FR2935763A1 - MICROFLUID MICROFLUIDIC CONTINUES - Google Patents

MICROFLUID MICROFLUIDIC CONTINUES Download PDF

Info

Publication number
FR2935763A1
FR2935763A1 FR0856049A FR0856049A FR2935763A1 FR 2935763 A1 FR2935763 A1 FR 2935763A1 FR 0856049 A FR0856049 A FR 0856049A FR 0856049 A FR0856049 A FR 0856049A FR 2935763 A1 FR2935763 A1 FR 2935763A1
Authority
FR
France
Prior art keywords
fluid
electrode
chamber
electrodes
micropump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0856049A
Other languages
French (fr)
Other versions
FR2935763B1 (en
Inventor
Damien Fajolle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR0856049A priority Critical patent/FR2935763B1/en
Priority to US12/554,341 priority patent/US20100260626A1/en
Priority to EP09169628A priority patent/EP2161449B1/en
Publication of FR2935763A1 publication Critical patent/FR2935763A1/en
Application granted granted Critical
Publication of FR2935763B1 publication Critical patent/FR2935763B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers

Abstract

L'invention concerne une micropompe comprenant une inclusion fluide logée dans une chambre du microcanal, et des moyens pour amener une portion de ladite inclusion dans la zone axiale de ladite chambre et pour déplacer ladite portion suivant l'axe longitudinal du microcanal, de manière à provoquer l'écoulement d'un fluide d'intérêt (F) suivant l'axe longitudinal du microcanal (10).The invention relates to a micropump comprising a fluid inclusion housed in a chamber of the microchannel, and means for moving a portion of said inclusion into the axial zone of said chamber and for moving said portion along the longitudinal axis of the microchannel, so as to causing the flow of a fluid of interest (F) along the longitudinal axis of the microchannel (10).

Description

MICROPOMPE POUR MICROFLUIDIQUE CONTINUE DESCRIPTION DOMAINE TECHNIQUE La présente invention se rapporte au domaine général de la microfluidique et concerne une micropompe pour la microfluidique continue . La microfluidique continue concerne l'écoulement d'un fluide en phase continue, et s'oppose à la microfluidique discrète dans laquelle des gouttes sont manipulées et déplacées. ETAT DE LA TECHNIQUE ANTERIEURE Les micropompes permettent d'assurer l'écoulement contrôlé d'un fluide, généralement dans un microcanal, et interviennent dans de nombreux systèmes microfluidiques. Par exemple, des micropompes peuvent être présentes dans des laboratoires sur puce, des systèmes d'injection de substances médicales, ou encore des circuits hydrauliques de refroidissement de puces électroniques. L'actionnement des micropompes peut être réalisé de différentes manières, par exemple, à l'aide d'un dispositif piézoélectrique, électrostatique, thermopneumatique, voire électromagnétique. Une présentation de ces différents dispositifs d'actionnement peut être trouvée dans le document de D.J. Laser et J.G. Santiago intitulé A review of micropumps , J. Micromech. Microeng., 14(2004), R35-R64. Cependant, ces dispositifs d'actionnement présentent certains inconvénients comme la nécessité de membranes déformables ou de valves, l'utilisation de tensions élevées, par exemple pour les dispositifs piézoélectriques ou électrostatiques, ou une consommation électrique importante par exemple avec les dispositifs thermopneumatiques ou électromagnétiques. TECHNICAL FIELD The present invention relates to the general field of microfluidics and relates to a micropump for continuous microfluidics. Continuous microfluidics is concerned with the flow of a continuous phase fluid, and opposes discrete microfluidics in which drops are manipulated and displaced. STATE OF THE PRIOR ART Micropumps make it possible to ensure the controlled flow of a fluid, generally in a microchannel, and are involved in many microfluidic systems. For example, micropumps may be present in lab-on-a-chip, injection systems for medical substances, or hydraulic circuits for cooling electronic chips. The micropumps can be actuated in various ways, for example using a piezoelectric, electrostatic, thermopneumatic or even electromagnetic device. A presentation of these different actuators can be found in D.J. Laser and J.G. Santiago entitled A review of micropumps, J. Micromech. Microeng., 14 (2004), R35-R64. However, these actuators have certain drawbacks, such as the need for deformable membranes or valves, the use of high voltages, for example for piezoelectric or electrostatic devices, or a high electrical consumption, for example with thermopneumatic or electromagnetic devices.

Une autre approche consiste à actionner la micropompe par électromouillage, et plus précisément par électromouillage sur diélectrique. Ainsi, la demande de brevet FR2889633 déposée au nom de la demanderesse décrit une micropompe comprenant un microcanal et un dispositif d'actionnement, celui-ci permettant de provoquer l'écoulement d'un fluide d'intérêt à l'intérieur du microcanal suivant une direction donnée. Comme l'illustre la figure 1A, le dispositif d'actionnement comporte une chambre A40 qui sépare le microcanal A10 en deux conduits, un conduit d'entrée A11 et un conduit de sortie Al2. Chaque conduit A11, Al2 communique avec la chambre A40 par l'intermédiaire d'une valve A51, A52, chacune étant disposée de manière à autoriser l'écoulement du fluide d'intérêt A31 suivant la seule direction i. Dans la chambre A40 est logé un piston A53 dont le déplacement entraîne alternativement l'aspiration du fluide à partir du conduit d'entrée A11, et l'injection du fluide dans le conduit de sortie Al2. Another approach is to operate the micropump by electrowetting, and more precisely by electrowetting on dielectric. Thus, the patent application FR2889633 filed in the name of the applicant describes a micropump comprising a microchannel and an actuating device, the latter for causing the flow of a fluid of interest inside the microchannel following a direction given. As illustrated in Figure 1A, the actuating device comprises a chamber A40 which separates the microchannel A10 into two ducts, an inlet duct A11 and an outlet duct Al2. Each duct A11, Al2 communicates with the chamber A40 via a valve A51, A52, each being arranged to allow the flow of the fluid of interest A31 following the single direction i. In the chamber A40 is housed a piston A53 whose displacement alternately drives the suction of the fluid from the inlet duct A11, and the injection of the fluid into the outlet duct Al2.

Le déplacement du piston A53 est contrôlé par l'intermédiaire d'une membrane flexible A54 en contact avec une goutte de liquide A32. Le contrôle de la forme de la goutte A32 permet de moduler le profil de la membrane A54 et ainsi d'actionner le piston A53. Le contrôle de la forme de la goutte est assuré par électromouillage. The displacement of the piston A53 is controlled by means of a flexible membrane A54 in contact with a drop of liquid A32. The control of the shape of the drop A32 makes it possible to modulate the profile of the membrane A54 and thus to actuate the piston A53. The control of the shape of the drop is provided by electrowetting.

Plus précisément, la membrane A54 définit, avec un substrat A21, le volume intérieur d'une enceinte, laquelle est remplie par la goutte de liquide A32 électriquement conducteur et par un second liquide A33 environnant, ces deux liquides étant non miscibles. More specifically, the membrane A54 defines, with a substrate A21, the internal volume of an enclosure, which is filled by the drop of liquid A32 electrically conductive and by a second liquid A33 surrounding, these two liquids being immiscible.

Des moyens électriques sont prévus pour modifier la forme de la goutte par électromouillage. Ces moyens comprennent une électrode A61 intégrée au substrat A21, recouverte d'une couche diélectrique A65. La goutte A32 est alors en contact avec ladite couche diélectrique A65 et avec la membrane A54. Une contre-électrode (non représentée) est en contact avec la goutte. Electrical means are provided to modify the shape of the drop by electrowetting. These means comprise an electrode A61 integrated in the substrate A21, covered with a dielectric layer A65. The drop A32 is then in contact with said dielectric layer A65 and with the membrane A54. A counter-electrode (not shown) is in contact with the drop.

Lorsqu'une tension est appliquée entre l'électrode A61 et la contre-électrode, l'ensemble goutte sous tension A32, couche diélectrique A65 et électrode activée A61 agit comme une capacité. When a voltage is applied between the electrode A61 and the counter-electrode, the voltage drop assembly A32, dielectric layer A65 and activated electrode A61 act as a capacitance.

Comme le décrit l'article de B. Berge intitulé Electrocapillarité et mouillage de films isolants par l'eau , C.R. Acad. Sci., 317, série 2, 1993, 157-163, l'angle de contact de l'interface de la goutte A32 sur la couche diélectrique A62 diminue alors suivant la relation : As described in the article by B. Berge entitled Electrocapillarity and wetting of insulating films by water, C.R. Acad. Sci., 317, series 2, 1993, 157-163, the contact angle of the interface of the drop A32 on the dielectric layer A62 then decreases according to the relation:

cos0 (U) = cos0 (0) + U2 2e6 où e est l'épaisseur de la couche diélectrique A65, Er la permittivité de cette couche et 6 la tension de surface de l'interface de la goutte A32. Cette diminution de l'angle de contact s'accompagne d'un étalement de la goutte et donc d'une modification de sa forme. Ainsi, l'activation de l'électrode A61 permet de contrôler la forme de la goutte A32, pour, en conséquence, modifier le profil de la membrane A54. Le piston A53 peut alors être déplacé suivant son axe longitudinal dans les deux directions, ce qui assure l'écoulement du fluide A31 du conduit d'entrée A11 au conduit de sortie Al2, par l'intermédiaire de la chambre A40. Les figures 1A et 1B illustrent deux temps caractéristiques de fonctionnement de la micropompe. Dans la figure 1A, l'électrode A61 est activée, le piston A53 se déplace alors de manière à aspirer du fluide d'intérêt A31 à partir du conduit d'entrée A11 dans la chambre A50, puis lorsque l'électrode A61 est désactivée (figure 1B), la goutte A32 reprend sa forme initiale, et pousse le piston de sorte que le fluide A31 à l'intérieur de la chambre A40 est injecté dans le conduit de sortie Al2. Cependant, la micropompe selon l'art antérieur comporte un certain nombre d'inconvénients provenant de la présence d'éléments mécaniques mobiles ou déformables dans le dispositif d'actionnement. Ainsi, la réalisation et le montage des éléments mécaniques de taille micrométrique sont des opérations particulièrement difficiles à effectuer, qui impliquent par ailleurs des coûts de fabrication élevés. cos0 (U) = cos0 (0) + U2 2e6 where e is the thickness of the dielectric layer A65, Er the permittivity of this layer and 6 the surface tension of the interface of the drop A32. This reduction in the contact angle is accompanied by a spreading of the drop and thus a modification of its shape. Thus, the activation of the electrode A61 makes it possible to control the shape of the drop A32, in order consequently to modify the profile of the membrane A54. The piston A53 can then be displaced along its longitudinal axis in both directions, which ensures the flow of the fluid A31 from the inlet duct A11 to the outlet duct A12, through the chamber A40. Figures 1A and 1B illustrate two typical operating times of the micropump. In FIG. 1A, the electrode A61 is activated, the piston A53 then moves so as to draw fluid A31 of interest from the inlet duct A11 in the chamber A50, then when the electrode A61 is deactivated ( Figure 1B), the drop A32 returns to its original shape, and pushes the piston so that the fluid A31 inside the chamber A40 is injected into the outlet duct Al2. However, the micropump according to the prior art has a number of drawbacks arising from the presence of movable or deformable mechanical elements in the actuating device. Thus, the production and assembly of mechanical elements of micrometric size are particularly difficult operations to perform, which also involve high manufacturing costs.

De plus, ces éléments et plus précisément leurs organes de liaison, pivot ou glissière, sont particulièrement sensibles aux moindres défauts de fabrication. Les valves et le piston sont alors susceptibles de se bloquer, rendant alors inefficace la micropompe ainsi que le système microfluidique dans lequel elle intervient. EXPOSÉ DE L'INVENTION Le but de la présente invention est de proposer une micropompe à électromouillage dont le dispositif d'actionnement ne comporte pas de pièces mécaniques mobiles ou déformables. Pour ce faire, l'invention a pour objet une 15 micropompe pour déplacer un premier fluide dans un microcanal. Selon l'invention, le microcanal comprend au moins une chambre comportant une zone axiale disposée sensiblement suivant l'axe longitudinal du microcanal 20 et au moins une zone latérale, et la micropompe comprend : une inclusion d'un second fluide occupant au moins partiellement ladite zone latérale de la chambre, - des moyens électriques pour amener une portion de 25 ladite inclusion dans ladite zone axiale sous l'effet d'une commande électrique, comportant une pluralité d'électrodes d'actionnement disposées dans ladite zone axiale de la chambre, et - des moyens d'activation successive desdites 30 électrodes d'actionnement pour déplacer ladite portion de ladite inclusion recouvrant au moins partiellement au moins une électrode d'actionnement, sensiblement suivant l'axe longitudinal du microcanal, de manière à provoquer l'écoulement dudit premier fluide suivant l'axe longitudinal du microcanal. In addition, these elements and more precisely their connecting members, pivot or slide, are particularly sensitive to the slightest manufacturing defects. The valves and the piston are then likely to become blocked, thus rendering ineffective the micropump as well as the microfluidic system in which it intervenes. DISCLOSURE OF THE INVENTION The object of the present invention is to provide an electrowinning micropump whose operating device does not comprise moving or deformable mechanical parts. To do this, the invention relates to a micropump for moving a first fluid in a microchannel. According to the invention, the microchannel comprises at least one chamber comprising an axial zone disposed substantially along the longitudinal axis of the microchannel 20 and at least one lateral zone, and the micropump comprises: an inclusion of a second fluid occupying at least partially said lateral zone of the chamber; electrical means for bringing a portion of said inclusion into said axial zone under the effect of electrical control, comprising a plurality of actuation electrodes disposed in said axial zone of the chamber, and means for sequentially activating said actuating electrodes for moving said portion of said inclusion at least partially covering at least one actuating electrode, substantially along the longitudinal axis of the microchannel, so as to cause the flow of said first fluid along the longitudinal axis of the microchannel.

Ainsi, la portion de l'inclusion fluide, dans son déplacement, provoque l'écoulement du fluide d'intérêt suivant le sens longitudinal du microcanal. Il n'est alors plus nécessaire de prévoir de pièces mécaniques mobiles ou déformables, du type valve, piston ou membrane. De plus, le fluide pompé n'est pas discrétisé sous forme de gouttes par la micropompe. Le liquide de la goutte reste toujours localisé dans la chambre et n'est donc pas entraîné dans le microcanal. Il s'agit bien de microfluidique continue . Les opérations de réalisation sont ainsi grandement simplifiées, ce qui diminue les coûts de fabrication. La fiabilité est améliorée, dans la mesure où il n'y a plus de risque de blocage ou de grippage de la micropompe. Par ailleurs, à la différence de la micropompe selon l'art antérieur, il est possible de provoquer l'écoulement du fluide d'intérêt suivant l'une quelconque des deux directions parallèles à l'axe longitudinal du microcanal. De préférence, le premier fluide ou le second fluide est un liquide. Les moyens d'activation successive comprennent avantageusement des moyens de commutation électrique conçus pour activer et pour désactiver chacune desdites électrodes d'actionnement, lesdits moyens de commutation étant commandés par un moyen de commande. Selon un premier mode de réalisation préféré, ladite portion de ladite inclusion est une déformation locale de ladite inclusion. Ladite portion de ladite inclusion peut recouvrer au moins une électrode d'actionnement suivant toute la section transversale de ladite zone axiale. Selon un second mode de réalisation préféré, la chambre comprend une paroi disposée entre la zone axiale et la zone latérale, sur une partie de la longueur de la chambre, de manière à ce que la zone latérale forme un canal secondaire communiquant avec la zone axiale en amont et en aval de la paroi. Thus, the portion of the fluid inclusion, in its displacement, causes the flow of the fluid of interest in the longitudinal direction of the microchannel. It is then no longer necessary to provide moving or deformable mechanical parts of the valve, piston or membrane type. In addition, the pumped fluid is not discretized in the form of drops by the micropump. The liquid of the drop is always located in the chamber and is not drawn into the microchannel. It is indeed continuous microfluidics. The production operations are thus greatly simplified, which reduces manufacturing costs. Reliability is improved, as there is no longer a risk of blockage or seizure of the micropump. Moreover, unlike the micropump according to the prior art, it is possible to cause the flow of the fluid of interest along any one of the two directions parallel to the longitudinal axis of the microchannel. Preferably, the first fluid or the second fluid is a liquid. The successive activation means advantageously comprise electrical switching means designed to activate and deactivate each of said actuating electrodes, said switching means being controlled by a control means. According to a first preferred embodiment, said portion of said inclusion is a local deformation of said inclusion. Said portion of said inclusion can recover at least one actuating electrode along the entire cross section of said axial zone. According to a second preferred embodiment, the chamber comprises a wall disposed between the axial zone and the lateral zone, along part of the length of the chamber, so that the lateral zone forms a secondary channel communicating with the axial zone. upstream and downstream of the wall.

Ladite portion de ladite inclusion peut alors être une inclusion secondaire séparée de ladite inclusion par ladite paroi. Selon un mode de réalisation, le premier fluide est un fluide diélectrique, le second fluide étant un liquide conducteur. Lesdits moyens électriques pour amener ladite portion dans ladite zone axiale peuvent alors comprendre au moins une contre-électrode en contact électrique avec ladite inclusion, et un générateur de tension pour appliquer une différence de potentiel entre une ou plusieurs électrodes d'actionnement et ladite contre-électrode. Lesdits moyens électriques pour amener ladite portion dans ladite zone axiale peuvent comprendre en outre une électrode dite de confinement s'étendant sensiblement sur la surface de ladite zone latérale de la chambre. Selon un autre mode de réalisation, le premier fluide est un liquide conducteur, le second fluide étant un fluide diélectrique. Lesdits moyens électriques pour amener ladite portion dans ladite zone axiale peuvent alors comprendre au moins une contre-électrode en contact électrique avec ledit premier fluide, et un générateur de tension pour appliquer une différence de potentiel entre une ou plusieurs électrodes d'actionnement et ladite contre-électrode. La micropompe peut comprendre en outre un second substrat formant capot. Une seconde pluralité d'électrodes d'actionnement peut alors être intégrée audit capot et disposée dans ladite zone axiale de la chambre, en regard de ladite première pluralité d'électrodes d'actionnement dudit substrat. Le premier fluide peut alors présenter une 20 permittivité électrique sensiblement inférieure à celle du second fluide. Ladite chambre peut comprendre deux parties latérales disposées l'une en regard de l'autre, logeant chacune une goutte de liquide conducteur. 25 La distance séparant le premier substrat et le capot dans ladite chambre est de préférence sensiblement inférieure aux dimensions de ladite chambre suivant le plan médian dudit premier substrat. De préférence, la zone axiale présente une largeur 30 sensiblement inférieure à la longueur de celle-ci. Said portion of said inclusion may then be a secondary inclusion separated from said inclusion by said wall. According to one embodiment, the first fluid is a dielectric fluid, the second fluid being a conductive liquid. Said electrical means for bringing said portion into said axial zone may then comprise at least one counter-electrode in electrical contact with said inclusion, and a voltage generator for applying a potential difference between one or more actuating electrodes and said counter-electrode. electrode. Said electrical means for bringing said portion into said axial zone may further comprise a so-called confinement electrode extending substantially on the surface of said lateral zone of the chamber. According to another embodiment, the first fluid is a conductive liquid, the second fluid being a dielectric fluid. Said electrical means for bringing said portion into said axial zone may then comprise at least one counter-electrode in electrical contact with said first fluid, and a voltage generator for applying a potential difference between one or more actuating electrodes and said counter-electrode. -electrode. The micropump may further comprise a second bonnet substrate. A second plurality of actuating electrodes may then be integrated in said cover and disposed in said axial zone of the chamber, facing said first plurality of electrodes for actuating said substrate. The first fluid can then have an electrical permittivity substantially lower than that of the second fluid. Said chamber may comprise two lateral parts arranged one opposite the other, each housing a drop of conductive liquid. The distance separating the first substrate and the cover in said chamber is preferably substantially smaller than the dimensions of said chamber in the median plane of said first substrate. Preferably, the axial zone has a width substantially less than the length thereof.

L'espacement inter-électrodes d'actionnement présente avantageusement une forme courbe ou anguleuse, de manière à faciliter le passage de la portion de l'inclusion d'une électrode à l'autre. The inter-electrode operating gap advantageously has a curved or angular shape, so as to facilitate the passage of the portion of the inclusion of an electrode to another.

Lesdites électrodes peuvent être recouvertes d'une couche de matériau hydrophobe. Le premier fluide et le second fluide peuvent être, l'un, un liquide conducteur comprenant des espèces zwitterioniques, et l'autre, un fluide diélectrique. The said electrodes may be covered with a layer of hydrophobic material. The first fluid and the second fluid may be, one, a conductive liquid comprising zwitterionic species, and the other, a dielectric fluid.

Une couche de matériau diélectrique peut être disposée entre la couche hydrophobe et lesdites électrodes. Lesdites électrodes d'actionnement peuvent être disposées sous forme matricielle. A layer of dielectric material may be disposed between the hydrophobic layer and said electrodes. Said operating electrodes may be arranged in matrix form.

D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous. Other advantages and features of the invention will become apparent in the detailed non-limiting description below.

BRÈVE DESCRIPTION DES DESSINS On décrira à présent, à titre d'exemples non limitatifs, des modes de réalisation de l'invention, en se référant aux dessins annexés, dans lesquels : Les figures 1A et 1B, déjà décrites, sont des représentations schématiques en coupe longitudinale d'une micropompe selon l'art antérieur ; La figure 2 est une représentation schématique en vue de dessus d'une micropompe selon le premier mode de réalisation préféré de l'invention, dans laquelle la première électrode est activée ; La figure 3 est une représentation schématique en coupe longitudinale de la micropompe selon le premier mode de réalisation préféré de l'invention, la coupe étant prise selon l'axe A-A de la figure 2 ; Les figures 4A à 4C sont des représentations schématiques en vue de dessus d'une micropompe selon le premier mode de réalisation préféré de l'invention, et illustrent un mode de fonctionnement ; Les figures 5A à 5C illustrent un autre mode de fonctionnement du premier mode de réalisation préféré de l'invention ; Les figures 6A à 6D sont des représentations schématiques en vue de dessus d'une micropompe selon une variante du premier mode de réalisation préféré de l'invention, dans lequel un pont de liquide est formé ; Les figures 7A à 7D sont des représentations schématiques en vue de dessus d'une micropompe selon une autre variante du premier mode de réalisation préféré de l'invention, dans lequel une onde progressive est générée ; Les figures 8A à 8D sont des représentations schématiques en vue de dessus d'une micropompe selon le second mode de réalisation préféré de l'invention, dans lequel une inclusion fluide secondaire est formée ; La figure 9 est une variante du premier mode de réalisation préféré de l'invention, dans laquelle le fluide pompé est un liquide conducteur ; et Les figures 10 et 11 sont des variantes du premier mode de réalisation préféré de l'invention, dans lequel la zone axiale de la chambre présente un axe longitudinal courbe ou anguleux. BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the invention will now be described, by way of nonlimiting examples, with reference to the appended drawings, in which: FIGS. 1A and 1B, already described, are diagrammatic representations of FIG. longitudinal section of a micropump according to the prior art; FIG. 2 is a diagrammatic representation in top view of a micropump according to the first preferred embodiment of the invention, in which the first electrode is activated; Figure 3 is a schematic representation in longitudinal section of the micropump according to the first preferred embodiment of the invention, the section being taken along the axis A-A of Figure 2; FIGS. 4A to 4C are diagrammatic representations in plan view of a micropump according to the first preferred embodiment of the invention, and illustrate a mode of operation; FIGS. 5A to 5C illustrate another mode of operation of the first preferred embodiment of the invention; FIGS. 6A to 6D are diagrammatic views in plan view of a micropump according to a variant of the first preferred embodiment of the invention, in which a liquid bridge is formed; FIGS. 7A to 7D are diagrammatic representations in plan view of a micropump according to another variant of the first preferred embodiment of the invention, in which a progressive wave is generated; FIGS. 8A to 8D are diagrammatic representations in plan view of a micropump according to the second preferred embodiment of the invention, in which a secondary fluid inclusion is formed; Figure 9 is a variant of the first preferred embodiment of the invention, wherein the pumped fluid is a conductive liquid; and Figures 10 and 11 are variants of the first preferred embodiment of the invention, wherein the axial zone of the chamber has a curved or angular longitudinal axis.

EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PREFERE Le premier mode de réalisation préféré de l'invention est représenté schématiquement sur la figure 2, en vue de dessus. La micropompe comprend un premier substrat 21 dans lequel est formé un microcanal 10. On appelle plan médian du premier substrat 21 un plan du substrat sensiblement parallèle au plan (i,j) du repère orthonormé direct (i,j,k). On définit l'axe longitudinal du microcanal comme étant la ligne médiane du microcanal. L'axe longitudinal peut être droit ou courbe. Le microcanal 10 peut présenter une section transversale polygonale convexe, par exemple carrée, rectangulaire, hexagonale. On considère ici qu'une section carrée est un cas particulier de la forme rectangulaire plus générale. Il peut également présenter une section transversale circulaire. Le terme microcanal est pris dans un sens général et comprend notamment le cas particulier du microtube dont la section est circulaire. Le microcanal 10 peut être rempli d'un fluide d'intérêt 31 à déplacer. DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT The first preferred embodiment of the invention is shown diagrammatically in FIG. 2, seen from above. The micropump comprises a first substrate 21 in which a microchannel 10 is formed. A plane of the substrate substantially parallel to the plane (i, j) of the direct orthonormal coordinate system (i, j, k) is called the median plane of the first substrate 21. The longitudinal axis of the microchannel is defined as the median line of the microchannel. The longitudinal axis may be straight or curved. The microchannel 10 may have a convex polygonal cross section, for example square, rectangular, hexagonal. It is considered here that a square section is a special case of the more general rectangular shape. It can also have a circular cross section. The term microchannel is taken in a general sense and includes in particular the particular case of the microtube whose section is circular. The microchannel 10 may be filled with a fluid of interest 31 to be displaced.

Un dispositif d'actionnement de la micropompe est prévu pour provoquer et contrôler l'écoulement du fluide d'intérêt 31 dans le microcanal 10. Le dispositif d'actionnement comprend une chambre 40 communiquant avec le microcanal de manière à définir dans celui-ci un premier conduit 11 et un second conduit 12. A device for actuating the micropump is provided for causing and controlling the flow of the fluid of interest 31 in the microchannel 10. The actuating device comprises a chamber 40 communicating with the microchannel so as to define therein a first conduit 11 and a second conduit 12.

La chambre 40 présente de préférence une forme en coupe transversale sensiblement rectangulaire. La chambre 40 comporte une zone axiale 41 disposée dans la continuité des premier et second conduits, c'est-à-dire située sensiblement suivant l'axe longitudinal du microcanal. La chambre 40 comprend également au moins une échancrure formant la zone latérale 42, communiquant avec la zone axiale 41. La zone latérale 42 s'étend dans le plan médian du premier substrat 21. Selon l'invention, une inclusion d'un second fluide occupe au moins partiellement ladite zone latérale 42 de la chambre. Dans le premier mode de réalisation préféré de l'invention, ladite inclusion de second fluide est une goutte d'un liquide 32 électriquement conducteur. Des moyens électriques sont prévus pour amener une portion 35 de la goutte de liquide dans ladite zone axiale 41 de la chambre, sous l'effet d'une commande électrique, par électromouillage. En particulier, la goutte de liquide 32 peut être déformée par lesdits moyens électriques. Les moyens électriques comprennent une pluralité d'électrodes 61(i), où iE[1,N], et N est de préférence supérieur ou égal à trois. Dans l'exemple de la figure 2, N est égal à trois. Les électrodes 61(i) sont intégrées dans le premier substrat 21 et sont disposées dans la zone axiale 41 de la chambre 40, de préférence de manière linéaire. Le réseau d'électrodes 61(i) peut également présenter une forme de matrice carrée ou rectangulaire. The chamber 40 preferably has a substantially rectangular cross-sectional shape. The chamber 40 has an axial zone 41 disposed in the continuity of the first and second conduits, that is to say located substantially along the longitudinal axis of the microchannel. The chamber 40 also comprises at least one notch forming the lateral zone 42, communicating with the axial zone 41. The lateral zone 42 extends in the median plane of the first substrate 21. According to the invention, an inclusion of a second fluid at least partially occupies said lateral zone 42 of the chamber. In the first preferred embodiment of the invention, said second fluid inclusion is a drop of an electrically conductive liquid 32. Electrical means are provided for bringing a portion 35 of the drop of liquid into said axial zone 41 of the chamber, under the effect of an electric control, by electrowetting. In particular, the drop of liquid 32 may be deformed by said electrical means. The electrical means comprise a plurality of electrodes 61 (i), where iE [1, N], and N is preferably greater than or equal to three. In the example of Figure 2, N is equal to three. The electrodes 61 (i) are integrated in the first substrate 21 and are arranged in the axial zone 41 of the chamber 40, preferably linearly. The electrode array 61 (i) may also have a square or rectangular matrix shape.

De préférence, une électrode dite de confinement 62 est intégrée au premier substrat 21 et disposée sensiblement dans la zone latérale 42 de la chambre 40. L'électrode de confinement 62 s'étend avantageusement sur toute la surface de la zone latérale 42. Chaque électrode 61(i) peut présenter une forme sensiblement carrée ou rectangulaire. Alternativement, l'espacement inter-électrodes d'actionnement peut présenter une forme courbe ou anguleuse. Dans le cas d'une forme anguleuse, le bord d'une électrode d'actionnement peut présenter une forme en dents de scie sensiblement parallèle au bord de l'électrode voisine présentant une forme correspondante. Cette forme d'électrodes facilite le passage de la goutte de liquide d'une électrode à l'autre. De préférence, une couche d'un matériau hydrophobe recouvre les électrodes 61(i) et 62. De préférence, une couche d'un matériau diélectrique est disposée entre la couche hydrophobe et les électrodes 61(i) et 62. La couche diélectrique et la couche hydrophobe qui recouvrent les électrodes d'actionnement 61(i) et l'électrode de confinement 62 peuvent être une couche unique combinant ces deux fonctions, par exemple une couche en parylène ou en Téflon. De préférence, une contre-électrode 63 est disposée en contact électrique avec la goutte de liquide 32. Cette contre-électrode 63 peut être soit une caténaire, soit un fil enterré, soit une électrode planaire dans le capot de la micropompe (un tel capot est décrit plus loin). Dans ces deux dernières possibilités, une couche hydrophobe électriquement conductrice peut recouvrir la contre-électrode 63. Les électrodes 61(i) et 62, ainsi que la contre-électrode 63, peuvent être connectées à un générateur de tension 64 continue ou, de préférence, alternative. Lorsque la tension de polarisation est alternative, le liquide se comporte comme un conducteur lorsque la fréquence de la tension de polarisation est sensiblement inférieure à une fréquence de coupure. Preferably, a so-called confinement electrode 62 is integrated in the first substrate 21 and disposed substantially in the lateral zone 42 of the chamber 40. The confinement electrode 62 advantageously extends over the entire surface of the lateral zone 42. Each electrode 61 (i) may have a substantially square or rectangular shape. Alternatively, the inter-electrode actuation spacing may have a curved or angular shape. In the case of an angular shape, the edge of an actuating electrode may have a sawtooth shape substantially parallel to the edge of the neighboring electrode having a corresponding shape. This form of electrodes facilitates the passage of the drop of liquid from one electrode to another. Preferably, a layer of a hydrophobic material covers the electrodes 61 (i) and 62. Preferably, a layer of a dielectric material is disposed between the hydrophobic layer and the electrodes 61 (i) and 62. The dielectric layer and the hydrophobic layer covering the actuating electrodes 61 (i) and the confinement electrode 62 may be a single layer combining these two functions, for example a parylene or Teflon layer. Preferably, a counterelectrode 63 is disposed in electrical contact with the liquid droplet 32. This counter-electrode 63 can be either a catenary, a buried wire, or a planar electrode in the hood of the micropump (such a hood is described later). In the latter two possibilities, an electrically conductive hydrophobic layer may cover the counter-electrode 63. The electrodes 61 (i) and 62, as well as the counter-electrode 63, may be connected to a continuous voltage generator 64 or, preferably , alternative. When the bias voltage is alternating, the liquid behaves like a conductor when the frequency of the bias voltage is substantially lower than a cutoff frequency.

Celle-ci dépend notamment de la conductivité électrique du liquide et est typiquement de l'ordre de quelques dizaines de kilohertz (Mugele et Baret, Electrowetting: from basics to applications , J. Phys. Condens. Matter, 17 (2005), R705-R774). D'autre part, la fréquence est sensiblement supérieure à la fréquence permettant d'excéder le temps de réponse hydrodynamique du liquide, qui dépend des paramètres physiques de la goutte comme la tension de surface, la viscosité ou la taille de la goutte, et qui est de l'ordre de quelques centaines de hertz. Aussi, la fréquence est, de préférence, comprise entre 100Hz et 10kHz, de préférence de l'ordre de 1kHz. Ainsi, la réponse du liquide de la goutte 32 dépend de la valeur efficace de la tension appliquée puisque l'angle de contact dépend de la tension en U2, selon la relation donnée précédemment. La valeur efficace peut varier entre quelques volts et quelques centaines de volts, par exemple 200V. De préférence, elle est de l'ordre de quelques dizaines de volts.30 Selon l'invention, le dispositif d'actionnement comprend des moyens d'activation successive des électrodes d'actionnement 61(i). Les moyens d'activation successive peuvent comprendre un système 71 de commutateurs électriques 72, commandé par un moyen de commande 73 du type PC suivant une séquence déterminée. Chaque électrode d'actionnement 61(i) est connectée au générateur de tension par l'intermédiaire d'un 10 commutateur 72. Ainsi, en fonction de l'état de commutation des différents commutateurs 72, une commande électrique peut être transmise à une ou plusieurs électrodes d'actionnement 61(i). Dans ce cas, ces électrodes sont 15 dites activées. Plus précisément, le générateur de tension 64 applique une différence de potentiel entre la contre-électrode 63 et la ou les électrode(s) d'actionnement 61(i) activée(s). De préférence, lorsqu'au moins une électrode 20 d'actionnement 61(i) est activée, l'électrode de confinement 62 l'est également. This depends in particular on the electrical conductivity of the liquid and is typically of the order of a few tens of kilohertz (Mugele and Baret, Electrowetting: from basics to applications, J. Phys Condens Matter, 17 (2005), R705- R774). On the other hand, the frequency is substantially greater than the frequency allowing to exceed the hydrodynamic response time of the liquid, which depends on the physical parameters of the drop such as the surface tension, the viscosity or the size of the drop, and which is of the order of a few hundred hertz. Also, the frequency is preferably between 100 Hz and 10 kHz, preferably of the order of 1 kHz. Thus, the response of the liquid of the drop 32 depends on the effective value of the applied voltage since the contact angle depends on the voltage U2, according to the relationship given above. The rms value can vary between a few volts and a few hundred volts, for example 200V. Preferably, it is of the order of a few tens of volts. According to the invention, the actuating device comprises means for successively activating the actuating electrodes 61 (i). The successive activation means may comprise a system 71 of electrical switches 72, controlled by a control means 73 of the PC type in a predetermined sequence. Each actuating electrode 61 (i) is connected to the voltage generator via a switch 72. Thus, depending on the switching state of the different switches 72, electrical control can be transmitted to one or several actuating electrodes 61 (i). In this case, these electrodes are said to be activated. More specifically, the voltage generator 64 applies a potential difference between the counter-electrode 63 and the activation electrode (s) 61 (i) activated (s). Preferably, when at least one actuation electrode 61 (i) is activated, the containment electrode 62 is also activated.

La figure 3 est une vue en coupe longitudinale du mode de réalisation préféré de l'invention, selon l'axe 25 A-A représenté sur la figure 2. Un second substrat 22 formant capot peut être déposé sur le premier substrat 21, parallèlement au plan médian de celui-ci. Les premier et second substrats 21 et 22 peuvent 30 être en silicium ou en verre, polycarbonate, polymère, céramique. FIG. 3 is a longitudinal sectional view of the preferred embodiment of the invention along axis AA represented in FIG. 2. A second substrate 22 forming a cover can be deposited on first substrate 21, parallel to the median plane. of it. The first and second substrates 21 and 22 may be silicon or glass, polycarbonate, polymer, ceramic.

Le microcanal 10 et la chambre 40 sont par exemple réalisés par lithographie et gravure sélective. En fonction des dimensions voulues, on pourra utiliser la gravure sèche (attaque par gaz, par exemple SF6, dans un plasma). La gravure peut être également humide. Pour le verre (majoritairement SiO2) ou des nitrures de silicium, on peut utiliser les gravures à l'acide fluorhydrique ou phosphorique (ces gravures sont sélectives mais isotropes). La gravure peut être effectuée par ablation laser ou encore par ultrasons. Le micro-usinage peut également être utilisé, en particulier pour du polycarbonate. La hauteur du microcanal 10 entre les substrats 21 et 22 est typiquement comprise entre quelques dizaines de nanomètres et 200pm, et de préférence entre lpm et 100pm. De préférence, la hauteur de la chambre 40, en particulier de la zone axiale 41 de la chambre 40 est sensiblement inférieure à la hauteur du microcanal 10, comme le montre la figure 3. Cela permet d'obtenir une goutte de liquide 32 sensiblement plate , c'est-à-dire étalée entre le premier substrat 21 et le capot 22, voire une portion 35 de goutte 32 sensiblement plate . La réduction de la hauteur de la chambre 40 permet par ailleurs d'optimiser l'actionnement par électromouillage. L'augmentation de la section transversale des canaux en entrée et en sortie permet de réduire les pertes de charges en amont et en aval de la pompe. The microchannel 10 and the chamber 40 are for example made by lithography and selective etching. Depending on the desired dimensions, it is possible to use dry etching (gas attack, for example SF6, in a plasma). Engraving can be wet too. For glass (mainly SiO 2) or silicon nitrides, it is possible to use hydrofluoric or phosphoric acid etchings (these etchings are selective but isotropic). Engraving can be performed by laser ablation or ultrasound. Micromachining can also be used, in particular for polycarbonate. The height of the microchannel 10 between the substrates 21 and 22 is typically between a few tens of nanometers and 200pm, and preferably between lpm and 100pm. Preferably, the height of the chamber 40, in particular of the axial zone 41 of the chamber 40 is substantially less than the height of the microchannel 10, as shown in Figure 3. This provides a drop of liquid 32 substantially flat , that is to say spread between the first substrate 21 and the cover 22, or even a portion 35 drop substantially flat. Reducing the height of the chamber 40 also makes it possible to optimize the actuation by electrowetting. Increasing the cross section of the inlet and outlet channels reduces the pressure losses upstream and downstream of the pump.

Dans l'exemple non limitatif de la figure 3, la contre-électrode 63 est une électrode planaire intégrée au capot 22 de la micropompe. Les électrodes d'actionnement 61(i) et de confinement, et la contre-électrode 63, peuvent être réalisées par dépôt d'une fine couche d'un métal choisi parmi Au, Al, ITO, Pt, Cu, Cr... ou d'un alliage Al-Si... grâce aux microtechnologies classiques de la microélectronique, par exemple par photolithographie. In the nonlimiting example of FIG. 3, the counter-electrode 63 is a planar electrode integrated in the cover 22 of the micropump. The actuating electrodes 61 (i) and confinement, and the counter-electrode 63, may be made by depositing a thin layer of a metal selected from Au, Al, ITO, Pt, Cu, Cr ... or an Al-Si alloy ... using conventional microtechnologies of microelectronics, for example by photolithography.

Les électrodes 61(i) et 62 sont ensuite gravées suivant un motif approprié, par exemple par gravure humide. L'épaisseur des électrodes 61(i), 62, et de la contre-électrode 63 peut être comprise entre 10nm et lpm, de préférence 300nm. The electrodes 61 (i) and 62 are then etched in a suitable pattern, for example by wet etching. The thickness of the electrodes 61 (i), 62, and against the electrode 63 may be between 10 nm and 1 pm, preferably 300 nm.

Les électrodes d'actionnement 61(i) sont de préférence carrées avec un côté dont la longueur est comprise entre quelques micromètres à quelques millimètres, de préférence entre 50pm et Imm. La surface de ces électrodes dépend de la taille des gouttes à transporter. L'espacement entre électrodes voisines peut être compris entre lpm et 10pm. L'électrode de confinement 62 s'étend avantageusement sur toute la surface plane de la zone latérale de la chambre 40, suivant le plan médian. The actuating electrodes 61 (i) are preferably square with a side whose length is between a few micrometers to a few millimeters, preferably between 50 pm and Imm. The surface of these electrodes depends on the size of the drops to be transported. The spacing between adjacent electrodes can be between lpm and 10pm. The confinement electrode 62 advantageously extends over the entire flat surface of the lateral zone of the chamber 40, along the median plane.

Une couche diélectrique 65 peut recouvrir les électrodes 61(i) et 62. Elle peut être réalisée en Si3N4r SiO2, en SiN, en baryum strontium titanate (EST) ou d'autres matériaux à permittivité élevée tels que du HFO2r Al2O3, Ta2O5, Ta2O5-TiO2, SrTiO3 ou Ba1_XSrXTiO3. A dielectric layer 65 may cover the electrodes 61 (i) and 62. It may be made of Si3N4r SiO2, SiN, barium strontium titanate (EST) or other high-permittivity materials such as HFO2r Al2O3, Ta2O5, Ta2O5 -TiO2, SrTiO3 or Ba1_XSrXTiO3.

L'épaisseur de cette couche peut être comprise entre 100nm et 3pm, de manière générale comprise entre 100nm et lpm, de préférence de 300nm. Un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD) est préféré au procédé de dépôt en phase vapeur à basse pression (LPCVD) pour des raisons thermiques. En effet, la température du substrat n'est portée qu'entre 150°C et 350°C (selon les propriétés recherchées) contre 750°C environ pour le dépôt LPCVD. Enfin, une couche hydrophobe 66 peut être déposée sur la couche diélectrique 65, et sur la contre- électrode 63. Pour cela, un dépôt de Téflon par trempage, par spray ou spin coating, ou de SiOC déposé par plasma peut être réalisé. Un dépôt de silane hydrophobe en phase vapeur ou liquide peut être réalisé. Son épaisseur sera comprise entre 100nm et 5pm, de préférence de lpm. Cette couche permet notamment de diminuer voire d'éviter les effets d'hystérésis de l'angle de mouillage. Le microcanal peut être rempli d'un fluide d'intérêt 31, de préférence, isolant, et peut être de l'air, une huile minérale ou silicone, un solvant perfluoré, comme du FC-40 ou du FC-70, ou encore un alcane comme de l'undécane. Le liquide conducteur 32 est électriquement conducteur et peut être une solution aqueuse chargée en ions, par exemple en Cl-, K+, Na+, Cal+, Mg2+, Zn2+, Mn2+, autres. Le liquide 32 peut également être du mercure, du Gallium, du Gallium eutectique, ou des liquides ioniques du type bmim PF6, bmim BF4 ou tmba NTf2. Le fluide d'intérêt 31 est non miscible avec le liquide conducteur 32. The thickness of this layer may be between 100 nm and 3 μm, generally between 100 nm and 1 μm, preferably 300 nm. A plasma enhanced chemical vapor deposition (PECVD) process is preferred to the low pressure vapor deposition (LPCVD) process for thermal reasons. Indeed, the temperature of the substrate is only brought between 150 ° C and 350 ° C (depending on the desired properties) against 750 ° C for LPCVD deposit. Finally, a hydrophobic layer 66 may be deposited on the dielectric layer 65, and on the counter-electrode 63. For this, a Teflon deposit by dipping, spray or spin coating, or SiOC deposited by plasma can be performed. Hydrophobic silane deposition in the vapor or liquid phase can be carried out. Its thickness will be between 100 nm and 5 pm, preferably lpm. This layer makes it possible in particular to reduce or even to avoid the effects of hysteresis of the wetting angle. The microchannel may be filled with a fluid of interest 31, preferably an insulator, and may be air, a mineral oil or silicone, a perfluorinated solvent, such as FC-40 or FC-70, or an alkane as undecane. The conductive liquid 32 is electrically conductive and can be an aqueous solution charged with ions, for example of Cl-, K +, Na +, Cal +, Mg2 +, Zn2 +, Mn2 +, others. The liquid 32 can also be mercury, gallium, eutectic gallium, or ionic liquids of the type bmim PF6, bmim BF4 or tmba NTf2. The fluid of interest 31 is immiscible with the conductive liquid 32.

Par ailleurs, dans une variante de réalisation non représentée, il est à noter qu'une seconde pluralité d'électrodes d'actionnement peut être intégrée au capot 22, et avantageusement recouverte d'une couche diélectrique. L'activation de la seconde pluralité d'électrodes d'actionnement peut être avantageusement commandée par les moyens d'activation successive précédemment décrits. Dans ce cas, une contre-électrode, par exemple sous forme de fil suspendu, peut être disposée dans la chambre 40 de manière à assurer un contact électrique avec le liquide conducteur 32. Ainsi, l'application d'une différence de potentiel entre un couple d'électrodes d'actionnement disposées, l'une dans le substrat 21 et l'autre dans le capot 22, et la contre-électrode permet de déplacer le liquide conducteur 32 par électromouillage de manière plus efficace, pour une même différence de potentiel appliquée. Furthermore, in an alternative embodiment not shown, it should be noted that a second plurality of actuating electrodes may be integrated in the cover 22, and advantageously covered with a dielectric layer. The activation of the second plurality of actuating electrodes can be advantageously controlled by the successive activation means previously described. In this case, a counter-electrode, for example in the form of a suspended wire, can be arranged in the chamber 40 so as to ensure electrical contact with the conductive liquid 32. Thus, the application of a potential difference between a a pair of actuating electrodes disposed, one in the substrate 21 and the other in the cover 22, and the counter-electrode makes it possible to move the conducting liquid 32 by electrowetting more efficiently, for the same potential difference applied.

Le fonctionnement de la micropompe selon le premier mode de réalisation préféré de l'invention est le suivant, en référence aux figures 4A à 4C. Les figures 4A à 4C, sur lesquelles les références numériques identiques à celles de la figure 2 désignent des éléments identiques ou similaires, représentent en vue de dessus le premier mode de réalisation préféré de l'invention. Le mode de réalisation représenté sur ces figures diffère de celui de la figure 2 uniquement par le nombre N d'électrodes, ici supérieur à trois. The operation of the micropump according to the first preferred embodiment of the invention is as follows, with reference to FIGS. 4A to 4C. FIGS. 4A to 4C, in which the numerical references identical to those of FIG. 2 denote identical or similar elements, represent in a view from above the first preferred embodiment of the invention. The embodiment shown in these figures differs from that of FIG. 2 only by the number N of electrodes, here greater than three.

Par souci de clarté, le générateur de tension et les moyens d'activation successive ne sont pas représentés. Les électrodes 61(i), grâce aux commutateurs, peuvent être placées à un potentiel VO ou V1, indiqué par les références numériques 0 ou 1. Dans le cas d'une tension alternative et comme décrit précédemment, le potentiel V1 correspond alors à la valeur efficace de la tension appliquée. La commutation de chaque commutateur est commandée par le moyen de commande. Durant le fonctionnement de la micropompe qui va être décrit, l'électrode de confinement 62 reste avantageusement activée (placée à un potentiel V1 différent de VO), de sorte que la goutte de liquide 32 reste sensiblement confinée dans la zone latérale 42 de la chambre 40, occupant alors sensiblement la surface délimitée par l'électrode de confinement 62. La figure 4A montre l'électrode 61(1) activée. Par effet d'électromouillage décrit précédemment, la goutte 32 se déforme localement et mouille, de préférence totalement, la zone de la couche hydrophobe 66 située en regard de l'électrode 61(1) activée. On appelle ici déformation locale 35 la portion de goutte de liquide 32 qui occupe une zone de la couche hydrophobe située en regard d'une électrode 61(i) activée. Aussi, pour déplacer la déformation locale 35 de la goutte 32 sur la ligne d'électrodes 61(i), il suffit d'activer successivement celles-ci, de l'électrode 61(1) à l'électrode 61 (N) . For the sake of clarity, the voltage generator and the successive activation means are not shown. The electrodes 61 (i), thanks to the switches, can be placed at a potential V0 or V1, indicated by the numerical references 0 or 1. In the case of an alternating voltage and as previously described, the potential V1 then corresponds to the effective value of the applied voltage. The switching of each switch is controlled by the control means. During the operation of the micropump that will be described, the confinement electrode 62 remains advantageously activated (placed at a potential V1 different from VO), so that the drop of liquid 32 remains substantially confined in the lateral zone 42 of the chamber 40, then substantially occupying the surface delimited by the confinement electrode 62. FIG. 4A shows the electrode 61 (1) activated. By electrowetting effect described above, the droplet 32 deforms locally and wets, preferably completely, the area of the hydrophobic layer 66 facing the electrode 61 (1) activated. Local deformation is here referred to as the liquid drop portion 32 which occupies an area of the hydrophobic layer facing an electrode 61 (i) activated. Also, to move the local deformation 35 of the drop 32 on the electrode line 61 (i), it is sufficient to activate successively thereof, the electrode 61 (1) to the electrode 61 (N).

Plus précisément, pour que la déformation locale 35 passe d'une électrode 61(i) à l'électrode voisine 61(i+1), le moyen de commande, dans le même temps, désactive l'électrode 61(i) et active l'électrode 61(i+1), par actionnement des commutateurs correspondant. Ladite déformation locale 35 peut alors être déplacée suivant l'axe longitudinal du microcanal, comme l'illustrent les figures 4A et 4B, de l'électrode 61(1) à 61(N), en passant par les électrodes 61(i-1), 61 (i) , 61 (i+1)... La déformation locale 35 pousse , dans son déplacement, le fluide d'intérêt 31. L'écoulement du fluide 31 est ainsi obtenu. Le fluide 31 est aspiré à partir du premier conduit 11 et poussé dans le second conduit 12, par le déplacement de la déformation locale 35. Cette séquence est répétée jusqu'à l'activation de l'électrode aval 61 (N) . More specifically, for the local deformation 35 to pass from an electrode 61 (i) to the neighboring electrode 61 (i + 1), the control means, at the same time, deactivates the electrode 61 (i) and activates the electrode 61 (i + 1), by actuation of the corresponding switches. Said local deformation 35 can then be displaced along the longitudinal axis of the microchannel, as illustrated in FIGS. 4A and 4B, from the electrode 61 (1) to 61 (N), via the electrodes 61 (i-1 ), 61 (i), 61 (i + 1) ... The local deformation 35 pushes, in its displacement, the fluid of interest 31. The flow of the fluid 31 is thus obtained. The fluid 31 is sucked from the first conduit 11 and pushed into the second conduit 12, by the displacement of the local deformation 35. This sequence is repeated until the activation of the downstream electrode 61 (N).

Comme le montre la figure 4B, lorsque l'électrode 61(N) est activée, la déformation locale 35 se situe sensiblement au niveau de l'extrémité aval de la zone axiale 41 de la chambre 40. Pour continuer à assurer l'écoulement du fluide 31, l'électrode 61(1) est activée alors que l'électrode 61(N) est désactivée. La déformation locale 35 de la goutte au niveau de l'électrode 61(N) disparaît, et une nouvelle déformation locale 35 est générée au niveau de l'électrode 61(1). La séquence d'activation successive des électrodes 61(i) se poursuit alors comme décrit précédemment. As shown in FIG. 4B, when the electrode 61 (N) is activated, the local deformation 35 is situated substantially at the downstream end of the axial zone 41 of the chamber 40. To continue to ensure the flow of the fluid 31, the electrode 61 (1) is activated while the electrode 61 (N) is deactivated. Local deformation of the drop at electrode 61 (N) disappears, and new local deformation is generated at electrode 61 (1). The successive activation sequence of the electrodes 61 (i) then continues as described above.

La fréquence d'activation des électrodes 61(i) permet de contrôler précisément le débit imposé au fluide 31 dans le microcanal. Comme on le voit, la goutte de liquide 32 reste confinée dans la chambre 40 durant toute la séquence d'activation des électrodes 61(i). Ainsi, le fluide d'intérêt 31 n'est pas discrétisé sous forme de gouttes ou de bulles en aval de la chambre. La micropompe selon l'invention s'applique bien à la microfluidique continue . Par ailleurs, il est bien entendu que le sens de déplacement de la déformation 35 n'est pas limité à celui allant du premier conduit 11 au second conduit 12, mais peut tout aussi bien aller dans le sens contraire. The activation frequency of the electrodes 61 (i) makes it possible to precisely control the flow rate imposed on the fluid 31 in the microchannel. As can be seen, the drop of liquid 32 remains confined in the chamber 40 during the entire activation sequence of the electrodes 61 (i). Thus, the fluid of interest 31 is not discretized in the form of drops or bubbles downstream of the chamber. The micropump according to the invention is applicable to continuous microfluidics. Furthermore, it is understood that the direction of displacement of the deformation 35 is not limited to that from the first conduit 11 to the second conduit 12, but can just as well go in the opposite direction.

Les figures 5A à 5C, sur lesquelles les références numériques identiques à celles de la figure 2 désignent des éléments identiques ou similaires, représentent une variante de fonctionnement de la micropompe selon le premier mode de réalisation préféré de l'invention. Il peut en effet être avantageux de contrôler très précisément le débit massique de fluide d'intérêt 31 dans le microcanal. FIGS. 5A to 5C, in which the numerical references identical to those of FIG. 2 denote identical or similar elements, represent an alternative embodiment of the operation of the micropump according to the first preferred embodiment of the invention. It may indeed be advantageous to control very precisely the mass flow rate of fluid of interest 31 in the microchannel.

Or, la figure 4C montre une étape de la séquence d'activation des électrodes 61(i) pour laquelle un flux libre de fluide 31 est possible. Cette étape est celle où la déformation locale 35 passe de l'électrode aval 61(N) à l'électrode amont 61(1). Le débit massique du fluide 31 ne peut alors être contrôlé précisément. However, FIG. 4C shows a step of the activation sequence of the electrodes 61 (i) for which a free fluid flow 31 is possible. This step is where the local deformation 35 passes from the downstream electrode 61 (N) to the upstream electrode 61 (1). The mass flow rate of the fluid 31 can not be precisely controlled.

Pour y remédier, séquence d'activation le montre la figure il est avantageux d'avoir une différente en cette étape. Comme 5C, l'électrode aval 61(N) est maintenue activée activée, de sorte obstruée par au lorsque l'électrode amont 61(1) est que la zone axiale 41 reste toujours moins une, ici deux, déformations locales 35 de la goutte 32. Lorsque l'électrode 61(2) est activée, les électrodes amont 61(1) et aval 61(N) sont désactivées dans le même temps. La déformation locale 35 localisée sur l'électrode 61(N) disparaît alors que celle localisée sur l'électrode 61(1) est déplacée sur l'électrode voisine 61(2). La séquence d'activation est ensuite similaire à ce 15 qui a été décrit précédemment. To remedy this, activation sequence shows the figure it is advantageous to have a different in this step. Like 5C, the downstream electrode 61 (N) is kept activated activated, so obstructed by when the upstream electrode 61 (1) is that the axial zone 41 remains always less one, in this case two, local deformations of the droplet. 32. When the electrode 61 (2) is activated, the upstream electrodes 61 (1) and downstream 61 (N) are deactivated at the same time. The local deformation 35 located on the electrode 61 (N) disappears while that located on the electrode 61 (1) is displaced on the neighboring electrode 61 (2). The activation sequence is then similar to that previously described.

Les figures 6A à 6D représentent une variante du premier mode de réalisation préféré de l'invention, en vue de dessus. Les références numériques identiques à 20 celles de la figure 2 désignent des éléments identiques ou similaires. Dans ce mode de réalisation, la chambre 40 comprend deux parties latérales 42A et 42B, disposées l'une en regard de l'autre par rapport à la zone axiale 41 de la 25 chambre 40. Chaque zone latérale 42A, 42B loge une goutte de liquide 32A, 32B. Chaque zone latérale 42A, 42B comprend avantageusement une électrode de confinement (non 30 représentée). Figures 6A to 6D show a variant of the first preferred embodiment of the invention, seen from above. The numerical references identical to those of FIG. 2 denote identical or similar elements. In this embodiment, the chamber 40 comprises two lateral portions 42A and 42B, arranged facing each other with respect to the axial zone 41 of the chamber 40. Each lateral zone 42A, 42B houses a drop of liquid 32A, 32B. Each lateral zone 42A, 42B advantageously comprises a confinement electrode (not shown).

Le mode de fonctionnement représenté sur ces figures est sensiblement similaire à celui décrit sur les figures 5A à 5C. L'activation d'une électrode 61(i) génère une déformation locale des gouttes 32A et 32B. Chaque déformation locale s'étend alors sensiblement sur une zone de la couche hydrophobe située en regard de l'électrode 61(i) activée. Les déformations locales peuvent alors mouiller une surface suffisante pour coalescer l'une avec l'autre. Un pont de liquide 36 est alors formé, qui relie les deux gouttes de liquide 32A et 32B. Le pont de liquide 36, correspondant alors aux deux déformations locales coalescées, est alors déplacé par activation successive des électrodes 61(i). Pour former un pont liquide 36 de plus grande dimension et le déplacer, il est avantageux d'actionner deux électrodes voisines 61(i) et 61(i+1) ensemble, comme l'illustrent en particulier les figures 6A à 6C. The mode of operation shown in these figures is substantially similar to that described in Figures 5A-5C. The activation of an electrode 61 (i) generates a local deformation of the drops 32A and 32B. Each local deformation then extends substantially over an area of the hydrophobic layer located opposite the electrode 61 (i) activated. Local deformations can then wet a sufficient surface to coalesce with each other. A liquid bridge 36 is then formed, which connects the two drops of liquid 32A and 32B. The liquid bridge 36, corresponding then to the two coalesced local deformations, is then displaced by successive activation of the electrodes 61 (i). In order to form a larger liquid bridge 36 and to move it, it is advantageous to actuate two neighboring electrodes 61 (i) and 61 (i + 1) together, as illustrated in particular in FIGS. 6A to 6C.

La figure 6D montre, par ailleurs, un fonctionnement identique à celui décrit sur la figure 5C. Ainsi, l'activation conjointe des électrodes 61(1) et 61(N) permet de former une inclusion 31I de fluide 31. La séquence d'activation des électrodes 61(i) permet ainsi de former cette inclusion, de la déplacer et de la fusionner avec le fluide 31 présent dans le second conduit 12. FIG. 6D shows, moreover, a functioning identical to that described in FIG. 5C. Thus, the joint activation of the electrodes 61 (1) and 61 (N) makes it possible to form an inclusion 31I of fluid 31. The activation sequence of the electrodes 61 (i) thus makes it possible to form this inclusion, to displace it and to merging with the fluid 31 present in the second conduit 12.

Les figures 7A à 7D illustrent une variante de fonctionnement, dans laquelle les deux déformations locales 35A et 35B ne coalescent pas l'une avec l'autre, du fait par exemple d'une tension d'activation V1 trop faible ou d'une fréquence élevée d'activation des électrodes. Lors de l'activation successive des électrodes 61(i), chaque déformation locale 35A, 35B est déplacée en demeurant l'une en regard de l'autre, du fluide 31 séparant les deux déformations locales. Cette variante de fonctionnement correspond à une micropompe péristaltique. Les différents modes de réalisation de l'invention décrits peuvent fonctionner suivant cette variante de fonctionnement. FIGS. 7A to 7D illustrate an operating variant, in which the two local deformations 35A and 35B do not coalesce with each other, for example because of a V1 activation voltage that is too low or a frequency high activation of the electrodes. During the successive activation of the electrodes 61 (i), each local deformation 35A, 35B is displaced while remaining opposite one another, fluid 31 separating the two local deformations. This variant of operation corresponds to a peristaltic micropump. The different embodiments of the invention described can operate according to this variant of operation.

Les figures 8A à 8D représentent le second mode de réalisation préféré de l'invention, en vue de dessus. Figures 8A to 8D show the second preferred embodiment of the invention, seen from above.

Les références numériques identiques à celles de la figure 2 désignent des éléments identiques ou similaires. Dans ce mode de réalisation, la chambre 40 comprend une paroi 43 disposée entre la zone axiale 41 et la zone latérale 42, sur une partie de la longueur de la chambre, de manière à ce que la zone latérale 42 forme un canal secondaire communiquant avec la zone axiale 41 en amont et en aval de la paroi 43. De préférence, la zone latérale 42 communique en amont de la paroi 43 au niveau de l'électrode amont 61(1) et en aval de la paroi 43 au niveau de l'électrode aval 61 (N) . Lors de l'activation de l'électrode amont 61(1), une portion 35 de la goutte 32 vient recouvrir au moins partiellement ladite électrode activée. The reference numerals identical to those of FIG. 2 denote identical or similar elements. In this embodiment, the chamber 40 comprises a wall 43 disposed between the axial zone 41 and the lateral zone 42, over part of the length of the chamber, so that the lateral zone 42 forms a secondary channel communicating with the axial zone 41 upstream and downstream of the wall 43. Preferably, the lateral zone 42 communicates upstream of the wall 43 at the upstream electrode 61 (1) and downstream of the wall 43 at the level of the downstream electrode 61 (N). Upon activation of the upstream electrode 61 (1), a portion 35 of the droplet 32 at least partially covers said activated electrode.

Puis, la séquence d'activation des électrodes est mise en oeuvre comme décrit précédemment. L'électrode 61(2) est activée alors que l'électrode 61(1) est désactivée. La portion 35 de liquide est alors déplacée de manière à recouvrir sensiblement la nouvelle électrode activée. Puis, à mesure de la désactivation de l'électrode 61(i) et de l'activation de l'électrode 61(i+1), la portion 35 se déplace dans la zone axiale de la chambre de l'électrode 61(1) jusqu'à l'électrode 61(N). Ce faisant, elle provoque l'écoulement du fluide d'intérêt 31 dans le microcanal. Du fait que les électrodes 61(i), avec iE[2,N-1] sont séparées de la zone latérale de la chambre par ladite paroi, la portion 35 forme, lorsqu'elle recouvre sensiblement l'une de ces électrodes, une goutte secondaire séparée de la goutte principale logée dans la zone latérale de la chambre, comme illustré sur la figure 8B. Then, the activation sequence of the electrodes is implemented as described above. The electrode 61 (2) is activated while the electrode 61 (1) is deactivated. The portion 35 of liquid is then displaced so as to substantially cover the new activated electrode. Then, as a result of the deactivation of the electrode 61 (i) and the activation of the electrode 61 (i + 1), the portion 35 moves in the axial zone of the chamber of the electrode 61 (1 ) to the electrode 61 (N). In doing so, it causes the fluid of interest 31 to flow into the microchannel. Since the electrodes 61 (i), with iE [2, N-1] are separated from the lateral zone of the chamber by said wall, the portion 35 forms, when it substantially covers one of these electrodes, a secondary drop separated from the main drop housed in the lateral zone of the chamber, as illustrated in FIG. 8B.

Plus précisément, la goutte secondaire 35 est formée par dissociation de la goutte principale lorsque la portion 35 est déplacée de l'électrode 61(1) à l'électrode 61(2). Puis, lorsque la goutte secondaire est déplacée de l'électrode 61(N-1) à l'électrode 61(N), elle coalesce avec la goutte principale (figure 8C). Il est à noter qu'une contre-électrode est avantageusement disposée de manière à être en contact électrique d'une part avec la goutte principale 32, mais également avec la goutte secondaire 35. More specifically, the secondary drop 35 is formed by dissociating the main drop as the portion 35 is moved from the electrode 61 (1) to the electrode 61 (2). Then, when the secondary drop is moved from the electrode 61 (N-1) to the electrode 61 (N), it coalesces with the main drop (Figure 8C). It should be noted that a counterelectrode is advantageously arranged so as to be in electrical contact on the one hand with the main drop 32, but also with the secondary droplet 35.

La séquence d'activation est ensuite similaire à ce qui a été décrit en référence aux figures 4A à 4D. The activation sequence is then similar to what has been described with reference to FIGS. 4A to 4D.

La figure 9 illustre une variante du premier mode de réalisation préféré de l'invention. Les références numériques identiques à celles de la figure 2 désignent des éléments identiques ou similaires. Dans cet exemple, le fluide d'intérêt 31 est un liquide conducteur et un fluide liquide ou gazeux diélectrique forme une inclusion fluide occupant au moins partiellement ladite zone latérale de la chambre. Une contre-électrode est avantageusement disposée dans le microcanal ou dans la partie axiale de la chambre de manière à porter le liquide conducteur au potentiel voulu, par exemple V1. La séquence d'activation successive est adaptée dans la mesure où toutes les électrodes 61(i) sont, de préférence, préalablement activées. Une déformation locale 35 est alors formée en désactivant une électrode, par exemple l'électrode amont 61(1). La séquence d'activation successive consiste alors à activer l'électrode 61(i) et à désactiver l'électrode 61(i+1). La déformation locale 35 de l'inclusion fluide 32 est alors déplacée dans la zone axiale suivant l'axe longitudinal du microcanal, ce qui provoque l'écoulement du fluide d'intérêt, ici le liquide conducteur, dans le microcanal. Par ailleurs, dans le but d'améliorer le confinement de l'inclusion fluide 32 à l'intérieur de la chambre 40, deux électrodes de confinement peuvent être disposées dans le canal, plus précisément en amont et en aval de la zone axiale 41 de la chambre 40. La première électrode est donc en amont et à proximité de la première électrode 61(1), et la seconde électrode est en aval et à proximité de la dernière électrode 61(N). Lors du fonctionnement de la micropompe, ces deux électrodes restent avantageusement activées. Ainsi, le confinement de l'inclusion fluide 32 dans ladite chambre est amélioré. Cette variante du premier mode de réalisation 10 préféré peut être adaptée aux différents modes décrits, ainsi qu'au second mode de réalisation préféré. Figure 9 illustrates a variant of the first preferred embodiment of the invention. The reference numerals identical to those of FIG. 2 denote identical or similar elements. In this example, the fluid of interest 31 is a conductive liquid and a liquid or gaseous dielectric fluid forms a fluid inclusion at least partially occupying said lateral zone of the chamber. A counter-electrode is advantageously arranged in the microchannel or in the axial part of the chamber so as to bring the conductive liquid to the desired potential, for example V1. The successive activation sequence is adapted insofar as all the electrodes 61 (i) are preferably activated beforehand. A local deformation 35 is then formed by deactivating an electrode, for example the upstream electrode 61 (1). The successive activation sequence then consists of activating the electrode 61 (i) and deactivating the electrode 61 (i + 1). The local deformation 35 of the fluid inclusion 32 is then displaced in the axial zone along the longitudinal axis of the microchannel, which causes the flow of the fluid of interest, here the conductive liquid, in the microchannel. Moreover, in order to improve the confinement of the fluid inclusion 32 inside the chamber 40, two confinement electrodes may be arranged in the channel, more precisely upstream and downstream of the axial zone 41 of the chamber. the chamber 40. The first electrode is thus upstream and close to the first electrode 61 (1), and the second electrode is downstream and close to the last electrode 61 (N). During operation of the micropump, these two electrodes are advantageously activated. Thus, the confinement of fluid inclusion 32 in said chamber is improved. This variant of the first preferred embodiment 10 can be adapted to the various modes described, as well as to the second preferred embodiment.

Les figures 10 et 11 représentent des variantes de géométrie de la micropompe selon le premier mode de 15 réalisation préféré de l'invention, en vue de dessus. Les références numériques identiques à celles de la figure 2 désignent des éléments identiques ou similaires. Sur la figure 10, la zone axiale 41 de la chambre 20 40 présente un axe longitudinal courbe. La zone latérale 42 a une forme sensiblement de demi-disque. Sur la figure 11, la zone axiale 41 a une forme de U. La zone latérale 42 a alors une forme sensiblement rectangulaire. 25 Ces différentes géométries peuvent être utilisées dans les différents modes de réalisation précédemment décrits. Figures 10 and 11 show geometry variants of the micropump according to the first preferred embodiment of the invention, seen from above. The reference numerals identical to those of FIG. 2 denote identical or similar elements. In FIG. 10, the axial zone 41 of the chamber 40 has a curved longitudinal axis. The lateral zone 42 has a substantially half-disk shape. In FIG. 11, the axial zone 41 is U-shaped. The lateral zone 42 then has a substantially rectangular shape. These different geometries can be used in the various embodiments described above.

Par ailleurs, il est à noter que dans tous les 30 modes de réalisation décrits précédemment, la surface de la chambre, et plus particulièrement au niveau des électrodes 61(i), peut être lisse, rugueuse ou micro-structurée ou nano-structurée, de façon à amplifier les effets de mouillage et augmenter les forces de capillarité. Le déplacement de la portion 35 est alors amélioré. Il est à noter que, dans le cas où la couche diélectrique n'est pas présente, le phénomène d'électromouillage dit direct peut être réalisé. La capacité intervenant alors n'est plus celle de la couche diélectrique 65 mais celle d'une double couche électrique se formant dans le liquide conducteur 32 à la surface des électrodes 61(i) et 62. Dans ce cas, les tensions appliquées doivent rester suffisamment faibles pour éviter des phénomènes électrochimiques tels que l'électrolyse de l'eau. L'épaisseur e intervenant dans la relation reliant l'angle de contact e à la tension appliquée U, décrite précédemment, est celle de la double couche, qui est de l'ordre de quelques nanomètres. Furthermore, it should be noted that in all the embodiments described above, the surface of the chamber, and more particularly at the level of the electrodes 61 (i), can be smooth, rough or micro-structured or nano-structured, in order to amplify wetting effects and increase capillary forces. The displacement of the portion 35 is then improved. It should be noted that, in the case where the dielectric layer is not present, the so-called direct electrowetting phenomenon can be realized. The capacity intervening then is not that of the dielectric layer 65 but that of a double electric layer forming in the conductive liquid 32 on the surface of the electrodes 61 (i) and 62. In this case, the applied voltages must remain low enough to avoid electrochemical phenomena such as electrolysis of water. The thickness e involved in the relationship connecting the contact angle e to the applied voltage U, described above, is that of the double layer, which is of the order of a few nanometers.

Il est avantageux d'ajouter dans le liquide 32 des espèces à forte permittivité, comme par exemple des espèces zwitterioniques. Cela permet d'augmenter la permittivité Er de la double couche. Les zwitterions utilisés peuvent être des sulfonates d'amine, des phosphates d'amine, des carbonates d'amine, ou des carboxylates d'amine, et en particulier, des alcanes sulfonates de trialkyl ammonium, des alcanes sulfonates d'alkyle imidazole ou des alcanes sulfonates d'alkyle pyridine. It is advantageous to add in the liquid 32 high permittivity species, such as zwitterionic species. This makes it possible to increase the permittivity Er of the double layer. The zwitterions used may be amine sulfonates, amine phosphates, amine carbonates, or amine carboxylates, and in particular, trialkylammonium alkane sulfonates, alkyl imidazole alkanesulfonates or alkyl alkanesulfonates pyridine.

Par ailleurs, dans une variante du mode de réalisation de l'invention représenté sur la figure 2, une pluralité d'électrodes peut être intégrée au capot 22, et avantageusement recouverte d'une couche diélectrique. L'activation d'une électrode quelconque 61(i) du premier substrat 21 s'accompagne alors avantageusement d'une activation conjointe de l'électrode correspondante du capot au potentiel -V1. Ainsi, le liquide conducteur 32 situé entre le substrat 21 et le capot 22 est sensiblement mis au potentiel 0V. Une contre-électrode peut alors ne pas être présente. Enfin, il est à noter que, lorsque la fréquence de la tension de polarisation est sensiblement supérieure à quelques dizaines de kilohertz, le liquide d'une goutte 32 présente une propriété diélectrique. Dans le cas où la permittivité du liquide 32 est sensiblement plus grande que celle du fluide 31, le liquide 32 est déplacé au niveau de l'électrode activée par diélectrophorèse. Le pompage est alors obtenu en utilisant un liquide 32 occupant au moins partiellement la zone latérale 42 de la chambre 40 et un fluide d'intérêt 31 non miscibles et de permittivités différentes. Dans le cas où le liquide 32 et le fluide 31 sont électriquement isolants, la micropompe peut ne pas comprendre de couche diélectrique recouvrant les électrodes d'actionnement intégrées au substrat 31 et celles intégrées au capot 22. Par ailleurs, la tension de polarisation peut être continue.30 Furthermore, in a variant of the embodiment of the invention shown in Figure 2, a plurality of electrodes can be integrated in the cover 22, and advantageously covered with a dielectric layer. The activation of any electrode 61 (i) of the first substrate 21 is then advantageously accompanied by a joint activation of the corresponding electrode of the cover at the potential -V1. Thus, the conductive liquid 32 located between the substrate 21 and the cover 22 is substantially set at potential 0V. A counter-electrode may not be present. Finally, it should be noted that, when the frequency of the bias voltage is substantially greater than a few tens of kilohertz, the liquid of a droplet 32 has a dielectric property. In the case where the permittivity of the liquid 32 is substantially greater than that of the fluid 31, the liquid 32 is displaced at the level of the electrode activated by dielectrophoresis. The pumping is then obtained by using a liquid 32 occupying at least partially the lateral zone 42 of the chamber 40 and a fluid of interest 31 immiscible and of different permittivities. In the case where the liquid 32 and the fluid 31 are electrically insulating, the micropump may not comprise a dielectric layer covering the activation electrodes integrated in the substrate 31 and those integrated in the cover 22. Furthermore, the bias voltage may be continue.30

Claims (21)

REVENDICATIONS1. Micropompe pour déplacer un premier fluide (31) dans un microcanal (10), caractérisée en ce que le microcanal comprend au moins une chambre (40) comportant une zone axiale (41) disposée sensiblement suivant l'axe longitudinal du microcanal (10) et au moins une zone latérale (42), et en ce que la micropompe comprend : - une inclusion (32) d'un second fluide occupant au moins partiellement ladite zone latérale (42) de la chambre (4 0) , - des moyens électriques pour amener une portion (35) de ladite inclusion (32) dans ladite zone axiale sous l'effet d'une commande électrique, comportant une pluralité d'électrodes d'actionnement (61) disposées dans ladite zone axiale (41) de la chambre (40), et - des moyens d'activation successive desdites électrodes d'actionnement (61) pour déplacer ladite portion (35) de ladite inclusion (32) recouvrant au moins partiellement au moins une électrode d'actionnement (61), sensiblement suivant l'axe longitudinal du microcanal (10), de manière à provoquer l'écoulement dudit premier fluide (31) suivant l'axe longitudinal du microcanal (10). REVENDICATIONS1. Micropump for moving a first fluid (31) in a microchannel (10), characterized in that the microchannel comprises at least one chamber (40) having an axial zone (41) disposed substantially along the longitudinal axis of the microchannel (10) and at least one lateral zone (42), and in that the micropump comprises: - an inclusion (32) of a second fluid occupying at least partially said lateral zone (42) of the chamber (40), - electrical means for bringing a portion (35) of said inclusion (32) into said axial zone under the effect of electrical control, comprising a plurality of actuating electrodes (61) disposed in said axial zone (41) of the chamber (40), and - means for successively activating said actuating electrodes (61) to move said portion (35) of said inclusion (32) at least partially covering at least one actuating electrode (61), substantially following the longitudinal axis of the microchannel (10), thereby e to cause the flow of said first fluid (31) along the longitudinal axis of the microchannel (10). 2. Micropompe selon la revendication 1, caractérisée en ce que les moyens d'activation successive comprennent des moyens de commutation électrique (72) conçus pour activer et pour désactiver chacune desdites électrodes d'actionnement (61),lesdits moyens de commutation (72) étant commandés par un moyen de commande (7 2. Micropump according to claim 1, characterized in that the successive activation means comprise electrical switching means (72) designed to activate and deactivate each of said actuating electrodes (61), said switching means (72). being controlled by a control means (7 3) . 3. Micropompe selon la revendication 1 ou 2, caractérisée en ce que ladite portion (35) de ladite inclusion (32) est une déformation locale de ladite inclusion (32). 3). 3. Micropump according to claim 1 or 2, characterized in that said portion (35) of said inclusion (32) is a local deformation of said inclusion (32). 4. Micropompe selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ladite portion (35) de ladite inclusion (32) recouvre au moins une électrode d'actionnement (61) suivant toute la section transversale de ladite zone axiale (41). 4. Micropump according to any one of claims 1 to 3, characterized in that said portion (35) of said inclusion (32) covers at least one actuating electrode (61) along the entire cross section of said axial zone ( 41). 5. Micropompe selon la revendication 1 ou 2, caractérisée en ce que la chambre (40) comprend une paroi (43) disposée entre la zone axiale (41) et la zone latérale (42), sur une partie de la longueur de la chambre (40), de manière à ce que la zone latérale (42) forme un canal secondaire communiquant avec la zone axiale (41) en amont et en aval de la paroi (43). 5. Micropump according to claim 1 or 2, characterized in that the chamber (40) comprises a wall (43) disposed between the axial zone (41) and the lateral zone (42), over part of the length of the chamber (40), so that the lateral zone (42) forms a secondary channel communicating with the axial zone (41) upstream and downstream of the wall (43). 6. Micropompe selon la revendication 5, caractérisée en ce que ladite portion (35) de ladite inclusion (32) peut être une inclusion secondaire séparée de ladite inclusion (32) par ladite paroi (43). 6. Micropump according to claim 5, characterized in that said portion (35) of said inclusion (32) may be a secondary inclusion separated from said inclusion (32) by said wall (43). 7. Micropompe selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le premier fluide (31) est un fluide diélectrique, le second fluide étant un liquide conducteur. 7. Micropump according to any one of claims 1 to 6, characterized in that the first fluid (31) is a dielectric fluid, the second fluid being a conductive liquid. 8. Micropompe selon la revendication 7, caractérisée en ce que lesdits moyens électriques pour amener ladite portion (35) dans ladite zone axiale (41) comprennent . au moins une contre-électrode (63) en contact électrique avec ladite inclusion (32), et - un générateur de tension (64) pour appliquer une différence de potentiel entre une ou plusieurs électrodes d'actionnement (61) et ladite contre- électrode (63). 8. Micropump according to claim 7, characterized in that said electrical means for bringing said portion (35) into said axial zone (41) comprise. at least one counter-electrode (63) in electrical contact with said inclusion (32), and - a voltage generator (64) for applying a potential difference between one or more actuation electrodes (61) and said counter-electrode (63). 9. Micropompe selon la revendication 7 ou 8, caractérisée en ce que lesdits moyens électriques pour amener ladite portion (35) dans ladite zone axiale (41) comprennent en outre une électrode dite de confinement (62) s'étendant sensiblement sur la surface de ladite zone latérale (42) de la chambre (40). 9. Micropump according to claim 7 or 8, characterized in that said electrical means for bringing said portion (35) into said axial zone (41) further comprises a so-called confinement electrode (62) extending substantially over the surface of said lateral zone (42) of the chamber (40). 10. Micropompe selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le premier fluide (31) est un liquide conducteur, le second fluide étant un fluide diélectrique. 10. Micropump according to any one of claims 1 to 6, characterized in that the first fluid (31) is a conductive liquid, the second fluid being a dielectric fluid. 11. Micropompe selon la revendication 10, caractérisée en ce que lesdits moyens électriques pour amener ladite portion (35) dans ladite zone axiale (41) comprennent . au moins une contre-électrode (63) en contact électrique avec ledit premier fluide (31), et- un générateur de tension (64) pour appliquer une différence de potentiel entre une ou plusieurs électrodes d'actionnement (61) et ladite contre-électrode (63). 11. Micropump according to claim 10, characterized in that said electrical means for bringing said portion (35) into said axial zone (41) comprise. at least one counter-electrode (63) in electrical contact with said first fluid (31), and a voltage generator (64) for applying a potential difference between one or more actuating electrodes (61) and said counter-electrode electrode (63). 12. Micropompe selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'elle comprend en outre un second substrat (22) formant capot de ladite micropompe, et en ce qu'une seconde pluralité d'électrodes d'actionnement est intégrée audit capot (22) et disposée dans ladite zone axiale (41) de la chambre (40), en regard de ladite première pluralité d'électrodes d'actionnement (61) dudit substrat (21). 12. Micropump according to any one of claims 1 to 11, characterized in that it further comprises a second substrate (22) forming a cover of said micropump, and in that a second plurality of actuating electrodes is integrated in said cover (22) and disposed in said axial zone (41) of the chamber (40) facing said first plurality of actuating electrodes (61) of said substrate (21). 13. Micropompe selon la revendication 12, caractérisée en ce que le premier fluide (31) présente une permittivité électrique sensiblement inférieure à celle du second fluide. 13. Micropump according to claim 12, characterized in that the first fluid (31) has an electrical permittivity substantially lower than that of the second fluid. 14. Micropompe selon l'une quelconque des revendications 1 à 13, caractérisée en ce que ladite chambre (40) comprend deux parties latérales (42A, 42B) disposées l'une en regard de l'autre, logeant chacune une goutte de liquide conducteur (32A, 32B). 14. Micropump according to any one of claims 1 to 13, characterized in that said chamber (40) comprises two side portions (42A, 42B) arranged one facing the other, each housing a drop of conductive liquid. (32A, 32B). 15. Micropompe selon l'une quelconque des revendications 1 à 14, caractérisée en ce qu'elle comprend en outre un second substrat (22) formant capot de ladite micropompe,la distance séparant le premier substrat (21) et le capot (22) dans ladite chambre (40) est sensiblement inférieure aux dimensions de ladite chambre (40) suivant le plan médian dudit premier substrat (21). 15. Micropump according to any one of claims 1 to 14, characterized in that it further comprises a second substrate (22) forming a cover of said micropump, the distance separating the first substrate (21) and the cover (22). in said chamber (40) is substantially smaller than the dimensions of said chamber (40) in the median plane of said first substrate (21). 16. Micropompe selon l'une quelconque des revendications 1 à 15, caractérisée en ce que la zone axiale (41) présente une largeur sensiblement inférieure à la longueur de celle-ci. 16. Micropump according to any one of claims 1 to 15, characterized in that the axial zone (41) has a width substantially less than the length thereof. 17. Micropompe selon l'une quelconque des revendications 1 à 16, caractérisée en ce que l'espacement inter-électrodes d'actionnement (61) présente une forme courbe ou anguleuse. 17. Micropump according to any one of claims 1 to 16, characterized in that the inter-electrodes actuating gap (61) has a curved or angular shape. 18. Micropompe selon l'une quelconque des revendications 1 à 17, caractérisée en ce que lesdites électrodes (61, 62) sont recouvertes d'une couche de matériau hydrophobe (66). 20 18. Micropump according to any one of claims 1 to 17, characterized in that said electrodes (61, 62) are covered with a layer of hydrophobic material (66). 20 19. Micropompe selon l'une quelconque des revendications 1 à 18, caractérisée en ce que le premier fluide (31) et le second fluide sont, l'un, un liquide conducteur comprenant des espèces 25 zwitterioniques, et l'autre, un fluide diélectrique. 19. Micropump according to any one of claims 1 to 18, characterized in that the first fluid (31) and the second fluid are, one, a conductive liquid comprising zwitterionic species, and the other a fluid dielectric. 20. Micropompe selon la revendication 18, caractérisée en ce qu'une couche de matériau diélectrique (65) est disposée entre la couche 30 hydrophobe (66) et lesdites électrodes (61, 62). 10 15 5 20. Micropump according to claim 18, characterized in that a layer of dielectric material (65) is disposed between the hydrophobic layer (66) and said electrodes (61, 62). 10 15 5 21. Micropompe selon l'une quelconque des revendications 1 à 20, caractérisée en ce que lesdites électrodes d'actionnement (61) sont disposées sous forme matricielle. 10 21. Micropump according to any one of claims 1 to 20, characterized in that said actuating electrodes (61) are arranged in matrix form. 10
FR0856049A 2008-09-09 2008-09-09 MICROFLUID MICROFLUIDIC CONTINUES Expired - Fee Related FR2935763B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0856049A FR2935763B1 (en) 2008-09-09 2008-09-09 MICROFLUID MICROFLUIDIC CONTINUES
US12/554,341 US20100260626A1 (en) 2008-09-09 2009-09-04 Micropump for continuous microfluidics
EP09169628A EP2161449B1 (en) 2008-09-09 2009-09-07 Micropump for continuous microflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0856049A FR2935763B1 (en) 2008-09-09 2008-09-09 MICROFLUID MICROFLUIDIC CONTINUES

Publications (2)

Publication Number Publication Date
FR2935763A1 true FR2935763A1 (en) 2010-03-12
FR2935763B1 FR2935763B1 (en) 2010-10-08

Family

ID=40445260

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0856049A Expired - Fee Related FR2935763B1 (en) 2008-09-09 2008-09-09 MICROFLUID MICROFLUIDIC CONTINUES

Country Status (3)

Country Link
US (1) US20100260626A1 (en)
EP (1) EP2161449B1 (en)
FR (1) FR2935763B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021410B4 (en) * 2006-05-09 2009-07-16 Leonhard Kurz Gmbh & Co. Kg Method for producing a multilayer structure and use of the method
TWI444324B (en) * 2010-11-15 2014-07-11 Univ Nat Chiao Tung Liquid dielectrophoretic device
US9901924B2 (en) * 2011-07-14 2018-02-27 Enplas Corporation Fluid handling device, fluid handling method, and fluid handling system
JP6899588B2 (en) * 2018-11-20 2021-07-07 国立研究開発法人産業技術総合研究所 Liquid control device
CN110755699A (en) * 2019-09-18 2020-02-07 浙江省北大信息技术高等研究院 Implantable electroosmotic micropump device
CN110813396B (en) * 2019-12-03 2021-04-20 大连理工大学 System for confining pressure and back pressure simultaneously realize high pressure in micro-fluidic chip
CN114152721A (en) * 2020-09-07 2022-03-08 株式会社岛津制作所 Test apparatus, press-in method, and microchannel device
WO2022241247A1 (en) * 2021-05-13 2022-11-17 Fluid-Screen, Inc. Microfluidic device with improved flow profile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020114715A1 (en) * 2001-02-20 2002-08-22 Korea Advanced Institute Of Science And Technology Micropump driven by movement of liquid drop induced by continuous electrowetting
US20030012483A1 (en) * 2001-02-28 2003-01-16 Ticknor Anthony J. Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
WO2005122672A2 (en) * 2004-06-16 2005-12-29 The University Of British Columbia Microfluidic transport by electrostatic deformation of fluidic interfaces
WO2006134307A1 (en) * 2005-06-17 2006-12-21 Commissariat A L'energie Atomique Electrowetting pumping device and use for measuring electrical activity
FR2889633A1 (en) * 2005-08-08 2007-02-09 Commissariat Energie Atomique FLEXIBLE MEMBRANE ACTUATING DEVICE CONTROLLED BY ELECTROMOUILLAGE
FR2890875A1 (en) * 2005-09-22 2007-03-23 Commissariat Energie Atomique MANUFACTURING A DIPHASIC SYSTEM LIQUID / LIQUID OR GAS IN MICRO-FLUID

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211442B2 (en) * 2001-06-20 2007-05-01 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20040037708A1 (en) * 2002-07-26 2004-02-26 Ngk Insulators, Ltd. Working-fluid moving device
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020114715A1 (en) * 2001-02-20 2002-08-22 Korea Advanced Institute Of Science And Technology Micropump driven by movement of liquid drop induced by continuous electrowetting
US20030012483A1 (en) * 2001-02-28 2003-01-16 Ticknor Anthony J. Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
WO2005122672A2 (en) * 2004-06-16 2005-12-29 The University Of British Columbia Microfluidic transport by electrostatic deformation of fluidic interfaces
WO2006134307A1 (en) * 2005-06-17 2006-12-21 Commissariat A L'energie Atomique Electrowetting pumping device and use for measuring electrical activity
FR2889633A1 (en) * 2005-08-08 2007-02-09 Commissariat Energie Atomique FLEXIBLE MEMBRANE ACTUATING DEVICE CONTROLLED BY ELECTROMOUILLAGE
FR2890875A1 (en) * 2005-09-22 2007-03-23 Commissariat Energie Atomique MANUFACTURING A DIPHASIC SYSTEM LIQUID / LIQUID OR GAS IN MICRO-FLUID

Also Published As

Publication number Publication date
US20100260626A1 (en) 2010-10-14
EP2161449A8 (en) 2010-06-23
FR2935763B1 (en) 2010-10-08
EP2161449B1 (en) 2013-03-13
EP2161449A1 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
EP2161449B1 (en) Micropump for continuous microflow
EP1891329B1 (en) Electrowetting pumping device and use for measuring electrical activity
EP2143948A2 (en) Microfluidic system for displacement of a fluid
FR2933713A1 (en) METHOD AND DEVICE FOR HANDLING AND OBSERVING LIQUID DROPS
EP2143949A2 (en) Microfluidic system for controlled displacement of a liquid
US8883014B2 (en) Monolithically formed EWOD device and method of making the same
Park et al. Fast and reliable droplet transport on single-plate electrowetting on dielectrics using nonfloating switching method
US8197656B2 (en) Device for separating micro particles and a method for fabricating the device
Cho et al. Splitting a liquid droplet for electrowetting-based microfluidics
FR2890875A1 (en) MANUFACTURING A DIPHASIC SYSTEM LIQUID / LIQUID OR GAS IN MICRO-FLUID
US20110150667A1 (en) Mems electrostatic fluidic pumps and valves
FR2979258B1 (en) DEVICE FOR ELECTROSTATICALLY COLLECTING PARTICLES SUSPENDED IN A GASEOUS MEDIUM
Mao et al. Active sorting of droplets by using an ECF (Electro-conjugate Fluid) micropump
Daunay et al. Effect of substrate wettability in liquid dielectrophoresis (LDEP) based droplet generation: Theoretical analysis and experimental confirmation
EP2182212B1 (en) Drop-activated micro-pump
FR2887705A1 (en) Liquid droplets displacing device for use in e.g. fluid pumping device, has substrate with hydrophobic surface and electrodes situated under hydrophobic surface in fixed manner for displacing liquid droplet by electrowetting
Barman et al. Controlled electro-coalescence/non-coalescence on lubricating fluid infused slippery surfaces
WO2023281275A1 (en) Improvements in or relating to a microfluidic device
Rui-Feng et al. Demonstration of four fundamental operations of liquid droplets for digital microfluidic systems based on an electrowetting-on-dielectric actuator
US20220195964A1 (en) Electrically-actuated valve and regulator for electrospray thrusters
Berry et al. New Methods to Transport Fluids in Micro-Sized Devices
Schirrmann et al. Design and fabrication of a tunable two-fluid micro-lens device with a large deflection polymer actuator
Zeng et al. Droplet creator based on electrowetting-on-dielectric for lab on a chip
Romero Herreros Experimental study of the influence of an electric field on the shape of a droplet
Komatsu et al. Peristaltic micropump fabricated by depositing parylene directly on liquid

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20150529