROUS CRYSTALLINE HYBRID SOLID REDUCIBLE FOR THE SEPARATION OF MIXTURES OF MOLECULES HAVING DEGREES AND / OR A NUMBER OF DIFFERENT UNSATURATES
FR2938539B1 (en) * 2008-11-18 2012-12-21 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF AROMATIC AROMATIC AZOCARBOXYLATES OF POROUS AND CRYSTALLIZED ALUMINUM OF THE "METAL-ORGANIC FRAMEWORK" TYPE

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, BANGLIN ET AL: "A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules", INORGANIC CHEMISTRY (WASHINGTON, DC, UNITED STATES) , 46(21), 8490-8492 CODEN: INOCAJ; ISSN: 0020-1669, 2007, XP002531862 *
LEE, YONG-GON ET AL: "A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION , 47(40), 7741-7745 CODEN: ACIEF5; ISSN: 1433-7851, 2008, XP002531861 *
LOISEAU, THIERRY ET AL: "MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and .mu.3-Oxo-Centered Trinuclear Units", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY , 128(31), 10223-10230 CODEN: JACSAT; ISSN: 0002-7863, 2006, XP002531103 *

Also Published As

Publication number Publication date
US20110319604A1 (en) 2011-12-29
JP5965643B2 (en) 2016-08-10
EP2376504A1 (en) 2011-10-19
JP2015129122A (en) 2015-07-16
JP2012509361A (en) 2012-04-19
ES2433417T3 (en) 2013-12-10
EP2376504B1 (en) 2013-07-31
WO2010058124A1 (en) 2010-05-27
US8907114B2 (en) 2014-12-09
FR2938539B1 (en) 2012-12-21

Similar Documents

Publication Publication Date Title
EP2376504B1 (en) Method for preparing metal-organic framework crystallised and porous aluminium aromatic azocarboxylates
FR2938540A1 (en) METHOD FOR THE HYDROTHERMAL PREPARATION OF CRYSTALLIZED POROUS ALUMINUM CARBOXYLATES OF THE &#34;METAL-ORGANIC FRAMEWORK&#34; TYPE
US8133301B2 (en) Porous nanohybrid materials formed by covalent hybridization between metal-organic frameworks and gigantic mesoporous materials
Nordin et al. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine
US9630164B2 (en) Porous polymer metal complex, gas adsorbent, and gas separation device and gas storage device using same
US8536358B2 (en) Scaffold materials-transition metal hydride complexes, intermediates therefor and method for preparing the same
CN113583252B (en) Microporous metal organic framework Cu (Qc) 2 Preparation method of (1)
US10882870B2 (en) Crystalline metal organic framework
Lin et al. A unique coordination-driven route for the precise nanoassembly of metal sulfides on metal–organic frameworks
JP5044815B2 (en) Method for producing metal complex
JP6525686B2 (en) Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6452357B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
KR101721907B1 (en) Cobalt Supramolecular Triple-Stranded Helicate-based Superb-Cage and Synthetic method thereof
US8389755B2 (en) Gas adsorption material, precursor of same, and method of producing gas adsorption material
JP2004305985A (en) Three-dimensional molded metal complex, its manufacturing method and gas adsorbent
JP5137062B2 (en) Metal complex and gas storage material containing the same
JP6761257B2 (en) Porous polymer metal complex, gas adsorbent using it, gas separator, gas storage device, catalyst, conductive material, sensor
WO2023002141A1 (en) Method for preparing a crystalline porous aluminum tetracarboxylate of mof type, and uses thereof
JP2017052714A (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
WO2021043492A1 (en) Gas storage material and gas storage system
Narayanan Design, synthesis, structural and porosity characterization of novel functional MOFs with amino acid azole based ligands

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 15

PLFP Fee payment

Year of fee payment: 16