FR2937713A1 - Heat exchange unit for building, has tank filled with water in which part of tubes are immersed for creating heat exchange between heated heat transfer gas and water of tank, and pump circulating heat transfer gas in tubes - Google Patents

Heat exchange unit for building, has tank filled with water in which part of tubes are immersed for creating heat exchange between heated heat transfer gas and water of tank, and pump circulating heat transfer gas in tubes Download PDF

Info

Publication number
FR2937713A1
FR2937713A1 FR0857969A FR0857969A FR2937713A1 FR 2937713 A1 FR2937713 A1 FR 2937713A1 FR 0857969 A FR0857969 A FR 0857969A FR 0857969 A FR0857969 A FR 0857969A FR 2937713 A1 FR2937713 A1 FR 2937713A1
Authority
FR
France
Prior art keywords
transfer gas
heat
pipes
heat transfer
basin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR0857969A
Other languages
French (fr)
Inventor
Bruno Tresoldi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDG IMMO
Original Assignee
TDG IMMO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDG IMMO filed Critical TDG IMMO
Priority to FR0857969A priority Critical patent/FR2937713A1/en
Publication of FR2937713A1 publication Critical patent/FR2937713A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0075Systems using thermal walls, e.g. double window
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/02Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant
    • E04D3/06Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant of glass or other translucent material; Fixing means therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/35Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
    • E04D3/357Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation comprising hollow cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/742Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/753Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • F24S80/525Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0043Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material specially adapted for long-term heat storage; Underground tanks; Floating reservoirs; Pools; Ponds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0057Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a closed circuit in the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

The unit has a heat transfer gas circuit (12) provided with a series of tubes (9) arranged in end to end manner. A heating unit (1) locally heats the heat transfer gas in circulation. A tank (14) is filled with water (16) in which part of the tubes are immersed for creating heat exchange between the heated heat transfer gas and water of the tank. A pump (20) circulates the heat transfer gas in the tubes. An intermediate heat transfer gas circulation tube ply is connected to a side of a heat transfer gas supply tube (22) and a heat transfer gas evacuating tube (24).

Description

L'invention concerne une unité d'échange et de stockage de chaleur pour un bâtiment. Dans la construction ou la rénovation, on cherche à améliorer la gestion énergétique des bâtiments. C'est pour apporter une solution performante à ce problème qu'est ici proposée une unité d'échange de chaleur comprenant: - un circuit de gaz caloporteur comprenant une série de tuyaux disposés bout à bout où circule ledit gaz caloporteur, - des moyens de chauffage pour chauffer localement le gaz caloporteur en circulation, - un bassin rempli d'eau où sont immergés une partie desdits tuyaux, pour y créer un échange thermique entre le gaz caloporteur chauffé et l'eau du bassin, - des moyens d'isolation thermique du bassin vis-à-vis de l'extérieur, - et une pompe pour la circulation du gaz caloporteur dans les tuyaux. Toujours dans un objectif de bilan thermique optimisé et de coût maitrisé, on conseille que le gaz caloporteur soit de l'air et que le circuit de ce gaz caloporteur soit fermé de sorte que l'air circule en circuit fermé. 25 En liaison avec ce qui précède, il est également cherché ici à ce que la solution proposée remplisse tout ou partie des exigences suivantes : isolation thermique, récupération de chaleur, régulation de cette chaleur, élément de séparation, habillage de structure (façades, 30 toits), ceci dans un cadre économique serré. C'est dans ce but qu'il est conseillé que les moyens de chauffage du gaz caloporteur situés à distance 10 15 20 du bassin comprennent des panneaux sensibles à la chaleur solaire et placés en façade ou sur le toit du bâtiment pour y être chauffés par le soleil de manière à transmettre cette chaleur auxdits tuyaux qui s'étendent localement à l'intérieur des panneaux. D'autres avantages et particularités de la présente invention résulteront de la description qui va suivre où la réalisation possible d'une unité d'échange de chaleur conforme à l'invention est présentée à titre d'exemple non limitatif, en référence aux figures annexées où : - la fig.1 montre un schéma d'unité d'échange de chaleur pour un bâtiment, - les figs.2,3,4 montrent des détails de la cuve d'échange de chaleur, - les figs.5,6 montrent des éléments structurels à panneaux et tuyaux récupérateurs sur une façade ou un toit, - et la fig.7 est un agrandissement local d'une structure de panneau de toit ou de façade. Figure 1, on voit une unité 10 d'échange de chaleur conforme à l'invention et destinée à un bâtiment 3. L'unité 10 comprend: - un circuit 12 de gaz caloporteur comprenant une série de tuyaux 9 disposés bout à bout où circule ce gaz caloporteur, - des moyens 1 de chauffage pour chauffer localement le gaz caloporteur en circulation, - un bassin 14 rempli d'eau 16 où est immergée une partie desdits tuyaux, pour y créer un échange thermique entre le gaz caloporteur chauffé et l'eau du bassin, - des moyens 18 d'isolation thermique du bassin vis-à-vis de l'extérieur, - et une pompe 20 pour la circulation du gaz caloporteur dans les tuyaux. The invention relates to a heat exchange and storage unit for a building. In construction or renovation, we seek to improve the energy management of buildings. It is to provide an effective solution to this problem that is proposed here a heat exchange unit comprising: - a heat transfer gas circuit comprising a series of pipes arranged end to end where circulates said heat transfer gas, - means of heating for locally heating circulating heat-transfer gas, - a pool filled with water where part of said pipes are immersed, to create a heat exchange between the heated heat-transfer gas and the water of the basin, - means of thermal insulation the basin vis-à-vis the outside, - and a pump for the circulation of heat-transfer gas in the pipes. Still with the objective of optimized thermal balance and controlled cost, it is advisable for the heat-transfer gas to be air and for the heat-transfer gas circuit to be closed so that the air circulates in a closed circuit. In connection with the above, it is also sought here that the proposed solution fulfills all or part of the following requirements: thermal insulation, heat recovery, regulation of this heat, separation element, structural cladding (facades, 30 roofs), in a tight economic environment. It is for this purpose that it is advisable for the means for heating the heat transfer gas situated at a distance from the pool to include panels sensitive to solar heat and placed on the facade or on the roof of the building to be heated by the sun so as to transmit this heat to said pipes which extend locally inside the panels. Other advantages and features of the present invention will result from the description which follows, where the possible embodiment of a heat exchange unit according to the invention is presented by way of non-limiting example, with reference to the appended figures. where: - Fig.1 shows a heat exchange unit diagram for a building, - Figs.2,3,4 show details of the heat exchange tank, - figs.5,6 show structural elements with panels and recuperating pipes on a facade or a roof, - and fig.7 is a local enlargement of a roof panel or facade structure. 1 shows a heat exchange unit 10 according to the invention and intended for a building 3. The unit 10 comprises: a heat transfer gas circuit 12 comprising a series of pipes 9 arranged end to end where circulates this heat transfer gas, - heating means 1 for locally heating circulating heat transfer gas, - a basin 14 filled with water 16 where is immersed part of said pipes, to create a heat exchange between the heated heat transfer gas and the basin water, - means 18 for thermal insulation of the basin vis-à-vis the outside, - and a pump 20 for the circulation of heat transfer gas in the pipes.

Comme déjà indiqué, on conseille, pour la performance de l'installation, y compris en termes de coûts, que le gaz caloporteur soit de l'air et que, comme d'ailleurs illustré, le circuit 12 soit fermé, de sorte que l'air circule donc en circuit fermé. As already indicated, it is advisable, for the performance of the installation, including in terms of costs, that the coolant gas is air and that, as also illustrated, the circuit 12 is closed, so that the air circulates thus in closed circuit.

Comme montré figures 2,3,4, à l'intérieur du bassin, les tuyaux 9 immergés comprennent: - un ou plusieurs tuyaux collecteurs 22 d'amenée du gaz caloporteur, - un ou plusieurs tuyaux collecteurs 24 d'évacuation de ce gaz caloporteur, - et une nappe de plusieurs tuyaux 26 intermédiaires de circulation du gaz caloporteur. Les tuyaux intermédiaires 26 sont reliés, d'un côté et de l'autre, respectivement aux tuyaux collecteurs d'amenée 22 et de récupération 24. La nappe 26 des tuyaux immergés dans l'eau du bassin 14 est disposée vers le fond de ce bassin et les tuyaux collecteurs 22,24 d'amenée et de récupération du gaz caloporteur s'étendent entre le sommet et le fond du bassin. Ainsi, le rendement thermique sera optimisé. Dans ce but, on prévoit en outre que plusieurs nappes sur plusieurs niveaux seront favorablement ainsi disposées vers le fond du bassin. As shown in FIGS. 2, 4, 4, inside the basin, the submerged pipes 9 comprise: one or more collection pipes 22 for supplying the heat-transfer gas, one or more collection pipes for discharging this heat-transfer gas. - And a sheet of several pipes 26 intermediate coolant circulation. The intermediate pipes 26 are connected, on one side and the other, respectively to the supply manifold 22 and recovery pipe 24. The ply 26 of the pipes immersed in the water of the basin 14 is disposed towards the bottom thereof basin and the heat transfer gas supply and recovery pipes 22,24 extend between the top and the bottom of the basin. Thus, the thermal efficiency will be optimized. For this purpose, it is further expected that several layers on several levels will be favorably disposed to the bottom of the basin.

On conseille par ailleurs que le bassin 14 soit enterré dans le sol 32 (terre) et comprenne un cuvelage 29 en béton entouré de l'isolant thermique 18 (par exemple en polystyrène). Un couvercle 34 amovible ferme le dessus du bassin. Il peut aussi être en béton avec son isolant thermique 18 dessous. Figure 1, et de façon plus détaillée figures 5, 6, on voit par ailleurs que les moyens 1 de chauffage du gaz caloporteur, situés à distance du bassin 14, comprennent des panneaux 5 sensibles à la chaleur solaire et placés en façade (fig.5) ou sur le toit (fig.6) du bâtiment pour y être chauffés par le soleil, de manière à transmettre cette chaleur aux tuyaux 9 qui s'étendent localement à l'intérieur de ces panneaux, ainsi que le montre plus nettement la figure 7. It is further advised that the basin 14 is buried in the soil 32 (earth) and comprises a concrete casing 29 surrounded by the thermal insulation 18 (for example polystyrene). A removable lid 34 closes the top of the basin. It can also be concrete with its thermal insulation 18 underneath. Figure 1, and in more detail Figures 5, 6, it is also seen that the means 1 for heating the heat transfer gas, located at a distance from the basin 14, include panels 5 sensitive to solar heat and placed in front (Fig. 5) or on the roof (fig.6) of the building to be heated by the sun, so as to transmit this heat to the pipes 9 which extend locally inside these panels, as more clearly shows the figure 7.

Sur le bâtiment, on prévoit donc que les moyens 1 de chauffage du gaz caloporteur (air a priori) comprendront favorablement, comme illustré, une série d'éléments structurels 11 disposés de façon adjacente sur la façade ou le toit et comportant une série des panneaux 5 adjacents précités se laissant chacun traverser par la lumière solaire. Comme montré figure 7, on conseille que ces panneaux 5 soient chacun à structure alvéolaire, chaque panneau renfermant certains des tuyaux 9 de circulation du gaz caloporteur. Ainsi, c'est en particulier par le rayonnement infrarouge issu du soleil que l'on va chauffer de l'air en circulation dans les tuyaux de ces éléments structurels. On the building, it is therefore expected that the means 1 for heating the heat transfer gas (a priori air) will include favorably, as illustrated, a series of structural elements 11 disposed adjacently on the facade or the roof and comprising a series of panels 5 adjacent aforementioned each allowing themselves to pass through the sunlight. As shown in Figure 7, it is recommended that these panels 5 are each cellular structure, each panel enclosing some of the tubes 9 for circulating heat transfer gas. Thus, it is in particular by the infrared radiation from the sun that we will heat circulating air in the pipes of these structural elements.

Pour définir des moyens d'occultation pour le bâtiment et d'échange de chaleur entre l'extérieur, chauffé par le soleil, et le gaz caloporteur en circulation, les tuyaux 9 seront favorablement plus opaques que les panneaux 5. Le/chaque panneau sera d'ailleurs, favorablement, transparent à la lumière naturelle, solaire, ou translucide. En particulier pour l'occultation, un rapport 1/3 pourra s'appliquer entre la surface frontale occupée par les tuyaux 9 dans le panneau et celle de ce panneau. Pour limiter les déperditions de la chaleur collectée et donc assurer une isolation thermique des zones où sont disposées les tuyaux, ces derniers sont interposés entre deux zones alvéolaires isolantes, respectivement 7a,7b (figure 7). Dans cette solution, chaque panneau 5 est en plastique rigide et comprend deux plaques doubles 17a,17b à structure interne alvéolaire. Entre ces plaques sont disposés les tuyaux opaques 9 qui sont de préférence collés aux plaques, en particulier par une colle acrylique, avec des plaques qui seront favorablement en polycarbonate ou en PVC de quelques mm à environ une dizaine de mm d'épaisseur. On conseille par ailleurs que les tuyaux 9 soient en métal léger de couleur sombre, pour limiter la réflexion. La densité de l'élément pourra ainsi être inférieure à 12 kilogrammes par m2. Les dimensions de chaque panneau 5 pourront être de 980mm de large, 50mm d'épaisseur et 1500mm-3000mm de long. Des tuyaux en aluminium conviendraient. Ainsi, on conjuguera a minima performance thermique et légèreté, ceci favorisant l'intérêt de la solution proposée, sa facilité d'implantation et le coût global de la construction concernée. To define means of concealment for the building and exchange of heat between the outside, heated by the sun, and the circulating heat-transfer gas, the pipes 9 will be favorably more opaque than the panels 5. The / each panel will be Moreover, favorably, transparent to natural light, solar, or translucent. In particular for the occultation, a 1/3 ratio may be applied between the front surface occupied by the pipes 9 in the panel and that of this panel. In order to limit the losses of the heat collected and thus to provide thermal insulation of the zones where the pipes are arranged, the latter are interposed between two insulating cellular zones, respectively 7a, 7b (FIG. 7). In this solution, each panel 5 is made of rigid plastic and comprises two double plates 17a, 17b with an internal honeycomb structure. Between these plates are arranged the opaque pipes 9 which are preferably glued to the plates, in particular by an acrylic glue, with plates that will be favorably polycarbonate or PVC from a few mm to about ten mm thick. It is further advised that the pipes 9 are light metal of dark color, to limit the reflection. The density of the element may thus be less than 12 kilograms per square meter. The dimensions of each panel 5 may be 980mm wide, 50mm thick and 1500mm-3000mm long. Aluminum pipes would be suitable. Thus, we will combine minimum thermal performance and lightness, this promoting the interest of the proposed solution, its ease of implementation and the overall cost of the construction concerned.

Pour utiliser de façon performante la chaleur collectée dans les tuyaux 9, on conseille qu'à l'intérieur de certains au moins des panneaux, ces tuyaux se raccordent à un tuyau transversal collecteur 13 se terminant par des moyens d'aboutement tels mâle/femelle, pour un raccordement à un tuyau collecteur 113 d'un élément structurel identique adjacent. Chaque tuyau collecteur sera de préférence étroitement calé, coincé, dans l'épaisseur du panneau qui le porte. To effectively use the heat collected in the pipes 9, it is advisable that within at least some of the panels, these pipes are connected to a manifold transverse pipe 13 ending in abutment means such as male / female for connection to a collection pipe 113 of an adjacent identical structural element. Each collection pipe will preferably be tightly wedged, stuck, in the thickness of the panel that carries it.

Fig.5, une partie au moins de la façade 30 du bâtiment exposée extérieurement au soleil est couverte par une série d'éléments 1 adjacents permettant de préférence un passage partiel de la lumière extérieure vers les volumes ou espaces intérieurs 8 du bâtiment et une collecte de chaleur par récupération d'énergie lumineuse dans les tuyaux récupérateurs 9. Ces éléments structurels pourront être fixés non pas entre eux mais, côté intérieur, à des montants ou poutrelles 31 de structure du bâtiment. Grâce aux moyens de ventilation 20 et aux tuyaux collecteurs aboutés 13, 113..., l'air chauffé, en circulation dans les tuyaux récupérateurs, pourra parvenir à l'échangeur air/eau 14. Fig.6, une partie au moins de la toiture ou couverture 35 du bâtiment comprend à nouveau une série d'éléments 1 adjacents permettant de préférence à nouveau à la fois un passage partiel de lumière extérieure vers les volumes intérieurs du bâtiment et une récupération de la chaleur du soleil dans les tuyaux récupérateurs. Des poutrelles 37 soutiennent des groupes d'éléments. Avec la solution proposée et via les moyens de chauffage 1, le gaz caloporteur en circulation va être chauffé localement (en période chaude, en particulier diurnes), dans les zones de toit ou de façade 3,5,11,30..., et la chaleur récupérée va pouvoir être stockée dans le bassin thermiquement isolé 14, par échange thermique entre le gaz plus chaud et l'eau du bassin a priori plus froide (de là la disposition des tuyaux 26 immergés vers le fond du bassin). En période plus froide (nuits_), l'eau chauffée du bassin pourra servir de réservoir à chaleur pour le gaz qui pompera cette chaleur au passage, pouvant ainsi apporter des calories dans les espaces 8. Une régulation inverse peut aussi s'imaginer dans ces moments (suivant les différences de températures), le gaz pompant une éventuelle chaleur excessive des espaces 8 (nuits chaudes à l'intérieur des bâtiments) et continuant éventuellement à alors chauffer l'eau du bassin. Favorablement, les tuyaux 9 de circulation du gaz caloporteur seront des tuyaux métalliques présentant intérieurement des ailettes d'échange thermique.20 Fig.5, at least a portion of the facade 30 of the building exposed to the sun is covered by a series of adjacent elements 1 preferably allowing a partial passage of the external light to the volumes or interior spaces 8 of the building and a collection by heat recovery by light energy recovery in the recovery pipes 9. These structural elements may be fixed not between them but, on the inside, to amounts or beams 31 of building structure. Thanks to the ventilation means 20 and the butted header pipes 13, 113 ..., the heated air, circulating in the recovery pipes, can reach the air / water exchanger 14. FIG. 6, at least a part of the roof or roof 35 of the building again includes a series of adjacent elements 1 preferably again allowing both a partial passage of external light to the interior volumes of the building and recovery of heat from the sun in the recovery pipes. Beams 37 support groups of elements. With the proposed solution and via the heating means 1, the circulating heat-transfer gas will be heated locally (in hot periods, in particular days), in the roof or facade zones 3,5,11,30 ..., and the recovered heat will be able to be stored in the thermally insulated basin 14, by heat exchange between the warmer gas and the water of the basin a priori cooler (hence the arrangement of the pipes 26 immersed to the bottom of the basin). In colder periods (nights_), the heated water in the pool can serve as a heat reservoir for the gas that will pump this heat as it passes, which can bring calories into the spaces 8. Reverse regulation can also be imagined in these spaces. moments (depending on the temperature differences), the gas pumping a possible excessive heat of the spaces 8 (warm nights inside the buildings) and possibly continuing to then heat the water of the basin. Favorably, the pipes 9 for circulation of heat transfer gas will be metal pipes internally presenting heat exchange fins.

Claims (8)

REVENDICATIONS1. Unité d'échange de chaleur pour un bâtiment, caractérisée en ce qu'elle comprend: - un circuit (12) de gaz caloporteur comprenant une série de tuyaux (9) disposés bout à bout où circule ledit gaz caloporteur, - des moyens (1) de chauffage pour chauffer localement le gaz caloporteur en circulation, - un bassin (14) rempli d'eau (16) où sont immergés une partie desdits tuyaux (9), pour y créer un échange thermique entre le gaz caloporteur chauffé et l'eau (16) du bassin (14), - des moyens d'isolation thermique (18) du bassin (14) vis-à-vis de l'extérieur, - et une pompe (20) pour la circulation du gaz caloporteur dans les tuyaux (9). REVENDICATIONS1. Heat exchange unit for a building, characterized in that it comprises: - a heat transfer gas circuit (12) comprising a series of tubes (9) arranged end to end where said heat-transfer gas circulates, - means (1) ) for heating locally circulating heat transfer gas, - a basin (14) filled with water (16) where are immersed part of said pipes (9), to create a heat exchange between the heated heat transfer gas and the water (16) of the basin (14), - thermal insulation means (18) of the basin (14) vis-à-vis the outside, - and a pump (20) for the circulation of the heat transfer gas in the pipes (9). 2. Unité selon la revendication 1, caractérisée en ce qu'à l'intérieur du bassin (14) les tuyaux (9) immergés comprennent: - un ou plusieurs tuyaux collecteurs (22) d'amenée du gaz caloporteur, - un ou plusieurs tuyaux collecteurs (24) d'évacuation de ce gaz caloporteur, - et une nappe de plusieurs tuyaux (26) intermédiaires de circulation dudit gaz caloporteur reliés d'un côté et de l'autre auxdits tuyaux collecteurs d'amenée (22) et de récupération (24) du gaz caloporteur, respectivement. 2. Unit according to claim 1, characterized in that inside the basin (14) the pipes (9) immersed include: - one or more manifolds (22) for supplying the coolant gas, - one or more collecting pipes (24) for discharging this heat-transfer gas, and a sheet of several pipes (26) intermediate circulation of said heat-transfer gas connected on one side and the other to said supply manifolds (22) and recovery (24) of the coolant gas, respectively. 3. Unité selon l'une des revendications précédentes, caractérisée en ce que le gaz caloporteur est de l'air et le circuit (12) de ce gaz caloporteur est fermé de sorte que l'air circule en circuit (12) fermé. 3. Unit according to one of the preceding claims, characterized in that the coolant gas is air and the circuit (12) of the heat transfer gas is closed so that the air circulates in closed circuit (12). 4. Unité selon la revendication 2 ou les revendications 2 et 3, caractérisée en ce que la nappe des tuyaux (26) immergés dans l'eau (16) du bassin (14) est disposée vers le fond de ce bassin (14) et lesdits tuyaux collecteurs d'amenée (22) et récupération (24) du gaz caloporteur s'étendent entre le sommet et le fond du bassin (14). 4. Unit according to claim 2 or claims 2 and 3, characterized in that the ply of the pipes (26) immersed in the water (16) of the basin (14) is disposed towards the bottom of this basin (14) and said collection manifold pipes (22) and recovery (24) of the coolant gas extend between the top and bottom of the basin (14). 5. Unité selon l'une des revendications précédentes, caractérisée en ce que les moyens (1) de chauffage du gaz caloporteur situés à distance du bassin (14) comprennent des panneaux (5) sensibles à la chaleur solaire et placés en façade (3, 5, 11, 30...) ou sur le toit du bâtiment pour y être chauffés par le soleil de manière à transmettre cette chaleur auxdits tuyaux (9) qui s'étendent localement à l'intérieur desdits panneaux (5). 5. Unit according to one of the preceding claims, characterized in that the means (1) for heating the heat transfer gas located remote from the pool (14) comprise panels (5) sensitive to solar heat and placed in front (3). , 5, 11, 30 ...) or on the roof of the building to be heated by the sun so as to transmit this heat to said pipes (9) which extend locally inside said panels (5). 6. Unité selon l'une des revendications précédentes, caractérisée en ce que les tuyaux (9) de circulation du gaz caloporteur sont des tuyaux (9) métalliques présentant intérieurement des ailettes d'échange thermique. 6. Unit according to one of the preceding claims, characterized in that the pipes (9) for circulating heat transfer gas are metal pipes (9) internally having heat exchange fins. 7. Unité selon l'une des revendications précédentes, caractérisée en ce que le bassin (14) est enterré et comprend un cuvelage (29) en béton entouré de l'isolant thermique (18). 7. Unit according to one of the preceding claims, characterized in that the basin (14) is buried and comprises a casing (29) of concrete surrounded by the thermal insulation (18). 8. Unité selon l'une des revendications précédentes, caractérisée en ce que les moyens (1) de chauffage du gaz caloporteur comprennent une série d'éléments structurels (11) disposés de façon adjacente sur la façade (3, 5, 11, 30...) ou le toit du bâtiment et comprenant une série de panneaux (9) adjacents se laissant chacun traverser par la lumière solaire et à structure alvéolaire, chaque panneau (5) renfermant certains desdits tuyaux (9) de circulation du gaz caloporteur, ces tuyaux (9), plus opaques que les panneaux (5), définissant des moyens d'occultation pour le bâtiment et d'échange de chaleur entre l'extérieur, chauffé par le soleil, et le gaz caloporteur en circulation. 8. Unit according to one of the preceding claims, characterized in that the means (1) for heating the heat transfer gas comprise a series of structural elements (11) arranged adjacently on the facade (3, 5, 11, 30 ...) or the roof of the building and comprising a series of panels (9) adjacent each permitting to pass through the sunlight and having a honeycomb structure, each panel (5) enclosing some of said pipes (9) for circulating the heat-transfer gas, these pipes (9), more opaque than the panels (5), defining means of concealment for the building and exchange of heat between the outside, heated by the sun, and circulating heat transfer gas.
FR0857969A 2008-10-23 2008-11-24 Heat exchange unit for building, has tank filled with water in which part of tubes are immersed for creating heat exchange between heated heat transfer gas and water of tank, and pump circulating heat transfer gas in tubes Pending FR2937713A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0857969A FR2937713A1 (en) 2008-10-23 2008-11-24 Heat exchange unit for building, has tank filled with water in which part of tubes are immersed for creating heat exchange between heated heat transfer gas and water of tank, and pump circulating heat transfer gas in tubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857209A FR2937662A1 (en) 2008-10-23 2008-10-23 UNIT AND ELEMENT OF HEAT EXCHANGE, CLADDING AND OCCULTATION OF A BUILDING STRUCTURE
FR0857969A FR2937713A1 (en) 2008-10-23 2008-11-24 Heat exchange unit for building, has tank filled with water in which part of tubes are immersed for creating heat exchange between heated heat transfer gas and water of tank, and pump circulating heat transfer gas in tubes

Publications (1)

Publication Number Publication Date
FR2937713A1 true FR2937713A1 (en) 2010-04-30

Family

ID=40532593

Family Applications (2)

Application Number Title Priority Date Filing Date
FR0857209A Withdrawn FR2937662A1 (en) 2008-10-23 2008-10-23 UNIT AND ELEMENT OF HEAT EXCHANGE, CLADDING AND OCCULTATION OF A BUILDING STRUCTURE
FR0857969A Pending FR2937713A1 (en) 2008-10-23 2008-11-24 Heat exchange unit for building, has tank filled with water in which part of tubes are immersed for creating heat exchange between heated heat transfer gas and water of tank, and pump circulating heat transfer gas in tubes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
FR0857209A Withdrawn FR2937662A1 (en) 2008-10-23 2008-10-23 UNIT AND ELEMENT OF HEAT EXCHANGE, CLADDING AND OCCULTATION OF A BUILDING STRUCTURE

Country Status (1)

Country Link
FR (2) FR2937662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822364A (en) * 2013-11-21 2014-05-28 黄锦熙 Method and application for converting coal into solar energy
CN105423469A (en) * 2015-12-22 2016-03-23 襄阳国铁机电有限责任公司 Energy-saving and environment-friendly ground source central air-conditioning system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU542152B2 (en) * 1980-07-14 1985-02-07 Soderberg, Ramon Ventilator
US5014770A (en) * 1989-09-07 1991-05-14 Attic Technology, Inc. Attic solar energy vehicle
IL105640A0 (en) * 1993-05-09 1993-09-22 Polygal Lightweight construction panel assembly
AT5405U1 (en) * 2001-04-12 2002-06-25 Jolanta Dipl Ing Mekal SOLAR COLLECTOR MADE OF PLASTIC PROFILES
EP1918661A1 (en) * 2006-10-30 2008-05-07 STS solarni termo sistemi, Joze Felicijan s.o. Building element with integrated solar heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822364A (en) * 2013-11-21 2014-05-28 黄锦熙 Method and application for converting coal into solar energy
CN105423469A (en) * 2015-12-22 2016-03-23 襄阳国铁机电有限责任公司 Energy-saving and environment-friendly ground source central air-conditioning system

Also Published As

Publication number Publication date
FR2937662A1 (en) 2010-04-30

Similar Documents

Publication Publication Date Title
US10024551B2 (en) Insulating glass style solar heat collector and building using solar energy for heating and cooling
Smyth et al. Integrated collector storage solar water heaters
US11619423B2 (en) All-in-one integrated multifunctional triple power module
DK2140210T3 (en) ENERGY TRANSFER PANEL FOR UNWISE BUILT IN A BUILDING AND A CASSET CONTAINING SUCH A PANEL
Juanico A new design of roof-integrated water solar collector for domestic heating and cooling
US10066840B2 (en) Solar thermal collector system and method configured for radiant cooling
Souliotis et al. Integrated collector storage solar water heaters: survey and recent developments
EP3316478B1 (en) All-in-one integrated multifunctional triple power module "itm"
MX2007010808A (en) A composite translucent thermal solar collector.
JP7073340B2 (en) Roof panel equipment that functions as a heat collector
FR2937713A1 (en) Heat exchange unit for building, has tank filled with water in which part of tubes are immersed for creating heat exchange between heated heat transfer gas and water of tank, and pump circulating heat transfer gas in tubes
CN201322461Y (en) Novel solar energy water heater
RU2250422C2 (en) Solar power plant for hot water supply and sun collector of such plant
RU2268444C1 (en) Hot water supply sun power plant
WO2013177657A1 (en) Solar heat devise integrated solar heat collecting and storing
RU76946U1 (en) BUILDING "ECODOM-2"
WO2009047528A1 (en) Improvements in and relating to solar panels
CN101781915A (en) Solar energy wall body heat utilization system
FR2912444A1 (en) SOLAR THERMAL SENSOR DEVICE INTEGRATED WITH ROOFS AND TERRACES
RU112363U1 (en) ABSORBER OF THE SUNNY COLLECTOR
WO2010083988A2 (en) An energy transmitting sheet profile for invisible incorporation into a building climate shield, and a method and sheet profile for such incorporation
RU2241916C2 (en) Solar heating panel for building
KR20210055268A (en) Eco-friendly heating house with solar heat
Sakob Passive Solar Water Heater
Canivan Solar Thermal Energy