FR2936514A1 - ZIRCONIUM HYDRATE POWDER - Google Patents

ZIRCONIUM HYDRATE POWDER Download PDF

Info

Publication number
FR2936514A1
FR2936514A1 FR0805406A FR0805406A FR2936514A1 FR 2936514 A1 FR2936514 A1 FR 2936514A1 FR 0805406 A FR0805406 A FR 0805406A FR 0805406 A FR0805406 A FR 0805406A FR 2936514 A1 FR2936514 A1 FR 2936514A1
Authority
FR
France
Prior art keywords
particles
powder
zirconium
doped
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0805406A
Other languages
French (fr)
Other versions
FR2936514B1 (en
Inventor
Nabil Nahas
Nicole Rives
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority to FR0805406A priority Critical patent/FR2936514B1/en
Priority to PCT/IB2009/054286 priority patent/WO2010038203A1/en
Priority to JP2011528487A priority patent/JP2012504093A/en
Priority to CN2009801479133A priority patent/CN102227378A/en
Publication of FR2936514A1 publication Critical patent/FR2936514A1/en
Application granted granted Critical
Publication of FR2936514B1 publication Critical patent/FR2936514B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/06Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/06Sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • B01J35/40
    • B01J35/615
    • B01J35/633
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Procédé de fabrication d'une poudre de particules d'hydrate de zirconium et/ou d'hafnium, dopé ou non, et de leurs mélanges, ledit procédé comportant une étape d'hydrolyse basique d'une poudre de particules de départ en un dérivé de zirconium et/ou d'hafnium de formule M(OH) (N') (OH ) , M étant Zr , Hf , ou un mélange de Zr et Hf , N' étant un anion ou un mélange d'anions, les indices x et y étant des nombres strictement positifs, z étant un nombre positif ou nul, ledit matériau présentant une solubilité dans l'eau à une température inférieure à 20°C inférieure à 10 mol/l, ledit dérivé pouvant être dopé ou non, et lesdites particules de départ étant constituées de particules de base, agrégées ou non, présentant un indice de sphéricité inférieur à 0,6. Application à la catalyse et la filtrationProcess for producing a powder of zirconium hydrate and / or hafnium particles, doped or not, and mixtures thereof, said process comprising a step of basic hydrolysis of a powder of starting particles into a derivative of zirconium and / or hafnium of formula M (OH) (N ') (OH), M being Zr, Hf, or a mixture of Zr and Hf, N' being an anion or a mixture of anions, the indices x and y being strictly positive numbers, z being a positive or zero number, said material having a solubility in water at a temperature below 20 ° C of less than 10 mol / l, said derivative being dopable or non-dopable, and said starting particles being composed of base particles, aggregated or not, having a sphericity index of less than 0.6. Application to catalysis and filtration

Description

Domaine technique L'invention concerne un procédé de fabrication d'une poudre destinée notamment à catalyser une réaction chimique ou à la filtration. L'invention concerne aussi une poudre fabriquée ou pouvant être fabriquée par un tel procédé. Plus généralement, l'invention concerne une poudre de dérivés de zirconium et/ou d'hafnium, une poudre d'hydrates de zirconium et/ou d'hafnium et une poudre d'oxydes de zirconium et/ou d'hafnium. L'invention concerne enfin l'utilisation d'une poudre selon l'invention dans certaines applications, notamment la catalyse et la filtration. TECHNICAL FIELD The invention relates to a method of manufacturing a powder intended in particular to catalyze a chemical reaction or filtration. The invention also relates to a powder manufactured or capable of being manufactured by such a method. More generally, the invention relates to a zirconium and / or hafnium derivative powder, a zirconium and / or hafnium hydrate powder and a zirconium and / or hafnium oxide powder. The invention finally relates to the use of a powder according to the invention in certain applications, in particular catalysis and filtration.

Etat de la technique La catalyse concerne de nombreuses réactions, dans des domaines techniques variés, en particulier les applications environnementales, la pétrochimie, ou la chimie fine. Elle consiste à modifier la vitesse d'une réaction chimique en mettant en contact les réactifs de cette réaction avec un catalyseur, par exemple du platine, qui n'apparaît pas dans le bilan réactionnel. Généralement le catalyseur est préalablement déposé sur un support, par exemple sous la forme d'une poudre ou d'un corps constitué à partir d'une telle poudre. La poudre peut également parfois servir elle-même de catalyseur. La filtration de fluides concerne également de nombreuses applications, et notamment la filtration de liquides ou de gaz à haute température. A cet effet, les fluides traversent une poudre ou un corps constitué à partir d'une poudre de manière que les matières à filtrer soient retenues par les interstices entre les particules, liés à leur morphologie, ou dans les pores de ces particules. Dans une application en catalyse, les particules doivent présenter une surface spécifique maximale afin d'augmenter la surface de contact entre le catalyseur et les réactifs, que les particules soient utilisées comme support de catalyseur ou comme catalyseur elles-mêmes. Dans une application à la filtration, une perte de charge minimale est recherchée lors du passage du fluide à filtrer. Dans ces applications, les particules peuvent également être soumises à des températures élevées ou à des contraintes thermomécaniques sévères. STATE OF THE ART Catalysis concerns numerous reactions, in various technical fields, in particular environmental applications, petrochemistry, or fine chemistry. It consists in modifying the speed of a chemical reaction by bringing the reactants of this reaction into contact with a catalyst, for example platinum, which does not appear in the reaction balance. Generally the catalyst is previously deposited on a support, for example in the form of a powder or a body made from such a powder. The powder may also sometimes serve itself as a catalyst. Filtration of fluids also concerns many applications, and in particular the filtration of liquids or gases at high temperatures. For this purpose, the fluids pass through a powder or body made from a powder so that the materials to be filtered are retained by the interstices between the particles, related to their morphology, or in the pores of these particles. In a catalysis application, the particles must have a maximum specific surface in order to increase the contact area between the catalyst and the reactants, whether the particles are used as a catalyst support or as a catalyst themselves. In an application to filtration, a minimal pressure drop is sought during the passage of the fluid to be filtered. In these applications, the particles can also be subjected to high temperatures or severe thermomechanical stresses.

Des particules et des procédés pour leur fabrication sont notamment divulgués dans les documents suivants : FR 2 662 434 concerne la fabrication de trichites de zircone monoclinique par synthèse hydrothermale. Ces trichites sont de dimensions micrométriques (environ 5 m pour les exemples cités) et sont denses du fait d'une température de traitement hydrothermal comprise entre 300°C et 700°C. Particles and processes for their manufacture are disclosed in particular in the following documents: FR 2 662 434 relates to the manufacture of monoclinic zirconia whiskers by hydrothermal synthesis. These whiskers are of micrometric dimensions (about 5 m for the examples cited) and are dense due to a hydrothermal treatment temperature of between 300 ° C and 700 ° C.

EP 0 207 469 concerne la fabrication de cristaux de zircone, de zircone dopée au sulfate ou d'hydrate de zirconium, éventuellement dopé au sulfate, ces cristaux se présentant sous un forme lamellaire d'une épaisseur inférieure à 50 nm. Le procédé de fabrication de ces cristaux comporte un chauffage entre 110°C et 350°C d'une solution aqueuse acide (pH<2) d'un sel de zirconium soluble et de sulfates, suivi d'une calcination à une température supérieure à 600°C ou d'un traitement de désulfatation à une température comprise entre 70 et 110°C. EP 0 233 343 concerne la fabrication de particules ultrafines de zircone monoclinique se présentant sous la forme de fibres élémentaires de diamètre inférieur à 5 nm et agglomérées sous la forme de tas présentant une largeur comprise entre 30 et 200 nm et une longueur comprise entre 200 nm et 1 m. L'article Zirconia needles synthesized inside hexagonal swollen liquid crystals" ù Chemistry Of Materials, 2004, vol. 16, pp 4187- 4192, décrit l'obtention d'aiguilles de taille millimétrique, voire centimétrique, présentant des pores de 20 nm, et constituées de plus petites aiguilles. EP 0 207 469 relates to the production of crystals of zirconia, sulphate-doped zirconia or zirconium hydrate, optionally doped with sulphate, these crystals being in lamellar form with a thickness of less than 50 nm. The process for producing these crystals comprises heating between 110 ° C. and 350 ° C. an acidic aqueous solution (pH <2) of a soluble zirconium salt and sulphates, followed by calcination at a temperature greater than 600 ° C or a desulfation treatment at a temperature between 70 and 110 ° C. EP 0 233 343 relates to the production of ultrafine particles of monoclinic zirconia in the form of elementary fibers with a diameter of less than 5 nm and agglomerated in the form of heaps having a width of between 30 and 200 nm and a length of between 200 nm. and 1 m. The article Zirconia needles synthesized hexagonal swollen liquid crystals "Chemistry Of Materials, 2004, vol 16, pp 4187-4199, describes obtaining needles of millimetric or even centimeter size, having pores of 20 nm, and made up of smaller needles.

Il existe un besoin permanent pour de nouvelles particules présentant des surfaces spécifiques élevées et/ou des formes nouvelles. Il existe également un besoin pour des particules susceptibles de résister à des contraintes thermiques élevées, par exemple aux contraintes rencontrées lors de la combustion de gaz à hautes températures. There is a continuing need for new particles with high specific surface areas and / or new shapes. There is also a need for particles capable of withstanding high thermal stresses, for example the stresses encountered during the combustion of high temperature gases.

Un objectif de la présente invention est de répondre, au moins partiellement, à un ou plusieurs de ces besoins. An object of the present invention is to meet, at least partially, one or more of these needs.

Résumé de l'invention Procédés Suivant un premier mode de réalisation principal, l'invention propose un procédé de fabrication d'une poudre de particules, comportant les étapes successives suivantes : a) préparation d'une liqueur mère acide par mélange d'au moins, voire par mélange de seulement : [1] un solvant polaire ; [2] un premier réactif, de préférence soluble en milieu acide dans ledit solvant, apportant des ions Zr'- et/ou Hf + ; [3] un deuxième réactif apportant des groupements anioniques ; [4] un additif choisi dans le groupe formé par les tensio-actifs anioniques ; les tensio-actifs amphotères ; les tensio-actifs cationiques, les acides carboxyliques et leurs sels ; les tensio-actifs non ioniques choisis dans le groupe des composés de formule RCO2R' et RCONHR' et leurs mélanges, R et R' étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques ; et leurs mélanges ; [5] optionnellement, un autre tensioactif non-iorique ; [6] optionnellement un agent porogène ; chauffage de la liqueur mère de manière à précipiter les ions Zr+ et/ou Hf4-et les groupements anioniques sous la forme d'un dérivé primaire de zirconium et/ou d'hafnium, et optionnellement séchage ; optionnellement transformation du dérivé primaire en un dérivé secondaire de zirconium et ou d'hafnium par substitution desdits groupements anioniques par d'autres groupements anioniques, dits groupements anioniques de substitution , et optionnellement séchage ; optionnellement, hydrolyse basique dudit dérivé primaire ou secondaire ; optionnellement, calcination (étape el)) ou traitement hydrothermal (étape e2)) du dérivé primaire obtenu en fin d'étape b), du. dérivé secondaire obtenu en fin d'étape c), ou de l'hydrate obtenu en fin d'étape d), de manière à obtenir un oxyde de zirconium et/ou d'hafnium, et optionnellement séchage. Comme on le verra plus en détail dans la suite de la description, les inventeurs ont découvert que l'ajout de l'additif conduit, de manière simple et efficace, à l'obtention de particules présentant une morphologie ou des propriétés avantageuses. Les étapes 30 optionnelles permettent de transformer ces particules en d'autres particules également utiles. 10 15 b) 20 c) 25 d) e) Les étapes a) et b), voire c), permettent de fabriquer des particules anisotropes et poreuses ou denses en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium, dopés ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonatés de zirconium et/ou d'hafnium dopés ou non, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, et des mélanges de telles particules. L'étape d) permet de fabriquer des particules anisotropes et poreuses en un matériau choisi 10 parmi les hydrates de zirconium et/ou d'hafnium, dopés ou non. De telles particules anisotropes et poreuses ne sont pas connues des inventeurs. Dans des modes de réalisation particuliers de l'invention, le procédé peut encore présenter une ou plusieurs des caractéristiques suivantes. - Le solvant polaire est de l'eau. 15 - Le premier réactif est choisi parmi les sels de zirconium et/ou d'hafnium solubles dans le solvant, les alkoxydes de zirconium et/ou d'hafnium, les dérivés de zirconium et/ou d'hafnium solubles en milieu acide dans le solvant, de préférence choisi parmi les oxychlorures de zirconium et/ou d'hafnium, les oxynitures de zirconium et/ou d'hafnium, de préférence choisi parai les oxychlorures de 20 zirconium et/ou d'hafnium, et leurs mélanges. - La concentration en ions Zr4- et/ou Hf t apportés par le premier réactif dans la liqueur mère est comprise entre 0,01 et 3 mol/litre. Cette concentration peut être supérieure à 0,1 mol/litre et/ou être inférieure à 1,2 mol/litre. Le deuxième réactif choisi de manière à apporter SO42- et/ou PO43 . 25 - La concentration de l'additif dans la liqueur mère est comprise entre 10' mol/litre et 1 mol/litre. La concentration de l'additif peut être supérieure à 10 -3 mol/litre et/ou être inférieure à 10 mol/litre. - La liqueur mère est telle que : - l'acidité est comprise entre 0,6 et 2 mol/l; et 30 - la concentration en Zr4- et/ou Hf + dans la liqueur mère est comprise entre 0,1 et 1,2 mol/l; et le rapport molaire groupements anioniques / (Zr' et/ou H14+) est compris entre 0,3 et 1, en particulier entre 0,6 et 1; et - la concentration en additif dans la liqueur mère est comprise entre 10 et 10-1 mol/1 ; et à l'étape b), la rampe de chauffage est comprise entre 10.2 et 1 °C/minute ; et la température de chauffage, c'est-à-dire la température au palier, est comprise entre 55°C et 80°C, en particulier entre 55°C et 70°C ; et - la durée de maintien au palier est comprise entre 15 minutes et 2 heures. - De préférence, la liqueur mère est adaptée de manière à conduire à une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules en des dérivés de zirconium et/ou d'hafnium, éventuellement dopés, à l'issue de l'étape b) ou de l'étape c), en des hydrates de zirconium et/ou d'hafnium, éventuellement dopés, à l'issue de l'étape d), ou, en des oxydes de zirconium et/ou d'hafnium, éventuellement dopés, à l'issue de l'étape e). La liqueur mère est telle que: - l'acidité est comprise entre 1,6 et 3 mol/l; et la concentration en Zr4`et/ou Hf + dans la liqueur mère est comprise entre 0,1 et 1,2 mol/l; et le rapport molaire groupements anioniques / (Zr4+ et/ou Hf4-) est compris entre 0,5 et 1, en particulier entre 0,5 et 0,8 ; et la concentration en additif dans la liqueur mère est comprise entre 10' et 10-2 mol/i; et à l'étape b), la rampe de chauffage est comprise entre 10 2 et 1 °C/minute; et la température de chauffage est comprise entre 60 et 80°C; et - la durée de maintien au palier est comprise entre 1 heure et 10 heures. La liqueur mère est telle que: - l'acidité est comprise entre 1,2 et 3 mol/1 ; et la concentration en Zr4- et/ou Hf4+ dans la liqueur- mère est comprise entre 0,1 et 1,2 mol/1 ; et 30 - le rapport molaire groupements anioniques / (Zr``- et/ou Hf'-) est compris entre 0,8 et 2,0 ; et la concentration en additif dans la liqueur mère est comprise entre 10-3 et 10-1 mol/1 ; et, à l'étape b), - la rampe de chauffage est comprise entre 10-2 et 1''C/minute; et la température de chauffage est comprise entre 60"C et 80°C; et - la durée de maintien au palier est comprise entre 30 minutes et 2 heures. - La liqueur mère est telle que: - l'acidité est comprise entre 1,2 et 3 mol/l; et la concentration en Zr4+ et/ou Hf dans la liqueur mère est comprise entre 0,1 et 1,2 mol/l; et le rapport molaire groupements anioniques / (Zr4- et/ou Hf4-) est compris entre 0,3 et 1; et la concentration en additif dans la liqueur mère est comprise entre 10-- et 10-2 mol/l; et, à l'étape b), la rampe de chauffage est comprise entre l0-2 et 1 °C/minute ; et la température de chauffage est comprise entre 55°C et 80°C; et la durée de maintien au palier est comprise entre 30 minutes et 2 heures. - La liqueur mère est telle que: l'acidité est comprise entre 1,2 à 3 mol/l; et la concentration en Zr4+ et/ou Hf4+ dans la liqueur mère est comprise entre 0,1 et 1,2 moUl; et le rapport molaire groupements anioniques / (Zr4- et/ou HÉ-) est compris entre 0,3 et 1; et la concentration en additif dans la liqueur mère est comprise entre 10.3 et10-mol/l; et à l'étape b), - la rampe de chauffage est comprise entre 10.2 et 1 °C/minute; et la température du palier et comprise entre 60°C et 80°C; et la durée de maintien au palier est comprise entre 1 heure et 5 heures. - La liqueur mère est telle que: - l'acidité est compris entre 0,6 à 3 mol/l; et la concentration en Zr4- et/ou Hf l- dans la liqueur mère est comprise entre 0,1 et 1,2 mol/l; et le rapport molaire groupements anioniques / (Zr'` et/ou Hfi-) est compris entre 0,5 et 2; et la concentration en additif dans la liqueur mère est comprise entre 10' et 1 mol/1; et à l'étape b), la rampe de chauffage est comprise entre 10.2 et 10°C/minute; et la température de chauffage est comprise entre 60'C et 100°C; et la durée du maintien au palier est comprise entre 30 minutes et 5 heures. SUMMARY OF THE INVENTION Methods According to a first main embodiment, the invention proposes a method for manufacturing a particle powder, comprising the following successive steps: a) preparation of an acidic mother liquor by mixing at least or even by mixing only: [1] a polar solvent; [2] a first reagent, preferably acid-soluble in said solvent, providing Zr'- and / or Hf + ions; [3] a second reagent providing anionic groups; [4] an additive selected from the group consisting of anionic surfactants; amphoteric surfactants; cationic surfactants, carboxylic acids and their salts; nonionic surfactants selected from the group of compounds of formula RCO2R 'and RCONHR' and mixtures thereof, R and R 'being aliphatic, aromatic and / or alkylaromatic carbon chains; and their mixtures; [5] optionally, another non-ioric surfactant; [6] optionally a blowing agent; heating the mother liquor so as to precipitate the Zr + and / or Hf4-ions and the anionic groups in the form of a primary derivative of zirconium and / or hafnium, and optionally drying; optionally converting the primary derivative into a secondary derivative of zirconium and / or hafnium by substitution of said anionic groups by other anionic groups, called anionic substitution groups, and optionally drying; optionally, basic hydrolysis of said primary or secondary derivative; optionally, calcination (step el)) or hydrothermal treatment (step e2)) of the primary derivative obtained at the end of step b), of. secondary derivative obtained at the end of step c), or of the hydrate obtained at the end of step d), so as to obtain an oxide of zirconium and / or hafnium, and optionally drying. As will be seen in more detail in the remainder of the description, the inventors have discovered that the addition of the additive leads, in a simple and effective manner, to obtain particles having a morphology or advantageous properties. The optional steps make it possible to transform these particles into other equally useful particles. B) 20 c) 25 d) e) Steps a) and b), or even c), make it possible to produce anisotropic and porous or dense particles of a material chosen from zirconium and / or hafnium derivatives, doped or non-doped, preferably chosen from doped or non-doped sulphated zirconium and / or hafnium derivatives, phosphated zirconium and / or hafnium derivatives doped or otherwise, doped zirconium and / or hafnium carbonate derivatives or not, preferably chosen from the basic sulphate of zirconium and / or hafnium doped or not, the basic phosphate of zirconium and / or hafnium doped or not, the basic carbonate of zirconium and / or hafnium doped or no, and mixtures of such particles. Step d) makes it possible to manufacture anisotropic and porous particles made of a material chosen from zirconium and / or hafnium hydrates, doped or otherwise. Such anisotropic and porous particles are not known to the inventors. In particular embodiments of the invention, the method may still have one or more of the following features. - The polar solvent is water. The first reagent is chosen from the solvent-soluble zirconium and / or hafnium salts, the zirconium and / or hafnium alkoxides, the acid-soluble zirconium and / or hafnium derivatives in the solvent, preferably selected from zirconium and / or hafnium oxychlorides, oxides of zirconium and / or hafnium, preferably selected from zirconium and / or hafnium oxychlorides, and mixtures thereof. - The concentration of Zr4- and / or Hf t ions provided by the first reagent in the mother liquor is between 0.01 and 3 mol / liter. This concentration may be greater than 0.1 mol / liter and / or be less than 1.2 mol / liter. The second reagent chosen to provide SO42- and / or PO43. The concentration of the additive in the mother liquor is between 10 mole / liter and 1 mole / liter. The concentration of the additive may be greater than 10 -3 mol / liter and / or be less than 10 mol / liter. The mother liquor is such that: the acidity is between 0.6 and 2 mol / l; and the concentration of Zr4- and / or Hf + in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr 'and / or H14 +) is between 0.3 and 1, in particular between 0.6 and 1; and the concentration of additive in the mother liquor is between 10 and 10-1 mol / l; and in step b), the heating ramp is between 10.2 and 1 ° C / minute; and the heating temperature, i.e. the temperature at the bearing, is between 55 ° C and 80 ° C, in particular between 55 ° C and 70 ° C; and the duration of maintenance at the stage is between 15 minutes and 2 hours. Preferably, the mother liquor is adapted so as to lead to a powder comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number of particles in derivatives of zirconium and / or hafnium, optionally doped, at the end of step b) or step c), zirconium hydrates and / or hafnium, optionally doped, at the end of d), or optionally zirconium and / or hafnium oxides, at the end of step e). The mother liquor is such that: the acidity is between 1.6 and 3 mol / l; and the concentration of Zr4 and / or Hf + in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr4 + and / or Hf4-) is between 0.5 and 1, in particular between 0.5 and 0.8; and the concentration of additive in the mother liquor is between 10 'and 10-2 mol / i; and in step b), the heating ramp is between 10 2 and 1 ° C / minute; and the heating temperature is 60 to 80 ° C; and the duration of maintenance at the stage is between 1 hour and 10 hours. The mother liquor is such that: the acidity is between 1.2 and 3 mol / l; and the concentration of Zr4- and / or Hf4 + in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr`` and / or Hf'-) is from 0.8 to 2.0; and the concentration of additive in the mother liquor is between 10-3 and 10-1 mol / l; and in step b), the heating ramp is between 10-2 and 1''C / minute; and the heating temperature is between 60 ° C. and 80 ° C. and the residence time is between 30 minutes and 2 hours.The mother liquor is such that: the acidity is between 1, 2 and 3 mol / l and the concentration of Zr4 + and / or Hf in the mother liquor is between 0.1 and 1.2 mol / l and the molar ratio of anionic groups / (Zr4- and / or Hf4-) is between 0.3 and 1, and the additive concentration in the mother liquor is between 10 and 10-2 mol / l, and in step b) the heating ramp is between 10 and 10-2 mol / l; 2 and 1 ° C / min, and the heating temperature is between 55 ° C and 80 ° C and the hold time is between 30 minutes and 2 hours - The mother liquor is such that: acidity is between 1.2 and 3 mol / l, and the concentration of Zr4 + and / or Hf4 + in the mother liquor is between 0.1 and 1.2 moUl, and the molar ratio of anionic groups / (Zr4- and / or or HÉ-) is between 0, 3 and 1, and the concentration of additive in the mother liquor is between 10.3 and 10-mol / l; and in step b), the heating ramp is between 10.2 and 1 ° C / minute; and the temperature of the bearing and between 60 ° C and 80 ° C; and the dwell time is between 1 hour and 5 hours. The mother liquor is such that: the acidity is between 0.6 and 3 mol / l; and the concentration of Zr4- and / or Hf1- in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr '' and / or Hfi-) is between 0.5 and 2; and the concentration of additive in the mother liquor is between 10 'and 1 mol / l; and in step b), the heating ramp is between 10.2 and 10 ° C / minute; and the heating temperature is 60 ° C to 100 ° C; and the duration of the maintenance at the landing is between 30 minutes and 5 hours.

Selon un deuxième mode de réalisation principal, l'invention concerne un procédé de fabrication d'une poudre de particules d'hydrates de zirconium et/ou d'hafnium dopés ou non et de leurs mélanges, comportant une étape d'hydrolyse basique d'une poudre de particules de départ en un dérivé de zirconium et/ou d'hafnium dopé ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonatés de zirconium et/ou d'hafnium dopés ou non, de préférence choisis parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, et leurs mélanges, ou d'une poudre de départ en un mélange de telles particules, lesdites particules de départ étant constituées de particules de base anisotropes, agrégées ou non. L'étape d'hydrolyse peut en particulier être une étape d) et, en -particulier, comporter une ou plusieurs des caractéristiques optionnelles relatives à l'étape ë.). La poudre de particules de départ peut en particulier être une poudre fabriquée suivant un procédé de fabrication conforme au premier mode de réalisation principal décrit ci-dessus, et en particulier être une poudre obtenue à l'issue de l'étape b) ou de l'étape c). According to a second main embodiment, the invention relates to a process for producing a powder of particles of zirconium hydrates and / or hafnium doped or not and mixtures thereof, comprising a step of basic hydrolysis of a powder of starting particles of a zirconium derivative and / or hafnium doped or not, preferably selected from sulfated derivatives of zirconium and / or hafnium doped or not, phosphatic derivatives of zirconium and / or hafnium doped or not, carbonated derivatives of zirconium and / or hafnium doped or not, preferably selected from basic sulfate zirconium and / or hafnium doped or not, basic phosphate zirconium and / or hafnium doped or not, the basic carbonate of zirconium and / or hafnium doped or not, and mixtures thereof, or a starting powder in a mixture of such particles, said starting particles consisting of anisotropic base particles, aggregated or not. The hydrolysis step may in particular be a step d) and, in particular, comprise one or more of the optional characteristics relating to step e). The starting particle powder may in particular be a powder manufactured according to a manufacturing method according to the first main embodiment described above, and in particular be a powder obtained at the end of step b) or from step c).

Selon un troisième mode de réalisation principal, l'invention concerne un procédé de fabrication d'une poudre (le particules d'oxydes de zirconium et/ou d'hafnium, dopés ou non, de préférence ZrO2, ZrO2 dopé, Hf02, Hf02 dopé, comportant une étape de calcination d'une poudre de particules de départ en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non, et leurs mélanges, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonatés de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non, et leurs mélanges, de préférence choisis parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non, et leurs mélanges, ou d'une poudre comportant un mélange de telles particules de départ, lesdites particules de départ étant constituées de particules de base anisotropes, agrégées ou non, et, lorsqu'elles sont en un hydrate, les particules de départ étant en outre poreuses. L'étape de calcination peut être une étape el) du premier mode de réalisation principal et comporter une ou plusieurs des caractéristiques optionnelles de cette étape. Les particules de départ anisotropes peuvent en particulier être des particules fabriquées suivant un procédé conforme au premier mode de réalisation principal, et en particulier être issues des étapes b), c) ou d). According to a third main embodiment, the invention relates to a method for manufacturing a powder (doped or non-doped zirconium oxide and / or hafnium oxide particles, preferably ZrO 2, doped ZrO 2, doped HfO 2, HfO 2 , comprising a step of calcination of a powder of starting particles of a material chosen from doped or non-doped zirconium and / or hafnium derivatives, zirconium hydrates and / or hafnium doped or not, and mixtures thereof , preferably chosen from sulphated zirconium and / or hafnium derivatives doped or not, phosphated derivatives of zirconium and / or hafnium doped or non-doped, carbonated derivatives of zirconium and / or hafnium doped or not, doped or non-doped hafnium and zirconium hydrates, and mixtures thereof, preferably chosen from zirconium and / or doped hafnium basic sulphate, basic zirconium phosphate and / or doped hafnium or no, basic zirconium carbonate and / or doped hafnium or not, doped or non-doped zirconium and / or hafnium hydrates, and mixtures thereof, or a powder comprising a mixture of such starting particles, said starting particles being constituted by anisotropic base particles, aggregated or otherwise and, when in a hydrate, the starting particles being further porous. The calcination step may be a step el) of the first main embodiment and include one or more of the optional features of this step. The anisotropic starting particles may in particular be particles manufactured according to a process according to the first main embodiment, and in particular be derived from steps b), c) or d).

Selon un quatrième mode de réalisation principal, l'invention concerne également un procédé de fabrication d'une poudre de particules d'oxydes de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, comportant une étape de traiternent hydrothermal d'une poudre de particules de départ en un matériau choisi les dérivés de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonatés de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, d'hydrates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, ou d'un mélange de ces particules, lesdites particules de départ étant constituées de particules de base anisotropes, agrégées ou non, et, lorsqu'elles sont en un hydrate, les particules de départ étant en outre poreuses. According to a fourth main embodiment, the invention also relates to a process for manufacturing a powder of particles of zirconium oxides and / or hafnium doped or not and their mixtures, comprising a hydrothermal treatment stage of a powder of starting particles of a material chosen from doped or non-doped zirconium and / or hafnium derivatives, doped or non-doped hafnium and zirconium hydrates and mixtures thereof, preferably chosen from sulphated zirconium derivatives and and / or hafnium doped or not, phosphated derivatives of zirconium and / or hafnium doped or not, doped or non-doped carbonated derivatives of zirconium and / or hafnium, doped zirconium and / or hafnium hydrates or not and mixtures thereof, preferably chosen from basic sulfate of zirconium and / or hafnium doped or not, the basic phosphate of zirconium and / or hafnium doped or not, the basic carbonate of zirconium and / or doped hafnium or not, hydrates d zirconium and / or hafnium doped or not and mixtures thereof, or a mixture of these particles, said starting particles consisting of anisotropic base particles, aggregated or not, and, when they are in a hydrate, the starting particles being furthermore porous.

L'étape de traitement hydrothermal peut, en particulier, être une étape e2) comme celle d'un procédé suivant le premier mode de réalisation principal et comportant une ou plusieurs caractéristique(s) optionnelle(s) de l'étape e2) du premier mode de réalisation principal. Les particules de départ peuvent être fabriquées suivant un procédé conforme au premier mode de réalisation principal, et en particulier être issues des étapes b), c) ou d). The hydrothermal treatment step may, in particular, be a step e2) like that of a method according to the first main embodiment and comprising one or more optional characteristic (s) of step e2) of the first main embodiment. The starting particles may be manufactured according to a method according to the first main embodiment, and in particular be derived from steps b), c) or d).

Produits Les procédés décrits ci-dessus ont permis de découvrir plusieurs particules nouvelles. Les étapes a), b) et c) ont conduit à la découverte de particules de base anisotropes en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium dopés ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonatés de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non et leurs mélanges. L'invention concerne donc encore une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base anisotropes, agrégées ou non, en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium dopés ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonatés de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non et leurs mélanges, ou d'un mélange de ces particules. Dans un mode de réalisation préféré, ces particules sont denses. Dans un autre mode de réalisation, notamment en cas d'ajout d'un agent porogène à l'étape a), ces particules sont poreuses. Products The processes described above made it possible to discover several new particles. Steps a), b) and c) have led to the discovery of anisotropic base particles in a material chosen from doped or non-doped zirconium and / or hafnium derivatives, preferably chosen from sulphated zirconium derivatives and / or or doped or non-doped hafnium, phosphated derivatives of zirconium and / or hafnium doped or not, carbonated derivatives of zirconium and / or hafnium doped or not and mixtures thereof, preferably selected from basic zirconium sulfate and / or doped hafnium or not, the basic phosphate of zirconium and / or hafnium doped or not, the basic carbonate of zirconium and / or hafnium doped or not and mixtures thereof. The invention thus also relates to a powder comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number of anisotropic base particles, aggregated or not, in a chosen material. from doped or non-doped zirconium and / or hafnium derivatives, preferably chosen from doped or non-doped sulphated zirconium and / or hafnium derivatives, phosphated derivatives of zirconium and / or hafnium doped or non-doped, carbonated derivatives of zirconium and / or hafnium, doped or not, and mixtures thereof, preferably chosen from basic sulfate of zirconium and / or hafnium doped or not, basic phosphate of zirconium and / or hafnium, doped or otherwise , the basic carbonate of zirconium and / or hafnium doped or not and mixtures thereof, or a mixture of these particles. In a preferred embodiment, these particles are dense. In another embodiment, especially when adding a pore-forming agent in step a), these particles are porous.

Ces particules de base sont insolubles dans l'eau et, de préférence, hydrolysables. De préférence, le matériau de ces particules de base est amorphe lorsqu'il n'est pas dopé. Lorsque ce matériau est dopé, il peut cependant présenter des cristaux formés à partir du dopant. Autrement dit, sur un diagramme en diffraction X, les pics correspondant à la détection de cristaux correspondent sensiblement tous à des cristaux contenant un dopant. These base particles are insoluble in water and, preferably, hydrolyzable. Preferably, the material of these base particles is amorphous when not doped. When this material is doped, however, it may present crystals formed from the dopant. In other words, on an X-ray diffraction diagram, the peaks corresponding to the detection of crystals substantially all correspond to crystals containing a dopant.

Les étapes a), b), optionnellement c), et d), ont conduit à la découverte de particules de base anisotropes et poreuses, agrégées ou non, en un matériau choisi parmi les hydrates de zirconium et/ou d'hafnium, dopés ou non, et leurs mélanges. L'invention concerne donc encore une poudre comportant, pour plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre, des particules de base anisotropes et poreuses, agrégées ou non, en un hydrate de zirconium et/ou d'hafnium, dopé ou non, ou en un mélange de tels hydrates. Les particules de base peuvent présenter des compositions chimiques identiques ou différentes. De préférence, le matériau de ces particules est amorphe lorsqu'il n'est pas dopé. Lorsque ce matériau est dopé, il peut cependant présenter des cristaux formés à partir du dopant. Steps a), b), optionally c), and d), have led to the discovery of anisotropic and porous base particles, aggregated or not, in a material chosen from zirconium hydrates and / or hafnium, doped or not, and their mixtures. The invention therefore also relates to a powder comprising, for more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number, anisotropic and porous base particles, aggregated or not , into a zirconium hydrate and / or hafnium, doped or not, or a mixture of such hydrates. The base particles may have identical or different chemical compositions. Preferably, the material of these particles is amorphous when it is not doped. When this material is doped, however, it may present crystals formed from the dopant.

Les étapes a), b), optionnellement c), d) et el) (calcination) et les étapes a), b), optionnellement c), d) et e2) (traitement hydrothermal) ont conduit à la découverte de particules de base, anisotropes et poreuses, agrégées ou non, en un matériau choisi parmi les oxydes de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence ZrO2, ZrO2 dopé, HfO2, HfO2 dopé. Steps a), b), optionally c), d) and el) (calcination) and steps a), b), optionally c), d) and e2) (hydrothermal treatment) have led to the discovery of particles of base, anisotropic and porous, aggregated or not, of a material chosen from doped or non-doped zirconium and / or hafnium oxides and their mixtures, preferably ZrO 2, doped ZrO 2, HfO 2, doped HfO 2.

L'invention concerne donc encore une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base, anisotropes et poreuses, agrégées ou non, en un matériau choisi parmi les oxydes de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, ou d'un mélange de ces particules. De préférence, le matériau de ces particules est cristallisé. The invention thus also relates to a powder comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number of base particles, anisotropic and porous, aggregated or not, in a material selected from oxides of zirconium and / or hafnium doped or not and mixtures thereof, or a mixture of these particles. Preferably, the material of these particles is crystallized.

L'invention concerne également une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base, anisotropes et denses, agrégées ou non, en un matériau choisi parmi, les oxydes de zirconium et/ou d'hafnium, les oxydes de zirconium et/ou d'hafnium dopés et leurs mélanges, le dopant étant: - un oxyde d'un élément choisi parmi l'yttrium Y, le lanthane La, le cérium Ce, le scandium Sc, le calcium Ca, le magnésium Mg et leurs mélanges, ledit dopant étant de préférence en solution solide avec l'oxyde de zirconium et/ou l'oxyde d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. Le produit selon l'invention peut être en particulier une zircone dopée à l'oxyde d'yttrium ou une zircone dopée à l'oxyde de cérium; - un oxyde d'aluminium Al, de préférence dispersé dans de l'oxyde de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ; - et leurs mélanges. De préférence, les particules de base de ladite poudre se présentent sous forme de plaquettes et/ou d'aiguilles et/ou sont agrégées sous forme d'étoiles et/ou de lamelles et/ou d'oursins et/ou de sphères creuses. De préférence encore, les particules de base se présentent sous la forme de plaquettes et/ou sont agrégées sous forme de lamelles et/ou d'étoiles, d'oursins et/ou de sphères creuses. De préférence, le matériau de ces particules est cristallisé. The invention also relates to a powder comprising more than 20%, more than 50%, more than 80%, more than 90% or even more than 95% by number of basic particles, anisotropic and dense, aggregated or not, in one material chosen from zirconium and / or hafnium oxides, doped zirconium and / or hafnium oxides and mixtures thereof, the dopant being: an oxide of an element chosen from yttrium Y, lanthanum La, cerium Ce, scandium Sc, calcium Ca, magnesium Mg and mixtures thereof, said dopant being preferably in solid solution with zirconium oxide and / or hafnium oxide, preferably in a quantity molar less than or equal to 20%. The product according to the invention may in particular be a zirconia doped with yttrium oxide or a zirconia doped with cerium oxide; an aluminum oxide A1, preferably dispersed in zirconium and / or hafnium oxide, preferably in a molar amount of less than or equal to 20%, more preferably less than or equal to 3%; - and their mixtures. Preferably, the base particles of said powder are in the form of platelets and / or needles and / or are aggregated in the form of stars and / or lamellae and / or sea urchins and / or hollow spheres. More preferably, the base particles are in the form of platelets and / or are aggregated in the form of lamellae and / or stars, sea urchins and / or hollow spheres. Preferably, the material of these particles is crystallized.

Selon un mode de réalisation particulier, l'invention concerne une poudre de particules présentant une taille maximale inférieure à 200 m, et comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base anisotropes, agrégées ou non, et choisies dans le groupe formé par : les particules de base denses ou poreuses en un dérivé de zirconium et/ou d'hafnium, dopé ou non dopé, insoluble dans l'eau et hydrolysable, amorphe ou ne contenant pour seuls cristaux que des cristaux incluant un dopant, ledit dérivé du zirconium pouvant notamment être choisi parmi le sulfate basique de zirconium et/ou d'hafnium, le phosphate basique de zirconium et/ou d'hafnium, le carbonate basique de zirconium et/ou d'hafnium, et leurs mélanges ; - les particules de base poreuses d'hydrates de zirconium e:/ou d'hafnium, dopés ou non dopés, amorphes ou ne contenant pour seuls cristaux que des cristaux incluant un dopant ; - les particules de base poreuses de zircone ZrO2 et/ou d'oxyde d'hafnium HfO2, dopé ou non dopé, - et les mélanges de ces particules de base. De préférence, en particulier pour les particules de base poreuses d'hydrates de zirconium et/ou d'hafnium, dopés ou non dopés, amorphes ou ne contenant, pour seuls cristaux, que des cristaux incluant un dopant et pour les particules de base poreuses de zircone ZrO2 et/ou d'oxyde d'hafnium HfO2, dopé ou non dopé, ladite poudre présente un indice de porosité Ip supérieur à 2, de préférence supérieur à 5, de préférence supérieur à 10, voire supérieur à 20, voire encore supérieur à 50. De manière générale, l'invention concerne une poudre obtenue ou pouvant être obtenue suivant un procédé selon l'invention, en particulier par un procédé comportant une étape el) de calcination à une température inférieure à 1200°C. According to one particular embodiment, the invention relates to a particle powder having a maximum size of less than 200 m, and comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95%. % by number of anisotropic base particles, aggregated or not, and selected from the group consisting of: dense or porous base particles of a zirconium and / or hafnium derivative, doped or undoped, insoluble in water and which is hydrolyzable, amorphous or containing only crystals which include a dopant, said zirconium derivative being able to be chosen in particular from basic zirconium and / or hafnium sulphate, basic zirconium and / or hafnium phosphate, basic zirconium and / or hafnium carbonate and mixtures thereof; - Porous base particles of zirconium e: / or hafnium hydrates, doped or undoped, amorphous or containing only crystals as crystals including a dopant; - Porous base particles ZrO2 zirconia and / or hafnium oxide HfO2, doped or undoped, - and the mixtures of these basic particles. Preferably, in particular for the porous base particles of hydrates of zirconium and / or hafnium, doped or undoped, amorphous or containing, for only crystals, only crystals including a dopant and for the porous base particles of zirconia ZrO2 and / or hafnium oxide HfO2, doped or undoped, said powder has a porosity index Ip greater than 2, preferably greater than 5, preferably greater than 10, or even greater than 20, or even In general, the invention relates to a powder obtained or obtainable according to a process according to the invention, in particular by a process comprising a step e1) of calcination at a temperature below 1200 ° C.

Une poudre selon l'invention peut encore comporter une ou plusieurs des caractéristiques optionnelles suivantes : - La taille maximale (D99,5) des particules de la poudre (de base ou agrégées) est inférieure à 150 m, inférieure à 100 m, inférieure à 80 m, ou inférieure à 50 m. - Les particules sont insolubles dans l'eau. - Plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 %, voire sensiblement 100 % en nombre des particules de base, indépendantes ou constituant une particule agrégée, présentent une forme choisie parmi une plaquette, notamment une plaquette d'une épaisseur supérieure à 50 nm et/ou une aiguille, notamment une aiguille d'une longueur supérieure à 200 nm. Au moins 80%, de préférence au moins 90%, voire sensiblement 100% en nombre desdites particules sont des particules agrégées ordonnées, en particulier sous une forme - en lamelle, notamment constituées de 2 à 50 plaquettes. en étoile, notamment comportant de 3 à 15 branches, de préférence comportant plus de 3, 4 ou 5 branches, et en sphère, notamment en sphère creuse, présentant de préférence un indice de sphéricité supérieur à 0,7, et/ou sont des particules agrégées désordonnées, en particulier sous la forme d'oursins. - Les particules agrégées peuvent en particulier résulter d'un assemblage de particules de base en aiguille ou en plaquette. Ces particules de base peuvent elles-mêmes être assemblées sous forme de particules agrégées intermédiaires : Par exemple, les particules agrégées peuvent être constituées d'un assemblage d'étoiles ou d'un assemblage d'étoiles et d'aiguilles. - Les particules agrégées sont constituées de particules de base dont toutes les 5 dimensions sont supérieures à 250 nm. - Toutes les dimensions des particules de base ou agrégées sont supérieures à 50 nm, supérieures à 100 nm, supérieures à 200 nm, supérieures à 250 nm, voire supérieures à 500 nm. Une taille supérieure à 50 nm est notamment avantageuse pour créer des pores autorisant une bonne diffusion des gaz, et donc pour atteindre de bonnes 10 performances catalytiques ou de filtration. Les particules peuvent être anisotropes, et notamment présenter une forme en plaquette ou présenter une forme en aiguille, en particulier d'une longueur supérieure à 200 nm. Au moins 95 % en nombre des particules de base présentent une forme telle que toutes ses dimensions sont supérieures à 50 nm. 15 Les particules sont dopées et le dopant des particules est choisi parmi les composés d'un élément choisi parmi l'yttrium Y, le scandium Sc, le cérium Ce, le silicium Si, le soufre S, l'aluminium Al, le calcium Ca, le magnésium Mg et leurs mélanges. ^ Si les particules sont des particules de zircone et/ou d'oxyde d'hafnium, le composé dopant peut en part iculier être - un oxyde d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en solution solide avec l'oxyde de zirconium et/ou l'oxyde d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. L'invention concerne en particulier une poudre de zircone dopée à l'oxyde d'yttrium ou une zircone dopée à l'oxyde de cérium ; - un oxyde d'un élément choisi parmi Si, Al, S et leurs mélanges dispersé dans de l'oxyde de zirconium et/ou d'oxyde d'hafnium. Lorsque l'oxyde est un oxyde d'aluminium, de préférence sa quantité molaire est inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ; ^ Si les particules sont des particules d'hydrates de zirconium et/ou d'hafnium, le composé dopant peut en particulier être 20 25 30 10 15 20 25 30 14 un hydrate d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en mélange intime moléculaire avec l'hydrate de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. L'invention concerne en particulier une poudre d'un hydrate mixte de zirconium et d'yttrium, et/ou d'un hydrate mixte de zirconium et de cérium ; un hydrate d'aluminium, dispersé dans de l'hydrate de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ; - un oxyde d'un élément choisi parmi Si, S et leurs mélanges, dispersé dans de l'hydrate de zirconium et/ou d'hafnium. ^ Si les particules sont des particules d'un dérivé de zirconium et/ou d'hafnium, le composé dopant peut en particulier être un dérivé d'un élément choisi parmi Y, La, Ce, Sc, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. L'invention concerne en particulier une poudre d'un dérivé mixte de zirconium et d'yttrium ou d'un dérivé mixte de zirconium et de cérium ; un sel d'un élément choisi parmi Ca, Mg et leurs mélanges, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20% ; un hydrate d'aluminium, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium ou localisé en surface du dérivé de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ; un oxyde d'un élément choisi parmi Si, S et leurs mélanges, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium ou localisé en surface du dérivé de zirconium et/ou d'hafnium. De préférence, la quantité molaire de dopant est déterminée de manière à représenter moins de 40%, voire moins de 20%, voire moins de 10%, voire moins de 5%, voire 5 moins de 3% de la masse du matériau des particules. - La poudre de particules présente une aire spécifique de préférence supérieure à 10 m2/g, voire supérieure à 20 m2/g, voire supérieure à 50 m2/g, voire supérieure à 100 m2/g. La somme des volumes mésoporeux et microporeux de la poudre est de préférence supérieure à 0,05 cm3/g, voire supérieure à 0,1 cm3/g, voire supérieure à 10 0,15 cm3/g. - Quel que soit le mode de réalisation, de préférence, la teneur en impuretés d'une poudre selon l'invention est inférieure à 0,7%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence encore inférieure à 0,1%, en pourcentages en masse de matière sèche. 15 L'invention concerne encore une poudre présentant une taille maximale de particules (D99.5) inférieure à 200 m et présentant un indice de porosité Ip inférieur à 2, l'indice de porosité étant égal au rapport Asr/Asg où Asg est l'aire spécifique géométrique théorique calculée à partir de la forme et 20 de la détermination des dimensions des particules de la poudre ; Asr est la mesure de l'aire spécifique réelle par BET ; ladite poudre comportant plus de 20% en nombre de particules de base - présentant un indice de sphéricité inférieur à 0,6, - agrégées sous la forme d'étoiles comportant de 3 à 15 branches ou de 25 lamelles constituées de 2 à 50 plaquettes, et - constituées en un oxyde de zirconium et/ou d'hafnium de formule MON, M étant Zr4-, Hf`'-, ou un mélange de Zr4- et Hf -, et x étant un nombre positif non nul. Dans la mesure où elles ne sont pas incompatibles avec ce mode de réalisation, les 30 caractéristiques d'une poudre selon le mode de réalisation décrit précédemment sont applicables à cette poudre. A powder according to the invention may also comprise one or more of the following optional characteristics: the maximum size (D99.5) of the particles of the powder (basic or aggregated) is less than 150 m, less than 100 m, less than 80 m, or less than 50 m. - The particles are insoluble in water. - More than 20%, more than 50%, more than 80%, more than 90%, or even more than 95%, or even substantially 100% by number of the basic particles, independent or constituting an aggregated particle, have a form chosen from a wafer, in particular a wafer with a thickness greater than 50 nm and / or a needle, in particular a needle with a length greater than 200 nm. At least 80%, preferably at least 90% or even substantially 100% by number of said particles are ordered aggregated particles, in particular in a lamellar form, in particular consisting of 2 to 50 platelets. star-shaped, in particular having 3 to 15 branches, preferably having more than 3, 4 or 5 branches, and in sphere, in particular in a hollow sphere, preferably having a sphericity index greater than 0.7, and / or are aggregated disordered particles, especially in the form of sea urchins. The aggregated particles may in particular result from an assembly of base particles into a needle or wafer. These base particles can themselves be assembled in the form of intermediate aggregated particles: For example, the aggregated particles may consist of an assemblage of stars or an assembly of stars and needles. Aggregated particles consist of base particles of all sizes greater than 250 nm. All dimensions of the basic or aggregated particles are greater than 50 nm, greater than 100 nm, greater than 200 nm, greater than 250 nm, and even greater than 500 nm. A size greater than 50 nm is particularly advantageous for creating pores allowing a good diffusion of gases, and therefore to achieve good catalytic or filtration performance. The particles may be anisotropic, in particular having a wafer shape or having a needle shape, in particular of a length greater than 200 nm. At least 95% by number of the base particles have a shape such that all its dimensions are greater than 50 nm. The particles are doped and the dopant of the particles is chosen from the compounds of an element chosen from yttrium Y, scandium Sc, cerium Ce, silicon Si, sulfur S, aluminum Al, calcium Ca magnesium Mg and mixtures thereof. If the particles are zirconia and / or hafnium oxide particles, the doping compound may in particular be an oxide of an element selected from Y, La, Ce, Sc, Ca, Mg and mixtures thereof. in solid solution with zirconium oxide and / or hafnium oxide, preferably in a molar amount of less than or equal to 20%. In particular, the invention relates to a zirconia powder doped with yttrium oxide or a zirconia doped with cerium oxide; an oxide of an element chosen from Si, Al, S and their mixtures dispersed in zirconium oxide and / or hafnium oxide. When the oxide is an aluminum oxide, preferably its molar amount is less than or equal to 20%, more preferably less than or equal to 3%; If the particles are zirconium and / or hafnium hydrate particles, the doping compound may in particular be a hydrate of an element selected from Y, La, Ce, Sc , Ca, Mg and mixtures thereof, in intimate molecular mixture with zirconium hydrate and / or hafnium, preferably in a molar amount less than or equal to 20%. The invention relates in particular to a powder of a mixed hydrate of zirconium and yttrium, and / or a mixed hydrate of zirconium and cerium; an aluminum hydrate dispersed in zirconium hydrate and / or hafnium, preferably in a molar amount of less than or equal to 20%, more preferably less than or equal to 3%; an oxide of an element chosen from Si, S and their mixtures, dispersed in zirconium and / or hafnium hydrate. If the particles are particles of a zirconium and / or hafnium derivative, the doping compound may in particular be a derivative of an element chosen from Y, La, Ce, Sc, in intimate molecular mixture with the derivative. zirconium and / or hafnium, preferably in a molar amount of less than or equal to 20%. The invention particularly relates to a powder of a mixed derivative of zirconium and yttrium or a mixed derivative of zirconium and cerium; a salt of an element selected from Ca, Mg and mixtures thereof, in an intimate molecular mixture with the zirconium and / or hafnium derivative, preferably in a molar amount of less than or equal to 20%; an aluminum hydrate, in an intimate molecular mixture with the zirconium and / or hafnium derivative or located on the surface of the zirconium and / or hafnium derivative, preferably in a molar amount of less than or equal to 20%, of still preferably less than or equal to 3%; an oxide of an element selected from Si, S and mixtures thereof, in intimate molecular mixture with the zirconium and / or hafnium derivative or located on the surface of the zirconium and / or hafnium derivative. Preferably, the molar amount of dopant is determined to be less than 40% or even less than 20% or even less than 10% or even less than 5% or even less than 3% of the mass of the particulate material. . - The particle powder has a specific surface area preferably greater than 10 m 2 / g, or even greater than 20 m 2 / g, or even greater than 50 m 2 / g, or even greater than 100 m 2 / g. The sum of the mesoporous and microporous volumes of the powder is preferably greater than 0.05 cm 3 / g, or even greater than 0.1 cm 3 / g, or even greater than 0.15 cm 3 / g. - Whatever the embodiment, preferably, the impurity content of a powder according to the invention is less than 0.7%, preferably less than 0.5%, preferably less than 0.3%, more preferably less than 0.1%, in percentages by mass of dry matter. The invention also relates to a powder having a maximum particle size (D99.5) of less than 200 m and having a porosity index Ip of less than 2, the porosity index being equal to the Asr / Asg ratio where Asg is theoretical geometrical surface area calculated from the shape and particle size determination of the powder; Asr is the measurement of the actual specific area by BET; said powder having more than 20% by number of base particles - having a sphericity index of less than 0.6, - aggregated in the form of stars having 3 to 15 branches or slats consisting of 2 to 50 platelets, and - consisting of a zirconium and / or hafnium oxide of formula MON, M being Zr4-, Hf-, or a mixture of Zr4- and Hf-, and x being a non-zero positive number. Insofar as they are not incompatible with this embodiment, the characteristics of a powder according to the previously described embodiment are applicable to this powder.

L'invention concerne aussi une poudre présentant une taille maximale de particules (D99,5) inférieure à 200 m et présentant un indice de porosité Ip inférieur à 2, l'indice de porosité étant égal au rapport Asr/Asg où - Asg est l'aire spécifique géométrique théorique calculée à partir de la forme et de la détermination des dimensions des particules de la poudre; Asr est la mesure de l'aire spécifique réelle par BET ladite poudre comportant plus de 20% en nombre de particules de base présentant un indice de sphéricité inférieur à 0,6, et constituées en un oxyde de zirconium et/ou d'hafnium de formule MON, M étant Zr4-, Hf 4-, ou un mélange de Zr4 ` et Hf +, et x étant un nombre positif non nul, ledit oxyde, dit premier oxyde , étant dopé au moyen d'un dopant choisi parmi : - un deuxième oxyde d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en solution solide avec ledit premier oxyde ; - un deuxième oxyde d'un élément choisi parmi Si, Al, S et leurs mélanges dispersé dans ledit premier oxyde ; - et leurs mélanges. Dans la mesure où elles ne sont pas incompatibles avec ce -mode de réalisation, les caractéristiques d'une poudre selon les modes de réalisation décrits précédemment sont applicables à cette poudre. De préférence lesdites particules de base présentent une forme de plaquette et/ou sont agrégées sous la forme d'étoiles et/ou de lamelles et/ou d'oursins et/ou de sphères creuses. The invention also relates to a powder having a maximum particle size (D99.5) of less than 200 m and having a porosity index Ip of less than 2, the porosity index being equal to the Asr / Asg ratio where - Asg is theoretical geometrical surface area calculated from the shape and particle size determination of the powder; Asr is the measurement of the specific surface area by BET, said powder comprising more than 20% by number of base particles having a sphericity index of less than 0.6, and consisting of an oxide of zirconium and / or hafnium of MON formula, M being Zr4-, Hf 4-, or a mixture of Zr4 `and Hf +, and x being a non-zero positive number, said oxide, said first oxide, being doped by means of a dopant chosen from: a second oxide of an element selected from Y, La, Ce, Sc, Ca, Mg and mixtures thereof in solid solution with said first oxide; a second oxide of an element chosen from Si, Al, S and their mixtures dispersed in said first oxide; - and their mixtures. Insofar as they are not incompatible with this embodiment, the characteristics of a powder according to the previously described embodiments are applicable to this powder. Preferably, said base particles have a wafer shape and / or are aggregated in the form of stars and / or lamellae and / or sea urchins and / or hollow spheres.

L'invention concerne encore un corps structurel, notamment fabriqué par des techniques d'extrusion, de granulation (par exemple par atomisation), de moulage par injection, de pressage (pressage unidirectionnel, pressage à chaud, CIP, HIP...), de coulage (coulage en barbotine, coulage en bande,...), de revêtement (par centrifugation ou spin coating , par trempage ou dip coating ...), choisi parmi un corps présentant une densité supérieure à 98 % de la densité théorique du matériau le constituant, un corps présentant un indice de porosité Ip>2, une couche d'épaisseur inférieure à 1 mm présentant un indice de porosité Ip>2 ou de densité supérieure à 98 % de la densité théorique du matériau la composant, notamment un revêtement catalytique ou washcoat en anglais, par exemple, obtenue par dip coating ou par spin coating ou encore par coulage en bande, ledit corps ou ladite couche étant obtenu à partir d'une poudre conforme à l'invention. The invention also relates to a structural body, in particular manufactured by extrusion techniques, granulation (for example by atomization), injection molding, pressing (unidirectional pressing, hot pressing, CIP, HIP ...), pouring (slip casting, strip casting, etc.), coating (by centrifugation or spin coating, dipping or dip coating, etc.) chosen from a substance having a density greater than 98% of the theoretical density of the material constituting it, a body having a porosity index Ip> 2, a layer of thickness less than 1 mm having a porosity index Ip> 2 or a density greater than 98% of the theoretical density of the component material, in particular a catalytic coating or washcoat in English, for example, obtained by dip coating or by spin coating or by strip casting, said body or said layer being obtained from a powder according to the invention.

L'invention concerne encore l'utilisation d'une poudre selon l'invention ou d'un corps selon l'invention comme catalyseur, comme support d'un catalyseur, comme élément de filtration, notamment pour le traitement de gaz ou de liquides, comme élément d'une pile à combustible, notamment une anode ou un électrolyte, en particulier d'une pile à combustible du type SOFC, comme matériau piézo-électrique, comme connecteur optique, comme céramique dentaire ou, plus généralement, comme céramique structurale, c'est-à- dire dans toute application où de bonnes propriétés mécaniques et/ou une bonne résistance à l'usure sont recherchées. The invention also relates to the use of a powder according to the invention or of a body according to the invention as a catalyst, as a support for a catalyst, as a filter element, in particular for the treatment of gases or liquids, as part of a fuel cell, in particular an anode or an electrolyte, in particular a SOFC type fuel cell, as a piezoelectric material, as an optical connector, as a dental ceramic or, more generally, as a structural ceramic, that is to say in any application where good mechanical properties and / or good resistance to wear are sought.

L'invention concerne encore un catalyseur, un support d'un catalyseur, un élément de filtration, notamment pour le traitement de gaz ou de liquides, un élément d'une pile à combustible, notamment une anode ou un électrolyte, en particulier d'une pile à combustible du type SOFC, un matériau piézo-électrique, un connecteur optique, une céramique dentaire ou, plus généralement une céramique structurale, c'est-à-dire une pièce présentant de bonne propriétés mécaniques et/ou une bon;le résistance à l'usure, remarquable en ce qu'elle comporte ou est obtenu(e) à partir d'une poudre selon l'invention. The invention also relates to a catalyst, a support for a catalyst, a filter element, in particular for the treatment of gases or liquids, an element of a fuel cell, in particular an anode or an electrolyte, in particular a fuel cell of the SOFC type, a piezoelectric material, an optical connector, a dental ceramic or, more generally, a structural ceramic, that is to say a part having good mechanical properties and / or a good one; wear resistance, remarkable in that it comprises or is obtained (e) from a powder according to the invention.

Brève description des figures D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description détaillée qui va suivre et à l'examen du dessin annexé dans lequel la figure 1 représente un schéma décrivant les principales étapes d'un procédé selon l'invention ; les figures 2a à 2e représentent des schémas de particules en forme d'aiguille, de plaquette, de lamelle, d'étoile et de sphère creuse, respectivement ; les figures 3a à 3e représentent des photographies de poudres de particules. 18 Définitions Les percentiles ou centiles 0,5 (D0 5), 50 (D50), et 99,5 (D99.5) sont les tailles de particules d'une poudre correspondant aux pourcentages en masse, de 0,5% de 50 % et 99,5 % respectivement, sur la courbe de distribution granulométrique cumulée des tailles des particules de la poudre, les tailles des particules étant classées par ordre croissant. Par exemple, 99,5 %, en masse des particules de la poudre ont une raille inférieure à D99,5 et 0,5 % des particules en masse ont une taille supérieure à D9,>,5. 0,5 % en masse des particules de la poudre ont une taille inférieure à D0,5. Les percentiles peuvent être déterminés à l'aide d'une distribution granulométrique réalisée à l'aide d'un sédigraphe. Le sédigraphe utilisé ici est un Sedigraph 5100 de la société Micromeritics . D50 correspond à la taille médiane d'un ensemble de particules, c'est-à-dire à la taille divisant les particules de cet ensemble en première et deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure, ou inférieure respectivement, à la taille médiane. On appelle taille maximale des particules d'une poudre , le percentile 99,5 (D99.5) de ladite poudre. Une poudre est un ensemble de particules. Ces particules peuvent être de base , c'est-à-dire non associées à d'autres particules de base, agglomérées ou agrégées . A la différence d'un simple agglomérat de particules de base, une particule agrégée, encore appelée agrégat , ne se dissocie pas facilement et résiste, par exemple, en cas d'application d'ultrasons. Classiquement, les liaisons entre particules de base dans une particule agrégée sont des liaisons chimiques alors que dans un agglomérat, elles résultent d'effets de charge ou de polarité. BRIEF DESCRIPTION OF THE FIGURES Other features and advantages of the invention will become apparent on reading the detailed description which follows and on examining the appended drawing in which FIG. 1 represents a diagram describing the main steps of a process. according to the invention; Figures 2a to 2e show needle, wafer, lamella, star and hollow sphere particle patterns, respectively; Figures 3a to 3e show photographs of particle powders. 18 Definitions Percentiles or percentiles 0.5 (D0 5), 50 (D50), and 99.5 (D99.5) are the particle sizes of a powder corresponding to percentages by weight, 0.5% of 50 % and 99.5%, respectively, on the cumulative size distribution curve of the particle sizes of the powder, the particle sizes being ranked in ascending order. For example, 99.5% by weight of the powder particles have a mesh size below D99.5 and 0.5% of the bulk particles are larger than D9.5. 0.5% by weight of the particles of the powder have a size less than D0.5. Percentiles can be determined using a particle size distribution using a sedigraph. The sedigraph used here is a Sedigraph 5100 from Micromeritics. D50 corresponds to the median size of a set of particles, that is to say to the size dividing the particles of this set into first and second populations equal in mass, these first and second populations containing only particles presenting a upper, or lower respectively, at the median size. The maximum particle size of a powder is the 99.5 percentile (D99.5) of said powder. A powder is a set of particles. These particles can be basic, that is to say, not associated with other basic particles, agglomerated or aggregated. Unlike a simple agglomerate of base particles, an aggregated particle, also called aggregate, does not dissociate easily and resists, for example, in the case of ultrasound application. Conventionally, the bonds between base particles in an aggregated particle are chemical bonds while in an agglomerate, they result from effects of charge or polarity.

Dans la présente description, on appelle "particules" les particules de base et les agrégats. Par impuretés , on entend les constituants inévitables, introduits nécessairement avec les matières premières ou résultant de réactions avec ces constituants. Ici, par impuretés , on entend donc tout élément différent du composé de zirconium et/ou d'hafnium (dérivé, hydrate ou oxyde), et du ou des dopants optionnels. La teneur en impuretés d'un hydrate ou d'un dérivé se mesure après une calcination à 1000°C. Dans le cas d'un dérivé, le ou les éléments du ou des groupements anioniques dudit dérivé ne sont pas considérés comme impuretés. Par exemple, après calcination à 1000°C d'un ZBS, le souffre résiduel n'est pas considéré comme une impureté. On appelle dopant ou composé dopant d'un produit ur constituant minoritaire, c'est-à-dire qui ne constitue pas le constituant présentant la teneur molaire la plus élevée dans le matériau considéré. Par exemple, une zircone dopée à l'alumine contient une quantité molaire d'alumine inférieure ou égale à celle de la zircone. Par extension, on appelle aussi dopant l'espèce introduite au cours du procédé de fabrication du produit dopé. Ce dernier dopant peut être identique au dopant présent dans le produit dopé, ou être différent, c'est-à-dire constituer un précurseur du dopant présent dans le produit dopé. Le dopant présent dans le produit dopé peut alors également être qualifié de "successeur" du dopant introduit pendant la fabrication du produit dopé. Par exemple, l'ajout de YC13 peut conduire à un sulfate basique de zirconium dopé au sulfate basique d'yttrium. Le dopant d'une particule peut être localisé : - à l'intérieur de la particule sous la forme : o d'un composé défini (par exemple ZrOSO4, ZrCeO4) ou d'une solution solide ou d'un mélange intime moléculaire (par exemple (Zr,Y>)BS, (ZrXCey)O2, avec x+y=l) et/ou o d'une dispersion (par exemple dispersion d'alumine dans une particule de zircone) et/ou o d'inclusions et/ou en surface de la particule. On appelle généralement dérivé un composé de la forme M(OH)X(N')y(OH2)z, M étant un cation métallique ou un mélange de cations métalliques et N' un anion ou un mélange d'anions, les indices x et y étant des nombres strictement positifs, l'indice z étant un nombre positif ou nul, et présentant une solubilité dans l'eau à une température inférieure à 20°C inférieure à 10-3 mol/1. Les anions peuvent être aussi bien minéraux (CF) qu'organiques (acétate CH3-COO-), monoatomiques (F) ou polyalomiques (SO42 ). En particulier si M est Zr4 , Hf i-. ou un mélange de Zr4` et Hf -, le dérivé sera dit dérivé de zirconium , dérivé d'hafnium ou dérivé de zirconium et d'hafnium , respectivement. In the present description, the term "particles" is defined as the base particles and the aggregates. By impurities is meant the inevitable constituents, necessarily introduced with the raw materials or resulting from reactions with these constituents. Here, by impurities, is meant any element different from the zirconium compound and / or hafnium (derivative, hydrate or oxide), and optional dopant (s). The impurity content of a hydrate or a derivative is measured after calcination at 1000 ° C. In the case of a derivative, the element (s) of the anionic group (s) of said derivative are not considered as impurities. For example, after calcination at 1000 ° C of a ZBS, the residual sulfur is not considered an impurity. The term "doping agent" or "doping compound" is a minor component of the product, that is to say which does not constitute the constituent having the highest molar content in the material under consideration. For example, an alumina doped zirconia contains a molar amount of alumina less than or equal to that of zirconia. By extension, the species introduced during the manufacturing process of the doped product is also called dopant. The latter dopant may be identical to the dopant present in the doped product, or be different, that is to say constitute a precursor of the dopant present in the doped product. The dopant present in the doped product can then also be described as a "successor" of the dopant introduced during the manufacture of the doped product. For example, the addition of YC13 can lead to a basic zirconium sulfate doped with yttrium basic sulfate. The dopant of a particle can be localized: within the particle in the form of a defined compound (for example ZrOSO4, ZrCeO4) or a solid solution or a molecular intimate mixture (by example (Zr, Y>) BS, (ZrXCey) O2, with x + y = 1) and / or o of a dispersion (for example dispersion of alumina in a zirconia particle) and / or o of inclusions and or on the surface of the particle. A compound of the form M (OH) X (N ') y (OH 2) z is generally derived, M being a metal cation or a mixture of metal cations and N' an anion or a mixture of anions, the indices x and y being strictly positive numbers, the index z being a positive or zero number, and having a solubility in water at a temperature below 20 ° C of less than 10-3 mol / l. The anions can be as well inorganic (CF) as organic (acetate CH3-COO-), monoatomic (F) or polyalomic (SO42). Especially if M is Zr4, Hf i-. or a mixture of Zr4` and Hf -, the derivative will be referred to as zirconium derivative, hafnium derivative or zirconium and hafnium derivative, respectively.

Les étapes b) et c) permettent en particulier de fabriquer des dérivés de zirconium et/ou d'hafnium. Sauf mention contraire, dans les présentes description et revendications, un dérivé est un dérivé susceptible d'être fabriqué par un procédé conforme à l'invention. Steps b) and c) in particular make it possible to manufacture zirconium and / or hafnium derivatives. Unless otherwise indicated, in the present description and claims, a derivative is a derivative capable of being manufactured by a process according to the invention.

On appelle sulfate basique de zirconium ou ZBS un dérivé de zirconium de formule générique Zr(OH)x(SO4)y (H2O), avec y compris entre 0,2 et 2, x tel que x+2y = 4, et z un nombre positif ou nul. On appelle carbonate basique de zirconium ou ZBC un dérivé de zirconium de formule générique Zr(OH)x(CO3)y(H2O)z, avec y compris entre 0,2 et 2, x tel que x+2y = 4, et z un nombre positif ou nul. On appelle phosphate basique de zirconium un dérivé de zirconium de formule générique Zr(OH)x(PO4)y(H2O)Z, avec y compris entre 0,2 et 2, x tel que x +3y = 4, z un nombre positif ou nul. On appelle sel un composé de la forme M(OH)x(N')y(OH2)z, M étant un cation métallique ou un mélange de cations métalliques et N' un anion ou un mélange d'anions, les indices x, y et z étant des nombres positifs ou nuls, x+y > 0, et présentant une solubilité dans l'eau à une température inférieure à 20°C supérieure à 10-3 mol/l. Les anions peuvent être aussi bien minéraux (Cr) qu'organiques (acétate CH3-COO-), monoatomiques (F-) aussi bien que polyatomiques (SO42 ). Dans le cas du zirconium, des sels typiques sont l'oxychlorure de zirconium Zr(OH)2C12(OH2)4 , le chlorure de zirconium ZrC14 et le sulfate de zirconium Zr(SO4)2. On appelle oxychlorure de zirconium ou ZOC le sel de zirconium cristallisé de formule Zr(OH)2C12(OH2)4. On appelle classiquement hydrate un composé de la forme MOx(OH)y(OH2)z, M étant un cation métallique ou un mélange de cations métalliques, les indices x et z étant des nombres positifs ou nuls, l'indice y étant un nombre positif, et 2x+y étant égal à la valence du cation ou égal à la valence moyenne du mélange de cations. Far exemple, les hydrates de zirconium, ou ZHO , présentent la formule ZrOx(OH)y(OH2)z, avec z > 0, y > 0 et 2x + y = 4. Zirconium basic sulphate or ZBS is a zirconium derivative of general formula Zr (OH) x (SO4) y (H2O), with y between 0.2 and 2, x such that x + 2y = 4, and z a positive or zero number. Basic zirconium carbonate or ZBC is a zirconium derivative of the general formula Zr (OH) x (CO 3) y (H 2 O) z, with y between 0.2 and 2, x such that x + 2y = 4, and z a positive number or zero. Basic zirconium phosphate is a zirconium derivative of general formula Zr (OH) x (PO 4) y (H 2 O) Z, with y being between 0.2 and 2, x such that x + 3y = 4, z is a positive number. or none. A compound of the form M (OH) x (N ') y (OH 2) z is called salt, M being a metal cation or a mixture of metal cations and N' an anion or a mixture of anions, the indices x, y and z being positive or zero numbers, x + y> 0, and having a solubility in water at a temperature below 20 ° C of greater than 10-3 mol / l. The anions can be as well inorganic (Cr) as organic (acetate CH3-COO-), monoatomic (F-) as well as polyatomic (SO42). In the case of zirconium, typical salts are zirconium oxychloride Zr (OH) 2 Cl 2 (OH 2) 4, zirconium chloride ZrCl 4 and zirconium sulfate Zr (SO 4) 2. Zirconium oxychloride or ZOC is the crystallized zirconium salt of formula Zr (OH) 2 Cl 2 (OH 2) 4. A compound of the MOx (OH) y (OH 2) z form is conventionally hydrated, M being a metal cation or a mixture of metal cations, the indices x and z being positive or zero numbers, the index y being a number positive, and 2x + y being equal to the valency of the cation or equal to the average valency of the cation mixture. For example, zirconium hydrates, or ZHO, have the formula ZrOx (OH) y (OH2) z, where z> 0, y> 0 and 2x + y = 4.

En particulier si M est Zr4-, Hf 4-, ou un mélange de Zr4+ et Hf , l'hydrate sera un hydrate de zirconium , hydrate d'hafnium ou hydrate de zirconium et d'hafnium , respectivement. In particular, if M is Zr4-, Hf 4-, or a mixture of Zr4 + and Hf, the hydrate will be a zirconium hydrate, hafnium hydrate, or zirconium hydrate and hafnium hydrate, respectively.

Sauf mention contraire, dans les présentes description et revendications, un hydrate est un hydrate susceptible d'être fabriqué par un procédé conforme à ['invention. On appelle classiquement oxyde un composé de formule MOX, M étant un cation métallique ou un mélange de cations métalliques, et x un nombre positif non nul. Par exemple, la zircone ZrO2 est un oxyde de zirconium. Dans le cas particulier du soufre et du phosphore, les composés sous la forme oxyde comprennent également tous les composés oxydés du soufre et du phosphore respectivement. Un composé oxydé de soufre est par exemple 5042 , un composé oxydé de phosphore est par exemple PO43-. Unless otherwise stated, in the present description and claims, a hydrate is a hydrate capable of being made by a process according to the invention. A compound of formula MOX is conventionally called oxide, where M is a metal cation or a mixture of metal cations, and x is a non-zero positive number. For example, ZrO 2 zirconia is a zirconium oxide. In the particular case of sulfur and phosphorus, the compounds in the oxide form also include all oxidized compounds of sulfur and phosphorus respectively. An oxidized sulfur compound is for example 5042, an oxidized phosphorus compound is for example PO43-.

En l'absence d'indications contraires, dans les présentes description et revendications, un oxyde est un oxyde susceptible d'être fabriqué par un procédé conforme à l'invention. On appelle classiquement oxoanion un anion contenant un oxyde, de la forme QOx Q étant un métal (par exemple le silicium) ou un non-métal (par exemple le carbone, le phosphore, le soufre), n étant un nombre entier supérieur ou égal à 1 et x étant égal à (n+w)/2, avec w la valence du métal ou non métal considéré. On appelle calcination un traitement thermique qui permet de transformer un produit sous une forme oxyde. Typiquement la calcination s'effectue à une température de 500°C et plus. On appelle séchage un traitement thermique, généralement effectué à une température inférieure à 400°C, qui permet d'éliminer tout le solvant, voire seulement le solvant ne participant pas à la constitution du produit séché. Par exemple, dans le cas où le solvant est de l'eau, le séchage d'un hydrate de zirconium permettra d'éliminer l'eau n'étant pas l'eau de constitution dudit hydrate. A la différence de la calcination, le séchage ne conduit pas à une transformation du produit traité sous une forme oxyde. In the absence of contrary indications, in the present description and claims, an oxide is an oxide capable of being manufactured by a process according to the invention. Oxoanion is conventionally referred to as an oxide-containing anion, of the form QOx Q being a metal (for example silicon) or a non-metal (for example carbon, phosphorus, sulfur), n being a whole number greater than or equal to at 1 and x being equal to (n + w) / 2, with w the valence of the metal or non metal considered. A thermal treatment is called calcination which makes it possible to transform a product into an oxide form. Typically the calcination is carried out at a temperature of 500 ° C and more. Drying is a heat treatment, generally carried out at a temperature below 400 ° C., which makes it possible to eliminate all the solvent, or even only the solvent that does not participate in the constitution of the dried product. For example, in the case where the solvent is water, the drying of a zirconium hydrate will eliminate water not being the water of constitution of said hydrate. Unlike calcination, drying does not lead to transformation of the treated product into an oxide form.

On appelle porosité ouverte la porosité imputable à l'ensemble des pores accessibles d'un matériau se présentant sous la forme d'une poudre ou d'un solide mis en forme. Selon la classification de l'International Union of Pure and Applied Che:mistry, 1994, vol.66, n°8, pp.1739-1758, les pores accessibles se divisent en 3 catégories en fonction de leur diamètre équivalent : ù les macropores sont les pores accessibles ayant un diamètre équivalent supérieur à 50 nm ; les mésopores sont les pores accessibles ayant un diamètre équivalent compris entre 2 et 50nm; les micropores sont les pores accessibles ayant un diamètre équivalent inférieur à 2nm; le diamètre équivalent d'un pore étant défini par la plus petite dimension dudit pore, comme indiqué dans le document de l'IUPAC. Par exemple, si le pore est cylindrique, le diamètre équivalent sera le diamètre du cylindre. La porosité ouverte est la somme de la macroporosité, de la mésoporosité et de la microporosité. Open porosity is the porosity attributable to all accessible pores of a material in the form of a powder or a shaped solid. According to the classification of the International Union of Pure and Applied Chemistry, 1994, vol.66, n ° 8, pp.1739-1758, the accessible pores are divided into 3 categories according to their equivalent diameter: macropores are accessible pores having an equivalent diameter greater than 50 nm; mesopores are accessible pores having an equivalent diameter of between 2 and 50 nm; micropores are accessible pores having an equivalent diameter of less than 2 nm; the equivalent diameter of a pore being defined by the smaller dimension of said pore, as indicated in the IUPAC document. For example, if the pore is cylindrical, the equivalent diameter will be the diameter of the cylinder. Open porosity is the sum of macroporosity, mesoporosity and microporosity.

Dans chacune desdites catégories, on appelle classiquement volume poreux , le volume occupé par les pores accessibles des particules rapporté à la masse de la poudre ou du corps considéré. Le volume macroporeux , le volume mésoporeux et le volume microporeux sont les volumes rapportés à la masse de poudre ou de solide correspondant aux macropores, aux mésopores et aux micropores, respectivement. In each of these categories, classically called porous volume, the volume occupied by the accessible pores of the particles relative to the mass of the powder or body considered. The macroporous volume, the mesoporous volume and the microporous volume are the volumes relative to the mass of powder or solid corresponding to macropores, mesopores and micropores, respectively.

Le volume macroporeux est classiquement mesuré par porosimétrie au mercure ; le volume mésopororeux et le volume microporeux sont classiquement mesurés par adsorption et désorption d'azote à -196 °C. Un agent porogène est un agent qui, introduit à l'étape a) dans la liqueur mère, conduit à la création de pores, majoritairement ouverts, dans les particules. The macroporous volume is conventionally measured by mercury porosimetry; the mesoporous volume and the microporous volume are conventionally measured by adsorption and desorption of nitrogen at -196 ° C. A blowing agent is an agent which, introduced in step a) in the mother liquor, leads to the creation of pores, mostly open, in the particles.

On appelle indice de porosité Ip d'une poudre de particules ou d'un corps, le rapport Asr/Asg où - Asg est l'aire spécifique géométrique théorique calculée à partir de la forme et de la détermination des dimensions des particules de la poudre ou du corps; Asr est la mesure de l'aire spécifique réelle par BET. Ainsi, si Ip = 1, soit Asr = Asg, les particules de la poudre ou du corps ne présentent pas de porosité ouverte et sont parfaitement denses. Dans la pratique, o si Ip > 2, soit Asr > 2Asg, les particules de la poudre ou du corps présentent une porosité ouverte significative, et sont ici qualifiées de particules poreuses ; 30 o si IF, < 2, les particules de la poudre ou du corps sont très peu poreuses et sont ici qualifiées de particules denses . The porosity index Ip of a particle powder or a body is referred to as the Asr / Asg ratio where - Asg is the theoretical geometrical specific area calculated from the shape and size determination of the particles of the powder. or body; Asr is the measurement of the actual specific area by BET. Thus, if Ip = 1, ie Asr = Asg, the particles of the powder or of the body do not have open porosity and are perfectly dense. In practice, if Ip> 2, ie Asr> 2Asg, the particles of the powder or of the body have a significant open porosity, and are here described as porous particles; O if IF <2, the particles of the powder or of the body are very slightly porous and are here described as dense particles.

L'indice de porosité caractérise la porosité ouverte des particules de la poudre ou du corps (microporosité, mésoporosité et macroporosité). On appelle agrégat poreux , agglomérat poreux ou corps solide poreux , un agrégat, agglomérat ou corps solide, respectivement, présentant un indice de porosité Ip > 2. Lorsqu'on évoque deux composés et leurs mélanges , on inclut non seulement ces deux composés, des mélanges de ces composés dans lesquels les grains des composés sont clairement distincts, mais aussi les solutions solides et/ou mélanges intimes moléculaires de ces composés. Les mélanges des composés de zirconium et des composés d'hafnium incluent par exemple une solution solide de zirconium et d'hafnium (Zr,Hf)O2 et un mélange de grains de ZrO2 et de grains d'HfO2. The porosity index characterizes the open porosity of the particles of the powder or the body (microporosity, mesoporosity and macroporosity). A porous aggregate, a porous agglomerate or a porous solid body, is an aggregate, agglomerate or solid body, respectively, having a porosity index Ip> 2. When two compounds and their mixtures are mentioned, not only these two compounds, but also mixtures of these compounds in which the grains of the compounds are clearly distinct, but also the solid solutions and / or intimate molecular mixtures of these compounds. The mixtures of the zirconium compounds and the hafnium compounds include, for example, a solid solution of zirconium and hafnium (Zr, Hf) O2 and a mixture of ZrO2 grains and HfO2 grains.

L'acidité d'une solution ou suspension est égale à la concentration en ion H , [Hl, de ladite solution ou suspension. L'acidité d'une solution ou suspension est aussi égale à 10-pH. L'acidité est exprimée en mol/l. On regroupe par le terme propriétés texturales l'ensemble des propriétés physiques de surface caractérisant une poudre ou un corps solide mis en forme, à savoir l'aire spécifique, le volume mésoporeux, le volume microporeux, le volume macroporeux, la distribution de taille des pores et la taille moyenne des pores. On appelle particules de base les particules "élémentaires", et en particulier les particules en forme d'aiguille ou de plaquette : On appelle aiguille une particule anisotrope de forme générale allongée, c'est-à-dire s'étendant principalement le long d'une ligne directrice, rectiligne ou non. Cependant, la longueur L, mesurée le long de cette ligne directrice, est inférieure à 50 fois à la largeur "1", la largeur "1" étant la plus grande dimension qu'il est possible de mesurer dans l'ensemble des plans transversaux (perpendiculaires à la ligne directrice) le long de la ligne directrice. En outre, l'épaisseur "e", c'est-à-dire la plus petite dimension mesurée dans le plan transversal dans lequel est mesuré la largeur "1", est supérieure à 0,5 fois la largeur "1". Une aiguille est représentée schématiquement sur la figure 2a. Les figures 3b et 3c sont des photographies de poudre d'aiguilles. The acidity of a solution or suspension is equal to the concentration of H, ion, of said solution or suspension. The acidity of a solution or suspension is also equal to 10-pH. The acidity is expressed in mol / l. The term "textural properties" collects all the physical surface properties characterizing a powder or a solid body shaped, namely the specific surface area, the mesoporous volume, the microporous volume, the macroporous volume, the size distribution of the particles. pores and average pore size. Basic particles are called "elementary" particles, and in particular needle-shaped or wafer-shaped particles: A needle is called an anisotropic particle of generally elongate shape, that is to say extending mainly along the a guideline, rectilinear or not. However, the length L, measured along this guideline, is less than 50 times the width "1", the width "1" being the largest dimension that can be measured in the set of transverse planes (perpendicular to the guideline) along the guideline. In addition, the thickness "e", i.e., the smallest dimension measured in the transverse plane in which the width "1" is measured, is greater than 0.5 times the width "1". A needle is shown schematically in Figure 2a. Figures 3b and 3c are photographs of needle powder.

Les sections transversales d'une aiguille, c'est-à-dire perpendiculaires à la direction de la ligne directrice défroissant sa longueur, peuvent être quelconques, et notamment être polygonales ou présenter la forme d'une ellipse ou d'un cercle. Selon l'invention, de préférence 1,67 < L/1 < 50, de préférence 2 < L/1, de préférence encore 5 < L/1. De préférence toujours, L/1 < 20, et de préférence L/l < 10. On appelle plaquette une particule présentant une forme générale large et peu épaisse, à la manière d'une paillette. Autrement dit, une plaquette présente deux grandes faces, généralement sensiblement parallèles l'une à l'autre, écartées l'une de l'autre d'une distance faible par rapport aux dimensions desdites faces. Une plaquette est représentée schématiquement sur la figure 2b. La figure 3f est une photographie représentant des plaquettes (mélangées à des particules en grappe ). Plus précisément, on considère qu'une particule est une plaquette si la longueur "L", correspondant à la plus grande dimension mesurable sur une des deux grandes faces de la particule, est inférieure à 1,5 fois la largeur "1", la largeur "1" étant la plus grande dimension qu'il est possible de mesurer dans l'ensemble des plans transversaux (perpendiculaires à la longueur) le long de la direction de la longueur, et si l'épaisseur "e", c'est-à-dire la plus petite dimension mesurée dans le plan transversal dans lequel est mesurée la largeur "1", est inférieure à 0,5 fois la largeur "1". Selon l'invention, si e, L, et 1 désignent respectivement l'épaisseur, la longueur, et la largeur d'une plaquette, de préférence e 0,25. 1, de préférence e 0,22. 1 et/ou L 1.2. 1. De préférence selon l'invention, les sections perpendiculaires à ,a direction de l'épaisseur sont sensiblement constantes sur toute l'épaisseur de la plaquette. De préférence encore, selon l'invention, les sections perpendiculaires à la direction de l'épaisseur présentent plus de 7 cotés, ou présentent la forme générale d'une ellipse ou d'un cercle. Parmi les agrégats, on distingue les formes "ordonnées" et les formes "désordonnées", selon que les particules de base sont agencées de manière à constituer un agrégat de forme générale définie ou pas, respectivement. Parmi les formes ordonnées, on distingue en particulier les lamelles, les étoiles et les sphères, notamment les sphères creuses. The cross sections of a needle, that is to say perpendicular to the direction of the line decreasing its length, may be arbitrary, and in particular be polygonal or have the shape of an ellipse or a circle. According to the invention, preferably 1.67 <L / 1 <50, preferably 2 <L / 1, more preferably 5 <L / 1. Preferably always, L / 1 <20, and preferably L / 1 <10. A wafer is called a particle having a generally broad and shallow shape, in the manner of a straw. In other words, a plate has two large faces, generally substantially parallel to one another, spaced apart from each other by a small distance from the dimensions of said faces. A wafer is shown schematically in Figure 2b. Figure 3f is a photograph showing platelets (mixed with cluster particles). More specifically, it is considered that a particle is a wafer if the length "L", corresponding to the largest dimension measurable on one of the two large faces of the particle, is less than 1.5 times the width "1", the width "1" being the largest dimension that can be measured in the set of transverse planes (perpendicular to the length) along the direction of the length, and if the thickness "e" is i.e., the smallest dimension measured in the transverse plane in which the width "1" is measured, is less than 0.5 times the width "1". According to the invention, if e, L, and 1 respectively denote the thickness, the length, and the width of a wafer, preferably e 0.25. 1, preferably e 0.22. 1 and / or L 1.2. 1. Preferably according to the invention, the sections perpendicular to the direction of the thickness are substantially constant over the entire thickness of the wafer. More preferably, according to the invention, the sections perpendicular to the direction of the thickness have more than 7 sides, or have the general shape of an ellipse or a circle. Among the aggregates, one distinguishes the "ordered" forms and the "disordered" forms, according to whether the basic particles are arranged so as to constitute an aggregate of definite general shape or not, respectively. Among the ordered forms, lamellas, stars and spheres, in particular hollow spheres, are particularly distinguished.

On appelle lamelle une particule constituée d'un empilement à plat d'au moins deux plaquettes de dimensions proches, de préférence avec un taux de recouvrement élevé. Autrement dit, les plaquettes sont similaires, en contact par leurs grandes faces et, de préférence, bien superposées les unes sur les autres. Une lamelle est représentée schématiquement sur la figure 2c. De préférence, une lamelle au sens des présentes description et revendications est telle que Wl'/Wl < 1.5 et W2'/W2 < 1,5, W1 et W2 désignant le grand axe et le petit axe, respectivement, de la plus petite ellipse à travers laquelle chacune des plaquettes constituant la lamelle peut passer, suivant la direction de son épaisseur (c'est-à-dire à plat), et W 1 ' et W2' désignant le grand axe et le petit axe, respectivement, de la plus petite ellipse à travers laquelle la lamelle peut passer, suivant la direction d'empilement. De préférence selon l'invention, les lamelles comportent moins de 50, de préférence moins de 20 plaquettes. De préférence toujours, selon l'invention, W1'/W1 < 1,2 et W2','W2 < 1,2, de préférence encore Wl'/Wl < 1,1 et W2'/W2 < 1,1, W1, W2, W1' et W2' étant tels que définis ci- dessus. On appelle étoile une particule constituée d'un assemblage d'au moins deux aiguilles selon l'invention, éventuellement de différentes dimensions, [es aiguilles se croisant sensiblement au centre de l'étoile. Une étoile est représentée schématiquement sur la figure 2d. L'agrégation des aiguilles pour former des étoiles est visible sur la photographie de la figure 3d. On appelle longueur L d'une étoile la longueur du grand axe de la plus petite ellipse dans laquelle peut être inscrite l'étoile (voir figure 2d). De préférence, le nombre n' d'aiguilles constituant une étoile est inférieur à 15, de préférence inférieur à 8. A flake consists of a flat stack of at least two platelets of similar size, preferably with a high recovery rate. In other words, the plates are similar, in contact with their large faces and, preferably, well superimposed on each other. A coverslip is shown schematically in Figure 2c. Preferably, a lamella in the sense of the present description and claims is such that W1 '/ W1 <1.5 and W2' / W2 <1.5, W1 and W2 designating the major axis and the minor axis, respectively, of the smallest ellipse through which each of the platelets constituting the lamella can pass, in the direction of its thickness (that is to say flat), and W 1 'and W2' designating the major axis and the minor axis, respectively, of the smaller ellipse through which the slat can pass, following the stacking direction. Preferably according to the invention, the lamellae comprise less than 50, preferably less than 20 platelets. Still preferably, according to the invention, W 1 '/ W 1 <1.2 and W 2', 'W 2 <1.2, more preferably W 1' / W 1 <1.1 and W 2 '/ W 2 <1.1, W 1 , W2, W1 'and W2' being as defined above. A star is a particle consisting of an assembly of at least two needles according to the invention, possibly of different dimensions, needles intersecting substantially in the center of the star. A star is shown schematically in Figure 2d. The aggregation of the needles to form stars is visible in the photograph of Figure 3d. A length L of a star is called the length of the major axis of the smallest ellipse in which the star can be inscribed (see Figure 2d). Preferably, the number of needles constituting a star is less than 15, preferably less than 8.

On appelle oursin une particule constituée d'un assemblage sous forme désordonnée de particules de base, et notamment d'aiguilles et/ou de plaquettes selon l'invention. Les oursins sont donc des patatoïdes de forme indéterminée, au sens où la forme générale d'un oursin peut être très différente de celle d'un autre oursin. L'agrégation des aiguilles et des étoiles pour former des oursins est visible sur la photographie de la figure 3e. A sea urchin is a particle consisting of an assembly in disordered form of base particles, including needles and / or platelets according to the invention. Sea urchins are therefore patatoids of indeterminate shape, in the sense that the general shape of a sea urchin can be very different from that of another sea urchin. The aggregation of needles and stars to form sea urchins is visible in the photograph of Figure 3e.

On appelle sphère creuse une particule isotrope et présentant une cavité centrale telle que si D désigne le plus grand diamètre extérieur de la particule (sa plus grande dimension extérieure) et D' désigne le plus grand diamètre intérieur de la cavité (sa plus grande dimension intérieure), D/D' < 2. Une sphère creuse est représentée schématiquement, en coupe, sur la figure 2e. Une agrégation d'aiguilles pour former des sphères creuses est visible sur une des photographies de la figure 3g. Une sphère creuse selon l'invention est de préférence constituée d'aiguilles. A hollow sphere is an isotropic particle having a central cavity such that if D denotes the largest outside diameter of the particle (its largest outside dimension) and D 'is the largest inside diameter of the cavity (its largest inside dimension). ), D / D '<2. A hollow sphere is shown schematically, in section, in Figure 2e. An aggregation of needles to form hollow spheres is visible in one of the photographs of Figure 3g. A hollow sphere according to the invention is preferably made of needles.

De préférence, selon l'invention, l'indice de sphéricité d'une sphère creuse est supérieur à 0,7, de préférence encore supérieur à 0,8. On appelle indice de sphéricité le rapport entre la plus petite dimension et la plus grande dimension d'une particule, les dimensions étant mesurées "hors tout" selon des axes passant par le barycentre de la particule. Preferably, according to the invention, the sphericity index of a hollow sphere is greater than 0.7, more preferably greater than 0.8. The term sphericity index is the ratio between the smallest dimension and the largest dimension of a particle, the dimensions being measured "overall" along axes passing through the barycenter of the particle.

Une particule est dite isotrope si son indice de sphéricité est supérieur à 0,6. Une particule est dite anisotrope Si son indice de sphéricité est compris entre 0,02 et 0,6. Par exemple, 0,02 est l'indice de sphéricité d'une aiguille dont la longueur L est 50 fois supérieure à l'épaisseur e. L'indice de sphéricité peut être supérieur à 0,05 (rapport longueur sur épaisseur égal à 20), voire supérieur à 0,1 (rapport L/e de 10). L'indice de sphéricité peut être inférieur à 0,5, voire inférieur à 0,4, voire inférieur à 0,35, voire inférieur à 0,3. Méthodes de caractérisation Morphologie des particules, à l'exception des sphères creuses La présence de particules présentant des morphologies particulières est en général possible par l'observation de clichés pris au microscope électronique à balayage comme ceux des figures. Ces clichés permettent également d'évaluer des dimensions des particules. En particulier, lorsque les particules de la poudre observée apparaissent présenter sensiblement toutes la même morphologie, il est possible de déterminer les dimensions en moyenne sur l'ensemble de ces particules. Morphologie des sphères creuses Après enrobage en résine et polissage fin (finition à la pâte diamantée micronique) d'un échantillon à caractériser, des clichés comportant entre 10 et 50 sphères creuses sont réalisés à l'aide d'un microscope électronique en balayage, le grossissement initial (xl000) utilisé étant adapté pour atteindre le nombre de sphères creuses à observer. Un grand nombre de clichés est nécessaire, généralement plus de 50. D'une part l'orientation de chaque sphère creuse étant aléatoire et d'autre part le polissage permettant une section aléatoire de chaque sphère creuse, il est alors possible d'en déterminer la structure interne (cavité). A partir de ces clichés, on peut également évaluer, en moyenne sur un ensemble de particules, le plus grand diamètre extérieur de la cavité D et le plus grand diamètre intérieur de la cavité D'. Analyses chimiques Le dosage des ions chlorure Cl- est effectué après pyrohydrolyse par chromatographie ionique. A particle is said to be isotropic if its sphericity index is greater than 0.6. A particle is called anisotropic If its sphericity index is between 0.02 and 0.6. For example, 0.02 is the sphericity index of a needle whose length L is 50 times greater than the thickness e. The sphericity index may be greater than 0.05 (length-to-thickness ratio equal to 20), or even greater than 0.1 (L / e ratio of 10). The sphericity index may be less than 0.5, or even less than 0.4, or even less than 0.35, or even less than 0.3. Characterization methods Particle morphology, except for hollow spheres The presence of particles with particular morphologies is generally possible by observation of scanning electron micrographs like those in the figures. These pictures also make it possible to evaluate the dimensions of the particles. In particular, when the particles of the observed powder appear to have substantially all the same morphology, it is possible to determine the average dimensions of all of these particles. Morphology of the hollow spheres After resin coating and fine polishing (micron diamond-paste finishing) of a sample to be characterized, plates with between 10 and 50 hollow spheres are produced using a scanning electron microscope. initial magnification (xl000) used being adapted to achieve the number of hollow spheres to be observed. A large number of shots is necessary, generally more than 50. On the one hand the orientation of each hollow sphere being random and on the other hand the polishing allowing a random section of each hollow sphere, it is then possible to determine the internal structure (cavity). From these images, it is also possible to evaluate, on average on a set of particles, the largest outside diameter of the cavity D and the largest inside diameter of the cavity D '. Chemical analyzes The determination of Cl- chloride ions is carried out after pyrohydrolysis by ion chromatography.

Les teneurs en carbonate (CO3--) et sulfate (SO42) sont déterminées à partir des teneurs en carbone et en soufre (converties respectivement en CO32 et sulfate SO4`'-) mesurées sur un analyseur Carbone Soufre, modèle LECO CS-300. Pour les autres éléments, si la teneur en l'élément est supérieure à 0,1% massique, elle est déterminée par spectroscopie de fluorescence X ; si la teneur en un élément est inférieure à 0,1% massique, elle est déterminée par ICP (Induction Coupled Plasma), sur un modèle Vista AX (commercialisé par la société Varian). Perte au feu La perte au feu est déterminée par mesure de la perte de masse du produit après calcination du produit à 1000°C pendant 1h. The contents of carbonate (CO3--) and sulfate (SO42) are determined from the carbon and sulfur contents (respectively converted to CO32 and sulphate SO4 '' -) measured on a carbon Sulfur analyzer model LECO CS-300. For the other elements, if the content of the element is greater than 0.1% by mass, it is determined by X-ray fluorescence spectroscopy; if the content of an element is less than 0.1% by weight, it is determined by ICP (Induction Coupled Plasma) on a Vista AX model (marketed by Varian). Loss on ignition The loss on ignition is determined by measuring the mass loss of the product after calcination of the product at 1000 ° C for 1 hour.

Mesures de l'aire spécifique et des volumes mésoporeux et microporeux Les propriétés texturales sont déterminées par adsorption/désorption physique de N2 à -196 °C sur un modèle Nova 2000 commercialisé par la société Quantachrome. Les échantillons sont préalablement désorbés sous vide à 250°C pendant 2 heures pour les poudres calcinées ou corps solides calcinés et à 100°C pendant 2 heures pour les poudres non calcinées. L'aire spécifique est calculée par la méthode BET (Brunauer Emmet Teller) telle que décrite dans Journal of the American Chemical Society 60 (1938) pages 309 à 316. Les volumes mésoporeux et microporeux ainsi que la distribution de taille des mésopores et micropores sont déterminés avec la méthode BJH [décrite par E.P. Barrett, L.G. Joyner, P.H. Halenda, J. Am. Chem. Soc., 73 (1951) 373] appliquée à la branche de désorption de l'isotherme. Measurements of the specific surface area and of the mesoporous and microporous volumes The textural properties are determined by physical adsorption / desorption of N2 at -196 ° C. on a Nova 2000 model marketed by Quantachrome. The samples are desorbed beforehand at 250 ° C. for 2 hours for the calcined powders or calcined solid bodies and at 100 ° C. for 2 hours for the non-calcined powders. The specific surface area is calculated by the BET method (Brunauer Emmet Teller) as described in Journal of the American Chemical Society 60 (1938) pages 309 to 316. The mesoporous and microporous volumes as well as the size distribution of the mesopores and micropores are determined by the BJH method [described by EP Barrett, LG Joyner, PH Halenda, J. Am. Chem. Soc., 73 (1951) 373] applied to the desorption branch of the isotherm.

Détermination de l'aire spécifique géométrique Asg L'aire spécifique géométrique des particules d'une poudre ou d'un corps est déterminée à partir d'observations réalisées en microscopie électronique à balayage MER L'aire 5 spécifique géométrique Asg est donnée par la formule (1) : 6n P, 2 / A = sg (d; +D, (1) avec p; la densité théorique du matériau (déterminée par intrusion d'Hélium) de la particule i, di et Di respectivement la plus petite dimension et la plus grande dimension de la particule i mesurées "hors tout" selon des axes passant par le barycentre de la particule i, et 10 n le nombre de particules ayant fait l'objet d'une mesure, avec n > 200 . Dans le cas de particules agrégées, n fait référence au nombre de particules agrégées, et non au nombre de particules de base les constituant. Mesure du volume macroporeux Le volume macroporeux ainsi que la distribution de taille des macropores sont déterminés 15 par porosimétrie Hg sur un modèle Porosizer 9320 commercialisé par la société Micromeritics. Les échantillons sont introduits sous forme de poudre ou de solide mis en forme. La pression maximale appliquée de 6000 psi permet de mesurer la porosité pour des diamètres de pores supérieurs à 50 nm. Détermination de la structure cristalline (analyse DRS:) 20 Les clichés de diffraction de rayons X de poudre sont obtenus sur un diffractomètre BRUKER D5005, utilisant la radiation Ka du cuivre (1,54060 À). Les données d'intensité sont enregistrées sur un intervalle 20 de 3-80° avec un pas de 0,02° et une durée de comptage de 1 s par pas. Les phases cristallines sont identifiées par comparaison avec les fichiers standards JCPDS. 25 La structure cristalline peut être confirmée par d'autres méthodes bien connues telles que la spectroscopie Raman ou, localement au niveau d'une particule le base, par microscopie électronique en transmission. Determination of the geometric specific surface area Asg The geometric specific surface area of the particles of a powder or of a body is determined from observations made by scanning electron microscopy. The geometric specific area Asg is given by the formula (1): 6n P, 2 / A = sg (d + D, (1) with p, the theoretical density of the material (determined by Helium intrusion) of the particle i, di and Di respectively the smallest dimension and the largest dimension of the particle i measured "overall" along axes passing through the barycenter of the particle i, and n being the number of particles measured, with n> 200. In the case of aggregated particles, n refers to the number of aggregated particles, and not to the number of base particles constituting them.Measurement of macroporous volume The macroporous volume as well as the size distribution of macropores are determined by Hg porosimetry on a Por model. osizer 9320 sold by the company Micromeritics. The samples are introduced in the form of powder or shaped solid. The maximum applied pressure of 6000 psi makes it possible to measure the porosity for pore diameters greater than 50 nm. Determination of crystalline structure (DRS: analysis) X-ray powder diffraction patterns were obtained on a BRUKER D5005 diffractometer using copper Ka radiation (1.54060Å). The intensity data are recorded over a range of 3-80 ° with a pitch of 0.02 ° and a counting time of 1 s per step. The crystalline phases are identified by comparison with the standard JCPDS files. The crystal structure can be confirmed by other well known methods such as Raman spectroscopy or, locally at a particle base, by transmission electron microscopy.

Détermination de la distribution granulométrique des particules La distribution granulométrique des particules est déterminée par sédigraphie sur un sédigraphe modèle Sedigraph 5100 commercialisé par la société Micromeritics. Determination of the Particle Size Distribution of the Particles The particle size distribution is determined by sedigraphy on a Sedigraph 5100 model sedigraph sold by the company Micromeritics.

L'échantillon à caractériser est mis en suspension dans une solution contenant du métaphosphate de sodium puis dispersée 2 fois 3 minutes sous ul-:ra-sons (puissance de 70 W). La suspension est ensuite introduite sous agitation dans l'équipement pour analyse. The sample to be characterized is suspended in a solution containing sodium metaphosphate and then dispersed twice for 3 minutes under ulters (power of 70 W). The suspension is then introduced with stirring into the equipment for analysis.

Description détaillée On décrit à présent de manière détaillée un mode de réalisation d'un procédé selon l'invention comportant des étapes a) à e) telles que présentées ci-dessus. Etape a) A l'étape a), le solvant polaire [1] peut être choisi parmi l'eau, les alcools, les solvants organiques et leurs mélanges. De préférence, le solvant polaire est l'eau. DETAILED DESCRIPTION An embodiment of a method according to the invention comprising steps a) to e) as presented above is now described in detail. Step a) In step a), the polar solvent [1] may be selected from water, alcohols, organic solvents and mixtures thereof. Preferably, the polar solvent is water.

Le premier réactif [2] est choisi de manière à apporter des ions Zr4 et/ou Hf -. De préférence, il est soluble dans le solvant de la liqueur mère. De préférence encore, il peut être choisi parmi : les sels de zirconium et/ou d'hafnium solubles dans ledit solvant, comme par exemple les chlorures, les oxychlorures, les sulfates, les oxynitrates, les acétates, les formiates, les citrates ; les aikoxydes de zirconium et/ou d'hafnium, comme par exemple les butoxydes, les propoxydes ; les dérivés de zirconium et/ou d'hafnium solubles en milieu acide dans ledit solvant, comme par exemple les carbonates basiques, les hydroxydes ; et leurs mélanges. De préférence, le premier réactif est choisi parmi les sels de zirconium et/ou d'hafnium solubles dans le solvant et leurs mélanges, de préférence parmi les oxychlorures, les oxynitrates et leurs mélanges, de préférence encore parmi les oxycllorures. Le deuxième réactif est choisi de manière à apporter des groupements anioniques de manière à former à l'étape b), par précipitation avec les ions Zr4- el/ou Hf4- apportés par le premier réactif, un dérivé de zirconium et/ou d'hafnium hydrolysable, de préférence anisotrope. The first reagent [2] is selected to provide Zr4 and / or Hf - ions. Preferably, it is soluble in the solvent of the mother liquor. More preferably, it may be chosen from: zirconium salts and / or hafnium soluble in said solvent, such as for example chlorides, oxychlorides, sulphates, oxynitrates, acetates, formates, citrates; zirconium and / or hafnium alkoxides, such as butoxides and propoxides; acid-soluble zirconium and / or hafnium derivatives in said solvent, such as, for example, basic carbonates, hydroxides; and their mixtures. Preferably, the first reagent is selected from the solvent-soluble zirconium and / or hafnium salts and mixtures thereof, preferably from oxychlorides, oxynitrates and mixtures thereof, more preferably from oxychlorides. The second reagent is selected so as to provide anionic groups so as to form in step b), by precipitation with the Zr4- and / or Hf4- ions provided by the first reagent, a zirconium derivative and / or hydrolyzable hafnium, preferably anisotropic.

Le deuxième réactif [3] peut être choisi de manière à apporter les groupements anioniques 5042- ou PO43 et leurs mélanges. Par exemple, le deuxième réactif peut être un mélange de Na2SO4 et de H2SO4. De préférence, le deuxième réactif est choisi de manière à apporter des groupements anioniques SO42-. Avec un premier réactif apportant des ions Zr4-, des deuxièmes réactifs apportant des groupements anioniques SO42- ou PO43 conduisent à du ZBS (Sulfate Basique de Zirconium) ou du phosphate basique de zirconium, respectivement, à l'issue de l'étape b). Même en l'absence d'étape c), ils peuvent conduire à des particules de ZHO (Hydrates de Zirconium) ou ZHO dopé à l'issue de l'étape d) d'hydrolyse basique du ZBS, ou du phosphate basique de zirconium. Ils peuvent également conduire, en cas d'étape el) de calcination ou e2) de traitement hydrothermal de ZHO ou ZHO dopé ou ZBS ou ZBS dopé ou phosphate basique de zirconium ou phosphate basique de zirconium dopé, à des particules de zircone ou de zircone dopée. Dans un mode de réalisation particulier, le premier réactif permet d'apporter à la fois les ions Zr4 et/ou HÉ- et les groupements anioniques. Par exemple, le premier réactif peut être le sulfate de zirconium, Zr(SO4)2, qui permet d'apporter à la fois les ions Zr4- et les groupements anioniques SO42-. Le rapport de la concentration en groupements anioniques sur la concentration en ions Zr4-et/ou HÉ- est compris de préférence entre 0,2 et 5. De préférence, ce rapport est supérieur à 0,3, de préférence supérieur à 0,4, de préférence encore supérieur à 0,5 et/ou inférieur à 2, de préférence inférieur à 1,5, de préférence encore inférieur à 1,2. Par exemple, le rapport de la concentration en groupements anioniques 5042- sur la concentration en ions Zr4- peut être compris entre 0,3 et 2, de préférence entre 0,4 et 1,5, de préférence encore compris entre 0,5 et 1,2. La liqueur mère doit présenter un pH inférieur ou égal à 7, de préférence inférieur ou égal à 6, de préférence inférieur ou égal à 4, de préférence inférieur ou égal à 2. Le réglage du pH de la liqueur mère peut s'effectuer notamment par des ajouts d'acides et/ou de bases organiques ou inorganiques. L'additif [4] permet de modifier la morphologie et est choisi dans le groupe : - des tensio-actifs anioniques et leurs mélanges, notamment : o des carboxylates (de formule R-CO2--G- avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G- un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les carboxylates éthoxylés, les acides gras éthoxylés ou propoxylés, les sarcosinates de formule R-C(0)N(CH3)CH2COO- el leurs mélanges ; o des sulfates (de formule R-SO3--G- avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G- un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmis les alkylsulfates, les alkyléthersulfates ou sulfates d'alcools gras éthoxylés, les nonylphényléthersulfates, et leurs mélanges ; o des sulfonates (de formule R-OSO3--G- avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylarylsulfonates incluant les sulfonates de dodecylbenzène et sulfonates de tétrapropylbenzène, les oléfines a sulfonées, les acides gras et esters d'acides gras sulfonés, les sulfosuccinate et sulfosuccinamate de sodium, mono et di-esters de l'acide sulfosuccinique, les monoamides de l'acide sulfosuccinique, les N-acylaminoacides et N-acylprotéines, les N- acylaminoalkylsulfonates et taurinates, et leurs mélanges ; o des phosphates (de formule R'-(RO)nPO4_n(3-n)--(3-n)G- avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, G- un cation monoatomique ou polyatomique et/ou un mélange de tels cations, de préférence choisi parmi H-, Na- et K+, et n un entier inférieur ou égal à 3), de préférence choisis parmi les mono- et di-esters de l'acide phosphorique, et leurs mélanges ; - des tensio-actifs amphotères et leurs mélanges, notammertt : o des bétaïnes de formule RR'NH-CH3COO- avec R et R' des chaînes 25 carbonées aliphatiques, aromatiques et/ou alkylaromatiques ; o des sulfobétaïnes ; o des sels d'imidazolium ; - des tensio-actifs cationiques et leurs mélanges, notamment : o des composés d'ammonium non quaternaire (de formule R'-RfNH(4_n)--X-30 avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, X- un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur ou égal à 4) ; o des sels d'ammonium quaternaire (de formule R'-R4N+-X- avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et X- un anion monoatomique ou polyatomique et/ou un mélange de tels anions), de préférence les alkyltriméthylammonium, les alkylbenzyldiméthylammonium, et leurs mélanges ; o des sels d'amines ; o des sels d'ammonium d'amines grasses éthoxylées ; o des dialkyldiméthylammonium ; o des sels d'imidazolinium ; - des acides carboxyliques, leurs sels, et leurs mélanges, notamment les acides aliphatiques mono- ou dicarboxyliques, en particulier les acides saturés ; les acides gras, et particulier les acides gras saturés ; ['acide formique, l'acide acétique, l'acide propionique, l'acide butyrique, l'acide isobutyrique, l'acide valérique, l'acide caproïque, l'acide caprylique, l'acide caprique, l'acide laurique, l'acide myristique, l'acide palmitique, 1°acide stéarique, l'acide hydroxystéarique, l'acide éthyl-2-hexanoïque, l'acide béhénique, l'acide nonylique, l'acide linolénique, l'acide abiétique, l'acide oléique, l'acide récinoléique, l'acide naphténique, l'acide phénylacétique ; les acides dicarboxyliques incluant les acides oxalique, maléique, succinique, glutarique, adipique, pimélique, subérique, azélaïque et sébacique. Les sels de ces acides peuvent être employés. Par sels d'acides carboxyliques, on entend les composés de formule (R-COO-, GT), G- étant un groupement cationique, de préférence Na- ou NH4-. - des tensio-actifs non-ioniques choisis parmi l'ensemble des composés de formule RCO2R' et R-CONHR' et leurs mélanges, R et R' étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, et notamment : o des mono- et di-éthanolamides d'acides ,gras polyéthoxylés et polypropoxylés ; o des amines grasses polyéthoxylées et polypropoxylées ; o les co-polymères blocs polyéthoxylés et polypropoxylés, comme par exemple les co-polymères de la famille Pluronice commercialisés par la société BASF ; o les alcools gras et alkylphénols polyéthoxylés et polypropoxylés choisis parmi les ethoxylats d'alcools gras carboxyméthylés, cette famille incluant l'ensemble des alcools gras éthoxylés ou propoxylés incluant en fin de chaîne le groupement -CH2-COOH, de formule générale : R1-O-(CR2R3-CR4R5-O)r,-CH2-COOH, R1, R2, R3, R4 et R5 étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et n un nombre entier ; o les oxydes d'amine ; o les alkylimidazolines ; o et leurs mélanges; - et leurs mélanges. The second reagent [3] may be chosen so as to provide the anionic groups 5042- or PO43 and mixtures thereof. For example, the second reagent may be a mixture of Na2SO4 and H2SO4. Preferably, the second reagent is selected so as to provide SO42- anionic groups. With a first reagent supplying Zr4- ions, second reagents bringing SO42- or PO43 anionic groups lead to ZBS (Zirconium basic sulphate) or zirconium basic phosphate, respectively, at the end of step b). . Even in the absence of step c), they can lead to ZHO (zirconium hydrate) or ZHO particles doped at the end of step d) of basic hydrolysis of ZBS, or of basic zirconium phosphate. . They can also lead, in the case of step e1) calcination or e2) hydrothermal treatment of ZHO or ZHO doped or ZBS or ZBS doped or basic phosphate zirconium or basic phosphate doped zirconium, to zirconia or zirconia particles doped. In a particular embodiment, the first reagent makes it possible to provide both Zr4 and / or HÉ- ions and anionic groups. For example, the first reagent may be zirconium sulphate, Zr (SO4) 2, which makes it possible to provide both Zr4- and SO42- anionic groups. The ratio of the concentration of anionic groups to the concentration of Zr4 and / or HÉ- ions is preferably between 0.2 and 5. Preferably, this ratio is greater than 0.3, preferably greater than 0.4. more preferably greater than 0.5 and / or less than 2, preferably less than 1.5, more preferably less than 1.2. For example, the ratio of the concentration of anionic groups 5042- to the concentration of Zr4- ions can be between 0.3 and 2, preferably between 0.4 and 1.5, more preferably between 0.5 and 1.2. The mother liquor must have a pH less than or equal to 7, preferably less than or equal to 6, preferably less than or equal to 4, preferably less than or equal to 2. The pH adjustment of the mother liquor can be carried out in particular by additions of acids and / or organic or inorganic bases. The additive [4] makes it possible to modify the morphology and is chosen from the group of: - anionic surfactants and their mixtures, in particular: o carboxylates (of formula R-CO2-G- with R an aliphatic carbon chain, aromatic or alkylaromatic and G- a monatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from ethoxylated carboxylates, ethoxylated or propoxylated fatty acids, sarcosinates of formula RC (O) N (CH3) CH2COO- their mixtures; sulphates (of formula R-SO 3 -G- with R an aliphatic, aromatic or alkylaromatic carbon chain and G-a monoatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from alkyl sulphates, alkyl ether sulphates or ethoxylated fatty alcohol sulfates, nonylphenyl ether sulfates, and mixtures thereof; sulphonates (of formula R-OSO 3 -G- with R an aliphatic, aromatic or alkylaromatic carbon chain and G + a monoatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from alkylarylsulphonates including sulphonates of dodecylbenzene and tetrapropylbenzene sulphonates, sulphonated olefins, sulphonated fatty acid and fatty acid esters, sodium sulphosuccinate and sulphosuccinamate, sulphosuccinic acid mono and di-esters, sulphosuccinic acid monoamides, N acylamino acids and N-acylproteins, N-acylaminoalkylsulfonates and taurinates, and mixtures thereof; o phosphates (of formula R '- (RO) nPO4_n (3-n) - (3-n) G- with R and R' of the aliphatic, aromatic and / or alkylaromatic carbon chains, G- a monoatomic or polyatomic cation and / or a mixture of such cations, preferably chosen from H-, Na- and K +, and n an integer less than or equal to 3), preferably chosen from mono- and di-esters of phosphoric acid, and their mixtures; amphoteric surfactants and mixtures thereof, in particular betaines of the formula RR'NH-CH3COO- with R and R 'of the aliphatic, aromatic and / or alkylaromatic carbon chains; o sulfobetaines; imidazolium salts; cationic surfactants and mixtures thereof, in particular: non-quaternary ammonium compounds (of formula R'-RfNH (4_n) -X-30 with R and R 'of aliphatic, aromatic and / or alkylaromatic carbon chains X- a monoatomic or polyatomic anion and / or a mixture of such anions and n an integer less than or equal to 4); quaternary ammonium salts (of formula R'-R4N + -X- with R and R 'of the aliphatic, aromatic and / or alkylaromatic carbon chains and X- a monoatomic or polyatomic anion and / or a mixture of such anions), preferably alkyltrimethylammonium, alkylbenzyldimethylammonium, and mixtures thereof; o amine salts; ammonium salts of ethoxylated fatty amines; dialkyldimethylammonium; imidazolinium salts; carboxylic acids, their salts, and their mixtures, in particular the mono- or dicarboxylic aliphatic acids, in particular the saturated acids; fatty acids, and especially saturated fatty acids; formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, 1 stearic acid, hydroxystearic acid, 2-ethylhexanoic acid, behenic acid, nonyl acid, linolenic acid, abietic acid, oleic acid, recinoleic acid, naphthenic acid, phenylacetic acid; dicarboxylic acids including oxalic, maleic, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids. The salts of these acids can be used. By carboxylic acid salts is meant the compounds of formula (R-COO-, GT), G- being a cationic group, preferably Na- or NH4-. nonionic surfactants chosen from the group of compounds of formula RCO 2 R 'and R-CONHR' and mixtures thereof, R and R 'being aliphatic, aromatic and / or alkylaromatic carbon chains, and in particular: and di-ethanolamides of polyethoxylated and polypropoxylated fatty acids; polyethoxylated and polypropoxylated fatty amines; polyethoxylated and polypropoxylated block copolymers, for example co-polymers of the Pluronice family marketed by BASF; polyethoxylated and polypropoxylated fatty alcohols and alkylphenols chosen from carboxymethylated fatty alcohol ethoxylates, this family including all of the ethoxylated or propoxylated fatty alcohols including at the end of the chain the -CH 2 -COOH group, of general formula: R 1 -O - (CR2R3-CR4R5-O) r, -CH2-COOH, R1, R2, R3, R4 and R5 being aliphatic, aromatic and / or alkylaromatic carbon chains and n an integer; o amine oxides; alkylimidazolines; o and their mixtures; - and their mixtures.

L'additif permettant de modifier la morphologie est choisi de préférence dans le groupe : - des tensio-actifs anioniques et leurs mélanges, notamrr ent : o des carboxylates (de formule R-CO2 -G' avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les carboxylates éthoxylés, les acides gras éthoxylés ou propoxylés, les sarcosinates de formule R-C(0)N(CH3)CH2COO- el leurs mélanges ; o des sulfates (de formule R-SO3"-G` avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G- un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylsulfates, les alkyléthersulfates ou sulfates d'alcools gras éthoxylés, les nonylphényléthersulfates, et leurs mélanges ; o des sulfonates (de formule R-OSO3--G' avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G- un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylarylsulfonates incluant les sulfonates de dodecylbenzène et 25 30 sulfonates de tétrapropylbenzène, les oléfines a sulfonées, les acides gras et esters d'acides gras sulfonés, les sulfosuccinate et sulfosuccinamate de sodium, mono et di-esters de l'acide sulfosuccinique, les monoamides de l'acide sulfosuccinique, les N-acylaminoacides et N-acylprotéines, les N- acylaminoalkylsulfonates et taurinates, et leurs mélanges ; o des phosphates (de formule R'-(RO)äPO4-n(3-°) -(3- n)G" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, G un cation monoatomique ou polyatomique et/ou un mélange de tels cations, de préférence choisi parmi W, Na' et K+ , et n un entier inférieur ou égal à 3), de préférence choisis parmi les mono- et di-esters de l'acide phosphorique, et leurs mélanges ; - des tensio-actifs cationiques et leurs mélanges, notamment : o des composés d'ammonium non quaternaire (de formule R'-RäNH(4_n)--X-avec R et R' des chaînes carbonées aliphaticues, aromatiques et/ou alkylaromatiques, X- un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur ou égal à 4) ; o des sels d'ammonium quaternaire (de formule R'-R4N'-X- avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et X- un anion monoatomique ou polyatomique et/ou un mélange de tels anions), de préférence les alkyltriméthylammonium, les alkylbenzyldiméthylammonium, et leurs mélanges ; o des sels d'amines ; o des sels d'ammonium d'amines grasses éthoxylées ; o des dialkyldiméthylammonium ; o des sels d'imidazolinium. De préférence, l'additif pennettant de modifier la morphologie est choisi dans le groupe : - des tensio-actifs anioniques et leurs mélanges, notamment : o des sulfates (de formule R-SO3--G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et GT un cation monoatomique ou 30 polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylsulfates, les alkyléthersulfates ou sulfates d'alcools gras éthoxylés, les nonylphényléthersulfates, et leurs mélanges ; o des phosphates (de formule R'-(RO)nPO4_n(3- --(3-n)G+ avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, et G un cation monoatomique ou polyatomique et/ou un mélange de tels cations, de préférence choisi parmi H-, Na et K- , et n un ent:er inférieur ou égal à 3), de préférence choisis parmi les mono- et di-esters de l'acide phosphorique, et leurs mélanges ; - des tensio-actifs cationiques et leurs mélanges, notamment : o des composés d'ammonium non quaternaire (de formule R'-RnNH(4_n)--X-avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, X- un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur ou égal à 4) ; o des sels d'ammonium quaternaire (de formule R'-R4N+-X- avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et K un anion monoatomique ou polyatomique et/ou un mélange de tels anions), de préférence les alkyltriméthylammonium, les alkylbenzyldiméthylammonium, et leurs mélanges ; De préférence encore, l'additif permettant de modifier la morphologie est choisi dans le groupe : - des alkylsulfates, comme le dodécyle sulfate de sodium ou SDS ; - des composés d'ammonium non quaternaire (de formule R'-RnNH,4_n) -X- avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, X- un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur ou égal à 4), comme le bromure de céthyltriméthylammonium ou CTAB. Outre l'additif permettant de modifier la morphologie, un tensio-actif non-ionique [5], différent de ceux cités comme pouvant servir d'additif, peut être ajouté. Ce tensio-actif se distingue de l'additif [4] en ce qu'il ne permet pas, sans additif, de modifier la morphologie des particules obtenues. Associé à un additif, il peut cependant modifier l'impact dudit additif. De simples tests permettent de vérifier si un tensio-actif non-ionique modifie la morphologie des particules fabriquées ou non. Le tensio-actif optionnel peut notamment être choisi parmi l'ensemble des composés de formule R-OR', R-OH, R-(CH2-CH2-0),-R', la famille des polyols R et R' étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et n un nombre entier. Le tensioactif non-ionique optionnel est de préférence choisi parmi - les nonylphénols polyéthoxylés et polypropoxylés (par exemple la famille des Triton commercialisée par la société Dow Chemicals) ; les alcools gras polyéthoxylés et polypropoxylés ; - les octylphénols polyéthoxylés et polypropoxylés ; - les esters d'acides gras polyéthoxylés et polypropoxylés ; les alcools gras et alkylphénols polyéthoxylés et polypropoxylés, notamment les ethylène glycol, propylène glycol, glycérol, esters polyglycéryles et leurs dérivés polyéthoxylés et polypropoxylés et les polyéthylène-glycols ; - les esters d'anhydrosorbitol incluant les esters de sorbitane polyéthoxylés et polypropoxylés et les esters de sorbitane ou Sorbate ; les alkylpolyglucosides ; les huiles éthoxylées et propoxylées ; - et leurs mélanges. The additive making it possible to modify the morphology is preferably chosen from the group: anionic surfactants and their mixtures, in particular: carboxylates (of formula R-CO 2 -G 'with R an aliphatic carbon chain, aromatic or alkylaromatic and G + a monoatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from ethoxylated carboxylates, ethoxylated or propoxylated fatty acids, sarcosinates of formula RC (O) N (CH 3) CH 2 COO- and mixtures thereof ; sulphates (of formula R-SO3 "-G" with R an aliphatic, aromatic or alkylaromatic carbon chain and G- a monoatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from alkyl sulphates, alkyl ether sulphates or sulphates of ethoxylated fatty alcohols, nonylphenyl ether sulphates, and mixtures thereof; o sulphonates (of formula R-OSO 3 -G 'with R an aliphatic, aromatic or alkylaromatic carbon chain and G- a monoatomic or polyatomic cation and / or a mixture of such cations), preferably selected from alkylarylsulfonates including dodecylbenzene sulfonates and tetrapropylbenzene sulfonates, sulfonated olefins, sulfonated fatty acid and fatty acid esters, sodium sulfosuccinate and sulfosuccinamate, mono and di esters of sulfosuccinic acid, monoamides of sulfosuccinic acid, N-acylamino acids and N-acylproteins, N-acylaminoalkylsulfonates and taurinates, mixtures thereof; phosphates (of the formula R '- (RO) äPO 4 -n (3-) - (3-n) G "with R and R' of the aliphatic, aromatic and / or alkylaromatic carbon chains, G monoatomic or polyatomic cation and / or a mixture of such cations, preferably chosen from W, Na 'and K +, and n an integer less than or equal to 3), preferably chosen from mono- and diesters of the acid phosphoric acid, and mixtures thereof; cationic surfactants and their mixtures, in particular: non-quaternary ammonium compounds (of formula R'-R'NH (4-n) -X-with R and R 'aliphatic, aromatic and / or alkylaromatic carbon chains, X- a monoatomic or polyatomic anion and / or a mixture of such anions and n an integer less than or equal to 4); quaternary ammonium salts (of formula R'-R4N'-X- with R and R 'of the aliphatic, aromatic and / or alkylaromatic carbon chains and X- a monoatomic or polyatomic anion and / or a mixture of such anions) preferably alkyltrimethylammonium, alkylbenzyldimethylammonium, and mixtures thereof; o amine salts; ammonium salts of ethoxylated fatty amines; dialkyldimethylammonium; imidazolinium salts. Preferably, the additive making it possible to modify the morphology is chosen from the group: anionic surfactants and their mixtures, in particular: sulphates (of formula R-SO3-G + with R an aliphatic, aromatic carbon chain or alkylaromatic and GT a monoatomic or polyatomic cation and / or a mixture of such cations), preferably selected from alkylsulfates, alkylethersulfates or sulfates of ethoxylated fatty alcohols, nonylphenyl ether sulfates, and mixtures thereof; o phosphates (of formula R '- (RO) nPO4- (3- - (3-n) G + with R and R' of the aliphatic, aromatic and / or alkylaromatic carbon chains, and G a monatomic or polyatomic cation and / or a mixture of such cations, preferably chosen from H-, Na- and K-, and n an ent: less than or equal to 3), preferably chosen from mono- and diesters of phosphoric acid, and their mixtures of cationic surfactants and mixtures thereof, in particular: non-quaternary ammonium compounds (of formula R'-RnNH (4_n) -X-with R and R 'aliphatic, aromatic and / or carbonaceous carbon chains; alkylaromatic compounds, X- a monoatomic or polyatomic anion and / or a mixture of such anions and n an integer less than or equal to 4); quaternary ammonium salts (of formula R'-R4N + -X- with R and R ' aliphatic, aromatic and / or alkylaromatic carbon chains and K a monoatomic or polyatomic anion and / or a mixture of such anions), preferably alkyltrimethines ylammonium, alkylbenzyldimethylammonium, and mixtures thereof; More preferably, the additive making it possible to modify the morphology is chosen from the group: alkyl sulphates, such as sodium dodecyl sulphate or SDS; non-quaternary ammonium compounds (of formula R'-RnNH, 4_n) -X- with R and R 'of the aliphatic, aromatic and / or alkylaromatic carbon chains, X- a monoatomic or polyatomic anion and / or a mixture of such anions and n an integer less than or equal to 4), such as methyltrimethylammonium bromide or CTAB. In addition to the additive which makes it possible to modify the morphology, a nonionic surfactant [5], different from those mentioned as being able to serve as an additive, may be added. This surfactant is distinguished from the additive [4] in that it does not allow, without additive, to modify the morphology of the particles obtained. Associated with an additive, it can however modify the impact of said additive. Simple tests make it possible to check whether a nonionic surfactant modifies the morphology of the particles manufactured or not. The optional surfactant may in particular be chosen from all of the compounds of formula R-OR ', R-OH, R- (CH 2 -CH 2 -O), R', the family of polyols R and R 'being aliphatic, aromatic and / or alkylaromatic carbon chains and n is an integer. The optional nonionic surfactant is preferably chosen from polyethoxylated and polypropoxylated nonylphenols (for example the Triton family marketed by Dow Chemicals); polyethoxylated and polypropoxylated fatty alcohols; polyethoxylated and polypropoxylated octylphenols; polyethoxylated and polypropoxylated fatty acid esters; polyethoxylated and polypropoxylated fatty alcohols and alkylphenols, especially ethylene glycol, propylene glycol, glycerol, polyglyceryl esters and their polyethoxylated and polypropoxylated derivatives and polyethylene glycols; anhydrosorbitol esters including polyethoxylated and polypropoxylated sorbitan esters and sorbitan or sorbate esters; alkylpolyglucosides; ethoxylated and propoxylated oils; - and their mixtures.

Le tensioactif non-ionique optionnel peut par exemple être un agent anti-moussant ou un agent de tension superficielle, comme par exemple le CONTRASPUM K1012 commercialisé par la société Zschimmer et Schwartz. Un agent anti-moussant facilite avantageusement la mise en oeuvre du procédé et/ou augmente son rendement. Un agent de tension superficielle peut par exemple augmenter l'effet de l'additif. The optional nonionic surfactant may for example be an anti-foaming agent or a surface tensioning agent, for example the CONTRASPUM K1012 sold by the company Zschimmer and Schwartz. An anti-foaming agent advantageously facilitates the implementation of the process and / or increases its yield. For example, a surface tension agent may increase the effect of the additive.

Les définitions des différents tensioactifs ainsi que des exemples sont consultables dans les techniques de l'ingénieur , volume K2 après l'actualisation n°52 (mai 2007), Tensioactifs K342. The definitions of the various surfactants as well as examples can be consulted in the techniques of the engineer, volume K2 after the update n ° 52 (May 2007), Surfactants K342.

L'agent porogène [6] peut notamment être choisi dans : la famille des latex, notamment parmi les acrylates de styrène et/ou les polyméthylacrylates, et parmi les propionates et/ou acétates de polyvinyle ; les oxydes et les sels de polyéthylène et/ou polypropylène ; - et leurs mélanges. L'ajout d'un agent porogène conduit avantageusement à créer de la porosité dans les particules obtenues à l'issue des étapes b), c), d) ou e). A cet effet, une étape de chauffage de ces particules peut être nécessaire afin d'éliminer l'agent porogène afin qu'il laisse la place à des pores. De préférence, la quantité d'agent porogène est supérieure à 0,5%, de préférence supérieure à 2% et/ou inférieure à 25%, de préférence inférieure à 10%, les pourcentages étant des pourcentages en masse par rapport au premier réactif de la liqueur mère. The blowing agent [6] may especially be chosen from: the latex family, in particular from styrene acrylates and / or polymethyl acrylates, and from polyvinyl propionates and / or acetates; oxides and salts of polyethylene and / or polypropylene; - and their mixtures. The addition of a porogenic agent advantageously leads to creating porosity in the particles obtained at the end of steps b), c), d) or e). For this purpose, a step of heating these particles may be necessary in order to eliminate the pore-forming agent so that it leaves room for pores. Preferably, the amount of pore-forming agent is greater than 0.5%, preferably greater than 2% and / or less than 25%, preferably less than 10%, the percentages being percentages by weight relative to the first reagent. mother liquor.

Pour obtenir des particules anisotropes, l'additif est de préférence introduit dans la liqueur mère avant le deuxième réactif apportant les groupements anioniques, et immédiatement avant ou après le premier réactif apportant des ions Zr4+ et/ou Hel- . Lorsque la liqueur mère contient un autre tensio-actif non ionique (c'est-à-dire un constituant [5]), et/ou un agent porogène, ces derniers sont de préférence introduits dans la liqueur mère immédiatement avant l'introduction du deuxième réactif, et donc, de préférence, après l'introduction du premier réactif et de l'additif. Faute de respecter cet ordre, il est possible que certains additifs ne permettent pas de précipiter des particules anisotropes. Par exemple, avec le dodécyle sulfate de sodium (SDS) utilisé comme additif, des particules de dérivé primaire de zirconium et/ou d'hafnium anisotropes seront obtenues si cet additif est introduit immédiatement avant ou après le premier réactif et avant l'introduction du deuxième réactif dans la liqueur mère. L'ordre d'introduction des différents constituants de la liqueur mère peut par exemple être : introduction du solvant polaire, introduction du premier réactif, introduction de l'additif SDS, introduction de l'autre tensio-actif non ionique optionnel (constituant [5]), introduction de l'agent porogène, puis introduction du deuxième réactif Au contraire, des particules de dérivé primaire de zirconium et/ou d'hafnium isotropes seront obtenues si cet additif est introduit après le deuxième réactif et avant l'introduction du premier réactif dans la liqueur mère. Avec certains additifs, l'ordre décrit ci-dessus n'est cependant pas impératif. Des tests de routine permettent d'évaluer l'impact de l'ordre d'introduction des constituants. La température à laquelle la liqueur mère est préparée est de préférence comprise entre la température de solidification du solvant de la liqueur mère à pression atmosphérique et 50°C, de préférence comprise entre la température ambiante, classiquement 20°C, et _50°C, de préférence comprise entre 40°C et 50°C, afin de favoriser la dissolution des différents composants introduits dans le solvant de la liqueur mère, sans débuter de réactions de précipitation de particules. Après introduction de tous les réactifs dans la liqueur mère, celle-ci est maintenue entre la température de solidification du solvant de la liqueur mère à pression atmosphérique et 50°C, de préférence comprise entre la température ambiante et 50°C, de préférence comprise entre 40°C et 50°C, de préférence pendant au moins 15 minutes, ce qui permet avantageusement une meilleure dissolution des réactifs, ainsi que l'atteinte d'une bonne homogénéité thermique et chimique. To obtain anisotropic particles, the additive is preferably introduced into the mother liquor before the second reagent supplying the anionic groups, and immediately before or after the first reagent supplying Zr4 + and / or Hel- ions. When the mother liquor contains another nonionic surfactant (ie a constituent [5]), and / or a pore-forming agent, these are preferably introduced into the mother liquor immediately before the introduction of the second reagent, and therefore, preferably, after the introduction of the first reagent and the additive. Failure to comply with this order may result in some additives that do not precipitate anisotropic particles. For example, with the sodium dodecyl sulfate (SDS) used as additive, particles of primary derivative of zirconium and / or hafnium anisotropic will be obtained if this additive is introduced immediately before or after the first reagent and before the introduction of the second reagent in the mother liquor. The order of introduction of the various constituents of the mother liquor may for example be: introduction of the polar solvent, introduction of the first reagent, introduction of the SDS additive, introduction of the other optional nonionic surfactant (component ]), introduction of the blowing agent, then introduction of the second reagent On the contrary, particles of primary derivative of zirconium and / or isotropic hafnium will be obtained if this additive is introduced after the second reagent and before the introduction of the first reagent in the mother liquor. With certain additives, however, the order described above is not imperative. Routine tests make it possible to evaluate the impact of the order of introduction of the constituents. The temperature at which the mother liquor is prepared is preferably between the solidification temperature of the solvent of the mother liquor at atmospheric pressure and 50 ° C., preferably between room temperature, typically 20 ° C., and 50 ° C., preferably between 40 ° C and 50 ° C, in order to promote the dissolution of the various components introduced into the solvent of the mother liquor, without starting precipitation reactions of particles. After introducing all the reagents into the mother liquor, it is kept between the solidification temperature of the solvent of the mother liquor at atmospheric pressure and 50 ° C., preferably between room temperature and 50 ° C., preferably between between 40 ° C and 50 ° C, preferably for at least 15 minutes, which advantageously allows better dissolution of the reagents, as well as the achievement of good thermal and chemical homogeneity.

Etape b) A l'étape b), la température de chauffage est de préférence supérieure à 50 °C et/ou inférieure à la température d'ébullition, de préférence inférieure à 100°C, de préférence inférieure à 90°C. La durée de maintien en température Ot peut être supérieure à 30 minutes, voire supérieure à 1 heure et/ou inférieure à 10 heures, voire inférieure à 5 heures. Le chauffage est de préférence effectué à pression atmosphérique. La vitesse de montée en température v ne doit pas être trop rapide afin de favoriser une croissance de façon anisotrope. Elle est de préférence inférieure à 50°C/min, de préférence inférieure à 10°C/min. Le début de la phase de chauffage est défni comme étant l'instant où l'on commence à chauffer la liqueur mère, une fois tous les constituants introduits. En fin d'étape b), une opération finale choisie parmi la filtration, le lavage, la neutralisation acido-basique, le séchage et les combinaisons de ces techniques peut optionnellement être appliquée. Toutes les techniques connues de l'homme du métier peuvent être utilisées. Si un séchage est effectué, une étape optionnelle de désagglomération peut être effectuée, par toute technique connue de l'homme du métier. A l'issue de l'étape b), on obtient une suspension de particules ou une poudre de particules qui, après séchage, sont insolubles dans le solvant polaire [1] et hydrolysables. Ces particules sont amorphes sauf éventuellement en cas d'addition d'un dopant, comme décrit ci-après. Step b) In step b), the heating temperature is preferably greater than 50 ° C and / or lower than the boiling temperature, preferably less than 100 ° C, preferably less than 90 ° C. The temperature keeping time Ot may be greater than 30 minutes, or even greater than 1 hour and / or less than 10 hours, or even less than 5 hours. The heating is preferably carried out at atmospheric pressure. The rate of rise in temperature v should not be too fast to promote anisotropic growth. It is preferably less than 50 ° C / min, preferably less than 10 ° C / min. The beginning of the heating phase is defined as the moment when the mother liquor is heated, once all the constituents have been introduced. At the end of step b), a final operation chosen from filtration, washing, acid-base neutralization, drying and combinations of these techniques may optionally be applied. All techniques known to those skilled in the art can be used. If drying is performed, an optional disagglomeration step may be performed by any technique known to those skilled in the art. At the end of step b), a suspension of particles or a powder of particles is obtained which, after drying, are insoluble in the polar solvent [1] and hydrolyzable. These particles are amorphous except possibly in case of addition of a dopant, as described below.

On peut également obtenir des particules anisotropes. Le cas échéant, comme expliqué ci-dessus, des essais de routine permettent de rechercher de telles particules. Anisotropic particles can also be obtained. If necessary, as explained above, routine tests make it possible to search for such particles.

Etape c) L'étape c) est optionnelle ou nécessaire selon que l'on souhaite fabriquer un dérivé secondaire faiblement soluble ou soluble en milieu acide dans le solvant polaire [1], respectivement. Un dérivé est considéré comme faiblement soluble si sa solubilité dans l'eau à pH égal à 2 est inférieure à 10-3 mol/l. Dans le cas contraire, le dérivé est considéré comme soluble. A l'étape c), le dérivé primaire obtenu en fin d'étape b) peut subir un traitement permettant de substituer partiellement ou en totalité, de préférence en totalité les groupements anioniques apportés par le deuxième réactif par d'autres groupements anioniques, dits groupements anioniques de substitution , présentant un fort pouvoir complexant avec le zirconium et/ou l'hafnium et de préférence sélectionnés parmi les oxoanions, les anions de la colonne 17 (halogénures), les molécules organiques comprenant un groupement carboxylate (R-COO-), et leurs mélanges. De préférence encore, les oxoanions sont sélectionnés parmi les phosphates, les sulfates et les carbonates ; les halogénures sont sélectionnés parmi les chlorures et fluorures ; les molécules organiques comprenant un groupement carboxylate sont sélectionnées parmi les formiates, les acétates, les oxalates et les tartrates. Pour effectuer ladite substitution, les particules de dérivé primaire sont mises en contact avec un composé apte à apporter les groupements anioniques de substitution. Step c) Step c) is optional or necessary depending on whether it is desired to manufacture a poorly soluble or acid-soluble secondary derivative in the polar solvent [1], respectively. A derivative is considered poorly soluble if its solubility in water at pH 2 is less than 10-3 mol / l. Otherwise, the derivative is considered soluble. In step c), the primary derivative obtained at the end of step b) may be subjected to a treatment that makes it possible to substitute partially or totally, preferably completely, the anionic groups brought by the second reagent by other anionic groups, called anionic substitution groups, having a high complexing power with zirconium and / or hafnium and preferably selected from oxoanions, anions of column 17 (halides), organic molecules comprising a carboxylate group (R-COO-) , and their mixtures. More preferably, the oxoanions are selected from phosphates, sulphates and carbonates; the halides are selected from chlorides and fluorides; the organic molecules comprising a carboxylate group are selected from formates, acetates, oxalates and tartrates. To effect said substitution, the primary derivative particles are brought into contact with a compound capable of providing the substitution anionic groups.

A l'étape c), le traitement du dérivé primaire peut par exemple être un traitement de carbonatation, de phosphatation, de fluoruration ou de choruration afin d'associer au zirconium et/ou à l'hafnium un groupement anionique carbonate, phosphate, fluorure ou chlorure, respectivement. Par exemple, après avoir obtenu un ZBS anisotrope en fin d'étape b), on peut optionnellement le transformer en carbonate basique de zirconium (ZBC) anisotrope par un traitement de carbonatation, ou le transformer en phosphate basique de zirconium anisotrope par un traitement de phosphatation. Il est possible de tenir le même raisonnement avec un phosphate basique de zirconium au départ. Une étape c) permet donc d'obtenir des composés impossibles à obtenir à l'étape b), par exemple parce que solubles dans le solvant polaire [1] en milieu acide. A l'étape c), le traitement ne modifie pas le caractère éventuellement anisotrope des particules obtenues à l'étape b). In step c), the treatment of the primary derivative may, for example, be a carbonation, phosphatation, fluoridation or choridation treatment in order to associate with the zirconium and / or with the hafnium an anionic group carbonate, phosphate, fluoride. or chloride, respectively. For example, after obtaining an anisotropic ZBS at the end of step b), it can optionally be converted into anisotropic basic zirconium carbonate (ZBC) by a carbonation treatment, or converted into anisotropic basic zirconium phosphate by a treatment of phosphating. It is possible to hold the same reasoning with a basic zirconium phosphate initially. A step c) thus makes it possible to obtain compounds that are impossible to obtain in step b), for example because they are soluble in the polar solvent [1] in an acidic medium. In step c), the treatment does not modify the optionally anisotropic nature of the particles obtained in step b).

En fin d'étape c), une opération finale choisie parmi la filtration, le lavage, la neutralisation acido-basique, le séchage et les combinaisons de ces techniques peut optionnellement être appliquée. Toutes les techniques connues de l'homme du métier peuvent être utilisées. Si un séchage est effectué, une étape optionnelle de désagglomération peut être effectuée, par toute technique connue de l'homme du métier. At the end of step c), a final operation chosen from filtration, washing, acid-base neutralization, drying and combinations of these techniques may optionally be applied. All techniques known to those skilled in the art can be used. If drying is performed, an optional disagglomeration step may be performed by any technique known to those skilled in the art.

Etape d) L'étape d) d'hydrolyse basique permet de faire réagir le dérivé primaire obtenu à l'issue de l'étape b) ou le dérivé secondaire obtenu à l'issue de l'étape c) et de le transformer en hydrate de zirconium et/ou d'hafnium. Cette réaction permet notamment de créer de la porosité au sein des particules. Toutes les techniques connues de l'homme du métier peuvent être utilisées pour réaliser l'étape d) d'hydrolyse basique. L'hydrolyse basique est réalisée par mise en contact dudit dérivé primaire ou secondaire avec au moins une source d'anions hydroxydes OH-, de preférence une base forte, notamment NaOH, KOH, ou avec au moins une amine, dans le but de substituer l'anion dudit dérivé par 0W. Le dérivé primaire ou secondaire peut notamment être présenté sous la forme : d'une poudre ou - d'une suspension, directement obtenue à l'étape b) ou c), ou obtenue après remise en suspension dans un solvant polaire, de préférence dans l'eau, notamment après une filtration, un lavage et/ou un séchage effectué en fin d'étape b) ou c). Ladite mise en contact peut par exemple résulter de : - la mise en contact d'une poudre solide de dérivé primaire ou secondaire avec une solution basique liquide, - la mise en contact d'une base solide avec une suspension liquide de dérivé primaire ou secondaire, - la mise en contact d'une solution basique liquide avec une suspension liquide de 30 dérivé primaire ou secondaire, la mise en contact d'une base sous forme gazeuse, par exemple l'ammoniac, avec une suspension liquide de dérivé primaire ou secondaire, la mise en contact d'une base sous forme gazeuse, par exemple l'ammoniac, avec une poudre solide de dérivé primaire ou secondaire. Si le dérivé primaire ou secondaire est en suspension dans une solution, les conditions suivantes seront de préférence utilisées : concentration en Zr4- et/ou Hf @ dans ladite solution : de préférence inférieure à mol/1 et supérieure à 0,01 mol/1 ; pH : de préférence supérieur à 11 ; température de réaction : supérieure à la température de solidification du solvant, de préférence supérieure à la température ambiante, de préférence 10 encore supérieure à 50°C et inférieure à la température d'ébullition du solvant, de préférence inférieure à 90°C. Dans le cas où la suspension de dérivé primaire ou secondaire utilisée est la liqueur mère, l'introduction de la ou des sources d'anions hydroxydes 0W s'effectue de préférence à une température inférieure à 90°C. Step d) The basic hydrolysis step d) makes it possible to react the primary derivative obtained at the end of step b) or the secondary derivative obtained at the end of step c) and to transform it into zirconium hydrate and / or hafnium. This reaction makes it possible in particular to create porosity within the particles. All techniques known to those skilled in the art can be used to perform the step d) of basic hydrolysis. The basic hydrolysis is carried out by bringing said primary or secondary derivative into contact with at least one source of hydroxide anions OH-, preferably a strong base, in particular NaOH, KOH, or with at least one amine, for the purpose of substituting the anion of said derivative by 0W. The primary or secondary derivative may in particular be presented in the form of: a powder or a suspension, directly obtained in step b) or c), or obtained after resuspension in a polar solvent, preferably in water, especially after filtration, washing and / or drying performed at the end of step b) or c). Said contacting may for example result from: contacting a solid powder of primary or secondary derivative with a liquid basic solution, contacting a solid base with a liquid suspension of primary or secondary derivative contacting a liquid basic solution with a liquid suspension of primary or secondary derivative, bringing into contact a base in gaseous form, for example ammonia, with a liquid suspension of primary or secondary derivative contacting a base in gaseous form, for example ammonia, with a solid powder of primary or secondary derivative. If the primary or secondary derivative is in suspension in a solution, the following conditions will preferably be used: concentration of Zr4- and / or Hf + in said solution: preferably less than mol / l and greater than 0.01 mol / l ; pH: preferably greater than 11; reaction temperature: above the solidification temperature of the solvent, preferably above room temperature, more preferably above 50 ° C and below the boiling point of the solvent, preferably below 90 ° C. In the case where the suspension of primary or secondary derivative used is the mother liquor, the introduction of the source or sources of 0W hydroxide anions is preferably carried out at a temperature below 90 ° C.

En fin d'étape d), une opération finale choisie parmi la filtration, le lavage, la neutralisation acido-basique, le séchage et les combinaisons de ces techniques peut optionnellement être appliquée. Toutes les techniques connues de l'homme du métier peuvent être utilisées. Si un séchage est effectué, une étape optionnelle de désagglomération peut être effectuée par toute technique connue d. l'homme du métier. At the end of step d), a final operation chosen from filtration, washing, acid-base neutralization, drying and combinations of these techniques may optionally be applied. All techniques known to those skilled in the art can be used. If drying is performed, an optional deagglomeration step may be performed by any known technique d. the skilled person.

Etape e) A l'étape el), les conditions de calcination modifient l'indice de porosité Ip et l'aire spécifique de la poudre. La température de calcination peut notamment être supérieure à 400°C et/ou inférieure à 1200°C, de préférence inférieure à 1100°C, de préférence encore inférieure à 1000°C. A des températures supérieures à 1200°C, les particules obtenues présentent un indice de porosité faible, c'est-à-dire sont denses. A des températures inférieures à 1200°C, les particules obtenues sont poreuses si le temps de maintien en palier est limité. Le temps de maintien en palier est généralement compris entre 1 heure et 5 heures, de préférence d'environ 2 heures. Step e) In step el), the calcination conditions modify the porosity index Ip and the specific surface area of the powder. The calcination temperature may especially be greater than 400 ° C. and / or less than 1200 ° C., preferably less than 1100 ° C., more preferably less than 1000 ° C. At temperatures above 1200 ° C, the particles obtained have a low porosity index, that is to say they are dense. At temperatures below 1200 ° C., the particles obtained are porous if the holding time is limited. The maintenance time is generally between 1 hour and 5 hours, preferably about 2 hours.

L'invention concerne également des particules denses ou poreuses obtenues à l'issue de l'étape el). The invention also relates to dense or porous particles obtained at the end of step e1).

A l'étape e21, le traitement hydrothermal modifie l'indice de porosité Ip et l'aire spécifique de la poudre. La température de traitement hydrothermal est supérieure à la température d'ébullition du solvant polaire, de préférence l'eau, à la pression considérée, de préférence supérieure à 130°C, et/ou inférieure à 250°C, de préférence inférieure à 200°C. A des températures supérieures à 250°C, les particules obtenues présentent un indice de porosité faible, c'est-à-dire sont denses. A des températures inférieures à 250°C, les particules obtenues sont poreuses. Le traitement hydrothermal peut être réalisé par chauffage, en présence de vapeur d'eau, d'une poudre d'un dérivé primaire ou secondaire, d'un hydrate ou d'un oxyde, ledit dérivé, hydrate ou oxyde étant éventuellement dopé. Ce traitement peut notamment être réalisé avec : - l'utilisation d'une poudre non séchée de dérivé primaire ou secondaire, ou d'hydrate, l'utilisation d'une suspension liquide de dérivé primaire ou secondaire, 15 d'hydrate ou d'oxyde. Si la poudre de dérivé primaire ou secondaire, d'hydrate ou d'oxyde est en suspension dans une solution, les conditions suivantes sont préférées : concentration en Zr4- et/ou Hf 4- dans la suspensior, totale : de préférence inférieure à 10 mol/1 et supérieure à 0,01 mol/1 ; 20 pH : de préférence compris entre 6 et 8 ; température de réaction : de préférence supérieure à ] 30°C, et/ou inférieure à 250°C, de préférence inférieure à 200°C ; durée de maintien en température : de préférence supérieure à 1 heure et, de préférence inférieure à 10 heures. 25 Par exemple, un traitement hydrothermal appliqué à un dérivé primaire ou secondaire de la présente invention permet de fabriquer une zircone anisotrope, éventuellement poreuse. Si le dérivé est dopé, la zircone obtenue sera également dopée. Si un traitement hydrothermal est appliqué à un dérivé primaire ou secondaire, il peut conduire à un autre dérivé primaire ou secondaire, à un hydrate ou à un oxyde. 30 Si un traitement hydrothermal est appliqué à un hydrate ou à un oxyde, il peut conduire à un hydrate ou à un oxyde. In step e21, the hydrothermal treatment modifies the porosity index Ip and the specific surface area of the powder. The hydrothermal treatment temperature is greater than the boiling point of the polar solvent, preferably water, at the pressure in question, preferably greater than 130 ° C., and / or less than 250 ° C., preferably less than 200 ° C. ° C. At temperatures above 250 ° C, the particles obtained have a low porosity index, that is to say they are dense. At temperatures below 250 ° C., the particles obtained are porous. The hydrothermal treatment may be carried out by heating, in the presence of water vapor, a powder of a primary or secondary derivative, a hydrate or an oxide, said derivative, hydrate or oxide being optionally doped. This treatment can in particular be carried out with: the use of an undried powder of primary or secondary derivative, or of hydrate, the use of a liquid suspension of primary or secondary derivative, of hydrate or of oxide. If the primary or secondary derivative powder, hydrate or oxide is in suspension in a solution, the following conditions are preferred: concentration of Zr4- and / or Hf 4- in the suspensior, total: preferably less than 10 mol / 1 and greater than 0.01 mol / l; PH: preferably between 6 and 8; reaction temperature: preferably greater than 30 ° C, and / or less than 250 ° C, preferably less than 200 ° C; holding time temperature: preferably greater than 1 hour and preferably less than 10 hours. For example, a hydrothermal treatment applied to a primary or secondary derivative of the present invention makes it possible to produce an anisotropic, possibly porous, zirconia. If the derivative is doped, the zirconia obtained will also be doped. If a hydrothermal treatment is applied to a primary or secondary derivative, it may lead to another primary or secondary derivative, a hydrate or an oxide. If a hydrothermal treatment is applied to a hydrate or an oxide, it can lead to a hydrate or an oxide.

L'invention concerne également des particules denses ou poreuses obtenues à l'issue de l'étape e2). The invention also relates to dense or porous particles obtained at the end of step e2).

La calcination ou le traitement hydrothermal permettent d'obtenir de nouvelles formes anisotropes cristallisées, en particulier des particules d'oxydes de zirconium et/ou d'hafnium dopés par un oxyde d'un élément choisi parmi l'yttrium Y, le lanthane La, le cérium Ce, le scandium Sc, le calcium Ca, le magnésium Mg et leurs mélanges, l'oxyde dopant étant en solution solide avec l'oxyde de zirconium et/ou l'oxyde d'hafnium, ou des particules d'oxydes de zirconium et/ou d'hafnium dopés par un oxyde d'un élément choisi parmi Si, Al. S et leurs mélanges, l'oxyde dopant étant dispersé dans la particule d'oxyde de zirconium et/ou d'hafnium. Ces particules sont éventuellement poreuses si les particules de départ sont poreuses. L'étape e) permet par exemple la fabrication d'un oxysulfate de zirconium (cristallisé, anisotrope, poreux), par exemple ZrOSO4, par calcination ou par traitement hydrothermal d'un ZBS, ou encore d'une zircone dopée à l'oxyde d'yttrium en solution solide, par calcination ou traitement hydrothermal d'un hydrate de zirconium dopé par un hydrate d'yttrium en mélange intime moléculaire. Calcination or hydrothermal treatment makes it possible to obtain novel crystallized anisotropic forms, in particular zirconium oxide and / or hafnium oxide particles doped with an oxide of an element chosen from yttrium Y, lanthanum La, cerium Ce, scandium Sc, calcium Ca, magnesium Mg and mixtures thereof, the doping oxide being in solid solution with zirconium oxide and / or hafnium oxide, or particles of oxides of zirconium and / or hafnium doped with an oxide of an element selected from Si, Al. S and mixtures thereof, the doping oxide being dispersed in the particle of zirconium oxide and / or hafnium. These particles are optionally porous if the starting particles are porous. Step e) makes it possible, for example, to manufacture a zirconium oxysulfate (crystallized, anisotropic, porous), for example ZrOSO 4, by calcination or by hydrothermal treatment of a ZBS, or else by an oxide-doped zirconia. of yttrium in solid solution, by calcination or hydrothermal treatment of a zirconium hydrate doped with yttrium hydrate in an intimate molecular mixture.

Les règles ci-dessus permettent à l'homme du métier de trouver des particules adaptées à une application particulière par de simples tests de routine, et en particulier de trouver des particules anisotropes. Le cas échéant, il est possible de mettre en oeuvre le plan d'expérience suivant. A l'issue de l'étape e), on peut ainsi procéder aux étapes suivantes : f) optionnellement, réalisation d'un premier test de conformité permettant de contrôler si la poudre de particules obtenue à l'issue de l'étape précédente présente: un pourcentage minimal de particules présentant une taille dans une plage de tailles acceptables incluse dans la plage 50 nm ù 200 m ; et un pourcentage minimal de particules anisotropes ; et, optionnellement, un indice de porosité, en particulier supérieur à 2; 30 g) si le test de conformité est négatif, c'est-à-dire si ladite poudre n'est pas conforme, réexécution des étapes précédentes en modifiant les conditions de fabrication. The above rules allow the skilled person to find suitable particles for a particular application by simple routine tests, and in particular to find anisotropic particles. If necessary, it is possible to implement the following experimental plan. At the end of step e), the following steps can thus be carried out: f) optionally, carrying out a first conformity test making it possible to check whether the particle powder obtained at the end of the preceding step presents a minimum percentage of particles having a size in a range of acceptable sizes included in the range 50 nm to 200 m; and a minimum percentage of anisotropic particles; and, optionally, a porosity index, in particular greater than 2; G) if the conformity test is negative, that is to say if said powder is not in conformity, rerun of the previous steps by modifying the manufacturing conditions.

Le test de conformité à l'étape f) peut être, par exemple, considéré comme positif si plus de 20°A, voire plus de 50%, voire plus de 80%, voire plus de 90%, voire plus de 95% en nombre des particules présentent une morphologie anisotrope et si plus de 50%, voire plus de 80%, voire plus de 90% en nombre des particules présentent une taille dans la plage de tailles acceptables. The compliance test in step f) can be, for example, considered positive if more than 20 ° A, or even more than 50%, or even more than 80%, or even more than 90%, or even more than 95%. many of the particles have an anisotropic morphology and if more than 50% or even more than 80% or even more than 90% by number of the particles have a size in the acceptable size range.

Ces critères peuvent notamment être utilisés lorsqu'aucune étape cl) n'a été effectuée. Pour rechercher des particules poreuses, le test de conformité à l'étape f) peut être considéré comme positif si plus de 20%, voire plus de 50%, voire plus de 80%, voire plus de 90%, voire plus de 95% en nombre des particules présentent une morphologie anisotrope, et si plus de 50%, voire plus de 80%, voire plus de 90% en nombre des particules présentent une taille dans la plage de tailles acceptables, et - si l'indice de porosité Ip est supérieur à 2. These criteria may in particular be used when no step c1 has been carried out. To search for porous particles, the conformity test in step f) can be considered as positive if more than 20%, even more than 50%, even more than 80%, or even more than 90%, or even more than 95% in number of the particles have an anisotropic morphology, and if more than 50% or even more than 80% or even more than 90% by number of the particles have a size in the acceptable size range, and - if the porosity index Ip is greater than 2.

Ces critères peuvent notamment être utilisés lorsqu'une étape d'hydrolyse basique (étape d)), voire une étape de calcination (étape el)), voire une étape de traitement hydrothermal (étape e2)) a été effectuée. La modification des conditions d'hydrolyse basique et/ou de calcination et/ou de traitement hydrothermal permettent également d'agir sur l'indice de porosité. Une augmentation du pH lors de l'hydrolyse basique conduit à une augmentation de l'indice de porosité Ip. Lors de la calcination et/ou du traitement hydrothermal, l'indice [p diminue lorsque la température de chauffage augmente et/ou lorsque le temps de maintien en palier augmente. Quel que soit le test de conformité mis en oeuvre à l'étape f), la borne inférieure de la plage de tailles acceptables peut notamment être de 100 nm, 150 nm, voire 200 nm et/ou la borne supérieure de la plage de tailles acceptables peut notamment être de 80 m. These criteria can in particular be used when a basic hydrolysis step (step d)), or even a calcination step (step e1), or even a hydrothermal treatment step (step e2)) has been performed. Modifying the conditions of basic hydrolysis and / or calcination and / or hydrothermal treatment also act on the porosity index. An increase in the pH during the basic hydrolysis leads to an increase in the porosity index Ip. During calcination and / or hydrothermal treatment, the index [p decreases when the heating temperature increases and / or when the dwell time increases. Whatever the conformity test implemented in step f), the lower limit of the range of acceptable sizes may in particular be 100 nm, 150 nm or even 200 nm and / or the upper limit of the size range. acceptable may include 80 m.

A l'étape g), si les particules ne sont pas conformes, on peut notamment déterminer les conditions d'une nouvelle synthèse en modifiant : lors de l'étape a) o la nature de l'additif ; et/ou o la concentration de l'additif d'un incrément de concentration de préférence supérieur à 5% de la concentration initiale et/ou inférieur à 15% de la concentration initiale, par exemple de 10% de la concentration initiale ; et/ou o l'ordre d'introduction dans le solvant des différents constituants de la liqueur mère, notamment en introduisant l'additif avant le deuxième réactif et immédiatement avant ou après le premier réactif et/ou o le pH, notamment en le fixant à une valeur inférieure à 2 ; et/ou o le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4 et Hf 4- d'un incrément de préférence supérieur a 0,3 et/ou inférieur à 0,6, par exemple 0,4 ; et/ou - lors de l'étape b) o la température de chauffage de préférence d'un incrément de température au plus de 15°C et/ou supérieur à 5°C, par exemple de 10°C ; et/ou o la durée de maintien en température At d'un incrément de durée de préférence supérieur à 20 minutes et/ou inférieur à 40 minutes, par exemple de 30 minutes ; et/ou o la vitesse de montée à la température de chauffage v, de préférence en la fixant inférieure à 50°C/min, puis en la diminuant d'un incrément de 5°C/min et/ou - lors de l'étape d) o la température de chauffage d'un incrément de température de préférence au plus de 15°C et/ou supérieur à 5°C, par exemple de l 0°C ; et/ou o le pH en le fixant de préférence à une valeur supérieure à 11 ; et/ou lors de l'étape el) : o la température de chauffage en la fixant de préférence à une température inférieure à 1200°C ; et/ou o la durée de maintien en température At d'un incrément de durée de préférence supérieur à 20 minutes et/ou inférieur à 40 minutes, par exemple de 30 minutes ; et/ou - lors de l'étape e2) : o la température de chauffage en la fixant à une température de préférence inférieure à 250°C, ou inférieure à 200°C ; et/ou o la durée de maintien en température At d'un incrément de durée de préférence supérieur à 20 minutes et/ou inférieur à 40 minutes, par exemple de 30 minutes. In step g), if the particles are not in conformity, it is possible in particular to determine the conditions of a new synthesis by modifying: in step a) o the nature of the additive; and / or o the concentration of the additive of a concentration increment preferably greater than 5% of the initial concentration and / or less than 15% of the initial concentration, for example 10% of the initial concentration; and / or the order of introduction into the solvent of the various constituents of the mother liquor, in particular by introducing the additive before the second reagent and immediately before or after the first reagent and / or the pH, in particular by fixing it at a value less than 2; and / or where the ratio of the amount of anionic groups to the amount of Zr4 and Hf4 ions is of an increment of preferably greater than 0.3 and / or less than 0.6, for example 0.4; and / or - during step b) o the heating temperature preferably of a temperature increment at most 15 ° C and / or greater than 5 ° C, for example 10 ° C; and / or the temperature keeping time At of an increment of duration preferably greater than 20 minutes and / or less than 40 minutes, for example 30 minutes; and / or o the rate of rise to the heating temperature v, preferably setting it to less than 50 ° C / min, then decreasing it by an increment of 5 ° C / min and / or - when step d) o the heating temperature of a temperature increment preferably at most 15 ° C and / or above 5 ° C, for example 10 ° C; and / or the pH by fixing it preferably to a value greater than 11; and / or during step e1): the heating temperature, preferably fixing it at a temperature below 1200 ° C; and / or the temperature keeping time At of an increment of duration preferably greater than 20 minutes and / or less than 40 minutes, for example 30 minutes; and / or - during step e2): the heating temperature by setting it at a temperature preferably below 250 ° C, or below 200 ° C; and / or the temperature keeping time At of an increment of duration preferably greater than 20 minutes and / or less than 40 minutes, for example 30 minutes.

Par incrément , on entend une variation positive ou négative d'un paramètre. By increment, we mean a positive or negative variation of a parameter.

Les inventeurs ont découvert et préconisent les règles suivantes : Pour augmenter la taille maximale des particules, il est préférable, à l'étape a), d'augmenter l'acidité de la liqueur mère, et/ou le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4+ et Hf'', et/ou la teneur en additif et/ou, à l'étape b), d'augmenter la température de chauffage et/ou la durée de maintien en température ; pour diminuer l'indice de sphéricité, il est préférable, à l'étape a), d'augmenter l'acidité de la liqueur mère, et/ou le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4+ et Hf'-, et/ou, à l'étape b), de diminuer la température de chauffage ; pour favoriser l'agrégation des particules de base, il est préférable, à l'étape a), de diminuer l'acidité de la liqueur mère, et/ou d'augmenter le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4- et Hf4- et/ou, à l'étape b), d'augmenter la durée de maintien en température ; pour augmenter l'aire spécifique des particules, il esi préférable, à l'étape a) d'augmenter la teneur en additif, et/ou à l'étape d) d'augmenter la température d'hydrolyse basique, et/ou à l'étape el) de diminuer la température de calcination, et/ou à l'étape e2) de diminuer la température du traitement hydrothermal. II en est de même pour augmenter le volume mésoporeux et/ou microporeux; pour augmenter le rendement, c'est-à-dire la quantité de matière solide précipitée, il est préférable, à l'étape a), de diminuer l'acidité et/ou de choisir un rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4- et Hf qui soit compris entre 0,5 et 1,2 et/ou d'augmenter la teneur en additif et/ou, à l'étape b), d'augmenter la température de chauffage et/ou d'augmenter la durée de maintien en température. La morphologie et l'indice de sphéricité des particules sont modifiés par les valeurs des différents paramètres définis ci-dessus. Les inventeurs ont découvert et préconisent les règles suivantes : - En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter le rapport entre la quantité de groupements anioniques, par exemple SO42-, et la quantité d'ions Zr4- et/ou Hf4 et/ou de manière à augmenter la teneur en additif, on augmente la quantité d'aiguilles par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des plaquettes de manière à augmenter l'acidité de la liqueur mère et/ou la durée de maintien en palier, on augmente la quantité de plaquettes par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des étoiles de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple SO42-, et la quantité d'ions Zr4` et/ou Hf et/ou la teneur en additif, on augmente la quantité d'étoiles par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des oursins de manière à augmenter l'acidité de la liqueur mère et/ou avec la teneur en additif, on augmente la quantité d'oursins par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des sphères creuses de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple SO42-, et la quantité d'ions Zr4 et/ou Hf4-et/ou l'acidité de la liqueur mère, on augmente la quantité de sphères creuses par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des lamelles de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple 5042-, et la quantité d'ions Zr4 et/ou Hf et/ou la teneur en additif, on augmente la quantité de lamelles par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à diminuer la teneur en additif dans la liqueur mère, on rend plus fines les aiguilles lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple SO42-, et la quantité d'ions Zr4 et Hf et'ou l'acidité de la liqueur mère, on augmente la quantité d'étoiles lors d'une synthèse suivante, les deux formes pouvant coexister lors de la transition; En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter l'acidité et/ou diminuer la teneur en additif de la liqueur mère, on augmente la quantité d'oursins lors la synthèse suivante, les deux formes pouvant coexister lors de la transition; - En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter l'acidité et/ou la durée de maintien en température de la liqueur mère, on augmente la quantité de sphères creuses, les deux formes pouvant coexister lors de la transition; En modifiant les paramètres d'une synthèse ayant généré des oursins de manière à augmenter l'acidité et/ou la durée de maintien en température de la liqueur mère, on augmente la quantité de sphères creuses, les deux formes pouvant coexister lors de la transition; En modifiant les paramètres d'une synthèse ayant généré des plaquettes de manière à augmenter la teneur en additif de la liqueur mère, on augmente la quantité de lamelles, les deux formes pouvant coexister lors de la transition. The inventors have discovered and recommend the following rules: In order to increase the maximum size of the particles, it is preferable, in step a), to increase the acidity of the mother liquor, and / or the ratio between the quantity of groups. anionic and the amount of Zr4 + and Hf '' ions, and / or the additive content and / or, in step b), to increase the heating temperature and / or the temperature keeping time; to reduce the sphericity index, it is preferable, in step a), to increase the acidity of the mother liquor, and / or the ratio between the quantity of anionic groups and the amount of Zr4 + and Hf ions and / or, in step b), decreasing the heating temperature; to promote the aggregation of the base particles, it is preferable, in step a), to reduce the acidity of the mother liquor, and / or to increase the ratio between the amount of anionic groups and the amount of Zr4- and Hf4- ions and / or, in step b), to increase the temperature holding time; to increase the specific surface area of the particles, it is preferable, in step a) to increase the additive content, and / or in step d) to increase the basic hydrolysis temperature, and / or to step el) lowering the calcination temperature, and / or in step e2) decreasing the temperature of the hydrothermal treatment. It is the same to increase the mesoporous and / or microporous volume; to increase the yield, that is to say the amount of solid matter precipitated, it is preferable, in step a), to reduce the acidity and / or choose a ratio between the amount of anionic groups and the amount of Zr4- and Hf ions between 0.5 and 1.2 and / or increasing the additive content and / or, in step b), increasing the heating temperature and / or to increase the duration of temperature maintenance. The morphology and the sphericity index of the particles are modified by the values of the various parameters defined above. The inventors have discovered and recommend the following rules: by modifying the parameters of a synthesis that has generated needles so as to increase the ratio between the quantity of anionic groups, for example SO.sub.4-, and the amount of Zr.sub.4- and and / or Hf4 and / or in order to increase the additive content, the quantity of needles is increased relative to the quantity of isotropic particles during a subsequent synthesis; By modifying the parameters of a synthesis which has generated platelets in such a way as to increase the acidity of the mother liquor and / or the level of maintenance time, the quantity of platelets relative to the quantity of isotropic particles is increased when a following synthesis; By modifying the parameters of a synthesis having generated stars so as to increase, in the mother liquor, the ratio between the quantity of anionic groups, for example SO42-, and the quantity of Zr4 and / or Hf ions and / or or the additive content, the amount of star is increased relative to the amount of isotropic particles in a subsequent synthesis; By modifying the parameters of a synthesis that has generated sea urchins so as to increase the acidity of the mother liquor and / or with the additive content, the quantity of sea urchins is increased relative to the quantity of isotropic particles during a following synthesis; By modifying the parameters of a synthesis having generated hollow spheres so as to increase, in the mother liquor, the ratio between the quantity of anionic groups, for example SO42-, and the quantity of Zr4 and / or Hf4-ions and or the acidity of the mother liquor, the quantity of hollow spheres is increased relative to the quantity of isotropic particles during a subsequent synthesis; By modifying the parameters of a synthesis having generated lamellae so as to increase, in the mother liquor, the ratio between the quantity of anionic groups, for example 5042-, and the quantity of Zr4 and / or Hf ions and / or the additive content, the amount of lamellae is increased relative to the quantity of isotropic particles during a subsequent synthesis; By modifying the parameters of a synthesis having generated needles so as to reduce the additive content in the mother liquor, the needles are made thinner during a subsequent synthesis; By modifying the parameters of a synthesis having generated needles so as to increase, in the mother liquor, the ratio between the quantity of anionic groups, for example SO42-, and the quantity of Zr4 and Hf ions and / or acidity of the mother liquor, the quantity of stars is increased during a subsequent synthesis, the two forms being able to coexist during the transition; By modifying the parameters of a synthesis having generated needles so as to increase the acidity and / or reduce the additive content of the mother liquor, the quantity of sea urchins is increased during the following synthesis, the two forms being able to coexist during transition; By modifying the parameters of a synthesis which has generated needles so as to increase the acidity and / or the duration of temperature maintenance of the mother liquor, the quantity of hollow spheres is increased, the two forms being able to coexist during the transition; By modifying the parameters of a synthesis which has generated sea urchins in such a way as to increase the acidity and / or the duration of temperature maintenance of the mother liquor, the quantity of hollow spheres is increased, the two forms being able to coexist during the transition. ; By modifying the parameters of a synthesis which has generated platelets so as to increase the additive content of the mother liquor, the quantity of lamellae is increased, the two forms being able to coexist during the transition.

Le tableau suivant récapitule les conditions préférées pour les étapes a) et b) pour obtenir une majorité, en nombre, de particules présentant certaines morphologies particulières. Dans la première colonne "*" indique les paramètres prépondérants. The following table recapitulates the preferred conditions for steps a) and b) to obtain a majority, in number, of particles having certain particular morphologies. In the first column "*" indicates the most important parameters.

L'ordre d'introduction des constituants dans la liqueur mère est l'ordre préféré mentionné ci-dessus. Aiguilles Etoiles Oursins creuses Sphères Lamelles Plaquettes Acidité ([H-])* 0,6-2 1,2-3 1,2-3 1,2-3 0,6-3 1,6-3 (mol/1) Concentration en 0,1-1,2 0,1-1,2 0,1-1,2 0,1-1,2 0,1-1,2 0,1-1,2 Zr4-+ HÉ- (mol/l) Rapport molaire 0,3-1 0,8-2 0,3-1 0,3-1 0,5-2 0,5-1 group. Anion / I (Zr4-+ Hf T)* Concentration en 10-3-10-1 10.3-10-1 10.5-10.2 10-3-10-1 10-'--1 Io-'-Io-2 additif (mol/1) Rampe de l0~`-1 10-2-1 10~'`-1 10-2-1 l0.2-10 10 2-1 chauffage (°C/min) Température de 55-80 60-80 55-80 60-80 60-100 60-80 chauffage* (°C) Durée de 15min- 30min- 30min-2h lh-5h 30min-5h 1h-10h maintien au 2h 2h palier Les règles et conditions précédentes, selon des modes de réalisation préférés de l'invention, ne sont pas limitatives. Elles permettent, avec les exemples décrits ci-après, de fabriquer une poudre adaptée à une application particulière. The order of introduction of the components into the mother liquor is the preferred order mentioned above. Needles Stars Sea urchins Spheres Lamella Platelets Acidity ([H -]) * 0.6-2 1.2-3 1.2-3 1.2-3 0.6-3 1.6-3 (mol / 1) Concentration in 0.1-1.2 0.1-1.2 0.1-1.2 0.1-1.2 0.1-1.2 0.1-1.2 Zr4- + HÉ- ( mol / l) molar ratio 0.3-1 0.8-2 0.3-1 0.3-1 0.5-2 0.5-1 group. Anion / I (Zr4- + Hf T) * Concentration in 10-3-10-1 10.3-10-1 10.5-10.2 10-3-10-1 10 -'-1 Io -'-Io-2 additive ( mol / 1) Ramp of l0 ~ `-1 10-2-1 10 ~ '` -1 10-2-1 l0.2-10 10 2-1 heating (° C / min) Temperature of 55-80 60- 80 55-80 60-80 60-100 60-80 heating * (° C) Time of 15min-30min-30min-2h lh-5h 30min-5h 1h-10h hold at 2h 2h step The previous rules and conditions, according to preferred embodiments of the invention are not limiting. They make it possible, with the examples described below, to manufacture a powder adapted to a particular application.

10 Par ailleurs, les procédés connus appliqués aux produits actuellement disponibles ont permis aux inventeurs de faire les constats suivants : - la précipitation de solutions basiques ou l'hydrolyse de dérivés connus de l'art antérieur conduisent à une morphologie isotrope des hydrates fabriqués, qu'il y ait présence ou non de tensio-actifs ; 15 - un traitement hydrothermal réalisé à une température supérieure à 200°C, voire supérieure à 250 °C, d'une suspension de particules isotropes ou d'une solution conduit à des poudres de particules denses cristallisées, éventuellement anisotropes. Ce type de traitement hydrothermal est décrit par exemple dans l'article Morphology of zirconia5 synthesized hydrothermally from zirconium oxychloride , Journal of the American Ceramic Society, 1992, vol. 75, n°9, pp. 2515-2519. - un traitement hydrothermal réalisé à une température inférieure à 200°C conduit à des poudres de particules isotropes. Ce type de traitement est décrit par exemple dans l'article Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis , Journal of Colloid and Interface Science, 1998, vol. 198, pp 87-99. la combustion d'un sel métallique, l'oxydation d'un métal, ou encore la calcination à haute température de précurseurs conduisent à des poudres de particules denses, éventuellement anisotropes. Furthermore, the known processes applied to the currently available products have allowed the inventors to make the following observations: the precipitation of basic solutions or the hydrolysis of derivatives known from the prior art lead to an isotropic morphology of the hydrates produced, there is or is not presence of surfactants; A hydrothermal treatment carried out at a temperature above 200 ° C., or even higher than 250 ° C., of a suspension of isotropic particles or of a solution leads to powders of crystallized, possibly anisotropic, dense particles. This type of hydrothermal treatment is described, for example, in the article Morphology of zirconium synthesized hydrothermally from zirconium oxychloride, Journal of the American Ceramic Society, 1992, vol. 75, No. 9, pp. 2515-2519. a hydrothermal treatment carried out at a temperature below 200 ° C. leads to powders of isotropic particles. This type of treatment is described, for example, in the article Nucleation and growth for nanoscale zirconia particles by forced hydrolysis, Journal of Colloid and Interface Science, 1998, vol. 198, pp 87-99. the combustion of a metal salt, the oxidation of a metal, or the calcination at high temperature of precursors lead to powders of dense particles, possibly anisotropic.

Les étapes du procédé qui vient d'être décrit peuvent être modifiées afin de doper les particules fabriquées. Un dopant ou plusieurs dopants peuvent être introduits à une ou plusieurs étapes, selon des techniques connues de l'homme du métier : Etape a) A l'étape a), un dopant A choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de gallium Ga, d'étain Sn, de plomb Pb et leurs mélanges peut être ajouté de façon optionnelle à la liqueur mère. Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. De préférence, le dopant A est choisi parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels. Si le dopant A est un composé de soufre S et/ou de phosphore P et leurs mélanges, de préférence ce composé est SO42 et/ou PO43-, de préférence introduit par le deuxième réactif. The steps of the process just described can be modified to dope the particles manufactured. A dopant or several dopants may be introduced in one or more steps, according to techniques known to those skilled in the art: Step a) In step a), a dopant A chosen from the compounds of elements of column 17 ( halides), compounds of column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth (elements of column 2 of the Periodic Table), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, Fe iron, Mn manganese, Nb niobium, Gallium Ga, Sn tin, Pb lead and their mixtures may be added optionally to the mother liquor. Said compounds can be for example oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt. Preferably, the dopant A is chosen from oxides, hydrates and salts, more preferably from salts. If the dopant A is a compound of sulfur S and / or phosphorus P and mixtures thereof, preferably this compound is SO42 and / or PO43-, preferably introduced by the second reagent.

Si le dopant A est un composé d'aluminium Al, il est de préférence choisi parmi les hydrates d'aluminium. Si le dopant A est un composé de silicium Si, l'oxyde de silicium est préféré. De préférence encore, le dopant A est soluble en milieu acide. If the dopant A is an Al aluminum compound, it is preferably chosen from aluminum hydrates. If the dopant A is a Si silicon compound, silicon oxide is preferred. More preferably, the dopant A is soluble in an acid medium.

Le dopant A est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, de préférence choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant A est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leur mélanges. De préférence enfin, le dopant A est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. A l'issue de l'étape b), le dérivé primaire obtenu sera alors un dérivé primaire de zirconium et/ou d'hafnium dopé. Par exemple, si à l'étape a) la solution mère contient un oxychlorure de zirconium, de l'eau, un additif permettant de modifier la morphologie, un deuxième réactif amenant les groupements anioniques 5042 , et un sel d' yttrium YC13, le dérivé primaire obtenu à l'issu de l'étape b) sera un sulfate basique de zirconium dopé à un sulfate basique d'yttrium. The dopant A is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, of cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof, preferably selected from compounds of the elements of column 17 (halides), compounds of elements of column 1 (alkaline), yttrium compounds Y, scandium Sc, lanthanum Ce, Ce cerium, Ca calcium, Mg magnesium, Si silicon, S sulfur, P phosphorus, Al aluminum and mixtures thereof. More preferably, the dopant A is chosen from compounds of chlorine Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant A is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures. At the end of step b), the primary derivative obtained will then be a primary derivative of zirconium and / or doped hafnium. For example, if in step a) the stock solution contains a zirconium oxychloride, water, an additive to modify the morphology, a second reagent bringing the anionic groups 5042, and a yttrium salt YC13, the primary derivative obtained at the end of step b) will be a basic zirconium sulfate doped with a basic yttrium sulfate.

Dans un mode de réalisation particulier préféré, un dopant A est ajouté lors de l'étape a). In a particular preferred embodiment, a dopant A is added during step a).

Etape b) A l'étape b), après obtention d'une suspension de particules de dérivé primaire, éventuellement dopé, ou d'une poudre de particules de dérivé primaire éventuellement dopé, un dopant B choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges peut être ajouté de façon optionnelle à la liqueur mère. Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. Step b) In step b), after obtaining a suspension of particles of primary derivative, possibly doped, or of a powder of particles of primary derivative possibly doped, a dopant B selected from the compounds of elements of the column 17 (halides), compounds of column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (elements of column 2 of the periodic table of elements) Ti titanium, Si silicon, Al aluminum, Tungsten W, Cr chromium, Mo molybdenum, Vanadium V, Sb antimony, Ni nickel, Cu copper, Zn zinc, Fe iron , Mn manganese, Nb niobium, Galium Ga, Sn tin, Pb lead and their mixtures may be added optionally to the mother liquor. Said compounds can be for example oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt.

De préférence, le dopant B est choisi parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels. Si le dopant B est un composé d'aluminium Al, il est de préférence choisi parmi les hydrates d'aluminium. Si le dopant B est un composé de silicium Si, il s'agit de préférence de l'oxyde de silicium. Preferably, the dopant B is chosen from oxides, hydrates and salts, more preferably from salts. If the dopant B is an Al aluminum compound, it is preferably chosen from aluminum hydrates. If the dopant B is a Si silicon compound, it is preferably silicon oxide.

Le dopant B est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, da manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, de préférence choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, d'aluminium Al et leurs mélanges. De préférence encore, le dopant B est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, d'aluminium Al et leurs mélanges. De préférence enfin, le dopant B est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, d'aluminium Al et leurs mélanges. A l'issue de l'étape b), le dérivé primaire obtenu sera alors un dérivé primaire de zirconium 5 et/ou d'hafnium dopé. Le dopant B ou un successeur du dopant B peut être associé audi: dérivé primaire par tout procédé connu de l'homme du métier, par exemple par un procédé d'imprégnation ou par co-précipitation après remise en suspension. L'ajout d'un dopant A à l'étape a) n'exclut pas l'ajout d'un dopant B à l'étape b), et 10 réciproquement. The dopant B is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, of cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof , preferably chosen from the compounds of the elements of column 17 (halides), the compounds of the elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, of cerium Ce, of calcium Ca, Mg magnesium, Si silicon, Al aluminum and mixtures thereof. More preferably, the dopant B is chosen from compounds of chlorine Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, Mg magnesium, Si silicon, Al aluminum and mixtures thereof. Also preferably, the dopant B is chosen from yttrium compounds Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, aluminum Al and mixtures thereof. At the end of step b), the primary derivative obtained will then be a primary derivative of zirconium 5 and / or doped hafnium. The dopant B or a successor of the dopant B may be associated with the primary derivative by any method known to those skilled in the art, for example by an impregnation process or by co-precipitation after resuspension. The addition of a dopant A in step a) does not exclude the addition of a dopant B in step b), and vice versa.

Etape c) A l'étape c), optionnelle, avant de faire subir au dérivé primaire de zirconium et/ou d'hafnium un traitement visant à substituer les groupements anioniques dudit dérivé 15 primaire apportés par le deuxième réactif par d'autres groupements anioniques présentant un fort pouvoir complexant avec le zirconium et/ou l'hafnium, un dopant Cl choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de 20 silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu. de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges peut être utilisé de façon optionnelle pour doper ledit dérivé primaire. Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des 25 carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. De préférence, le dopant Cl est choisi parmi les oxydes, le. hydrates, les sels, de préférence encore parmi les sels. Si le dopant Cl est un composé de soufre S et/ou de phosphore P et leurs mélanges, de 30 préférence ce composé est SO4`- et/ou PO43-, de préférence introduit par le composé apte à d'assurer la substitution des groupements anioniques apportés par le deuxième réactif Si le dopant Cl est un composé d'aluminium Al, il est de préférence choisi parmi les hydrates d'aluminium. Si le dopant Cl est un composé de silicium Si, il s'agit de préférence de l'oxyde de silicium. Step c) In step c), optional, before subjecting the primary derivative of zirconium and / or hafnium treatment to substitute the anionic groups of said primary derivative provided by the second reagent by other anionic groups having a high complexing power with zirconium and / or hafnium, a Cl dopant selected from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, scandium Sc, lanthanide, alkaline earth (elements of column 2 of the periodic table of elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, Cr chromium, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu. Zn zinc, Fe iron, Mn manganese, Nb niobium, Galium Ga, Sn tin, Pb lead and their mixtures may be used optionally to dope said primary derivative. Said compounds can be, for example, oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt. Preferably, the dopant C1 is chosen from oxides, the. hydrates, salts, more preferably salts. If the dopant Cl is a compound of sulfur S and / or phosphorus P and mixtures thereof, preferably this compound is SO4- and / or PO43-, preferably introduced by the compound capable of ensuring the substitution of the groups anionic provided by the second reagent If the dopant Cl is an aluminum Al compound, it is preferably chosen from hydrates of aluminum. If the dopant Cl is a Si silicon compound, it is preferably silicon oxide.

Le dopant Cl est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins^, les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, de préférence choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 ',alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant Cl est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence enfin, le dopant Cl est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. A l'issue de l'étape c), le dérivé secondaire obtenu sera alors un dérivé secondaire de zirconium et/ou d'hafnium dopé. L'ajout d'un dopant A à l'étape a) et/ou l'ajout d'un dopant B à l'étape b) n'exclut pas 25 l'ajout d'un dopant Cl à l'étape c), et réciproquement. En fin d'étape c), optionnelle, le dérivé secondaire obtenu, éventuellement dopé, peut être dopé à partir d'un dopant C2 choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium 30 Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb. de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt. d'or Au et leurs mélanges ; de préférence le dopant C2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'é=.éments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag. d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges. De préférence encore, le dopant C2 est choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence, le dopant C2 est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant C2 est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino- terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. The dopant C1 is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkalis, yttrium Y compounds, scandium Sc, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof, preferably selected from the compounds of the elements of column 17 (halides), the compounds of the elements of column 1 ', alkaline), yttrium compounds Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant C1 is chosen from chlorine compounds C1, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant Cl is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures. At the end of step c), the secondary derivative obtained will then be a secondary derivative of zirconium and / or doped hafnium. The addition of a dopant A in step a) and / or the addition of a dopant B in step b) does not exclude the addition of a dopant C1 in step c) , and reciprocally. At the end of step c), optional, the secondary derivative obtained, possibly doped, can be doped starting from a dopant C2 chosen from the compounds of elements of the column 17 (halides), the compounds of elements of the Column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (elements of column 2 of the periodic table of elements), Ti titanium, Si silicon, S sulfur , phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn , niobium Nb. of Ga galium, Sn tin, Pb lead, cobalt Co, ruthenium Ru, Rh rhodium, Pd palladium, Ag silver, Os osmium, Ir irium, platinum Pt. Au gold and their mixtures; preferably the C2 dopant is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium barium, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al , tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, of Sn tin, Pb lead, cobalt Co, ruthenium Ru, Rh rhodium, Pd palladium, Osmium silver Os, Ir irium, Pt platinum, Au gold and their mixtures. More preferably, the C2 dopant is chosen from the compounds of the elements of column 17 (halides), the compounds of the elements of column 1 (alkaline), the yttrium compounds Y, scandium Sc, lanthanum La, Ce cerium, Ca calcium, Mg magnesium, Si silicon, S sulfur, P phosphorus, Al aluminum and mixtures thereof. Preferably, the dopant C2 is chosen from chlorine compounds Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant C2 is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures. The compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column elements 2 of the periodic table of the elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof may be for example oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt.

De préférence, lesdits composés sont choisis parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels. Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par 5 exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine. De préférence, lesdits composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence 10 encore parmi les métaux. Pour doper le dérivé secondaire, tout procédé connu de l'homme du métier, par exemple par un procédé d'imprégnation, par co-précipitation après remise en suspension, peut être envisagé. L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou 15 l'utilisation d'un dopant Cl à l'étape c) n'exclut pas l'utilisation d'un dopant C2 et réciproquement. Preferably, said compounds are chosen from oxides, hydrates and salts, more preferably from salts. The compounds of cobalt Co, ruthenium Ru, Rh rhodium, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof may be for example oxides, hydrates, salts, metals. A platinum compound may for example be a platinum salt. Preferably, said compounds of cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, iride Ir, platinum Pt, Au gold and mixtures thereof are chosen from oxides, hydrates, salts, metals, more preferably from metals. To boost the secondary derivative, any method known to those skilled in the art, for example by an impregnation process, by co-precipitation after resuspension, can be envisaged. The addition of a dopant A in step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) n does not exclude the use of a C2 dopant and vice versa.

Etape d) A l'étape d), lorsque le dérivé primaire ou le dérivé secondaire, dopé ou non, est en 20 suspension, avant de réaliser l'hydrolyse basique, un dopant Dl choisi parmi les composés à base d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr., de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de 25 manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peut optionnellement être ajouté dans la suspension. Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. 30 De préférence, le dopant Dl est choisi parmi les oxydes, les hydrates, les sels. de préférence encore parmi les sels. Step d) In step d), when the primary derivative or the secondary derivative, doped or not, is suspended, before carrying out the basic hydrolysis, a dopant D1 chosen from yttrium Y compounds, of scandium Sc, lanthanides, alkaline earths (elements of column 2 of the periodic table of the elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, Pb lead and their mixtures, can optionally be added in the suspension. Said compounds can be for example oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt. Preferably, the dopant D1 is chosen from oxides, hydrates and salts. more preferably from the salts.

De préférence encore, le dopant Dl est soluble dans le solvant polaire dans lequel le dérivé primaire ou le dérivé secondaire est en suspension. Le dopant Dl est de préférence choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La. de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S. de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, de préférence encore le dopant Dl est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. Le dopant Dl est de préférence introduit dans le solvant en même temps que le dérivé primaire ou dérivé secondaire. Par exemple, si avant de réaliser l'hydrolyse basique d'un ZBS, un sel d'yttrium est ajouté dans la suspension, l'hydrate obtenu sera un hydrate de zirconium dopé à un hydrate d'yttrium. L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou d'un dopant C2 en fin d'étape c) n'exclut pas l'ajout d'un dopant Dl à l'étape d), et réciproquement. Dans un mode de réalisation particulier, on ajoute un dopant A à l'étape a) et un dopant Dl à l'étape d), le dopant A étant différent du dopant Dl. L'hydrate obtenu à l'issue de l'étape d) est alors co-dopé, et par exemple est un hydrate de zirconium co-dopé. Après hydrolyse basique, l'hydrate de zirconium et/ou d'hafnium, éventuellement dopé, éventuellement séché, peut être dopé à l'aide d'un dopant D2 choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges ; de préférence le dopant D2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La. de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S. de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges ; de préférence encore, le dopant D2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant D2 est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc. de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant D2 est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. More preferably, the dopant D1 is soluble in the polar solvent in which the primary derivative or the secondary derivative is in suspension. The dopant D1 is preferably chosen from yttrium compounds Y, scandium Sc, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr Ti titanium, Si silicon, phosphorus P sulfur, Al aluminum, Tungsten W, Cr chromium, Mo molybdenum, Vanadium V, Sb antimony, Ni nickel, Cu copper , Zn zinc, Fe iron, Mn manganese, Nb niobium, Galium Ga, Sn tin, Pb lead and mixtures thereof, more preferably Dl dopant is selected from yttrium compounds Y, Sc scandium, lanthanum La, Ce cerium, Ca calcium, Mg magnesium, Si silicon, S sulfur, Al aluminum and mixtures thereof. The dopant D1 is preferably introduced into the solvent at the same time as the primary derivative or secondary derivative. For example, if before carrying out the basic hydrolysis of a ZBS, an yttrium salt is added to the suspension, the hydrate obtained will be a zirconium hydrate doped with an yttrium hydrate. The addition of a dopant A in step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or a C2 dopant at the end of step c) does not exclude the addition of a dopant D1 in step d), and vice versa. In a particular embodiment, a dopant A is added to step a) and a dopant D1 in step d), dopant A being different from dopant D1. The hydrate obtained at the end of step d) is then co-doped, and for example is a co-doped zirconium hydrate. After basic hydrolysis, the optionally doped, possibly dried, zirconium and / or hafnium hydrate may be doped with a dopant D2 chosen from the compounds of elements of column 17 (halides), the composed of elements of column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (elements of column 2 of the periodic table of elements), Ti titanium, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium rh, palladium Pd, silver Ag, osmium bone, d Iridium Ir, Pt platinum, Au gold and mixtures thereof; preferably, the dopant D2 is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, scandium Sc, lanthanum La. cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, sulfur S phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof; more preferably, the dopant D2 is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, scandium Sc, lanthanum La , Ce cerium, Ca calcium, Mg magnesium, Si silicon, S sulfur, P phosphorus, Al aluminum and mixtures thereof. More preferably, the dopant D2 is chosen from the compounds of chlorine Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant D2 is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures.

Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti. de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. De préférence, lesdits composés sont choisis parmi les oxydes, [es hydrates, les sels, de 30 préférence encore, le cas échéant, parmi les hydrates. Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine. De préférence, lesdits composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de pla-:ine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence encore parmi les métaux. Pour doper l'hydrate, tout procédé connu de l'homme du métier, par exemple par un procédé d'imprégnation, par co-précipitation après remise en suspension, peut être utilisé. Cette opération de dopage peut être réalisée plusieurs fois. Compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column elements 2 of the periodic table of the elements), Ti titanium. silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, Mn manganese, Nb niobium, Galium Ga, Sn tin, Pb lead and mixtures thereof may be for example oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt. Preferably, said compounds are chosen from oxides, hydrates and salts, and more preferably, from hydrates, where appropriate. The compounds of cobalt Co, ruthenium Ru, Rh rhodium, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof can be for example oxides , hydrates, salts, metals. A platinum compound may for example be a platinum salt. Preferably, said compounds of cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, iridium Ir, platinum Pt, Au gold and mixtures thereof. are selected from oxides, hydrates, salts, metals, more preferably from metals. To dope the hydrate, any method known to those skilled in the art, for example by an impregnation process, by co-precipitation after resuspension, may be used. This doping operation can be performed several times.

L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou l'utilisation d'un dopant C2 en fin d'étape c) et/ou l'ajout d'un dopant Dl avant hydrolyse basique n'exclut pas l'utilisation d'un dopant D2 après hydrolyse basique, et réciproquement. The addition of a dopant A in step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or the use of a C2 dopant at the end of step c) and / or the addition of a D1 dopant before basic hydrolysis does not exclude the use of a D2 dopant after basic hydrolysis, and vice versa.

Etape e) A l'étape e), avant de réaliser la calcination du dérivé obtenu en fin d'étape b) ou c), ou de l'hydrate obtenu en fin d'étape d), un dopant El choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au ; et leurs mélanges peut optionnellement être utilisé pour doper le dérivé ou l'hydrate. Le dopant El est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d' argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au, et leurs mélanges ; de préférence encore, le dopant El est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant El est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant El est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. Step e) In step e), before calcining the derivative obtained at the end of step b) or c), or the hydrate obtained at the end of step d), a dopant El chosen from the compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column 2 elements of periodic table of elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd silver Ag, osmium Os, Ir irium, Pt platinum, Au gold; and mixtures thereof can optionally be used to dope the derivative or hydrate. The dopant E1 is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, of cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, Pb lead, Co cobalt, Ru ruthenium, Rh rhodium, Pd palladium, Ag silver, Os osmium, Ir irium, Pt platinum, Au gold, and mixtures thereof; more preferably, the dopant E1 is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, scandium Sc, lanthanum La , Ce cerium, Ca calcium, Mg magnesium, Si silicon, S sulfur, P phosphorus, Al aluminum and mixtures thereof. More preferably, the dopant El is chosen from chlorine compounds Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant E1 is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures.

Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. De préférence, lesdits composés sont choisis parmi les oxydes, les hydrates. les sels, de préférence encore, le cas échéant, parmi les oxydes. Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine. Compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column elements 2 of the periodic table of the elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof may be for example oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt. Preferably, said compounds are chosen from oxides and hydrates. the salts, more preferably, if appropriate, among the oxides. The compounds of cobalt Co, ruthenium Ru, Rh rhodium, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof can be for example oxides , hydrates, salts, metals. A platinum compound may for example be a platinum salt.

De préférence, lesdits composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence encore parmi les métaux. L'oxyde obtenu après calcination sera un oxyde dopé. Le dopage peut être effectué par toutes les techniques connues de l'homme du métier, en particulier par ajout d'une poudre ou par imprégnation au moyen d'une suspension. L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou l'utilisation d'un dopant C2 en fin d'étape c) et/ou l'ajout d'un dopant Dl avant hydrolyse basique et/ou l'utilisation d'un dopant D2 après hydrolyse basique n'exclut pas l'utilisation d'un dopant El avant calcination, et réciproquement. Après l'étape de calcination, l'oxyde de zirconium et/ou d'hafnium, éventuellement dopé, éventuellement séché, peut être dopé à l'aide d'un dopant E2 choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir. de platine Pt, d'or Au et leurs mélanges ; de préférence le dopant E2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges ; de préférence encore, le dopant E2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant E2 est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant E2 est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. Preferably, said compounds of cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, iride Ir, platinum Pt, Au gold and mixtures thereof are chosen from oxides, hydrates, salts, metals, more preferably from metals. The oxide obtained after calcination will be a doped oxide. Doping can be carried out by any technique known to those skilled in the art, in particular by adding a powder or impregnation by means of a suspension. The addition of a dopant A in step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or the use of a C2 dopant at the end of step c) and / or the addition of a D1 dopant before basic hydrolysis and / or the use of a D2 dopant after basic hydrolysis does not exclude the use of an El dopant before calcination, and vice versa. After the calcination step, the possibly doped, optionally dried, zirconium and / or hafnium oxide may be doped with an E2 dopant chosen from the compounds of elements of column 17 (halides ), compounds of column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth (column 2 of the Periodic Table of Elements), Ti titanium Si, S, P, Al, Tungsten W, Cr, Mo, V, Sb, Ni, Cu, Zn , iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Bone, iridium Ir, Pt platinum, Au gold and mixtures thereof; preferably, the dopant E2 is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, of cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof; more preferably, the dopant E2 is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, scandium Sc, lanthanum La , Ce cerium, Ca calcium, Mg magnesium, Si silicon, S sulfur, P phosphorus, Al aluminum and mixtures thereof. More preferably, the dopant E 2 is chosen from chlorine compounds Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant E2 is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures.

Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YC13. De préférence, lesdits composés sont choisis parmi les oxydes, les hydrates, les sels, de 20 préférence encore parmi les sels. Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, (le palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine. 25 De préférence, lesdits composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence encore parmi les métaux. Le dopage dudit oxyde peut être effectué par tout procédé couru de l'homme du métier, 30 par exemple par un procédé d'imprégnation. Compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column elements 2 of the periodic table of the elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof may be for example oxides, hydrates, salts, carbides, nitrides, metals. An yttrium compound may for example be an yttrium salt, for example the YC13 salt. Preferably, said compounds are selected from oxides, hydrates, salts, more preferably from salts. The compounds of cobalt Co, ruthenium Ru, rhodium Rh, (palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof may be for example For example, a platinum compound may be a platinum salt, such as cobalt Co, ruthenium Ru, rhodium rhodium, palladium Pd, silver Ag, oxides, hydrates, salts and metals. , osmium Os, Ir irium, Pt platinum, Au gold and mixtures thereof are selected from oxides, hydrates, salts, metals, more preferably from metals, doping said oxide may be carried out by any method known to those skilled in the art, for example by an impregnation process.

L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou l'utilisation d'un dopant C2 en fin d'étape c) et/ou l'ajout d'un dopant Dl avant hydrolyse basique et/ou l'utilisation d'un dopant D2 après hydrolyse basique et/ou l'utilisation d'un dopant El avant calcination n'exclut pas l'utilisation d'un dopant E2 après calcination, et réciproquement. The addition of a dopant A in step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or the use of a C2 dopant at the end of step c) and / or the addition of a D1 dopant before basic hydrolysis and / or the use of a D2 dopant after basic hydrolysis and / or the use of an El dopant before calcination does not exclude the use of an E2 dopant after calcination, and vice versa.

Dans une variante de l'invention, on effectue un triple dopage de la zircone en ajoutant un premier, un deuxième et un troisième dopant. Par exemple, on fabrique un dérivé ZBS dopé Y par ajout d'un sel d'yttrium. Puis un hydrate co-dopé Y/Ce par ajout d'un sel de cérium. Puis enfin, avant calcination, on ajoute un sel d'aluminium et on obtient une zircone dopée Y/Ce/Al. De manière générale, l'utilisation d'un dopant peut être effectuée indépendamment de l'utilisation d'un ou plusieurs autres dopants. Cependant, pour que le dopant soit localisé à l'intérieur de la particule sous la forme d'un composé défini, d'une solution solide, ou d'un mélange intime moléculaire, il est préférable que les dopants soient de type A et/ou Cl et/ou Dl et/ou El. Pour que le dopant soit localisé à l'intérieur de la particule sous la forme d'une dispersion ou d'une inclusion, ou soit localisé en surface de la particule, il est préférable que le dopant soit de type B et/ou C2 et/ou D2 et/ou E2. In a variant of the invention, a triple doping of the zirconia is carried out by adding a first, a second and a third dopant. For example, a Y-doped ZBS derivative is made by adding an yttrium salt. Then a hydrate co-doped Y / Ce by adding a cerium salt. Finally, before calcination, an aluminum salt is added and a Y / Ce / Al doped zirconia is obtained. In general, the use of a dopant can be carried out independently of the use of one or more other dopants. However, for the dopant to be located inside the particle in the form of a defined compound, a solid solution, or an intimate molecular mixture, it is preferable that the dopants are of type A and / or or C1 and / or D1 and / or E1. In order for the dopant to be located inside the particle in the form of a dispersion or inclusion, or to be located on the surface of the particle, it is preferable that the dopant is of type B and / or C2 and / or D2 and / or E2.

La quantité molaire de dopant dans les particules peut être inférieure à 40%, inférieure à 20%, inférieure à 10%, voire inférieure à 5% ou même inférieure à 3%. The molar quantity of dopant in the particles may be less than 40%, less than 20%, less than 10%, or even less than 5% or even less than 3%.

EXEMPLES Les exemples suivants sont fournis à des fins illustratives et ne lim:tent pas l'invention. EXAMPLES The following examples are provided for illustrative purposes and do not limit the invention.

Exemple comparatif 1 : Poudre hors invention Dans un bécher de 1 1 en Pyrex, on met en solution sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. L'acidité de la liqueur mère est de 1,2, la concentration en (Zr4- + Hf 4-) est de 0,6 mol/1 et le rapport molaire entre les groupements anioniques SO42 et (Zr4 + Hf i-) est de 0,6. Après dissolution complète des réactifs, la solution est portée, toujours sous agitation, à 90°C avec une rampe de chauffage de 1°C/min. La solution est maintenue à 90°C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 °C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre ainsi obtenue présente une aire spécifique de 3 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous une forme quasi-sphérique caractéristique dite en grappe de raisin . Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second Becher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée. puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. Comparative Example 1 Powder Excluding the Invention In a Pyrex 1 1 beaker, 110 g of zirconium oxycholide are dissolved in 300 ml of deionized water, followed by the addition of 28 g of sodium sulphate and 500 ml with deionized water. The acidity of the mother liquor is 1.2, the concentration of (Zr4- + Hf 4-) is 0.6 mol / l and the molar ratio between the anionic groups SO42 and (Zr4 + Hf i-) is 0.6. After complete dissolution of the reagents, the solution is carried, still stirring, at 90 ° C with a heating ramp of 1 ° C / min. The solution is kept at 90 ° C for 1 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS. The powder thus obtained has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction. The particles of ZBS are in a characteristic spherical quasi-spherical form. In a 1 1 Teflon PTFE beaker, the cake is then suspended in 250 ml of deionized water. In a second 1 PTFE Teflon beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered. then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water. on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO.

La poudre ainsi obtenue présente une aire spécifique de 320 m2/g. La somme des volumes mésoporeux et microporeux de 0,18 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous une forme quasi-sphérique similaire à celle du dérivé ZBS de départ. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h-') à 500°C. La poudre ainsi obtenue présente une aire spécifique de 60 m2/g ; la somme des volumes mésoporeux et microporeux est de 0,12 cm3/g ; la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous une forme quasi-sphérique similaire à celle des particules initiales du dérivé ZBS (représentées sur la figure 3a) et du ZHO. Exemple 2 : Poudre sous forme d'aiguilles Dans un bécher de 1 1 en Pyrex, on met en solution à 50°C sous agitation 210 g d'oxychlorure de zirconium dans 300 ml d'eau permutée puis on ajoute 2,5 g de dodécyle sulfate de sodium ou SDS, puis on ajoute 52 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. la température est ajustée à 50°C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 2, la concentration en (Zr4T + Hf T) est de 1 mol/l, le rapport molaire entre les groupements anioniques SO42et (Zr4- + Hf'-) est de 0,6, et la concentration en additif SDS est de 0,02 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 70°C avec une rampe de chauffage de 1 °C/min. La solution est maintenue à 70°C pendant 15 min puis laissée à refroidir librement jusqu'en dessous de 50 °C. The powder thus obtained has a specific surface area of 320 m 2 / g. The sum of the mesoporous and microporous volumes of 0.18 cm3 / g and the powder is amorphous by X-ray diffraction. The ZHO particles are in a quasi-spherical form similar to that of the starting ZBS derivative. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, and then stirred with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a 300 hr hourly velocity VVH) at 500 ° C. The powder thus obtained has a specific surface area of 60 m 2 / g; the sum of the mesoporous and microporous volumes is 0.12 cm3 / g; the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by X-ray diffraction. The zirconia particles are in a quasi-spherical form similar to that of the initial particles of the ZBS derivative (shown in FIG. ) and ZHO. Example 2: Powder in the form of needles In a pyrex 1 1 beaker, 210 g of zirconium oxychloride in 300 ml of deionized water are placed in solution at 50 ° C. with stirring, then 2.5 g of sodium dodecyl sulphate or SDS, then 52 g of sodium sulphate are added and the mixture is made up to 500 ml with deionized water. the temperature is adjusted to 50 ° C and maintained for 15 minutes after complete dissolution of the reagents. The acidity of the mother liquor is 2, the concentration of (Zr4T + Hf T) is 1 mol / l, the molar ratio between the anionic groups SO42 and (Zr4- + Hf'-) is 0.6, and the concentration of SDS additive is 0.02 mol / l. The presence of foam on the surface of the solution is observed. The solution is then brought, still stirring, to 70 ° C with a heating ramp of 1 ° C / min. The solution is kept at 70 ° C for 15 min and then allowed to cool freely to below 50 ° C.

Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 6 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous une forme d'aiguilles de longueur L comprise entre 0.5 et 3 m, de largeur 1 comprise entre 0,3 et 0,8 m, et d'épaisseur e comprise entre 0,25 et 0,8 m. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 30 ml d'eau permutée. Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite porté à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 1l par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS. The ZBS powder thus obtained has a specific surface area of 6 m 2 / g and is amorphous by X-ray diffraction. The ZBS particles are in the form of needles of length L between 0.5 and 3 m, of width 1 included between 0.3 and 0.8 m, and thickness e between 0.25 and 0.8 m. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. In a 1 1 Teflon PTFE beaker, the cake is then put into suspension in 250 ml of deionized water. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water. on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO.

La poudre ainsi obtenue présente une aire spécifique de 360 m2/g et est amorphe par diffraction aux rayons X. La somme des volumes mésoporeux et microporeux est de 0,25 cm3/g. Les particules de ZHO se présentent sous une forme d'aiguilles de longueur L comprise entre 0,5 et 3 m, de largeur 1 comprise entre 0,3 et 0,8 m, et d'épaisseur e comprise entre 0,25 et 0,8 m, similaires à celles du dérivé ZBS de départ. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h') à 500°C. La poudre ainsi obtenue présente une aire spécifique de 120 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cm3/g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous une forme d'aiguilles de longueur L comprise entre 1 et 2 m, de largeur 1 comprise entre 0,3 et 0,8 m, et d'épaisseur e comprise entre 0,25 et 0.8 m, similaires aux particules initiales du dérivé ZBS (représentées sur la figure 3b) et de ZHO. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Exemple 3 : Poudre sous forme d'aiguilles Dans un bécher de 1 1 en Pyrex, on met en solution à 50°C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 20 g de bromure de cétyltriméthylammonium ou CTAB, puis on ajoute 42 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 50°C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acic,ité de la liqueur mère est de 1,2, la concentration en (Zr4- + Hf 4') est de 0,6 molli, le rapport molaire entre les groupements anioniques SO422- et (Zr4- + Hf) est de 0,9, et la concentration en additif CTAB est de 0,1 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 60°C avec une rampe de chauffage de 1 °C/min. La solution est maintenue à 60°C pendant 30 min puis laissée à refroidir librement jusqu'en dessous de 50 °C. The powder thus obtained has a specific surface area of 360 m 2 / g and is amorphous by X-ray diffraction. The sum of the mesoporous and microporous volumes is 0.25 cm 3 / g. The ZHO particles are in the form of needles of length L between 0.5 and 3 m, width 1 between 0.3 and 0.8 m, and thickness e between 0.25 and 0 , 8 m, similar to those of the starting ZBS derivative. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, then shaken with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a 300 hr hourly velocity VVH) at 500 ° C. The powder thus obtained has a specific surface area of 120 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction with X-rays. The zirconia particles are in the form of needles of length L between 1 and 2 m, width 1 between 0.3 and 0.8 m, and thickness e between 0.25 and 0.8 m, similar to the initial particles of the derivative ZBS (shown in Figure 3b) and ZHO. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. Example 3: Powder in the form of needles In a beaker of 1 1 in Pyrex, 110 g of zirconium oxycholide are dissolved in 300 ml of deionized water while stirring, and then 20 g of cetyltrimethylammonium bromide or CTAB are added, followed by the addition of 42 g of sodium sulphate and to 500 ml with deionized water. The temperature is adjusted to 50 ° C and maintained for 15 minutes after complete dissolution of the reagents. The acicity of the mother liquor is 1.2, the concentration of (Zr4- + Hf 4 ') is 0.6 mol, the molar ratio between the anionic groups SO422- and (Zr4- + Hf) is 0.9, and the CTAB additive concentration is 0.1 mol / l. The presence of foam on the surface of the solution is observed. The solution is then brought, still stirring, to 60 ° C with a heating ramp of 1 ° C / min. The solution is kept at 60 ° C for 30 min and then allowed to cool freely to below 50 ° C.

Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 2 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 m, de largeur 1 comprise entre 2 et 5 m, et d'épaisseur e comprise entre 1,5 et 5 m. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1°C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. La poudre ainsi obtenue présente une aire spécifique de 350 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 m, de largeur 1 comprise entre 2 et 5 m, et d'épaisseur e comprise entre 1,5 et 5 m. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Les aiguilles sont similaires à celles du dérivé ZBS de départ. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h"') à 500°C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS. The ZBS powder thus obtained has a specific surface area of 2 m 2 / g and is amorphous by X-ray diffraction. The ZBS particles are in the form of needles of length L ranging between 20 and 40 m, of width 1 inclusive. between 2 and 5 m, and thickness e between 1.5 and 5 m. For each of these needles, L / l is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. In a 1 1 Teflon PTFE beaker, the cake is then put into suspended in 250 ml of deionized water. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water. on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO. The powder thus obtained has a specific surface area of 350 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm 3 / g and the powder is amorphous by X-ray diffraction. The ZHO particles are in a d-form. needles of length L between 20 and 40 m, width 1 between 2 and 5 m, and thickness e between 1.5 and 5 m. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. The needles are similar to those of the starting ZBS derivative. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, and then stirred with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a 300 hour hourly VVH volume velocity) at 500 ° C.

La poudre ainsi obtenue présente une aire spécifique de 100 m2/g, la somme des volumes mésoporeux et microporeux est de 0,18 cm3/g et la poudre est cristallisée sous un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous une forme d'aiguilles de longueur L comprise entre 15 et 30 m, de largeur 1 comprise entre 1 et 4 m, et d'épaisseur e comprise entre 0,7 et 4 m. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Les aiguilles sont similaires à celles du dérivé ZBS (représentées sur la figure 3c) et de ZHO initiales. Exemple 4 : Poudre sous forme d'étoiles Dans un bécher de 1 1 en Pyrex, on met en solution à 50°C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 5 g de bromure de cétyltriméthylammonium ou CTAB puis 50 ml d'acide chlorhydrique HC1 à 36 %, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 50°C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 2,4, la concentration en (Zr4- + Hf -) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques 5042- et (Zr4 + Hf -) est de 0,6, et la concentration en additif CTAB est de 0,025 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation. à 60°C avec une rampe de chauffage de 1 °C/min. La solution est maintenue à 60°C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 °C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 3 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'étoiles de longueur comprise entre 5 et 40 m. Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajus-:é à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. The powder thus obtained has a specific surface area of 100 m 2 / g, the sum of the mesoporous and microporous volumes is 0.18 cm 3 / g and the powder is crystallized under a mixture of quadratic and monoclinic phases determined by X-ray diffraction. zirconia particles are in the form of needles of length L between 15 and 30 m, width 1 between 1 and 4 m, and thickness e between 0.7 and 4 m. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. The needles are similar to those of the ZBS derivative (shown in FIG. 3c) and ZHO initials. Example 4: Powder in the form of stars In a Pyrex 1 1 beaker, 110 g of zirconium oxycholide are dissolved in 300 ml of deionized water at 50 ° C. and then 5 g of bromide are added. cetyltrimethylammonium or CTAB then 50 ml of 36% hydrochloric acid HCI, then 28 g of sodium sulfate are added and the mixture is made up to 500 ml with deionized water. The temperature is adjusted to 50 ° C and maintained for 15 minutes after complete dissolution of the reagents. The acidity of the mother liquor is 2.4, the concentration of (Zr4- + Hf -) is 0.6 mol / l, the molar ratio between the anionic groups 5042- and (Zr4 + Hf -) is 0.6, and the CTAB additive concentration is 0.025 mol / l. The presence of foam on the surface of the solution is observed. The solution is then brought, still stirring. at 60 ° C with a heating ramp of 1 ° C / min. The solution is kept at 60 ° C for 1 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS. The ZBS powder thus obtained has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction. The ZBS particles are in the form of stars of between 5 and 40 m in length. In a 1 1 Teflon PTFE beaker, the cake is then suspended in 250 ml of deionized water. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of water. permutated water on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water. on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO.

La poudre ainsi obtenue présente une aire spécifique de 340 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'étoiles de longueur comprise entre 5 et 40 m, similaires à celles du dérivé ZBS de départ. The powder thus obtained has a specific surface area of 340 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm 3 / g and the powder is amorphous by X-ray diffraction. The ZHO particles are in the form of stars of length between 5 and 40 m, similar to those of the ZBS derivative of departure.

Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h-') à 500°C. La poudre ainsi obtenue présente une aire spécifique de 90 m2/g, la somme des volumes mésoporeux et microporeux est de 0,18 cm3/g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'étoiles de longueur comprise entre 5 et 30 m, similaire à celle des particules initiales du dérivé ZBS (représentées sur la figure 3d) et ZHO. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, and then stirred with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a 300 hr hourly velocity VVH) at 500 ° C. The powder thus obtained has a specific surface area of 90 m 2 / g, the sum of the mesoporous and microporous volumes is 0.18 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction with X-rays. The zirconia particles are in the form of stars of length between 5 and 30 m, similar to that of the initial particles of the derivative ZBS (shown in Figure 3d) and ZHO.

Comme représenté sur la figure 3d, les aiguilles formant les étoiles de ZBS présentent une forme fuselée et pointue. Ces aiguilles sont sensiblement de révolution autour de leur axe longitudinal. La surface de leur section transversale, sensiblement discoïdale, diminue progressivement à l'approche de la ou des pointe(s). En outre, la surface extérieure latérale des aiguilles est particulièrement lisse. Les aiguilles de ZHO et de zircone présentent des formes similaires. Exemple 5 : Poudre sous forme d'oursins Dans un bécher de 1 1 en Pyrex, on met en solution à 50°C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 0,5 g de bromure de cétyltriméthylammonium ou CTAB, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 50°C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acic.ité de la liqueur mère est de 1,2, la concentration en (Zr4- + Hf -) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO4'- et (Zr4-- + Hf4+) est de 0,6, et la concentration en additif CTAB est de 0,0025 mol/l. La présence de mousse en surface de la solution est observée. As shown in Figure 3d, the ZBS star forming needles have a tapered and pointed shape. These needles are substantially of revolution about their longitudinal axis. The surface of their cross section, substantially discoidal, decreases gradually as the tip (s). In addition, the lateral outer surface of the needles is particularly smooth. ZHO and zirconia needles have similar shapes. EXAMPLE 5 Powder in the form of sea urchins In a Pyrex 1 1 beaker, 110 g of zirconium oxycholide in 300 ml of deionized water are dissolved at 50 ° C. with stirring, then 0.5 g of cetyltrimethylammonium bromide or CTAB, then 28 g of sodium sulfate are added and made up to 500 ml with deionized water. The temperature is adjusted to 50 ° C and maintained for 15 minutes after complete dissolution of the reagents. The acic.ity of the mother liquor is 1.2, the concentration of (Zr4- + Hf -) is 0.6 mol / l, the molar ratio between the anionic groups SO4 '- and (Zr4-- + Hf4 +) is 0.6, and the concentration of CTAB additive is 0.0025 mol / l. The presence of foam on the surface of the solution is observed.

La solution est ensuite portée, toujours sous agitation, à 60°C avec: une rampe de chauffage de 1 °C/min. La solution est maintenue à 60°C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 °C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 6 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous. une forme d'agrégats de dimension comprise entre 10 et 30 m constitués de particules de longueur L de 2 m se présentant sous la forme d'aiguilles et d'étoiles. Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZI [O. La poudre ainsi obtenue présente une aire spécifique de 360 m2/g, la somme des volumes mésoporeux et microporeux est de 0,25 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous une forme d'agrégats dont la plus grande dimension est comprise entre 10 et 30 m, constitués de particules de 2 gm se présentant sous la forme d'aiguilles et d'étoiles, similaires à celles du dérivé ZBS de départ. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h-') à 500°C. La poudre ainsi obtenue présente une aire spécifique de 120 m2/g, la somme des volumes mésoporeux et microporeux est de 0,21 cm3/g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous une forme d'agrégats dont la plus grande dimension est comprise entre 5 et 20 m, constitués de particules de 1 m se présentant sous la forme d'aiguilles et d'étoiles, similaires à celles des particules initiales du dérivé ZBS (représentées sur la figure 3e) et de ZHO. Exemple 6 : Poudre sous forme de plaquettes Dans un bécher de 1 1 en Pyrex, on met en solution à 50°C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 5 g de bromure de cétyltriméthylammonium ou CTAB puis 25 ml d'acide chlorhydrique HC1 à 36 %, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 50°C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 2, la concentration en (Zr4- + Hf'-) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO42- et (Zr4- + Hf l-) est de 0,6, et la concentration en additif CTAB est de 0,025 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 60°C avec une rampe de chauffage de 1°C/min. La solution est maintenue à 60°C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 °C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. The solution is then brought, still stirring, to 60 ° C with: a heating ramp of 1 ° C / min. The solution is kept at 60 ° C for 1 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS. The ZBS powder thus obtained has a specific surface area of 6 m 2 / g and is amorphous by X-ray diffraction. The particles of ZBS are present under. a form of aggregates of dimension between 10 and 30 m consisting of particles of length L of 2 m in the form of needles and stars. In a 1 1 Teflon PTFE beaker, the cake is then suspended in 250 ml of deionized water. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water. on a Buchner type filter. The cake obtained consists of a zirconium hydrate, or ZI [O. The powder thus obtained has a specific surface area of 360 m 2 / g, the sum of the mesoporous and microporous volumes is 0.25 cm 3 / g and the powder is amorphous by X-ray diffraction. The ZHO particles are in a d-form. aggregates whose largest dimension is between 10 and 30 m, consisting of particles of 2 gm in the form of needles and stars, similar to those of the starting ZBS derivative. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, and then stirred with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a 300 hr hourly velocity VVH) at 500 ° C. The powder thus obtained has a specific surface area of 120 m 2 / g, the sum of the mesoporous and microporous volumes is 0.21 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction with X-rays. The zirconia particles are in the form of aggregates, the largest dimension of which is between 5 and 20 m, consisting of 1 m particles in the form of needles and stars, similar to those initial particles of the ZBS derivative (shown in Fig. 3e) and ZHO. Example 6: Powder in the form of platelets In a Pyrex 1 1 beaker, 110 g of zirconium oxycholide in 300 ml of deionized water are dissolved at 50 ° C. and 5 g of cetyltrimethylammonium bromide are then added. or CTAB then 25 ml of 36% hydrochloric acid HC1, then 28 g of sodium sulphate are added and made up to 500 ml with deionized water. The temperature is adjusted to 50 ° C and maintained for 15 minutes after complete dissolution of the reagents. The acidity of the mother liquor is 2, the concentration of (Zr4- + Hf'-) is 0.6 mol / l, the molar ratio between the anionic groups SO42- and (Zr4- + Hf1-) is 0.6, and the CTAB additive concentration is 0.025 mol / l. The presence of foam on the surface of the solution is observed. The solution is then brought, still stirring, to 60 ° C with a heating ramp of 1 ° C / min. The solution is kept at 60 ° C for 1 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS.

La poudre de ZBS ainsi obtenue présente une aire spécifique de 3 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent soL.s la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % de plaquettes d'épaisseur e comprise entre 1 et 3 m , de longueur L comprise entre 10 et 20 m, et de largeur 1 comprise entre 10 et 15 m. Pour chacune de ces plaquettes, L/1 est inférieur à 1,5. Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à I l par ajout d'ammoniaque (NH40H) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre\de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. La poudre ainsi obtenue présente une aire spécifique de 340 m2/g, la somme des volumes mésoporeux et microporeux est de 0,22 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % de plaquettes d'épaisseur e comprise entre 1 et 3 m, de longueur L comprise entre 10 et 20 m, et de largeur 1 comprise entre 10 et 15 m, similaires à celles du dérivé ZBS de départ. Pour chacune de ces plaquettes, L/1 est inférieur à 1,5. The ZBS powder thus obtained has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction. The ZBS particles are in the form of a mixture of approximately 50% quasi-form particles. spherical called grape bunch and 50% platelets of thickness e between 1 and 3 m, length L between 10 and 20 m, and width 1 between 10 and 15 m. For each of these platelets, L / 1 is less than 1.5. In a 1 1 Teflon PTFE beaker, the cake is then suspended in 250 ml of deionized water. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to I 1 by addition of 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of water. swapped on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO. The powder thus obtained has a specific surface area of 340 m 2 / g, the sum of the mesoporous and microporous volumes is 0.22 cm 3 / g and the powder is amorphous by X-ray diffraction. The ZHO particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called grape bunch and 50% of platelets with a thickness e of between 1 and 3 m, of length L between 10 and 20 m, and of width 1 included between 10 and 15 m, similar to those of the starting ZBS derivative. For each of these platelets, L / 1 is less than 1.5.

Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h-l) à 500°C. La poudre ainsi obtenue présente une aire spécifique de 80 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3/g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % de plaquettes d'épaisseur e comprise entre 1 et 2 m, de longueur L comprise entre 8 et 15 m, et de largeur 1 comprise entre 8 et 12 m. Cette forme est similaire à celle des particules initiales du dérivé ZBS (représentées sur la figure 3f) et de ZHO. Pour chacune de ces plaquettes, L/1 est inférieur à 1,5. Exemple 7 : Poudre sous forme de particules creuses Dans un bécher de 1 1 en Pyrex, on met en solution à 50°C sous agitation 55 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 2,5 g de bromure de cétyltriméthylammonium ou CTAB puis 25 ml d'acide chlorhydrique HC1 à 36 %, puis on ajoute 7 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée, la température est ajustée à 50°C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 1,2, la concentration en (Zr4- + Hf'-) est de 0,3 mol/1, le rapport molaire entre les groupements anioniques SO42- et (Zr4' + Hf -) est de 0,4, et la concentration en additif CTAB est de 0,015 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 60°C avec une rampe de chauffage de 1 °C/min. La solution est maintenue à 60°C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 °C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 2 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % ô de particules creuses, d'indice de sphéricité compris entre 0,85 et 0,9, de plus grand diamètre extérieur D compris entre 50 et 300 m, et de plus grand diamètre intérieur D' compris entre 35 et 280 m. L'épaisseur de la paroi de ces sphères est comprise entre 5 et 20 m, et le rapport D/I)' est inférieur à 2. Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée. puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, and then stirred with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a hourly volume velocity VVH of 300 h -1) at 500 ° C. The powder thus obtained has a specific surface area of 80 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction with X-rays. The zirconia particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called grape bunch and 50% of platelets with a thickness e of between 1 and 2 m in length. L between 8 and 15 m, and width 1 between 8 and 12 m. This form is similar to that of the initial particles of the ZBS derivative (shown in Figure 3f) and ZHO. For each of these platelets, L / 1 is less than 1.5. EXAMPLE 7 Powder in the form of hollow particles In a Pyrex 1 1 beaker, 55 g of zirconium oxycholide in 300 ml of deionized water are stirred at 50 ° C. and then 2.5 g of cetyltrimethylammonium bromide or CTAB then 25 ml of 36% hydrochloric acid HCl, then 7 g of sodium sulphate are added and the mixture is made up to 500 ml with deionized water, the temperature is adjusted to 50.degree. 15 minutes after complete dissolution of the reagents. The acidity of the mother liquor is 1.2, the concentration of (Zr4- + Hf'-) is 0.3 mol / l, the molar ratio between the anionic groups SO42- and (Zr4 '+ Hf -) is 0.4, and the concentration of CTAB additive is 0.015 mol / l. The presence of foam on the surface of the solution is observed. The solution is then brought, still stirring, to 60 ° C with a heating ramp of 1 ° C / min. The solution is kept at 60 ° C for 1 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS. The ZBS powder thus obtained has a specific surface area of 2 m 2 / g and is amorphous by X-ray diffraction. The ZBS particles are in the form of a mixture of approximately 50% of quasi-spherical particles known as bunch of grapes and 50% 0 of hollow particles, with a spherical index between 0.85 and 0.9, with a larger outside diameter D of between 50 and 300 m, and with a larger inside diameter D 'of between 35 and and 280 m. The thickness of the wall of these spheres is between 5 and 20 m, and the D / I ratio is less than 2. In a 1 1 PTFE Teflon beaker, the cake is then suspended in 250 ml. of permutated water. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered. then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water. on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO.

La poudre ainsi obtenue so présente une aire spécifique de 280 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'un mélange 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % de particules creuses, d'indice de sphéricité compris entre 0,85 et 0,9, de plus grand diamètre extérieur D compris entre 50 et 300 m, et de plus grand diamètre intérieur D' compris entre 35 et 280 m. L'épaisseur de la paroi de ces sphères est comprise entre 5 et 20 m, et le rapport D/D' est compris entre 1,1 et 1,5. Ces formes sont similaires à celles du dérivé ZBS de départ. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis 30 émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h-') à 500°C. La poudre ainsi obtenue présente une aire spécifique de 60 m2/g, la somme des volumes mésoporeux et microporeux est de 0,10 cm3/g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % de particules creuses, d'indice de sphéricité compris entre 0,85 et 0,9, de plus grand diamètre extérieur D compris entre 50 et 300 4m, et de plus grand diamètre intérieur D' compris entre 35 et 280 m. L'épaisseur de la paroi de ces sphères est comprise entre 5 et 20 m, et le rapport D/D' est compris entre 1,1 et 1,5. Cette forme est similaire à celle des particules initiales du dérivé ZBS (représentées sur la figure 3g) et de ZHO. Exemple 8 : Poudre sous forme de lamelles Dans un bécher de 1 litre en Pyrex, on met en solution à 50°C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée, puis on ajoute 100 g de bromure de cétyltriméthylammonium ou CTAB, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 50°C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 1,2, la concentration en (Zr4` + Hf -) est de 0,6 moUl, le rapport molaire entre les groupements anioniques SO42- et (Zr4- + Hf4) est de 0,6, et la concentration en additif CTAB est de 1 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 60°C avec une rampe de chauffage de 1°C/min. La solution est maintenue à 60°C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 °C. The powder thus obtained has a specific surface area of 280 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g and the powder is amorphous by X-ray diffraction. The ZHO particles are in the form of a mixture of 50% particles of quasi-spherical shape called grape bunch and 50% of hollow particles, sphericity index between 0.85 and 0.9, larger outside diameter D between 50 and 300 m, and larger inside diameter D between 35 and 280 m. The thickness of the wall of these spheres is between 5 and 20 m, and the ratio D / D 'is between 1.1 and 1.5. These forms are similar to those of the starting ZBS derivative. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C., then spun with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a 300 hr hourly velocity VVH) at 500 ° C. The powder thus obtained has a specific surface area of 60 m 2 / g, the sum of the mesoporous and microporous volumes is 0.10 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction with X-rays. The zirconia particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called grape bunches and 50% of hollow particles, with a sphericity index between 0.85 and 0.9, larger outer diameter D between 50 and 300 4m, and larger internal diameter D between 35 and 280 m. The thickness of the wall of these spheres is between 5 and 20 m, and the ratio D / D 'is between 1.1 and 1.5. This form is similar to that of the initial particles of the ZBS derivative (shown in Figure 3g) and ZHO. Example 8: Powder in lamellar form In a Pyrex 1-liter beaker, 110 g of zirconium oxycholide are dissolved in 300 ml of deionized water at a temperature of 50 ° C., and then 100 g of bromide are added. cetyltrimethylammonium or CTAB, then 28 g of sodium sulfate are added and made up to 500 ml with deionized water. The temperature is adjusted to 50 ° C and maintained for 15 minutes after complete dissolution of the reagents. The acidity of the mother liquor is 1.2, the concentration of (Zr4` + Hf -) is 0.6 moUl, the molar ratio between the anionic groups SO42- and (Zr4- + Hf4) is 0, 6, and the CTAB additive concentration is 1 mol / l. The presence of foam on the surface of the solution is observed. The solution is then brought, still stirring, to 60 ° C with a heating ramp of 1 ° C / min. The solution is kept at 60 ° C for 1 h and then allowed to cool freely to below 50 ° C.

Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 4 m2/g et est 30 amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % de lamelles composées de 10 à 15 plaquettes d'épaisseur e de 1 à 2 m de longueur L comprise entre 10 et 20 m, et de largeur 1 comprise entre 10 et 15 m. Pour chacune de ces plaquettes, L/1 est inférieur à 1,5. Dans un bécher de 1 1 en Téflon PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bécher de 1 litre en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 1 litre par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 litre d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. La poudre ainsi obtenue présente une aire spécifique de 340 m2/g, la somme des volumes mésoporeux et microporeux est de 0,25 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 °./o de lamelles composées de 10 à 15 plaquettes d'épaisseur e de 1 à 2 m, de longueur L comprise entre 10 et 20 m, et de largeur 1 comprise entre 10 et 15 m, similaires à celles des particules du dérivé ZBS de départ. Pour chacune de ces placuettes, L/1 est inférieur à 1,5. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, 30 puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h4) à 500°C. La poudre ainsi obtenue présente une aire spécifique de 100 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cm3/g et est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite grappe de raisin et 50 % de lamelles composées de 10 à 15 plaquettes d'épaisseur e de 0,5 à 1 m, de longueur L comprise entre 8 et 15 m, et de largeur 1 comprise entre 8 et 12 m. Cette forme est similaire à celle des particules initiales du dérivé ZBS et de ZHO. Pour chacune de ces plaquettes, L/1 est inférieur à 1,5. Exemple 9 : Poudre sous forme d'aiguilles, avec un dopant introduit sous la forme de chlorure d'yttrium YC13 Dans un bécher de 1 1 en Téflon PTFE, 100 g du ZBS de l'exemple 3 est mis en suspension dans 250 ml d'eau permutée, puis on ajoute 80 g de solution de chlorure d'yttrium YC13 à 1 mol/l (dopant de type Dl). Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N, puis ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium dopé par un hydrate d'yttrium, ou ZHY. Les principales propriétés physico-chimiques de la poudre ainsi obtenue sont données dans le tableau lb. Cette poudre présente une aire spécifique de 300 m2/g, la somme des volumes mésoporeux et microporeux de 0,18 cm3/g et est amorphe par diffraction aux rayons X. Les particules de ZHY se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 m, de largeur 1 comprise entre 2 et 5 m, et d'épaisseur e comprise entre 1,5 et 5 m, similaire à celle du dérivé ZBS de départ. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h-') à 800°C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a basic zirconium sulfate, ZBS. The ZBS powder thus obtained has a specific surface area of 4 m 2 / g and is amorphous by X-ray diffraction. The ZBS particles are in the form of a mixture of about 50% quasi-spherical shaped particles. said bunch of grapes and 50% of slats composed of 10 to 15 platelets of thickness e of 1 to 2 m length L between 10 and 20 m, and width 1 between 10 and 15 m. For each of these platelets, L / 1 is less than 1.5. In a 1 1 Teflon PTFE beaker, the cake is then suspended in 250 ml of deionized water. In a second 1-liter beaker made of Teflon PTFE, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid. The suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter. The cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 1 liter by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 liter of water. swapped on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO. The powder thus obtained has a specific surface area of 340 m 2 / g, the sum of the mesoporous and microporous volumes is 0.25 cm 3 / g and the powder is amorphous by X-ray diffraction. The ZHO particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called grape bunch and 50 ° / o of platelets composed of 10 to 15 platelets of thickness e of 1 to 2 m, length L between 10 and 20 m, and width 1 between 10 and 15 m, similar to those of the particles of the starting ZBS derivative. For each of these placettes, L / 1 is less than 1.5. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C. and then stirred with agate mortar. The powder obtained is calcined in air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a hourly volume velocity VVH of 300 hours) at 500 ° C. The powder thus obtained has a specific surface area of 100 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm 3 / g and is crystallized in the form of a mixture of quadratic and monoclinic phases determined by X-ray diffraction. The zirconia particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called grape bunch and 50% of platelets composed of 10 to 15 platelets of thickness e of 0.5 to 1 m, length L between 8 and 15 m, and width 1 between 8 and 12 m. This form is similar to that of the initial particles of the ZBS derivative and ZHO. For each of these platelets, L / 1 is less than 1.5. Example 9: Powder in the form of needles, with a dopant introduced in the form of yttrium chloride YC13 In a 1 1 PTFE Teflon beaker, 100 g of the ZBS of Example 3 is suspended in 250 ml of permuted water, then 80 g of yttrium chloride solution YC13 at 1 mol / l (D1 dopant) are added. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid, and then adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a zirconium hydrate doped with an yttrium hydrate, or ZHY. The main physicochemical properties of the powder thus obtained are given in Table 1b. This powder has a specific surface area of 300 m 2 / g, the sum of mesoporous and microporous volumes of 0.18 cm 3 / g and is amorphous by X-ray diffraction. The particles of ZHY are in the form of needles of length L between 20 and 40 m, width 1 between 2 and 5 m, and thickness e between 1.5 and 5 m, similar to that of the starting ZBS derivative. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, then shaken with agate mortar. The powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a 300 hr hourly volume velocity VVH) at 800 ° C.

La poudre ainsi obtenue présente une aire spécifique de 50 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3/g et la poudre est cristallisée sous forme quadratique déterminée par diffraction aux rayons X. Les particules de zircone dopée à 3% molaires d'Y2O3 se présentent sous une forme d'aiguilles de longueur L comprise entre 15 et 30 m, de largeur 1 comprise entre 1 et 4 m, et d'épaisseur e comprise entre 0,7 et 4 m, similaires aux particules initiales du dérivé ZBS et du ZHY initiales. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Exemple 10 : Poudre sous forme d'aiguilles, avec un dopant introduit sous la forme de chlorure d'yttrium YC11 Dans un bécher de 1 1 en Téflon PTFE, 100 g du ZBS de l'exemple 3 est mis en suspension dans 250 ml d'eau permutée, on ajoute 220 g de solution de chlorure d'yttrium YC13 à 1 mol/1. Dans un second bécher de 1 1 en Téflon PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de 1 °C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N, puis ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium dopée par un hydrate d'yttrium, ou ZHY. La poudre ainsi obtenue présente une aire spécifique de 300 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3/g, et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHY se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 m, de largeur 1 comprise entre 2 et 5 m, et d'épaisseur e comprise entre 1,5 et 5 m, similaires à celles du dérivé ZBS de départ. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. The powder thus obtained has a specific surface area of 50 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g and the powder is crystallized in quadratic form determined by X-ray diffraction. The particles of zirconia doped with 3 mol% of Y 2 O 3 are in the form of needles of length L between 15 and 30 m, width 1 between 1 and 4 m, and thickness e between 0.7 and 4 m, similar to initial particles of ZBS derivative and initial ZHY. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. Example 10: Powder in the form of needles, with a dopant introduced under the YC11 Yttrium Chloride Form In a Teflon PTFE 1 1 beaker, 100 g of the ZBS of Example 3 is suspended in 250 ml of deionized water, 220 g of yttrium chloride YC13 solution are added. at 1 mol / l. In a second 1 1 Teflon PTFE beaker, 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant. The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid, and then adjusted to 11 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter. The cake obtained consists of a zirconium hydrate doped with an yttrium hydrate, or ZHY. The powder thus obtained has a specific surface area of 300 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g, and the powder is amorphous by X-ray diffraction. The particles of ZHY are in a form needles of length L between 20 and 40 m, width 1 between 2 and 5 m, and thickness e between 1.5 and 5 m, similar to those of the starting ZBS derivative. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1.

Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110°C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 mUmin, soit une vitesse volumique horaire VVH de 300 h"1) à 800°C. La poudre ainsi obtenue présente une aire spécifique de 45 m2/g, la somme des volumes mésoporeux et microporeux est de 0,13 cm3/g et la poudre est cristallisée sous une forme cubique déterminée par diffraction aux rayons X. Les particules de zircone dopée à 8% molaires d'Y2O3 se présentent sous une forme d'aiguilles de longueur L comprise entre 15 et 30 m, de largeur 1 comprise entre 1 et 4 m, et d'épaisseur e comprise entre 0,7 et 4 m, similaires aux particules initiales du dérivé ZBS et du ZHY initiales. Pour chacune de ces aiguilles, L/1 est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Les tableaux suivants précisent les compositions des exemples fabriqués, ainsi que leur perte au feu. The cake obtained is then dried in an oven for at least 12 hours at 110 ° C, and then stirred with agate mortar. The powder obtained is calcined in air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 m.sup.-1, a hourly volume velocity VVH of 300 h -1) at 800 ° C. The powder thus obtained has a specific surface area of 45 m 2 / g, the sum of the mesoporous and microporous volumes is 0.13 cm 3 / g and the powder is crystallized in a cubic form determined by X-ray diffraction. 8% molar doped zirconia particles of Y2O3 are in the form of needles of length L between 15 and 30 m, width 1 between 1 and 4 m, and thickness e between 0.7 and 4 m, similar to the initial particles of the For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1. The following tables specify the compositions of the manufactured examples. , as well as their loss on fire.

Exemple Na2O SiO2 Fe2O3 CaO Al2O3 Cl SO4` Perte au (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (/o) feu à 1000 C (%) 1 ZBS < 100 < 100 < 50 < 50 < 50 < 100 15 65 ZHO < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 50 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,5 2 ZBS < 100 < 100 < 50 < 50 < 50 < 100 12 68 ZHO < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 50 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,2 3 ZBS < 100 < 100 < 50 < 50 < 50 < 100 16 64 ZHO < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 50 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,2 4 ZBS < 100 < 100 < 50 < 50 < 50 < 100 19 68 ZHO < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 50 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,1 ZBS < 100 < 100 < 50 < 50 < 50 < 100 18 70 ZHO < 100 _ < 100 < 50 < 50 < 50 < 100 < 0,01 50 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,5 6 ZBS 1 <100 <100 <50 <50 <50 <100 12 65 ZHO < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 50 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,5 7 ZBS < 100 < 100 r < 50 < 50 < 50 < 100 8 60 ZHO < 100 < 100 ! < 50 < 50 < 50 < 100 < 0,01 45 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,2 8 ZBS < 100 < 100 < 50 < 50 < 50 < 100 15 65 ZHO < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 50 Zircone < 100 < 100 < 50 < 50 < 50 < 100 < 0,01 1,5 9 ZBS < 100 < 100 < 50 < 50 < 50 - 16 64 ZHY 150 < 100 < 50 < 50 < 50 5,2 < 0,01 55 Zircone 150 < 100 < 50 < 50 < 50 5,2 < 0,01 0,7 ZBS < 100 < 100 < 50 < 50 < 50 - 16 64 ZHY 300 < 100 < 50 < 50 < 50 13,5 < 0,01 56 Zircone 300 < 100 < 50 < 50 < 50 13,5 < 0,01 0,8 Les tableaux suivants fournissent les résultats de mesures effectuées sur les particules des exemples.Example Na2O SiO2 Fe2O3 CaO Al2O3 Cl SO4` Loss at (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (/ o) fire at 1000 C (%) 1 ZBS <100 <100 <50 <50 <50 <100 15 65 ZHO <100 <100 <50 <50 <50 <100 <0.01 50 Zirconia <100 <100 <50 <50 <50 <100 <0.01 1.5 2 ZBS <100 <100 <50 <50 <50 <100 12 68 ZHO <100 <100 <50 <50 <50 <100 <0.01 50 Zirconia <100 <100 <50 <50 <50 <100 <0.01 1.2 3 ZBS <100 <100 <50 <50 <50 <100 16 64 ZHO <100 <100 <50 <50 <50 <100 <0.01 50 Zirconia <100 <100 <50 <50 <50 <100 <0.01 1 , 2 4 ZBS <100 <100 <50 <50 <50 <100 19 68 ZHO <100 <100 <50 <50 <50 <100 <0.01 50 Zirconia <100 <100 <50 <50 <50 <100 < 0.01 1.1 ZBS <100 <100 <50 <50 <50 <100 18 70 ZHO <100 <100 <50 <50 <50 <100 <0.01 50 Zirconia <100 <100 <50 <50 < 50 <100 <0.01 1.5 6 ZBS 1 <100 <100 <50 <50 <50 <100 12 65 ZHO <100 <100 <50 <50 <50 <100 <0.01 50 Zirconia <100 <100 <50 <50 <50 <100 <0.01 1.5 7 ZBS <100 <100 r <50 <50 <50 <100 8 60 ZHO <100 <100! <50 <50 <50 <100 <0.01 45 Zirconia <100 <100 <50 <50 <50 <100 <0.01 1.2 8 ZBS <100 <100 <50 <50 <50 <100 15 65 ZHO <100 <100 <50 <50 <50 <100 <0.01 50 Zirconia <100 <100 <50 <50 <50 <100 <0.01 1.5 9 ZBS <100 <100 <50 <50 <50 - 16 64 ZHY 150 <100 <50 <50 <50 5.2 <0.01 55 Zirconia 150 <100 <50 <50 <50 5.2 <0.01 0.7 ZBS <100 <100 <50 <50 < 50 - 16 64 ZHY 300 <100 <50 <50 <50 13.5 <0.01 56 Zirconia 300 <100 <50 <50 <50 13.5 <0.01 0.8 The following tables provide measurement results performed on the particles of the examples.

P désigne la somme du volume mésoporeux et du volume microporeux. P is the sum of the mesoporous volume and the microporous volume.

5 Dpores désigne le diamètre équivalent moyen des pores de dimension inférieure à 50 nm.Dpores refers to the average equivalent diameter of pores less than 50 nm in size.

Mono désigne la phase monoclinique. Mono refers to the monoclinic phase.

Quadra désigne la phase quadratique. Quadra refers to the quadratic phase.

Cub désigne la phase cubique Aire Phase Ex. Indice de Dimensions ( m) spéci fique P (cm3/g) DPOieS cristalline sphéricité (mz/g) (nm) DRX 1 ZBS 0,83 Dim. max = 20 3 - - Amorphe ZHO 0,83 Dim. max = 20 320 0,18 3 Amorphe Zircone 0,83 Dim. max = 12 60 0,12 3 55 % Mono L=0.5à3 2 ZBS 0,2 1 = 0,3 à 0,8 6 - - Amorphe e = 0,25 à 0,8 L = 0,5 à 3 ZHO 0,2 I = 0,3 à 0,8 360 0,25 3 Amorphe e = 0,25 à 0,8 L=1 à2 Zircone 0,2 1= 0,3 à 0,8 120 0,20 3,5 45 % Mono e = 0,25 à 0,8 L=20à40 3 ZBS 0,14 1= 2 à 5 3 - - Amorphe e=1,5à5 L=20à40 ZHO 0,14 1= 2 à 5 350 0,20 3 Amorphe e = 1,5 à 5 L = 15 à 30 Zircone 0,14 1= 1 à 4 100 0,18 3 55 % Mono e=0,7à4 4 ZBS 0,14 5 à 40 3 - - Amorphe ZHO 0,14 5 à 40 340 0,20 3 Amorphe Zircone 0,14 5 à 30 90 0,18 3 55 % Mono ZBS 0,2 10 à 30 6 - - Amorphe ZHO 0,2 10 à 30 360 0,25 3 Amorphe Zircone 0,2 5 à 20 120 0,21 3 45 % Mono L=10à20 6 ZBS 0,33 1= 10 à 15 3 - - Amorphe e=1à3 L=10à20 ZHO 0,33 1= 10 à 15 340 0,22 3 Amorphe e= 1 à 3 L = 8 à 15 Zircone 0,33 1 = 8 à 12 80 0,15 3 50 "/o Mono e=1à2 7 ZBS 0,85 à 0,9 D = 50 à 300 2 _ _ Amorphe D' = 35 à 280 ZHO 0,85 à 0,9 D = 50 à 300 280 0,15 3 Amorphe D' = 35 à 280 D= 50 à 300 Zircone 0,85 à 0,9 D' = 35 à 280 60 0,10 3 60 % Mono à 15 plaquettes 8 ZBS 0,33 L = 10 à 20 4 Amorphe = 10 à 15 e= 1 à 2 10 à 15 plaquettes ZHO 0,33 L = 10 à 20 340 0,25 3 Amorphe 1= 10 à 15 e=1à2 10 à 15 plaquettes Zircone 0,33 L = 8 à 15 100 0,20 3 50 °/ Mono 1=8à12 e= 0,5 à 1 Indice de Aire DPores Phase Ex. Dimension (am) spécifique P (cm3/g) cristalline sphéricité (m3/g) (nm) DRX L = 20 à 40 9 ZHY 0,2 1 = 2 à 5 300 0,18 3 Amorphe e=1,5à5 L = 15 à 30 1 100 % 00 % Zircone 0,2 1= 1 à 4 50 0,15 3 e = 0,7 à 4 Quadra L = 20 à 40 10 ZHY 0,2 1 = 2 à 5 300 0,15 3 Amorphe e=1,5à5 L = 15 à 30 Zircone 0,2 1 = I à 4 45 0,13 3 100 % Cub e=0,7à4 Comme cela apparaît clairement à présent, l'invention permet d~ fabriquer de nouvelles particules anisotropes ou constituées de particules de base anisotropes qui, avantageusement, permettent de créer un corps ou une poudre présentant une porosité élevée. De tels corps et poudres sont particulièrement utiles dans des applications à la catalyse ou à la filtration. En outre, ces particules anisotropes ou constituées de particules de base anisotropes peuvent être elles-mêmes en un matériau poreux, et en particulier présenter de la microporosité et/ou de la mésoporosité. Ces microporosité et/ou mésoporosité sont notamment exploitables pour la catalyse de certaines réactions chimiques.  Cub refers to the cubic phase. Phase Ex. Specific Dimensions (m) P (cm3 / g) DPOieS crystalline sphericity (mz / g) (nm) DRX 1 ZBS 0.83 Max Dim = 20 3 - - Amorphous ZHO 0.83 Max Dim = 20 320 0.18 3 Amorphous Zirconia 0.83 Max Dim = 12 60 0.12 3 55% Mono L = 0.5 to 3 2 ZBS 0.2 1 = 0.3 to 0.8 6 - - Amorphous e = 0.25 to 0.8 L = 0.5 to 3 ZHO 0.2 I = 0.3 to 0.8 360 0.25 3 Amorphous e = 0.25 to 0.8 L = 1 to 2 Zirconia 0.2 1 = 0.3 to 0.8 120 0.20 3.5 45% Mono e = 0.25 to 0.8 L = 20 to 40 3 ZBS 0.14 1 = 2 to 5 3 - - Amorphous e = 1.5 to 5 L = 20 to 40 ZHO 0.14 1 = 2 to 5 350 0.20 3 Amorphous e = 1.5 to 5 L = 15 to 30 Zirconia 0.14 1 = 1 to 4 100 0.18 3 55 % Mono e = 0.7 to 4 4 ZBS 0.14 to 40 3 - - Amorphous ZHO 0.14 5 to 40 340 0.20 3 Amorphous Zirconia 0.14 5 to 30 90 0.18 3 55% Mono ZBS 0, 2 10 to 30 6 - - Amorphous ZHO 0.2 10 to 360 360 0.25 3 Amorphous Zirconia 0.2 5 to 120 120 0.21 3 45% Mono L = 10 to 20 6 ZBS 0.33 1 = 10 to 15 3 - - Amorphous e = 1 to 3 L = 10 to 20 ZHO 0.33 1 = 10 to 15 340 0.22 3 Amorphous e = 1 to 3 L = 8 to 15 Zirconia 0.33 1 = 8 to 12 80 0.15 3 50% Mono e = 1 to 2 7 ZBS 0.85 to 0.9 D = 50 to 300 2 Amorphous D = 35 to 280 ZHO 0.85 at 0.9 D = 50 to 300 280 0.15 3 Amorphous D = 35 to 280 D = 50 to 300 Zirconia 0.85 to 0.9 D '= 35 to 280 60 0.10 3 60% Mono to 15 platelets 8 ZBS 0.33 L = 10 to 20 4 Amorphous = 10 to 15 e = 1 to 2 10 to 15 platelets ZHO 0.33 L = 10 to 20 340 0.25 3 Amorphous 1 = 10 to 15 e = 1 to 2 10 to 15 platelets Zirconia 0.33 L = 8 to 15 100 0.20 3 50 ° / Mono 1 = 8 to 12 e = 0.5 to 1 Index of Area DPores Phase Ex. Dimension (am) specific P (cm3 / g) crystalline sphericity (m3 / g) (nm) DRX L = 20 to 40 9 ZHY 0.2 1 = 2 to 5 300 0.18 3 Amorphous e = 1.5 to 5 L = 15 to 30 1 100% 00% Zirconia 0.2 1 = 1 to 4 50 0.15 3 e = 0.7 to 4 Quadra L = 20 to 40 10 ZHY 0.2 1 = 2 to 5 300 0.15 3 Amorphous e = 1.5 to 5 L = 15 to 30 Zirconia 0.2 1 = 1 to 4 45 0.13 3 100% Cub e = 0.7 to 4 As it is now clear, the invention makes it possible to manufacture new anisotropic particles or particles consisting of basic anisotropic rticules which advantageously make it possible to create a body or a powder having a high porosity. Such bodies and powders are particularly useful in applications to catalysis or filtration. In addition, these anisotropic particles or particles consisting of anisotropic base particles may themselves be of a porous material, and in particular may have microporosity and / or mesoporosity. These microporosity and / or mesoporosity are particularly useful for the catalysis of certain chemical reactions.

Claims (20)

REVENDICATIONS1. Procédé de fabrication d'une poudre de particules d'hyc:rate de zirconium et/ou d'hafnium, dopé ou non, et de leurs mélanges, ledit procédé comportant une étape d'hydrolyse basique d'une poudre de particules de départ el un dérivé de zirconium et/ou d'hafnium de formule M(OH),,(N')y(OH2)zj M étant Zr4-, H14-, ou un mélange de Zr4 et Hf , N' étant un anion ou un mélange d'anions, les indices x et y étant des nombres strictement positifs, z étant un nombre positif ou nul, ledit matériau présentant une solubilité dans l'eau à une température inférieure à 20°C inférieure à 10-3 mol/l, ledit dérivé pouvant être dopé ou non, et lesdites particules de départ étant constituées de particules de base, agrégées ou non, présentant un indice de sphéricité inférieur à 0,6. REVENDICATIONS1. Process for manufacturing a powder of zirconium and / or hafnium hyc: spleen particles, doped or not, and mixtures thereof, said process comprising a basic hydrolysis step of a starting particle powder and a zirconium and / or hafnium derivative of formula M (OH) n (N ') y (OH 2) z M being Zr 4 -, H 14 -, or a mixture of Zr 4 and Hf, N' being an anion or a mixture of anions, the indices x and y being strictly positive numbers, z being a positive or zero number, said material having a solubility in water at a temperature below 20 ° C of less than 10-3 mol / l, said dopable or non-dopable derivative, and said starting particles being constituted of aggregated or unaggregated base particles having a sphericity index of less than 0.6. 2. Procédé selon la revendication précédente, dans lequel ledit dérivé est choisi parmi le sulfate basique de zirconium et/ou d'hafnium, dopé ou non, le phosphate basique de zirconium et/ou d'hafnium, dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, et leurs mélanges. 2. Method according to the preceding claim, wherein said derivative is selected from basic zirconium sulphate and / or hafnium, doped or not, the basic phosphate of zirconium and / or hafnium, doped or not, the basic carbonate zirconium and / or hafnium doped or not, and mixtures thereof. 3. Poudre présentant une taille maximale de particules D99,5 inférieure à 200 m et présentant un indice de porosité Ip supérieur à 2, l'indice de porosité étant égal au rapport Asr/Asg où Asg est l'aire spécifique géométrique théorique des particules de la poudre ; - Asr est la mesure de l'aire spécifique réelle par BET ; ladite poudre comportant plus de 20% en nombre de particules de base, agrégées ou non, présentant un indice de sphéricité inférieur à 0,6, et constituées en un hydrate de zirconium et/ou d'hafnium de formule MOX(OH)y(OH2)z, M étant Zr4-, Hf -, ou un mélange de Zr4_ et Hf4*, les indices x et z étant des nombres positifs ou nuls, l'indice y étant un nombre positif, et 2x+y étant égal à 4, dopé ou non, ou en un mélange de tels hydrates. 3. Powder having a maximum particle size D99.5 of less than 200 m and having a porosity index Ip greater than 2, the porosity index being equal to the ratio Asr / Asg where Asg is the theoretical geometric specific surface area of the particles powder; - Asr is the measurement of the actual specific area by BET; said powder comprising more than 20% by number of basic particles, aggregated or not, having a sphericity index of less than 0.6, and consisting of a zirconium and / or hafnium hydrate of formula MOX (OH) y ( OH2) z, M being Zr4-, Hf-, or a mixture of Zr4_ and Hf4 *, the indices x and z being positive or zero numbers, the index y being a positive number, and 2x + y being equal to 4; , doped or not, or a mixture of such hydrates. 4. Poudre selon la revendication précédente, comportant plus de 90% en nombre de dites particules de base. 4. Powder according to the preceding claim, comprising more than 90% by number of said base particles. 5. Poudre selon l'une quelconque des revendications 3 et 4, dans laquelle lesdites particules de base présentent un indice de sphéricité supérieur à 0,02. The powder of any of claims 3 and 4, wherein said base particles have a sphericity index greater than 0.02. 6. Poudre selon la revendication précédente, dans laquelle lesdites particules de base présentent un indice de sphéricité supérieur à 0,1 et inférieur à 0,3. 6. Powder according to the preceding claim, wherein said base particles have a sphericity index greater than 0.1 and less than 0.3. 7. Poudre selon l'une quelconque des revendications 3 à 6, présentant un indice de porosité Ip supérieur à 5. 7. Powder according to any one of claims 3 to 6, having a porosity index Ip greater than 5. 8. Poudre selon la revendication précédente, présentant un indice de porosité Ip supérieur à 10. 8. Powder according to the preceding claim, having a porosity index Ip greater than 10. 9. Poudre selon l'une quelconque des revendications 3 à 8, dans laquelle au moins 80% en nombre desdites particules de base présentent une forme en aiguille et/ou en plaquette. The powder of any one of claims 3 to 8, wherein at least 80% by number of said base particles are needle and / or wafer shaped. 10. Poudre selon la revendication précédente, dans laquelle au moins 80% en nombre desdites particules de base sont assemblées sous forme de particules agrégées ordonnées et/ou désordonnées. 10. Powder according to the preceding claim, wherein at least 80% by number of said base particles are assembled in the form of ordered and / or disordered aggregated particles. 11. Poudre selon la revendication précédente, dans laquelle lesdites particules agrégées sont sous la forme d'étoiles comportant de 3 à 15 branches. 11. Powder according to the preceding claim, wherein said aggregated particles are in the form of stars having 3 to 15 branches. 12. Poudre selon la revendication 10, dans laquelle lesdites particules agrégées sont sous la forme de lamelles constituées de 2 à 50 plaquettes. The powder of claim 10, wherein said aggregated particles are in the form of lamellae consisting of 2 to 50 platelets. 13. Poudre selon la revendication 10, dans laquelle lesdites particules agrégées sont sous la forme de sphères creuses présentant un indice de sphéricité supérieur à 0,7 et comportant une cavité centrale telle que, si D désigne le plus grand diamètre extérieur de la particule et D' désigne le plus grand diamètre intérieur de la cavité, D/D' 2. The powder of claim 10, wherein said aggregated particles are in the form of hollow spheres having a sphericity index greater than 0.7 and having a central cavity such that, if D denotes the largest outside diameter of the particle and D 'denotes the largest inside diameter of the cavity, D / D' 2. 14. Poudre selon l'une quelconque des revendications 3 à 13, dans laquelle toutes les dimensions des particules de base et/ou agrégées sont supérieures à 50 nm. 14. Powder according to any one of claims 3 to 13, wherein all the dimensions of the basic and / or aggregated particles are greater than 50 nm. 15. Poudre selon la revendication précédente, dans laquelle toutes les dimensions des particules de base et/ou agrégées sont supérieures à 200 nm. 15. Powder according to the preceding claim, wherein all the dimensions of the basic and / or aggregated particles are greater than 200 nm. 16. Poudre selon l'une quelconque des revendications 3 à 15, présentant une taille maximale de particules de base et/ou agrégées D99.5 inférieure à 150 m. 16. Powder according to any one of claims 3 to 15, having a maximum particle size of the base and / or aggregated D99.5 less than 150 m. 17. Poudre selon l'une quelconque des revendications précédentes, ledit hydrate étant dopé au moyen d'un dopant choisi parmi les composés d'éléments de la colonne 17,les composés d'éléments de la colonne 1, les composés à base d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de gallium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges. The powder according to any of the preceding claims, said hydrate being doped with a dopant selected from the compounds of elements of column 17, the compounds of elements of column 1, the compounds based on yttrium Y, Sc scandium, lanthanide, alkaline earth metal, Ti titanium, Si silicon, S sulfur, P phosphite, Al aluminum, Tungsten W, Cr chromium, Mo molybdenum, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, gallium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, Rh rhodium, Pd palladium, Ag silver, Os osmium, Ir irium, Pt platinum, Au gold and mixtures thereof. 18. Poudre selon la revendication précédente, ledit hydrate, dit premier hydrate étant dopé au moyen d'un dopant choisi parmi : un deuxième hydrate d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en mélange intime moléculaire avec ledit premier hydrate ; - un hydrate d'aluminium, dispersé dans ledit premier hydrate ; - un oxyde d'un élément choisi parmi Si, S et leurs mélanges, dispersé dans ledit premier hydrate ; - et leurs mélanges. 18. Powder according to the preceding claim, said hydrate, said first hydrate being doped by means of a dopant chosen from: a second hydrate of an element chosen from Y, La, Ce, Sc, Ca, Mg and mixtures thereof, in intimate molecular mixing with said first hydrate; an aluminum hydrate dispersed in said first hydrate; an oxide of an element selected from Si, S and mixtures thereof, dispersed in said first hydrate; - and their mixtures. 19. Poudre selon l'une quelconque des deux revendications immédiatement précédentes, la quantité molaire de dopant étant inférieure ou égale à 20%. 19. Powder according to any one of the two immediately preceding claims, the molar amount of dopant being less than or equal to 20%. 20. Dispositif choisi parmi un catalyseur, un support d'un catalyseur, un élément de 20 filtration, un élément d'une pile à combustible, un matériau piézo-électrique, un connecteur optique, une céramique dentaire, une céramique structurale, comportant ou obtenu(e) à partir d'une poudre selon l'une quelconque des revendications 3 à 19. 15 20. A device selected from a catalyst, a catalyst support, a filter element, a fuel cell element, a piezoelectric material, an optical connector, a dental ceramic, a structural ceramic, comprising or obtained from a powder according to any one of claims 3 to 19.
FR0805406A 2008-09-30 2008-09-30 ZIRCONIUM HYDRATE POWDER Expired - Fee Related FR2936514B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR0805406A FR2936514B1 (en) 2008-09-30 2008-09-30 ZIRCONIUM HYDRATE POWDER
PCT/IB2009/054286 WO2010038203A1 (en) 2008-09-30 2009-09-30 Zirconium hydrate powder
JP2011528487A JP2012504093A (en) 2008-09-30 2009-09-30 Zirconium hydrate powder
CN2009801479133A CN102227378A (en) 2008-09-30 2009-09-30 Zirconium hydrate powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0805406A FR2936514B1 (en) 2008-09-30 2008-09-30 ZIRCONIUM HYDRATE POWDER

Publications (2)

Publication Number Publication Date
FR2936514A1 true FR2936514A1 (en) 2010-04-02
FR2936514B1 FR2936514B1 (en) 2011-10-28

Family

ID=40513735

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0805406A Expired - Fee Related FR2936514B1 (en) 2008-09-30 2008-09-30 ZIRCONIUM HYDRATE POWDER

Country Status (4)

Country Link
JP (1) JP2012504093A (en)
CN (1) CN102227378A (en)
FR (1) FR2936514B1 (en)
WO (1) WO2010038203A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765923B (en) * 2016-10-18 2022-06-01 日商東亞合成股份有限公司 Adsorbent and deodorizing processed product
CN108855158B (en) * 2018-05-31 2021-02-12 华东理工大学 Preparation method and application of cobalt-ruthenium bimetallic heterogeneous catalyst
CN109095922A (en) * 2018-10-31 2018-12-28 江苏脒诺甫纳米材料有限公司 It is bluish white to be mixed into zirconium whitening material and preparation method thereof
JP7203180B1 (en) 2021-11-01 2023-01-12 第一稀元素化学工業株式会社 Zirconium hydroxide powder and method for producing zirconium hydroxide powder
JP7162716B1 (en) 2021-11-01 2022-10-28 第一稀元素化学工業株式会社 zirconium hydroxide powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254949A (en) * 1962-10-08 1966-06-07 Nat Lead Co Process for the production of zirconia
EP0194191A1 (en) * 1985-03-01 1986-09-10 Rhone-Poulenc Chimie Stabilized zirconia, process for its preparation and its use in ceramic compositions
US4765970A (en) * 1985-07-03 1988-08-23 Nissan Chemical Industries, Ltd. Flaky zirconia type fine crystals and methods of producing the same
WO2000075075A1 (en) * 1999-06-07 2000-12-14 University Of Pretoria Beneficiation of zircon
WO2003037506A1 (en) * 2001-11-01 2003-05-08 Magnesium Elektron Ltd. Process for preparing zirconium-cerium-based mixed oxides
WO2004007372A1 (en) * 2002-07-15 2004-01-22 Magnesium Elektron, Inc Hydrous zirconium oxide, hydrous hafnium oxide and method of making same
WO2007088326A1 (en) * 2006-02-03 2007-08-09 Magnesium Elektron Limited Zirconium hydroxide
CN101074116A (en) * 2007-06-27 2007-11-21 仙桃市中星电子材料有限公司 Production of superfine mono-dispered nano-zirconium dioxide
EP1921044A2 (en) * 2006-10-12 2008-05-14 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-ceria-yttria-based mixed oxide and process for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254949A (en) * 1962-10-08 1966-06-07 Nat Lead Co Process for the production of zirconia
EP0194191A1 (en) * 1985-03-01 1986-09-10 Rhone-Poulenc Chimie Stabilized zirconia, process for its preparation and its use in ceramic compositions
US4765970A (en) * 1985-07-03 1988-08-23 Nissan Chemical Industries, Ltd. Flaky zirconia type fine crystals and methods of producing the same
WO2000075075A1 (en) * 1999-06-07 2000-12-14 University Of Pretoria Beneficiation of zircon
WO2003037506A1 (en) * 2001-11-01 2003-05-08 Magnesium Elektron Ltd. Process for preparing zirconium-cerium-based mixed oxides
WO2004007372A1 (en) * 2002-07-15 2004-01-22 Magnesium Elektron, Inc Hydrous zirconium oxide, hydrous hafnium oxide and method of making same
WO2007088326A1 (en) * 2006-02-03 2007-08-09 Magnesium Elektron Limited Zirconium hydroxide
EP1921044A2 (en) * 2006-10-12 2008-05-14 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-ceria-yttria-based mixed oxide and process for producing the same
CN101074116A (en) * 2007-06-27 2007-11-21 仙桃市中星电子材料有限公司 Production of superfine mono-dispered nano-zirconium dioxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EDUARDO PENA DOS SANTOS ET AL.: "Zirconia Needles Synthesized Inside Hexagonal Swollen Liquid Crystals", CHEMISTRY OF MATERIALS, vol. 16, no. 21, 11 September 2004 (2004-09-11), pages 4187 - 4192, XP002525188, Retrieved from the Internet <URL:http://pubs.acs.org/doi/abs/10.1021/cm049589h> *
S. JAENICKE ET AL.: "Structural and Morphological Control in the Preparation of High Surface Area Zirconia", CATALYSIS SURVEYS FROM ASIA, vol. 12, no. 3, 3 September 2008 (2008-09-03), pages 153 - 169, XP002525399, Retrieved from the Internet <URL:http://www.springerlink.com/content/b107981004313165/fulltext.pdf> *

Also Published As

Publication number Publication date
CN102227378A (en) 2011-10-26
WO2010038203A1 (en) 2010-04-08
FR2936514B1 (en) 2011-10-28
JP2012504093A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
FR2936515A1 (en) ZIRCONIUM OXIDE POWDER
JP3963962B2 (en) Method for synthesizing crystalline ceramic powder of perovskite compound
JP4660135B2 (en) Zirconia-based porous body and method for producing the same
JP5676448B2 (en) Preparation method of inorganic membrane
JP5019826B2 (en) Zirconia sol and method for producing the same
FR2601352A1 (en) PROCESS FOR PRODUCING A TITANATE POWDER OF A DIVALENT CATION AND METHOD FOR PRODUCING A PEROVSKITE COFORM OF A DIVALENT CATION.
KR20090115714A (en) Aerogel materials based on metal oxides and composites thereof
WO2014186207A2 (en) Mesoporous materials and processes for preparation thereof
FR2936514A1 (en) ZIRCONIUM HYDRATE POWDER
EP1447381A2 (en) Nanoporous alumina products and process for their preparation
WO2018115436A1 (en) Ageing-resistant mixed oxide made from cerium, zirconium, aluminium and lanthanum for motor vehicle catalytic converter
US9108862B2 (en) Method of making rutile titanium dioxide microspheres containing elongated TiO2-nanocrystallites
JP2015504836A (en) Method for preparing a sol-gel from at least three metal salts and use of the method for preparing a ceramic membrane
JP2010105892A (en) Zirconia fine particle and method for producing the same
KR101218979B1 (en) A manufacturing method of perovskite powder, perovskite powder and laminated ceramic electronic part manufactured by the same
FR2936513A1 (en) PROCESS FOR PRODUCING A DERIVATIVE, HYDRATE OR ZIRCONIUM OXIDE
JP4556398B2 (en) Method for producing the composition
JP5353728B2 (en) Method for producing the composition
KR101158953B1 (en) Method for producing composition
FR2936516A1 (en) ZIRCONIUM DERIVATIVE POWDER
JP2006225178A (en) Method for producing carbon-containing metal oxide
JP4696338B2 (en) Method for producing fine zirconia powder
TW201520186A (en) Method for producing barium titanate powder
EP3939693A2 (en) Ceramic nanofiber structure, ceramic nanofiber separation membrane modified with photocatalyst, and method for manufacturing same
Zhang et al. Sacrificial GO-BD interlayer for high performance ceramic ultrafiltration membrane

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20140530