FR2918498A1 - Living organism protecting device, has carbon matrix mounted between dense materials to stop beta rays and gamma rays, where materials with good heat conductivity enclose carbon matrix and paraffin matrix for stopping neutron rays - Google Patents

Living organism protecting device, has carbon matrix mounted between dense materials to stop beta rays and gamma rays, where materials with good heat conductivity enclose carbon matrix and paraffin matrix for stopping neutron rays Download PDF

Info

Publication number
FR2918498A1
FR2918498A1 FR0704937A FR0704937A FR2918498A1 FR 2918498 A1 FR2918498 A1 FR 2918498A1 FR 0704937 A FR0704937 A FR 0704937A FR 0704937 A FR0704937 A FR 0704937A FR 2918498 A1 FR2918498 A1 FR 2918498A1
Authority
FR
France
Prior art keywords
matrix
rays
materials
carbon matrix
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0704937A
Other languages
French (fr)
Inventor
Antoine Jacques Candeias
Jacques Cabane
Jean Charles Bernard
Patrick Michel Curie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR0704937A priority Critical patent/FR2918498A1/en
Publication of FR2918498A1 publication Critical patent/FR2918498A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • G21F1/103Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The device has a paraffin matrix (2) utilized like an absorbing element for absorbing ionizing radiations, where the paraffin matrix is connected to a carbon matrix (1). The carbon matrix is mounted between two dense materials (3) such as Densimet(RTM: tungsten alloy), so as to stop beta rays, X rays and gamma rays. The materials with good heat conductivity enclose the carbon matrix and the paraffin matrix for stopping the neutron radiation. The dense materials evacuate calories during high neutron radiation.

Description

La présente invention concerne un dispositif pour protéger les êtresThe present invention relates to a device for protecting human beings

vivants contre les rayonnements ionisants (alpha, bêta plus et moins, X, gamma) et neutroniques (neutrons). Cette opération de protection est habituellement effectuée par la mise en confinement de la matière rayonnante dans des enceintes hermétiques de matière et d'épaisseur dépendant de la nature et de l'énergie du rayonnement. Lorsque le rayonnement est multiple, en particulier, bêta plus, X, gamma et neutrons le confinement est réalisé par une forte épaisseur de matière. Les rayonnements bêta plus, X et gamma sont arrêtés par une épaisseur de béton, de plomb ou des matériaux de forte densité.  live against ionizing radiation (alpha, beta plus and minus, X, gamma) and neutron (neutrons). This protective operation is usually performed by confining the radiating material in hermetic enclosures of material and thickness depending on the nature and energy of the radiation. When the radiation is multiple, in particular, beta plus, X, gamma and neutron confinement is achieved by a large thickness of material. Beta plus, X and gamma radiation are stopped by a thickness of concrete, lead or high density materials.

Le rayonnement neutronique est arrêté par une épaisseur de béton, d'eau ou de paraffine. Il est indirectement ionisant car c'est sa capture par les noyaux des atomes de la matière ou leur interaction avec ceux-ci qui génère des rayonnements gamma et/ou diverses particules. Chaque noyau subit ce qu'on appelle une fission libérant de l'énergie et donc de la chaleur. La paraffine est un des matériaux qui absorbe le mieux le rayonnement neutronique, les inconvénients de son utilisation sont l'échauffement provoqué par la fission et sa faible conductivité thermique, liés à ses propriétés physiques qui la rend liquide à partir de soixante degrés centigrades, inflammable à partir de deux cents degrés centigrades et auto comburant à partir de deux cent quarante degrés centigrades. Le dispositif selon l'invention permet de remédier à ces inconvénients. La première caractéristique du dispositif est d'utiliser la paraffine (2) comme élément absorbeur de rayonnements ionisants liée à une matrice de carbone (1), Fig.: 1. L'agglomérat matrice de carbone plus nodules de paraffine garde tout son caractère neutrophage avec des performances identiques à celles de la paraffine utilisée indépendamment. La deuxième caractéristique du dispositif, est que cet agglomérat matriciel, permet d'augmenter la conductivité thermique de la paraffine, qui est naturellement de l'ordre de 0,25 W/mK, d'un facteur 10 à 100 en fonction de la densité de carbone dans la matrice. L'augmentation de la conductivité tout en gardant le caractère neutrophage permet au dispositif d'évacuer les calories lors d'un bombardement neutronique intense. La troisième caractéristique du dispositif est que cet agglomérat matriciel, est monté en sandwich entre deux matériaux denses (3) afin d'arrêter les rayonnements bêta plus, X, gamma. Parmi ces matériaux denses, les plus utilisés sont le béton et le plomb. Pour conserver le caractère neutrophage lié à l'évacuation des calories, l'utilisation de Densimet pour réaliser le sandwich de la matrice carbone / paraffine est un élément supplémentaire caractérisant l'invention car ce matériau contrairement au plomb possède une conductivité thermique élevée, de l'ordre1000 W/mK. Le dessin en annexe illustre l'invention : - La matrice carbone / paraffine (1) (2) est prise en sandwich entre deux matériaux denses (3) - La matrice carbone / paraffine (1) (2) a un caractère neutrophage - Les matériaux denses (3) arrêtent les rayonnement bêta plus, X, gamma. - Le matériau dense, Densimet , permet d'évacuer les calories en cas de rayonnement neutronique intense. La conductivité augmentée de la matrice carbone / paraffine et la conductivité thermique importante du Densimet liées à un dispositif de refroidissement complémentaire permettent une évacuation des calories évitant ainsi un emballement en cas de rayonnements neutroniques encore plus intenses.  Neutron radiation is stopped by a thickness of concrete, water or paraffin. It is indirectly ionizing because it is its capture by the nuclei of the atoms of matter or their interaction with them that generates gamma radiation and / or various particles. Each nucleus undergoes what is called a fission liberating energy and therefore heat. Paraffin is one of the materials that best absorbs neutron radiation, the disadvantages of its use are the heating caused by fission and its low thermal conductivity, related to its physical properties that makes it liquid from sixty degrees centigrade, flammable from two hundred degrees centigrade and self-oxidizing from two hundred and forty degrees centigrade. The device according to the invention overcomes these disadvantages. The first feature of the device is to use paraffin (2) as an ionizing radiation absorber element bonded to a carbon matrix (1), Fig .: 1. The agglomerate matrix of carbon plus paraffin nodules retains all its neutron-absorbing character with performances identical to those of paraffin used independently. The second characteristic of the device is that this matrix agglomerate makes it possible to increase the thermal conductivity of paraffin, which is naturally of the order of 0.25 W / mK, by a factor of 10 to 100 depending on the density. of carbon in the matrix. Increasing the conductivity while keeping the neutrophage character allows the device to evacuate the calories during intense neutron bombardment. The third characteristic of the device is that this matrix agglomerate is sandwiched between two dense materials (3) in order to stop beta plus radiation, X, gamma. Among these dense materials, the most used are concrete and lead. In order to maintain the neutrophage character associated with the evacuation of calories, the use of Densimet to make the sandwich of the carbon / paraffin matrix is an additional element characterizing the invention since this material, unlike lead, has a high thermal conductivity. 1000 W / mK order. The attached drawing illustrates the invention: The carbon / paraffin matrix (1) (2) is sandwiched between two dense materials (3). The carbon / paraffin matrix (1) (2) has a neutrophage character. dense materials (3) stop the beta plus radiation, X, gamma. - The dense material, Densimet, allows to evacuate the calories in case of intense neutron radiation. The increased conductivity of the carbon / paraffin matrix and the high thermal conductivity of the Densimet linked to a complementary cooling device allow the evacuation of the calories thus avoiding a runaway in case of even more intense neutron radiation.

Claims (2)

REVENDICATIONS 1) Le dispositif pour protéger biologiquement contre les rayonnements bêta plus, X, gamma et neutroniques est caractérisé par un sandwich composé de deux parois en matériau dense (3) avec une bonne conductivité thermique pour arrêter rayonnements bêta plus, X, gamma, enfermant un complexe matriciel de graphite (1) et de nodules de matériau mou, à forte concentration d'hydrogène, (2) pour arrêter les rayonnements neutroniques.  1) The device to protect biologically against beta plus, X, gamma and neutron radiation is characterized by a sandwich consisting of two walls of dense material (3) with good thermal conductivity to stop beta plus radiation, X, gamma, enclosing a matrix complex of graphite (1) and nodules of soft material, with high concentration of hydrogen, (2) to stop neutron radiation. 2) Le dispositif selon la revendication 1, caractérisé en ce que la matrice de graphite(1) et matériau à forte concentration d'hydrogène (2), constitue un neutrophage, qui capture et freine les neutrons, capable d'évacuer les calories produites par le rayonnement neutronique.  2) The device according to claim 1, characterized in that the graphite matrix (1) and material with a high concentration of hydrogen (2) is a neutrophage, which captures and brakes neutrons, capable of evacuating the calories produced. by neutron radiation.
FR0704937A 2007-07-06 2007-07-06 Living organism protecting device, has carbon matrix mounted between dense materials to stop beta rays and gamma rays, where materials with good heat conductivity enclose carbon matrix and paraffin matrix for stopping neutron rays Withdrawn FR2918498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0704937A FR2918498A1 (en) 2007-07-06 2007-07-06 Living organism protecting device, has carbon matrix mounted between dense materials to stop beta rays and gamma rays, where materials with good heat conductivity enclose carbon matrix and paraffin matrix for stopping neutron rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0704937A FR2918498A1 (en) 2007-07-06 2007-07-06 Living organism protecting device, has carbon matrix mounted between dense materials to stop beta rays and gamma rays, where materials with good heat conductivity enclose carbon matrix and paraffin matrix for stopping neutron rays

Publications (1)

Publication Number Publication Date
FR2918498A1 true FR2918498A1 (en) 2009-01-09

Family

ID=39048987

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0704937A Withdrawn FR2918498A1 (en) 2007-07-06 2007-07-06 Living organism protecting device, has carbon matrix mounted between dense materials to stop beta rays and gamma rays, where materials with good heat conductivity enclose carbon matrix and paraffin matrix for stopping neutron rays

Country Status (1)

Country Link
FR (1) FR2918498A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796047A (en) * 1945-03-27 1958-06-04 Atomic Energy Authority Uk Radiation shielding
GB804902A (en) * 1956-09-21 1958-11-26 Morgan Crucible Co Neutron shielding material
US5084234A (en) * 1988-12-31 1992-01-28 Hoesgen Karlheinz Absorption casing for a source of radioactive radiation, particularly for a nuclear reactor
DE102006043796A1 (en) * 2005-09-27 2007-03-29 Vaillant Gmbh Solar absorber for hot water tank, has pipeline passing through housing, where pipeline is guided in medium such as paraffin inside housing, and medium is accommodated in porous graphite matrix for storing phase-transformation energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796047A (en) * 1945-03-27 1958-06-04 Atomic Energy Authority Uk Radiation shielding
GB804902A (en) * 1956-09-21 1958-11-26 Morgan Crucible Co Neutron shielding material
US5084234A (en) * 1988-12-31 1992-01-28 Hoesgen Karlheinz Absorption casing for a source of radioactive radiation, particularly for a nuclear reactor
DE102006043796A1 (en) * 2005-09-27 2007-03-29 Vaillant Gmbh Solar absorber for hot water tank, has pipeline passing through housing, where pipeline is guided in medium such as paraffin inside housing, and medium is accommodated in porous graphite matrix for storing phase-transformation energy

Similar Documents

Publication Publication Date Title
CA2548139C (en) High efficiency shield array
EP2824999B1 (en) Neutron generation source, and neutron generation device
CN105803244B (en) The multifactor environment comprehensive protective materials in space and safeguard structure
Yi et al. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility
AU2008304869A1 (en) Solar cell unit
CN103183861A (en) Composite shielding material with neutorn-gamma comprehensive shielding effect
Akkas et al. Shielding effect of boron carbide aluminium metal matrix composite against gamma and neutron radiation
JP2016538528A (en) Layer that protects the surface of zirconium alloys used in nuclear reactors
Zhang et al. Design, shielding mechanism and tensile property of a novel (B4C+ 6061Al)/Cf/6061Al laminar neutron-shielding composite
FR2918498A1 (en) Living organism protecting device, has carbon matrix mounted between dense materials to stop beta rays and gamma rays, where materials with good heat conductivity enclose carbon matrix and paraffin matrix for stopping neutron rays
EP0211779B1 (en) Nuclear-radiation absorber
Mahesh Debye Model Calculations of the Mössbauer Effect of 9.3 keV Transition of Kr83 Solid
JP2011117891A (en) Spectrometer
Wang et al. A study of electron exposure effects on ZnO/K2SiO3 thermal control coatings
Hoyle et al. Dry polysaccharides and the infrared spectrum of OH 26.5+ 0.6
Yurkov et al. A Gas Generator Based on Porous Titanium in the Composition of Sealed-Off Plasma Focus Chambers
Kumakhov Particle channeling length in crystals
RU139313U1 (en) SPACE NUCLEAR POWER PLANT
WO2023220309A1 (en) Renewable wall for fusion reactors
Bertolami Axion-Dilaton Coupling and Gamma-Ray Bursts
JP2023554681A (en) Improved material for tungsten boride neutron shield
Rahn et al. RIXS study of the Anderson Lattice compound CePd 3
EA043044B1 (en) MULTILAYER NEUTRON SHIELD
Masayuki et al. FFHR Design Group, Potential of Copper alloys using a divertor heat sink in the helical reactor FFHR-d1 and their brazing properties with tungsten armor by using the typical candidate filler materials
Morard et al. Investigation of Fe-FeS phase diagram and liquid structure at high pressure and high temperature

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20120330