FR2934324A3 - Internal combustion engine e.g. diesel engine, for motor vehicle, has transferring conduit including intake junction arranged on evacuation conduit and placed in downstream of branch of exhaust gas regeneration circuit - Google Patents

Internal combustion engine e.g. diesel engine, for motor vehicle, has transferring conduit including intake junction arranged on evacuation conduit and placed in downstream of branch of exhaust gas regeneration circuit Download PDF

Info

Publication number
FR2934324A3
FR2934324A3 FR0855010A FR0855010A FR2934324A3 FR 2934324 A3 FR2934324 A3 FR 2934324A3 FR 0855010 A FR0855010 A FR 0855010A FR 0855010 A FR0855010 A FR 0855010A FR 2934324 A3 FR2934324 A3 FR 2934324A3
Authority
FR
France
Prior art keywords
compressor
turbine
exhaust
duct
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0855010A
Other languages
French (fr)
Inventor
Laurent Ollivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0855010A priority Critical patent/FR2934324A3/en
Publication of FR2934324A3 publication Critical patent/FR2934324A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

The engine (1) has a turbocharger comprising a turbine (7) arranged in an exhaust gas evacuation conduit (8) and an inlet air compressor (6) driven by the turbine. An inlet air transferring conduit (17) short-circuits the engine between the compressor and an outlet of the turbine. The transferring conduit has a departure junction (17a) arranged on an air inlet conduit (2) and placed at the proximity of the compressor. The transferring conduit has an intake junction (17b) arranged on the evacuation conduit and placed in downstream of a branch (16a) of an exhaust gas regeneration circuit (16). An independent claim is also included for a method for controlling an internal combustion engine of a motor vehicle.

Description

MOTEUR A COMBUSTION INTERNE A TRANSFERT D'AIR D'ADMISSION VERS L'ECHAPPEMENT ET PROCEDE DE COMMANDE DE CELUI-CI La présente invention se rapporte aux moteurs à 5 combustion interne, et à leur commande. Elle s'applique à tous les moteurs à combustion interne turbocompressés, essence ou Diesel, munis d'un système d'EGR Basse Pression. Cette invention a pour objet un moteur à combustion 10 interne pour véhicule automobile et sa commande, comprenant un conduit d'admission d'air en direction d'au moins une chambre de combustion et un conduit d'évacuation des gaz d'échappement en sortie de celle-ci, un turbocompresseur comportant une turbine disposée dans le conduit 15 d'évacuation des gaz de manière à être entraînée en rotation par ces derniers et un compresseur d'air d'admission entraîné par la turbine, et un circuit EGR apte à prélever des gaz d'échappement en aval de la turbine, pour les réintroduire à l'admission en amont du 20 compresseur. Le principal effet de l'introduction de gaz brûlés à l'admission d'un moteur à combustion interne, est de diminuer les températures de flamme, et donc celles de la chambre de combustion. Cette baisse de température permet 25 notamment de réduire les émissions d'oxydes d'azote en Diesel, et d'affaiblir la sensibilité au cliquetis, sur les moteurs à essence. Les systèmes d'EGR se différencient par l'emplacement des interfaces entre le circuit EGR, et la ligne d'air 30 principale d'admission. Ainsi, dans les systèmes EGR Haute Pression (HP), les gaz d'échappement sont prélevés en amont de la turbine, et sont réintroduits en aval du compresseur, alors que dans les architectures d'EGR Basse Pression (BP), les gaz d'échappement sont prélevés en aval de la turbine, et sont réintroduits en amont du compresseur. L'EGR Basse Pression permet d'introduire des taux d'EGR plus élevés que l'EGR haute pression, mais nécessite l'utilisation d'un dispositif de filtration, et présente un comportement dégradé, sur les phases transitoires de fonctionnement du moteur. La perméabilité du circuit EGR peut s'avérer insuffisante pour atteindre le taux d'EGR requis. Ainsi, à haut régime et forte charge, les taux d'EGR admissibles peuvent limiter les performances du moteur et la réduction de ses émissions polluantes. Pour pouvoir garantir de forts taux d'EGR, on peut envisager d'améliorer la perméabilité du système, en augmentant sa taille. Toutefois, elle est limitée par des contraintes d'encombrement, autour du moteur. La présente invention vise à augmenter le taux d'EGR à haut régime dans une architecture EGR Basse Pression. Dans ce but, elle propose de court-circuiter la ligne haute Pression en transférant une partie de l'air d'admission entre le compresseur et la turbine, de manière à augmenter la différence de pression entre le départ à l'échappement, et l'arrivée à l'admission du circuit EGR. Elle prévoit en particulier de placer un conduit de transfert d'air d'admission, pour court-circuiter le moteur, entre le compresseur et la sortie de la turbine. D'autres caractéristiques et avantages de l'invention apparaîtront clairement à la lecture de la description suivante d'un mode de réalisation non limitatif de celle-ci, en se reportant au dessin annexé sur lequel la figure représente de façon simplifiée l'architecture proposée. Le circuit d'admission et d'échappement du moteur 1 à combustion interne pour véhicule automobile illustré par la figure comprend un conduit d'admission d'air 2 dirigé vers les chambres de combustion 3 du moteur. Le conduit - 3 - d'admission 2 traverse un filtre à air 4, avant d'entrer dans le compresseur 6, d'un turbocompresseur 6, 7. Le turbocompresseur 6, 7 comporte donc une turbine 7, disposée dans le conduit d'évacuation des gaz 8, de manière à être entraînée en rotation par ces derniers, et un compresseur d'air d'admission 6, entraîné par la turbine 7. L'air compressé rencontre ensuite sur son trajet un refroidisseur d'air de suralimentation 9 avant d'atteindre le répartiteur d'admission 11, en passant éventuellement par le boîtier papillon 12 (en essence). Le conduit d'évacuation 8 des gaz d'échappement, en sortie des chambres 3, conduit les gaz vers la turbine 7, puis vers un organe de dépollution 13 en direction de la sortie d'échappement 14. Entre le conduit d'échappement 8 et le conduit d'admission 2, s'étend un circuit EGR 16, apte à prélever des gaz d'échappement en aval de la turbine 7, pour les réintroduire à l'admission en amont du compresseur 6. Le schéma montre un conduit de transfert d'air d'admission 17. Le conduit 17 court-circuite le moteur entre le compresseur 6, et la sortie de la turbine 7. La jonction 17a de départ du conduit de transfert 17 sur le conduit d'admission 2 présente un vannage 18. Elle est située de préférence à proximité du compresseur 6. Selon un mode de réalisation, non décrit, cette jonction peut même être incorporée dans le carter du compresseur 6. Comme indiqué sur le schéma, la jonction d'arrivée 17b du conduit de transfert 17 sur le conduit d'échappement 8, est située en aval du piquage 16a du circuit EGR 16, à proximité de ce piquage. The present invention relates to internal combustion engines and to their control. BACKGROUND OF THE INVENTION It applies to all turbocharged internal combustion engines, petrol or diesel, equipped with a low pressure EGR system. This invention relates to an internal combustion engine for a motor vehicle and its control, comprising an air intake duct towards at least one combustion chamber and an outlet exhaust gas outlet duct. thereof, a turbocharger having a turbine disposed in the conduit 15 for discharging gases so as to be rotated by the latter and an intake air compressor driven by the turbine, and an EGR circuit adapted to withdrawing exhaust gas downstream of the turbine, to reintroduce them to the inlet upstream of the compressor. The main effect of the introduction of flue gas at the intake of an internal combustion engine, is to reduce the flame temperatures, and therefore those of the combustion chamber. This drop in temperature makes it possible in particular to reduce nitrogen oxide emissions in diesel, and to weaken the sensitivity to knocking, on gasoline engines. The EGR systems are differentiated by the location of the interfaces between the EGR circuit and the main intake air line. Thus, in high-pressure (HP) EGR systems, the exhaust gases are taken upstream of the turbine, and are reintroduced downstream of the compressor, whereas in Low Pressure (BP) EGR architectures, the exhaust gas is exhaust are taken downstream of the turbine, and are reintroduced upstream of the compressor. The low pressure EGR allows to introduce higher EGR rates than the high pressure EGR, but requires the use of a filtration device, and has a degraded behavior, on the transient phases of engine operation. The permeability of the EGR circuit may be insufficient to achieve the required EGR rate. Thus, at high speed and high load, the permissible EGR rates can limit the engine performance and the reduction of its pollutant emissions. In order to guarantee high levels of EGR, it is possible to improve the permeability of the system by increasing its size. However, it is limited by congestion constraints around the engine. The present invention aims to increase the rate of high-speed EGR in a low-pressure EGR architecture. For this purpose, it proposes to bypass the high pressure line by transferring a portion of the intake air between the compressor and the turbine, so as to increase the pressure difference between the exhaust outlet, and the arrival at the intake of the EGR circuit. It provides in particular to place an intake air transfer duct for shorting the motor, between the compressor and the outlet of the turbine. Other characteristics and advantages of the invention will become clear from reading the following description of a non-limiting embodiment thereof, with reference to the appended drawing in which the figure shows in a simplified manner the proposed architecture. . The intake and exhaust system of the internal combustion engine 1 for a motor vehicle shown in the figure comprises an air intake duct 2 directed towards the combustion chambers 3 of the engine. The intake duct 2 passes through an air filter 4, before entering the compressor 6, of a turbocharger 6, 7. The turbocharger 6, 7 thus comprises a turbine 7, disposed in the duct exhaust gas 8, so as to be rotated by the latter, and an intake air compressor 6, driven by the turbine 7. The compressed air then meets in its path a charge air cooler 9 before reaching the inlet distributor 11, possibly passing through the throttle body 12 (in essence). The exhaust gas duct 8, at the outlet of the chambers 3, conducts the gas towards the turbine 7, then towards a depollution device 13 towards the exhaust outlet 14. Between the exhaust duct 8 and the intake duct 2, extends an EGR circuit 16, able to take exhaust gases downstream of the turbine 7, to reintroduce them to the inlet upstream of the compressor 6. The diagram shows a duct intake air transfer 17. The duct 17 bypasses the engine between the compressor 6, and the outlet of the turbine 7. The junction 17a of the departure of the transfer duct 17 on the intake duct 2 presents a winnowing 18. It is preferably located near the compressor 6. According to one embodiment, not described, this junction can even be incorporated in the compressor housing 6. As shown in the diagram, the arrival junction 17b of the duct transfer 17 on the exhaust duct 8, is located e n downstream of the tapping 16a of the EGR circuit 16, near this tapping.

Ces dispositions permettent d'augmenter l'écart de pression aux bornes du circuit EGR. En effet, cet écart correspond à la différence de pression entre la pression en aval du dispositif de post-traitement 13, et la pression en amont du compresseur 6. Les pressions en ces points du circuit sont liées aux débits de gaz et aux perméabilités des conduits. Or, grâce au conduit de transfert 17, on transfère une partie de l'air d'admission entre le compresseur 6 et la turbine 7, en court-circuitant le moteur 1. La prise d'air en sortie du compresseur 6 vise à diminuer la pression à l'arrivée 16b du circuit EGR 16 sur l'admission 2. Par ailleurs, l'air prélevé à l'admission est introduit à l'échappement en aval du piquage EGR 16a, de manière à augmenter la pression en départ du circuit EGR 16 sur l'échappement. On augmente ainsi la différence de pression entre le départ à l'échappement 16a, et l'arrivée à l'admission 16b, du circuit EGR. Plus le débit d'air de la ligne d'admission est élevé, plus l'écart de pression aux bornes du circuit EGR PAPPT - PAVC est favorable à un fort débit d'EGR. Au moyen du conduit 17, le débit EGR peut être augmenté. En effet, lorsque la vanne 18 est ouverte, le moteur 1 est en partie court-circuité : pour un débit d'air donné traversant le moteur, les éléments à basse pression de la ligne d'admission d'air, voient passer un débit plus élevé. Grâce à l'invention, il est donc possible d'augmenter la grandeur PAPPT - PAVC, et ainsi d'augmenter le débit EGR. Pour atteindre l'objectif d'amélioration des performances et des prestations de dépollution, qui est recherché, il suffit que le transfert d'air de l'admission à l'échappement intervienne sur certaines plages de fonctionnement du moteur, de préférence à haut régime et à forte charge. En conclusion, il faut noter que les dispositions proposées ont également d'autres effets bénéfiques sur la combustion. En particulier, l'air et l'EGR (refroidi) étant plus froids que les gaz d'échappement, les gaz court- circuités abaissent la température des gaz d'échappement en - 5 - augmentant leur masse volumique, ce qui a pour effet d'augmenter globalement la perte de charge à l'échappement. Pour une pleine efficacité du système proposé, il est toutefois nécessaire que le turbocompresseur soit sur- capacitaire, de manière à pouvoir supporter des débits plus élevés. Par ailleurs, il est indispensable que la pression en aval compresseur soit toujours supérieure à la pression en aval du point choisi pour le retour d'air court-circuité. Enfin, il faut noter qu'une partie de l'EGR est renvoyée à l'échappement en même temps que l'air court-circuité : étant donné qu'il est admis en amont du compresseur, l'air transféré a en effet un impact sur le taux d'EGR effectif. These arrangements make it possible to increase the pressure difference across the EGR circuit. Indeed, this difference corresponds to the pressure difference between the pressure downstream of the after-treatment device 13, and the pressure upstream of the compressor 6. The pressures at these points of the circuit are related to the gas flow rates and the permeabilities of the ducts. However, thanks to the transfer duct 17, part of the intake air is transferred between the compressor 6 and the turbine 7, by short-circuiting the engine 1. The air intake at the outlet of the compressor 6 is intended to reduce the pressure at the inlet 16b of the EGR circuit 16 on the intake 2. Furthermore, the intake air is introduced to the exhaust downstream of the EGR 16a, so as to increase the pressure at the start of the EGR circuit 16 on the exhaust. This increases the pressure difference between the exhaust start 16a, and the arrival at the intake 16b of the EGR circuit. The higher the air flow rate of the intake line, the greater the pressure difference across the EGR PAPPT - PAVC circuit is conducive to high EGR flow. By means of the conduit 17, the flow EGR can be increased. Indeed, when the valve 18 is open, the engine 1 is partly short-circuited: for a given air flow through the engine, the low-pressure elements of the air intake line, see a flow pass higher. Thanks to the invention, it is therefore possible to increase the size PAPPT - PAVC, and thus increase the flow EGR. To achieve the objective of improving the performance and the depollution benefits, which is sought, it suffices that the transfer of air from the exhaust inlet intervenes on certain operating ranges of the engine, preferably at high speed. and at high load. In conclusion, it should be noted that the proposed provisions also have other beneficial effects on combustion. In particular, since the air and the EGR (cooled) are colder than the exhaust gases, the short-circuited gases lower the temperature of the exhaust gases by increasing their density, which has the effect of to increase overall the pressure drop at the exhaust. For a full efficiency of the proposed system, it is however necessary that the turbocharger is over-capacity, so as to be able to withstand higher flows. Furthermore, it is essential that the compressor downstream pressure is always greater than the pressure downstream of the point chosen for the short-circuit air return. Finally, it should be noted that part of the EGR is returned to the exhaust at the same time that the air is short-circuited: since it is admitted upstream of the compressor, the air transferred has indeed a impact on the effective EGR rate.

Claims (7)

REVENDICATIONS1. Moteur à combustion interne (1) pour véhicule automobile comprenant un conduit d'admission d'air (2) en direction d'au moins un chambre de combustion (3)et un conduit d'évacuation des gaz d'échappement (8) en sortie de celle-ci, un turbocompresseur (6, 7) comportant une turbine (7) disposée dans le conduit d'évacuation (8) de manière à être entraînée en rotation par ces derniers et un compresseur d'air d'admission (6) entraîné par la turbine (7), et un circuit EGR (16) apte à prélever des gaz d'échappement en aval de la turbine (7) pour les réintroduire à l'admission en amont du compresseur (6), caractérisé en ce qu'il présente un conduit de transfert d'air d'admission (17) court-circuitant le moteur (1) entre le compresseur (6) et la sortie de la turbine (7), dont la jonction de départ (17a) sur le conduit d'admission (2) est située à proximité du compresseur (6), et la jonction d'arrivée (17b) sur le conduit d'échappement (8) est située en aval du piquage (16a) du circuit EGR (16). REVENDICATIONS1. Internal combustion engine (1) for a motor vehicle comprising an air intake duct (2) in the direction of at least one combustion chamber (3) and an exhaust gas exhaust duct (8) in outlet thereof, a turbocharger (6, 7) having a turbine (7) disposed in the exhaust duct (8) to be rotated by the exhaust duct (8) and an intake air compressor (6). ) driven by the turbine (7), and an EGR circuit (16) adapted to take exhaust gases downstream of the turbine (7) to reintroduce them to the inlet upstream of the compressor (6), characterized in that it has an intake air transfer duct (17) short-circuiting the motor (1) between the compressor (6) and the outlet of the turbine (7), whose starting junction (17a) on the intake duct (2) is located near the compressor (6), and the inlet junction (17b) on the exhaust duct (8) is located downstream of the quilting (16a) of the EGR circuit (16). 2. Moteur à combustion selon la revendication 1, caractérisé en ce que la jonction d'arrivée (17b) du conduit de transfert (17) sur le conduit d'échappement (8) est située à proximité du piquage (16a) du circuit EGR (16) . 2. Combustion engine according to claim 1, characterized in that the arrival junction (17b) of the transfer duct (17) on the exhaust duct (8) is located near the quilting (16a) of the EGR circuit. (16). 3. Procédé de commande d'un moteur à combustion interne (1) pour véhicule automobile comprenant un conduit d'admission d'air (2) en direction d'au moins une chambre de combustion (3) et un conduit d'évacuation (8) des gaz d'échappement en sortie de celle-ci, un turbocompresseur (6, 7) comportant une turbine (7) disposée dans le conduit d'évacuation des gaz et entraînée en rotation par ces derniers et un compresseur d'air d'admission (6) entraîné par la turbine (6), et un circuit EGR (16a) apte à prélever- 7 - des gaz d'échappement en aval de la turbine (7) pour les réintroduire à l'admission en amont du compresseur (6), caractérisé en ce qu'on transfère une partie de l'air d'admission entre le compresseur (6) et la turbine (7) en court-circuitant le moteur, de manière à augmenter la différence de pression entre le départ à l'échappement (16a) et l'arrivée à l'admission (16b) du circuit EGR (16). A method of controlling an internal combustion engine (1) for a motor vehicle comprising an air intake duct (2) in the direction of at least one combustion chamber (3) and an exhaust duct ( 8) Exhaust gas at the outlet thereof, a turbocharger (6, 7) having a turbine (7) disposed in the gas evacuation pipe and rotated by the latter and an air compressor. inlet (6) driven by the turbine (6), and an EGR circuit (16a) adapted to take exhaust gases downstream of the turbine (7) to reintroduce them to the inlet upstream of the compressor (6), characterized in that a part of the intake air is transferred between the compressor (6) and the turbine (7) by short-circuiting the motor, so as to increase the pressure difference between the starting at the exhaust (16a) and at the inlet (16b) of the EGR circuit (16). 4. Procédé de commande selon la revendication 3, caractérisé en ce que la prise d'air en sortie du compresseur vise à diminuer la pression à l'arrivée du circuit EGR (16) sur l'admission. 4. Control method according to claim 3, characterized in that the air intake at the outlet of the compressor aims to reduce the pressure at the arrival of the EGR circuit (16) on the intake. 5. Procédé de commande selon la revendication 3 ou 4, caractérisé en ce que l'air prélevé à l'admission est introduit à l'échappement en aval du piquage EGR (16a), de manière à augmenter la pression en départ du circuit EGR (16) sur l'échappement. 5. Control method according to claim 3 or 4, characterized in that the intake air is introduced to the exhaust downstream of the EGR tap (16a), so as to increase the pressure at the start of the EGR circuit. (16) on the exhaust. 6. Procédé de commande selon la revendication 3, 4 ou 5, caractérisé en ce que le transfert intervient sur certaines plages de fonctionnement du moteur (1). 6. Control method according to claim 3, 4 or 5, characterized in that the transfer occurs on certain operating ranges of the motor (1). 7. Procédé de commande selon la revendication 6, caractérisé en ce que le transfert intervient de préférence à haut régime et forte charge. 7. Control method according to claim 6, characterized in that the transfer occurs preferably at high speed and high load.
FR0855010A 2008-07-23 2008-07-23 Internal combustion engine e.g. diesel engine, for motor vehicle, has transferring conduit including intake junction arranged on evacuation conduit and placed in downstream of branch of exhaust gas regeneration circuit Withdrawn FR2934324A3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0855010A FR2934324A3 (en) 2008-07-23 2008-07-23 Internal combustion engine e.g. diesel engine, for motor vehicle, has transferring conduit including intake junction arranged on evacuation conduit and placed in downstream of branch of exhaust gas regeneration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0855010A FR2934324A3 (en) 2008-07-23 2008-07-23 Internal combustion engine e.g. diesel engine, for motor vehicle, has transferring conduit including intake junction arranged on evacuation conduit and placed in downstream of branch of exhaust gas regeneration circuit

Publications (1)

Publication Number Publication Date
FR2934324A3 true FR2934324A3 (en) 2010-01-29

Family

ID=39929573

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0855010A Withdrawn FR2934324A3 (en) 2008-07-23 2008-07-23 Internal combustion engine e.g. diesel engine, for motor vehicle, has transferring conduit including intake junction arranged on evacuation conduit and placed in downstream of branch of exhaust gas regeneration circuit

Country Status (1)

Country Link
FR (1) FR2934324A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3201451A4 (en) * 2014-09-29 2018-04-04 Boost Mechanics (Pty) Limited A turbomachinery assembly for an internal combustion engine using a venturi apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426848A (en) * 1981-11-20 1984-01-24 Dresser Industries, Inc. Turbocharged engine exhaust gas recirculation system
US6276139B1 (en) * 2000-03-16 2001-08-21 Ford Global Technologies, Inc. Automotive engine with controlled exhaust temperature and oxygen concentration
WO2007056784A2 (en) * 2005-11-15 2007-05-24 Avl List Gmbh Internal combustion engine
US20070266706A1 (en) * 2006-05-19 2007-11-22 Christopher Ronald Gehrke System and method for monitoring boost leak
FR2907844A1 (en) * 2006-10-27 2008-05-02 Renault Sas Particle filter passive regeneration method for motor vehicle, involves removing gas mixture in inlet line during normal functioning phase of internal combustion engine to introduce mixture in exhaust line in upstream of particle filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426848A (en) * 1981-11-20 1984-01-24 Dresser Industries, Inc. Turbocharged engine exhaust gas recirculation system
US6276139B1 (en) * 2000-03-16 2001-08-21 Ford Global Technologies, Inc. Automotive engine with controlled exhaust temperature and oxygen concentration
WO2007056784A2 (en) * 2005-11-15 2007-05-24 Avl List Gmbh Internal combustion engine
US20070266706A1 (en) * 2006-05-19 2007-11-22 Christopher Ronald Gehrke System and method for monitoring boost leak
FR2907844A1 (en) * 2006-10-27 2008-05-02 Renault Sas Particle filter passive regeneration method for motor vehicle, involves removing gas mixture in inlet line during normal functioning phase of internal combustion engine to introduce mixture in exhaust line in upstream of particle filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3201451A4 (en) * 2014-09-29 2018-04-04 Boost Mechanics (Pty) Limited A turbomachinery assembly for an internal combustion engine using a venturi apparatus

Similar Documents

Publication Publication Date Title
EP3161289B1 (en) Engine system with exhaust gas recirculation circuit
CN111757976B (en) Low pressure EGR system with turbine bypass
EP3491225A1 (en) Device and method for controlling the combined injection of air and exhaust gasses at the intake of a supercharged internal combustion engine
EP3092382B1 (en) Exhaust gas line of an internal combustion engine and internal combustion engine with such an exhaust gas line
WO2018083400A1 (en) System for injecting air into a gas exhaust circuit of a supercharged heat engine
EP1375893B1 (en) Exhaust gas recirculation device for spark ignited turbocharged internal combustion engine
FR2934324A3 (en) Internal combustion engine e.g. diesel engine, for motor vehicle, has transferring conduit including intake junction arranged on evacuation conduit and placed in downstream of branch of exhaust gas regeneration circuit
FR3058472B1 (en) METHOD FOR CONTROLLING A SUPERIOR THERMAL MOTOR EQUIPPED WITH A CYLINDER DISCONNECTING MECHANISM
EP2203636B1 (en) Control method for a petrol engine having a low-pressure egr circuit
EP3548728B1 (en) Method of controlling a supercharging turbocompressor for an internal combustion engine
FR2911918A1 (en) Variable geometry type turbocharger controlling system for oil engine of motor vehicle, has control unit including control loops controlling displacement and angular position of blades based on operation point of engine, respectively
WO2015092291A1 (en) Assembly including a heat engine and an electrical compressor configured such as to scavenge residual burnt gases
FR3002589A1 (en) Internal combustion engine i.e. spark ignition engine, for car, has set of combustion cylinders, and set of intake conduits, where one cylinder whose exhaust fumes are reintroduced in intake conduits is provided as direct injection cylinder
EP1106804A1 (en) Control method for a motor vehicle drive unit to increase the richness of the exhaust gas during regeneration of a nitrogen oxide trap
EP2324222B1 (en) Engine with fuel injection divided into two phases
FR3028561A1 (en) SUPERIOR THERMAL ENGINE ARCHITECTURE WITH THERMAL ENERGY STORAGE DEVICE
WO2018002561A1 (en) Engine system comprising a burnt gas recirculation circuit
EP2562400A1 (en) Method for regenerating a particulate filter of an internal combustion engine
EP1827893A1 (en) Method for controlling the regeneration of an electrostatic particle filter
EP3004619B1 (en) Variable egr device
WO2011010029A1 (en) Device for treating exhaust gas and monitoring method
FR3048023A1 (en) ENGINE ASSEMBLY COMPRISING A CYCLON FILTER EXHAUST GAS RECIRCULATION DEVICE
FR3103013A3 (en) PROCESS FOR THE CONTROL OF A SUPERCHARGED INTERNAL COMBUSTION ENGINE AIR INTAKE CIRCUIT
FR3041034A1 (en) EXHAUST GAS RECIRCULATION SYSTEM COMPRISING A CYCLONE FILTER
FR2949818A1 (en) Exhaust fumes treating device for exhaust line of combustion engine, has transportation route formed through additional filter by intermediary of spur in mode of recirculation of exhaust fumes

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20100331