FR2913799A1 - Digital clearance routing method for e.g. drone, involves analyzing digital clearances received on-board by aircraft, using on-board computer, and directing clearances towards recipient equipments by computer - Google Patents

Digital clearance routing method for e.g. drone, involves analyzing digital clearances received on-board by aircraft, using on-board computer, and directing clearances towards recipient equipments by computer Download PDF

Info

Publication number
FR2913799A1
FR2913799A1 FR0701933A FR0701933A FR2913799A1 FR 2913799 A1 FR2913799 A1 FR 2913799A1 FR 0701933 A FR0701933 A FR 0701933A FR 0701933 A FR0701933 A FR 0701933A FR 2913799 A1 FR2913799 A1 FR 2913799A1
Authority
FR
France
Prior art keywords
clearances
computer
board
level
messages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR0701933A
Other languages
French (fr)
Inventor
Francois Coulmeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to FR0701933A priority Critical patent/FR2913799A1/en
Publication of FR2913799A1 publication Critical patent/FR2913799A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)

Abstract

The method involves analyzing digital clearances received on-board by an aircraft, using an on-board computer (3). The clearances are directed towards recipient equipments by the computer, where the clearances are chosen among course clearances, speed clearances, clearances comprising negotiation and context messages, communication messages, or identification request messages. The recipient equipments are chosen among flight management system (4), transponder (7), flight guidance system (5), radio management panel (6), communication equipment or weather radar.

Description

PROCEDE DE ROUTAGE DES CLAIRANCES NUMERIQUES ATC OPTIMISANT LEUR PRISE ENMETHOD FOR ROUTING ATC DIGITAL CLAIRANCES OPTIMIZING THEIR TAKING

COMPTE A BORD D'UN AERONEF La présente invention se rapporte à un procédé de routage des clairances numériques ATC (messages envoyés par des centres de contrôle aérien) optimisant leur prise en compte à bord d'un aéronef L'invention se situe dans le domaine des systèmes de conduite du vol (FMS pour Flight Management System et FGS pour Flight Guidance System ) et dans le domaine de la gestion du trafic aérien (stations au sol). La part croissante du trafic aérien depuis environ cinquante ans et les hypothèses de croissance pour les vingt ans à venir conduisent à envisager une saturation progressive de la bande de fréquences allouée par 1'ITU (organisation internationale de normalisation des télécommunications) pour les communications vocales aéronautiques. La solution trouvée par les acteurs du monde aéronautique est une migration progressive de la voix comme moyen de communication vers la liaison numérique ( données ). Plusieurs implémentations existent ou sont en cours de déploiement dans le monde. L'une d'entre elles concerne la transmission de messages de contrôle entre l'aéronef et le sol, et est connue sous le vocable CPDLC pour Controller ù Pilot Data Link Communication .  The present invention relates to a method for routing digital clearances ATC (messages sent by air traffic control centers) optimizing their taking into account on board an aircraft. The invention lies in the field flight management systems (FMS for Flight Management System and FGS for Flight Guidance System) and in the field of air traffic management (ground stations). The increasing share of air traffic for about fifty years and the growth assumptions for the next twenty years lead to consider a gradual saturation of the frequency band allocated by the ITT (International Telecommunication Standardization Organization) for aeronautical voice communications. . The solution found by the actors of the aeronautical world is a progressive migration of the voice like means of communication towards the digital link (data). Several implementations exist or are being deployed around the world. One of these concerns the transmission of control messages between the aircraft and the ground, and is known as CPDLC for Controller to Pilot Data Link Communication.

La communauté aéronautique internationale a normalisé depuis vingt ans les messages ATC, au travers de divers documents, afin d'assurer l'interopérabilité entre compagnies, organismes de contrôle, pays, etc. Il a s'agit de traduire dans un jeu de messages donné les instructions et dialogues vocaux entre le sol et le bord. Il existe actuellement un couple de normes pour les communications en espace océanique (RTCA D0219 aux USA et ED110 en Europe). L'OACI (Organisation de l'Aviation Civile Internationale) a produit un document reprenant ces normes pour les insérer dans un cadre plus global (SARPS ATN pour Standards and Recommended Practices for the Aeronautical Communication Network ). Quoi qu'il en soit, les parties purement applicatives de ces normes décrivent des clairances très proches. Ces clairances correspondent au jeu de messages utilisé par les contrôleurs aériens pour organiser et réguler le trafic. Les messages montants (issus du sol et à destination du bord) sont au nombre de 183, les messages descendants sont de 81, dans la norme RTCA DO 219/ED110.  The international aviation community has standardized ATC messages for twenty years, through various documents, to ensure interoperability between companies, control bodies, countries, etc. It is a question of translating into a given set of messages the instructions and vocal dialogues between the ground and the edge. There are currently a couple of standards for ocean space communications (RTCA D0219 in the USA and ED110 in Europe). ICAO (International Civil Aviation Organization) has produced a document incorporating these standards into a more global framework (SARPS ATN for Standards and Recommended Practices for the Aeronautical Communication Network). In any case, the purely applicative parts of these standards describe very similar clearances. These clearances correspond to the set of messages used by the air traffic controllers to organize and regulate the traffic. The upstream messages (from the ground and to the edge) are 183, the downstream messages are 81, in the standard RTCA DO 219 / ED110.

On peut classer ces messages en plusieurs catégories : • Pour les messages montants : Messages d'identification et de gestion de la communication CONTACT BRELO 123.00, DUE TO TRAFFIC ... - Messages de contexte (statut de la réponse) du type UNABLE, STANDBY, ROGER, AFFIRM, NEGATIVE, REQUEST DEFERRED Instructions de contrôle : CLIMB TO FL320, CROSS LMG AT 14 :00, FLY HEADING 321 Messages de demande d'information (ex : CONFIRM SPEED, REPORT REACHING FL245 ...) • Pour les messages descendants : - Messages d'identification et de gestion de la communication : NOT CURRENT DATA AUTHORIT'Y ... Messages de contexte (statut de la réponse à une requête sol) du type WILCO, UNABLE, STANDBY, ROGER, AFFIRM, NEGATIVE Messages d'alerte (ex : PAN PAN PAN, MAYDAY MAYDAY MAYDAY) Messages informatifs (ex : REMAINING FUEL ON BOARD 23 ...) -Requêtes à destination du sol - Réponse à une requête/Demande d'informations issue du sol (ex : REQUEST HEADING 300, CLIMBING TO FL250  These messages can be classified into several categories: • For upstream messages: Messages for identification and communication management CONTACT BRELO 123.00, DUE TO TRAFFIC ... - Context messages (response status) of the UNABLE type, STANDBY , ROGER, AFFIRM, NEGATIVE, REQUEST DEFERRED Control instructions: CLIMB TO FL320, CROSS LMG AT 14:00, FLY HEADING 321 Information request messages (eg CONFIRM SPEED, REPORT REACHING FL245 ...) • For messages descendants: - Identification and communication management messages: NOT CURRENT DATA AUTHORIT'Y ... Context messages (status of the response to a ground request) of the type WILCO, UNABLE, STANDBY, ROGER, AFFIRM, NEGATIVE Messages of warning (ex: PAN PAN PAN, MAYDAY MAYDAY MAYDAY) Informative messages (ex: REMAINING FUEL ON BOARD 23 ...) -Query to the ground - Answer to a request / Request for information from the ground (ex: REQUEST HEADING 300, CLIMBING TO FL250

.) La mise en place d'une gestion électronique de ces clairances dans les calculateurs de bord est devenue une réalité dans les années 1990 avec l'introduction du concept FANS (Future Air Navigation System). Ainsi, une petite partie des messages DO-219 a été introduite dans les systèmes de gestion du vol (FMS) et dans les systèmes de communication sol/bord (CMU : Communication Management Unit). A l'aide de ces procédés, le contrôle aérien dispose d'outils électroniques pour envoyer à bord des clairances modifiant son plan de vol tactique, en particulier lors de l'assignation de caps, altitudes, vitesses en guidage Radar ( Radar Vectoring )... DTD: Les procédures de Radar Vectoring ne sont actuellement pas gérées par les systèmes de gestion du vol (FMS) car ces derniers nécessitent en tant qu'informations d'entrée un plan de vol connu, complet et déterministe pour fonctionner correctement. Ils sont incapables d'intégrer de façon intelligente des clairances de prise de cap, altitude, vitesse (c'est-à-dire d'interpréter les clairances et d'aiguiller automatiquement les consignes correspondantes vers les équipements destinataires), car leur terminaison est inconnue, et la façon de rejoindre leur route ensuite l'est aussi : elle ne dépend que du prochain contact du contrôleur. Le pilote effectue donc ces clairances en mode sélecté , c'est à dire à l'aide du FGS.  .) The introduction of electronic management of these clearances in on-board computers became a reality in the 1990s with the introduction of the Future Air Navigation System (FANS). Thus, a small portion of DO-219 messages has been introduced in flight management systems (FMS) and in ground-to-edge communication systems (CMUs). Using these methods, the air traffic control has electronic tools to send on board clearances modifying its tactical flight plan, in particular when assigning caps, altitudes, speeds in Radar guidance (Radar Vectoring). .. DTD: Radar Vectoring procedures are currently not managed by flight management systems (FMS) because they require as input information a known, complete and deterministic flight plan to function properly. They are unable to intelligently integrate clearances of course, altitude, speed (ie to interpret clearances and automatically route corresponding instructions to the target equipment), because their termination is unknown, and the way to join their route then is too: it depends only on the next contact of the controller. The pilot thus performs these clearances in selected mode, that is to say using the FGS.

D'autres clairances dites à terminaison (ou deferred clearances ) comportent une partie détection et une partie action et font potentiellement appel à la fois au FMS et au FGS. Par exemple, une clairance du type AT LMG CLIMB FL300 (monter au niveau 300 quand le point LMG sera atteint) fait appel au FMS (qui gère le plan de vol et donc le passage au point LMG) et au FGS (qui gère l'altitude de clairance). Actuellement, seule la partie détection est prise en charge, au niveau du FMS. Actuellement, très peu d'instructions et messages sont pris en compte à bord, car seul le FMS est connecté au serveur de messages ATC. De plus, pour le bord comme pour le sol, la charge de travail est très importante lors du guidage Radar, car l'aéronef évolue en boucle ouverte (de façon non déterministe) et doit être constamment repris par le contrôle, via de nouvelles consignes de cap, altitude, vitesse. Les erreurs d'interprétation/saisie peuvent être nombreuses, le pilote devant lire sur un petit écran l'instruction et la retaper/prendre en compte au niveau du calculateur approprié. Enfin pour des aéronefs de type drone , que l'on souhaite faire évoluer dans un espace aérien non ségrégué (c'est-à-dire sans séparation des domaines civil et militaire), se posent des problèmes de temps de réponse et de duplication du travail pour le pilote au sol (celui qui pilote le drone). En effet, une instruction ATC est envoyée au drone qui la retransmet au pilote au sol, ce dernier devant faire effectuer la manoeuvre au drone en envoyant la bonne commande. Dans un contexte Radar Vectoring qui comporte de nombreux changements tactiques et nécessite des temps de réponse courts, il est impossible d'utiliser les moyens de communication par Datalink actuels. Les inconvénients des procédures connues sont donc : • De possibles erreurs de saisie et d'interprétation de la part des équipages, conduisant à des comportements non prévus par le sol, • Un frein à l'évolution naturelle vers l'automatisation des fonctions bord, • Des oublis ou des non prises en compte d'instructions complexes quand seule une partie de l'instruction est prise en charge au niveau d'un équipement (par exemple AT [position] CLIMB TO [level] : le FMS gère le paramètre [position], mais actuellement rien de plus n'est fait pour déclencher la montée vers le niveau [level] û le pilote doit se souvenir ou chercher sur son équipement de communication quelle est la valeur du niveau et l'entrer manuellement), • Une quasi-impossibilité de gérer les drones de façon transparente pour le contrôle. La présente invention a pour objet un procédé de routage des clairances numériques ATC permettant l'intégration d'un plus grand nombre d'instructions venant du sol en aiguillant les clairances vers l'équipement de bord approprié (ou les équipements lorsque plusieurs équipements sont concernés) et permettant de réduire ou d'éliminer les inconvénients précités. Le procédé conforme à l'invention est un procédé de routage des clairances numériques ATC, et il est caractérisé en ce qu'un calculateur embarqué analyse les clairances reçues à bord et les aiguille vers les équipements destinataires, ce calculateur pouvant être un calculateur dédié ou bien intégré à la CMU ou au FMS, selon les architectures des aéronefs.  Other so-called clearances (or deferred clearances) include a detection and an action part and potentially involve both FMS and FGS. For example, a clearance of the type AT LMG CLIMB FL300 (to go up to level 300 when the LMG point is reached) uses the FMS (which manages the flight plan and thus the transition to the LMG point) and the FGS (which manages the clearance altitude). Currently, only the detection part is supported at the FMS level. Currently, very few instructions and messages are taken into account on board because only the FMS is connected to the ATC message server. Moreover, for the board as for the ground, the workload is very important during the guidance Radar, because the aircraft evolves in open loop (in a non deterministic way) and must be constantly taken again by the control, via new instructions heading, altitude, speed. The errors of interpretation / seizure can be numerous, the pilot having to read on a small screen the instruction and to retype it / to take into account at the level of the appropriate calculator. Finally, for aircraft of the drone type, which one wishes to develop in a non-segregated airspace (that is to say without separation of the civil and military domains), there are problems of response time and duplication of the aircraft. work for the ground pilot (the pilot of the drone). In fact, an ATC instruction is sent to the drone which transmits it to the ground pilot, the latter having to make the maneuver to the drone by sending the right command. In a Radar Vectoring context that involves many tactical changes and requires short response times, it is impossible to use the current Datalink communication means. The disadvantages of the known procedures are therefore: • Possible errors of input and interpretation on the part of the crews, leading to behavior not foreseen by the ground, • A brake on the natural evolution towards the automation of the on-board functions, • Overriding or omission of complex instructions when only part of the instruction is supported at a device (eg AT [position] CLIMB TO [level]: the FMS supports the parameter [ position], but currently nothing more is done to trigger the climb to the level [level] - the pilot must remember or look on his communication equipment what is the value of the level and enter it manually), • almost impossible to manage drones transparently for control. The present invention relates to a process for routing ATC digital clearances allowing the integration of a greater number of instructions coming from the ground by routing the clearances to the appropriate on-board equipment (or the equipment when several pieces of equipment are concerned. ) and to reduce or eliminate the aforementioned drawbacks. The method according to the invention is a method for routing ATC digital clearances, and it is characterized in that an on-board computer analyzes the clearances received on board and the pointers to the destination equipment, this computer can be a dedicated computer or well integrated with the CMU or the FMS, according to the architectures of the aircraft.

Selon une caractéristique de l'invention, les clairances sont regroupées selon les catégories suivantes : clairances de cap, clairances de vitesse, clairances de maintien et de changement de niveau, clairances de route, clairances comportant des messages de contexte et de négociation destinés seulement à être affichés sur un écran, clairances contenant des messages de communication destinés à être affichés sur un écran et à être envoyés à un équipement de sélection de fréquence, clairances comportant des messages de demande d'identifications envoyés au transpondeur, et clairances comportant des demandes d'information de type REPORT et CONFIRM , ces clairances étant aiguillées vers l'un au moins des équipements destinataires appropriés suivants : FMS, FGS, RMP, XPDR, équipement de communication et équipement d'affichage.  According to a characteristic of the invention, the clearances are grouped according to the following categories: heading clearances, speed clearances, maintenance and level change clearances, route clearances, clearances containing context and negotiation messages intended only for be displayed on a screen, clearances containing communication messages intended to be displayed on a screen and to be sent to a frequency selection equipment, clearances including identification request messages sent to the transponder, and clearances including requests for REPORT and CONFIRM information, these clearances being routed to at least one of the following appropriate recipient facilities: FMS, FGS, RMP, XPDR, communication equipment and display equipment.

Ce procédé est d'autant plus simple à mettre en oeuvre qu'un certain nombre d'outils sont déjà à la disposition du contrôleur Radar et peuvent être utilisés et généralisés pour résoudre le problème. Les bénéfices apportés par ce procédé de rationalisation et d'intégration dans les systèmes de bord (FMS, FGS, RMP ...) sont évidents si l'on se réfère aux intentions de l'OACI de déployer largement l'utilisation des échanges numériques entre sol et bord pour régler les problèmes de contrôle aérien évoqués ci-dessus. La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel : la figure unique est un bloc-diagramme simplifié d'un dispositif embarqué de mise en oeuvre du procédé de l'invention. Sur le bloc-diagramme du dessin, on a représenté le calculateur de communication de bord 1 (dit CMU) qui est chargé de recevoir les messages ATC (2) envoyés par des contrôleurs de trafic aérien. Le calculateur 1 transmet ces messages à un calculateur 3 (ce dernier pouvant être un calculateur dédié ou bien une fonction de routage intégrée à un calculateur existant de type FMS ou CMU) qui les analyse pour en déterminer la nature et la destination. En fonction du résultat de cette analyse, le calculateur 3 transmet les messages à l'un au moins des équipements destinataires suivants : le FMS (4), le FGS (5), le système de gestion radio RMP (6), le transpondeur ( XPDR ) (7) et au moins un autre équipement (8) désigné par XXX et explicité ci-dessous. Pour ce qui est des messages montants, les instructions de contrôle qu'ils contiennent sont classées en différentes catégories. A chaque message on affecte un équipement destinataire : FGS ou FMS ou RMP ou XXX .... En tant qu'équipement XXX on envisage un équipement de visualisation, de communication ou de surveillance ou des calculateurs autres, comme par exemple des calculateurs de surveillance (ISS = Integrated Surveillance System , TAWS = Terrain Avoidance Warning System , ACAS= Airborne Collision Avoidance System , Weather Radar=radar météorologique) . Quelques messages sont à la fois FMS et FGS comme expliqué ci dessous. La liste des messages ci-dessous n'est pas exhaustive et ne comporte pas, en particulier, de messages destinés à des équipements XXX, du fait que les normes correspondantes ne sont pas encore figées. Les messages FGS sont les messages qui modifient le plan de vol à court terme (altitude, cap, vitesse), tandis que les messages FMS sont les instructions plus stratégiques 5 qui modifient le plan de vol à moyen et /ou long terme. • Les clairances de cap des messages ATC sont regroupées et aiguillées de la façon suivante : VERS LE FGS : TURN[direction] HEADING[degrees] 10 TURN[direction] GROUND TRACK[degrees] FLY PRESENT HEADING IMMEDIATELY TURN[direction] HEADING[degrees] FLY HEADING[degrees] TURN [direction][degrees] 15 STOP TURN HEADING [degrees] VERS LE FMS ET/OU LE FGS : AT[position] FLY HEADING[degrees] • Les clairances de vitesse des messages ATC sont regroupées et aiguillées de la 20 façon suivante : VERS LE FGS : MAINTAIN[speed] MAINTAIN PRESENT SPEED MAINTAIN[speed] OR GREATER 25 MAINTAIN[speed] OR LESS MAINTAIN[speed] TO[speed] INCREASE SPEED TO[speed] INCREASE SPEED TO[speed] OR GREATER REDUCE SPEED TO[speed] REDUCE SPEED TO[speed] OR LESS DO NOT EXCEED[speed] ADJUST SPEED TO [speed] CLIMB AT [verticalRate] MINIMUM CLIMB AT [verticalRate] MAXIMUM DESCEND AT [verticalRate] MINIMUM 10 DESCEND AT [verticalRate] MAXIMUM VERS LE FMS : RESUME NORMAL SPEED NO SPEED RESTRICTION REDUCE TO MINIMUM APPROACH SPEED 15 VERS LE FMS ET/OU LE FGS : AFTER PASSING [position] MAINTAIN [speed]  This method is all the easier to implement that a number of tools are already available to the Radar controller and can be used and generalized to solve the problem. The benefits provided by this process of rationalization and integration in the on-board systems (FMS, FGS, RMP ...) are obvious if we refer to the ICAO's intentions to widely deploy the use of digital exchanges. between ground and edge to solve the air control problems mentioned above. The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which: the single figure is a simplified block diagram of a embedded device for implementing the method of the invention. On the block diagram of the drawing, there is shown the communication computer edge 1 (said CMU) which is responsible for receiving ATC messages (2) sent by air traffic controllers. The computer 1 transmits these messages to a computer 3 (the latter may be a dedicated computer or a routing function integrated into an existing computer type FMS or CMU) which analyzes to determine the nature and destination. According to the result of this analysis, the computer 3 transmits the messages to at least one of the following destination equipment: the FMS (4), the FGS (5), the radio management system RMP (6), the transponder ( XPDR) (7) and at least one other equipment (8) designated by XXX and explained below. For upstream messages, the control instructions they contain are classified into different categories. Each message is assigned a destination device: FGS or FMS or RMP or XXX .... As equipment XXX is considered a visualization, communication or monitoring equipment or other computers, such as for example monitoring computers (ISS = Integrated Warning System, Terrain Avoidance Warning System, ACAS = Airborne Collision Avoidance System, Weather Radar = Weather Radar). Some messages are both FMS and FGS as explained below. The list of messages below is not exhaustive and does not include, in particular, messages intended for XXX equipment, since the corresponding standards are not yet fixed. FGS messages are messages that modify the short-term flight plan (altitude, heading, speed), while FMS messages are more strategic instructions that modify the medium and / or long-term flight plan. • ATC clearances are grouped and routed as follows: TOWARD THE FGS: TURN [direction] HEADING [degrees] 10 TURN [direction] GROUND TRACK [degrees] FLY PRESENT HEADING IMMEDIATELY TURN [direction] HEADING [degrees ] FLY HEADING [degrees] TURN [direction] [degrees] 15 STOP TURN HEADING [degrees] TO FMS AND / OR FGS: AT [position] FLY HEADING [degrees] • Speed clearances of ATC messages are grouped and routed in the following way: TOWARD THE FGS: MAINTAIN [speed] MAINTAIN PRESENT SPEED MAINTAIN [speed] OR GREATER 25 MAINTAIN [speed] OR LESS MAINTAIN [speed] TO [speed] INCREASE SPEED TO [speed] INCREASE SPEED TO [speed] OR GREATER REDUCE SPEED TO [speed] REDUCE SPEED TO [speed] OR LESS DO NOT EXCEED [speed] ADJUST SPEED TO [speed] CLIMB AT [verticalRate] MINIMUM CLIMB AT [verticalRate] MAXIMUM DESCEND AT [verticalRate] MINIMUM 10 DESCEND AT [ verticalRate] MAXIMUM TO FMS: SUMMARY NORMAL SPEED NO SPEED RESTRICTION REDUCE TO MINIMUM AP PROACH SPEED 15 TO FMS AND / OR FGS: AFTER PASSING [position] MAINTAIN [speed]

• Les clairances de maintien et de changement de niveau des messages ATC sont regroupées et aiguillées de la façon suivante : 20 VERS LE FGS : MAINTAIN[level] CLIMB TO[level] DESCEND TO[level] MAINTAIN BLOCK[level] TO[level] 25 CLIMB TO AND MAINTAIN BLOCK[level] TO[level] DESCEND TO AND MAINTAIN BLOCK[level] TO[level] CRUISE CLIMB TO[level] CRUISE CLIMB ABOVE[level] STOP CLIMB AT [level] STOP DESCENT AT [level] EXPEDITE CLIMB TO[level] EXPEDITE DESCENT TO[level] IMMEDIATELY CLIMB TO[level] IMMEDIATELY DESCENT TO[level] VERS LE FMS ET/OU LE FGS : AT[time] CLIMB TO[level] AT[position] CLIMB TO[level] AT[time] DESCEND TO[level] AT[position] DESCEND TO[level] CLIMB TO REACH[level] BY [time] CLIMB TO REACH[level] BY [position] DESCEND TO REACH[level] BY [time] DESCEND TO REACH[level] BY [position] AFTER PASSING[position] CLIMB TO[level] AFTER PASSING[position] DESCEND TO[level] REACH [level] BY[position] REACH [level] BY [time] STATE TOP OF DESCENT • Les clairances de Route des messages ATC sont regroupées et aiguillées de la façon suivante : VERS LE FMS : CROSS [position] AT [level] CROSS [position] AT OR ABOVE [level] CROSS [position] AT OR BELOW [level] CROSS [position] AT AND MAINTAIN [level] CROSS [position] BETWEEN [level] AND [level] CROSS [position] AT [time] CROSS [position] AT OR BEFORE [time] CROSS [position] AT OR AFTER [time] CROSS [position] BETWEEN [time] AND [time] CROSS [position] AT [speed] CROSS [position] AT OR LESS THAN [speed] CROSS [position] AT OR GREATER THAN [speed] CROSS [position] AT [time] AT [level] CROSS [position] AT OR BEFORE [time] AT [level] CROSS [position] AT OR AFTER [time] AT [level] CROSS [position] AT AND MAINTAIN [level]; AT [speed] AT [time] CROSS [position] AT AND MAINTAIN [level] AT [time] CROSS [position] AT AND MAINTAIN [level] AT [speed] OFFSET [specifiedDistance] [direction] OF ROUTE AT [position] OFFSET [specifiedDistance] [direction] OF ROUTE AT [time] OFFSET [specifiedDistance] [direction] OF ROUTE PROCEED BACK ON ROUTE REJOIN ROUTE BY [position] REJOIN ROUTE BY [time] RESUME OWN NAVIGATION [DepartureClearance] PROCEED DIRECT TO [position] WHEN ABLE PROCEED DIRECT TO [position] AT [time] PROCEED DIRECT TO [position] AT [position] PROCEED DIRECT TO [position] AT [level] PROCEED DIRECT TO [position] CLEARED TO [position] VIA [routeClearance] CLEARED [routeClearance] CLEARED [procedureName] CLEARED TO DEVIATE UP TO [specifiedDistance] [direction] OF ROUTE AT [position] CLEARED [routeClearance] AT [position] CLEARED [procedureName] HOLD AT [position] MAINTAIN [level] INBOUND TRACK [degrees] [direction] TURNS [legtype] HOLD AT [position] AS PUBLISHED MAINTAIN [level] • Les messages de contexte et de négociation des messages ATC sont affichés sur l'écran du calculateur et /ou envoyés à la fonction de communication mais ne sont pas reroutés vers un autre équipement : UNABLE STANDBY REQUEST DEFERRED ROGER AFFIRM NEGATIVE ERROR [errorInformation] 5 END SERVICE SERVICE UNAVAILABLE WHEN READY THEN DUE TO [traffictype] TRAFFIC 10 DUE TO AIRSPACE RESTRICTION DISREGARD [freetext] AT PILOTS DISCRETION ALL ATS TERMINATED 15 IDENTIFICATION LOST Messages du type "CAN YOU ACCEPT ..." et "WHEN CAN YOU ACCEPT ..." REQUEST FORWARDED RVR RUNWAY [runway] [rvr] REQUEST FLIGHT PLAN 20 REQUEST ALREADY RECEIVED NO DELAY EXPECTED DELAY NOT DETERMINED EXPECTED APPROACH TIME [time] LOGICAL ACKNOWLEDGMENT 25 IMMEDIATELY 2 STATE PREFERRED LEVEL USE OF LOGICAL ACKNOWLEDGMENT PROHIBITED FLIGHT PLAN NOT HELD ROGER 7500 LEAVE CONTROLLED AIRSPACE REQUEST AGA1N WITH NEXT UNIT ALTIMETER [altimeter] RADAR SERVICE TERMINATED RADAR CONTACT [position] RADAR CONTACT LOST CHECK STUCK MICROPHONE [frequency] ATIS [atiscode] NEXT DATA AUTHORITY [facility] [facilitydesignation] SQUAWK IDENT CONFIRM ATIS CODE IDENTIFIED [position] [facilitydesignation] ATIS [atiscode] CURRENT [facilitydesignation] ALTIMETER [altimeter] • Les messages de communication des messages ATC sont affichés sur l'écran du calculateur et/ou envoyés à la fonction de communication et vers l'équipement de sélection de fréquence (par exemple à l'équipement de gestion radio RMP pour Radio Management Panel ) : VERS LE RMP : CONTACT [unitname] [frequency] MONITOR [unitname] [frequency] VERS LE FMS ET/OU LE RMP : AT [position] CONTACT [unitname] [frequency] AT [time] CONTACT [unitname] [frequency] AT [position] MONITOR [unitname] [frequency] AT [time] MONITOR [unitname] [frequency] • Les messages de demande d'identification sont envoyés au transpondeur (XPDR) : SQUAWK [code] STOP SQUAWK SQUAWK MODE CHARLIE STOP SQUAWK MODE CHARLIE • Les messages de demande d'information de type REPORT et CONFIRM sont envoyés au FMS, car cet équipement est connecté à la plupart des bus de l'aéronef et connaît les données à renvoyer. On notera que dans le cas de messages couplés (c'est-à-dire destinés au FMS et au FGS, comme par exemple le message AT[position] DESCEND TO[level] ), une partie AT [position] est envoyée au FMS, et l'autre partie à un autre équipement, le FGS en l'occurrence. Quand la condition est remplie, le FMS alerte le routeur qui propose une réaffectation de niveau de clairance au paramètre [level]. Pour cette raison, on a représenté sur la figure du dessin une flèche dirigée du FMS 4 vers le calculateur 3. Selon une autre caractéristique de l'invention, le procédé est mis en oeuvre de façon automatique (par exemple pour un drone). Dans ce cas, les clairances FGS modifient directement les paramètres concernés du FGS pour activer la clairance. Par exemple pour la clairance CLIMB TO [level] , on réaffecte dans le système de guidage l'altitude de clairance au paramètre [level] et on demande l'engagement du mode de montée. Selon une autre caractéristique de l'invention, le procédé est mis en oeuvre de façon semi-automatique, avec intervention de l'équipage pour engager une action. La plupart des aéronefs disposent en effet d'un écran d'affichage et de boutons de confirmation. Dans le cas de l'exemple CLIMB TO [level ] , on peut par exemple afficher sur le bandeau de contrôle du vol (FCU : Flight Control Unit ) la valeur de l'altitude [level] et laisser le soin à l'équipage d'engager le mode de montée en appuyant sur le bouton approprié. 1. 5 2. 10 20 3. 25 4. 5.  • The hold and level change clearances of ATC messages are grouped and routed as follows: 20 TOWARD THE FGS: MAINTAIN [level] CLIMB TO [level] DESCEND TO [level] MAINTAIN BLOCK [level] TO [level] 25 CLIMB TO AND MAINTAIN BLOCK [level] TO [level] DESCEND TO AND MAINTAIN BLOCK [level] TO [level] CRUISE CLIMB TO [level] CRUISE CLIMB ABOVE [level] STOP CLIMB TO [level] STOP DESCENT AT [level] SHIPPED CLIMB TO [level] EXPEDITE DESCENT TO [level] IMMEDIATELY CLIMB TO [level] IMMEDIATELY DESCENT TO [level] TO FMS AND / OR FGS: AT [time] CLIMB TO [level] AT [position] CLIMB TO [level] AT [time] DESCEND TO [level] AT [position] DESCEND TO [level] CLIMB TO REACH [level] BY [time] CLIMB TO REACH [level] BY [position] DESCEND TO REACH [level] BY [time] DESCEND TO REACH [level] BY [position] AFTER PASSING [position] CLIMB TO [level] AFTER PASSING [position] DESCEND TO [level] REACH [level] BY [position] REACH [level] BY [time] STATE TOP OF DESCENT • Messa Route Clearances ATC are grouped and routed as follows: TOWARD THE FMS: CROSS [position] AT [level] CROSS [position] AT OR ABOVE [level] CROSS [position] AT OR BELOW [level] CROSS [position] AT AND MAINTAIN [level] CROSS [position] BETWEEN [level] AND [level] CROSS [position] AT [time] CROSS [position] AT OR BEFORE [time] CROSS [position] AT OR AFTER [time] CROSS [position] BETWEEN [time ] AND [time] CROSS [position] AT [speed] CROSS [position] AT OR LESS THAN [speed] CROSS [position] AT OR GREATER THAN [speed] CROSS [position] AT [time] AT [level] CROSS [position] ] AT OR BEFORE [time] AT [level] CROSS [position] AT OR AFTER [time] AT [level] CROSS [position] AT AND MAINTAIN [level]; AT [speed] AT [time] CROSS [position] AT AND MAINTAIN [level] AT [time] CROSS [position] AT AND MAINTAIN [level] AT [speed] OFFSET [specifiedDistance] [direction] OF ROUTE AT [position] OFFSET [specifiedDistance] [direction] OF ROUTE AT [time] OFFSET [specifiedDistance] [direction] OF ROUTE PROCEED BACK ON ROUTE REJOIN ROUTE BY [position] REJOIN ROUTE BY [time] EXECUTE OWN NAVIGATION [DepartureClearance] PROCEED DIRECT TO [position] WHEN ABLE PROCEED DIRECT TO [position] AT [time] PROCEED DIRECT TO [position] AT [position] PROCEED DIRECT TO [position] AT [level] PROCEED DIRECT TO [position] CLEARED TO [position] VIA [routeClearance] CLEARED [routeClearance] CLEARED [procedureName] CLEARED TO DEVIATE UP TO [specifiedDistance] [direction] OF ROAD AT [position] CLEARED [routeClearance] AT [position] CLEARED [procedureName] HOLD AT [position] MAINTAIN [level] INBOUND TRACK [degrees] [direction] TURNS [legtype] HOLD AT [position] AS PUBLISHED MAINTAIN [level] • Context messages and ATC messages are displayed on the computer screen and / or sent to the communication function but are not rerouted to another device: UNABLE STANDBY REQUEST DEFERRED ROGER AFFIRM NEGATIVE ERROR [errorInformation] 5 END SERVICE UNAVAILABLE SERVICE WHEN READY THEN DUE TO [traffictype] TRAFFIC 10 DUE TO AIRSPACE RESTRICTION DISREGARD [freetext] AT PILOTS DISCRETE ALL ATS TERMINATED 15 IDENTIFICATION LOST Messages of the type "CAN YOU ACCEPT ..." and "WHEN CAN YOU ACCEPT ..." REQUEST FORWARDED RVR RUNWAY [runway] [rvr] REQUEST FLIGHT PLAN 20 REQUEST ALREADY RECEIVED NO DELAY EXPECTED DELAY NOT DETERMINED EXPECTED APPROACH TIME [time] LOGICAL ACKNOWLEDGMENT 25 IMMEDIATELY 2 STATE PREFERRED LEVEL USE OF LOGICAL ACKNOWLEDGMENT PROHIBITED FLIGHT PLAN NOT HELD ROGER 7500 LEAVE CONTROLLED AIRSPACE REQUEST AGA1N WITH NEXT UNIT ALTIMETER [altimeter] RADAR SERVICE TERMINATED CONTACT RADAR [position] CONTACT RADIO LOST CHECK STUCK MICROPHONE [frequency] ATI S [atiscode] NEXT DATA AUTHORITY [facility] [facilitydesignation] SQUAWK IDENT CONFIRM ATIS IDENTIFIED CODE [position] [facilitydesignation] ATIS [atiscode] CURRENT [facilitydesignation] ALTIMETER [altimeter] • ATC message messages are displayed on the computer screen and / or sent to the communication function and to the frequency selection equipment (for example to the radio management equipment RMP for Radio Management Panel): TOWARD THE RMP: CONTACT [unitname] [frequency] MONITOR [unitname] [frequency] TO FMS AND / OR RMP: AT [position] CONTACT [unitname] [frequency] AT [time] CONTACT [unitname] [frequency] AT [position] MONITOR [unitname] [frequency] AT [ time] MONITOR [unitname] [frequency] • The identification request messages are sent to the transponder (XPDR): SQUAWK [code] STOP SQUAWK SQUAWK CHARLIE MODE STOP SQUAWK MODE CHARLIE • REPORT information request messages and CONFIRM are approx This equipment is connected to most of the aircraft's buses and knows the data to be sent back. Note that in the case of coupled messages (that is to say, intended for the FMS and the FGS, such as for example the message AT [position] DESCEND TO [level]), a part AT [position] is sent to the FMS , and the other party to another equipment, the FGS in this case. When the condition is fulfilled, the FMS alerts the router that proposes a clearance level reassignment to the [level] parameter. For this reason, there is shown in the figure of the drawing a directed arrow from the FMS 4 to the computer 3. According to another characteristic of the invention, the method is implemented automatically (for example for a drone). In this case, the FGS clearances directly modify the relevant parameters of the FGS to activate the clearance. For example, for CLIMB TO [level] clearance, the clearing altitude is reassigned to the [level] parameter in the guidance system and the climb mode commitment is requested. According to another characteristic of the invention, the method is implemented semi-automatically, with the crew's intervention to initiate an action. Most aircraft have a display screen and confirmation buttons. In the case of the example CLIMB TO [level], it is possible for example to display on the flight control unit (FCU: Flight Control Unit) the value of the altitude [level] and leave it to the flight crew. engage the climb mode by pressing the appropriate button. 1. 5 2. 10 20 3. 25 4. 5.

Claims (1)

REVENDICATIONS 1. Procédé de routage des clairances numériques ATC reçues par un aéronef, caractérisé en ce qu'un calculateur embarqué (3) analyse les clairances reçues à bord et les aiguille vers les équipements destinataires. Procédé selon la revendication 1, caractérisé en ce que les clairances sont regroupées selon les catégories suivantes : clairances de cap, clairances de vitesse, clairances de maintien et de changement de niveau, clairances de route, clairances comportant des messages de contexte et de négociation destinés seulement à être affichés sur un écran, clairances contenant des messages de communication destinés à être affichés sur un écran et à être envoyés à un équipement de sélection de fréquence, clairances comportant des messages de demande d'identifications envoyés au transpondeur, et clairances comportant des demandes d'information de type REPORT et CONFIRM , ces clairances étant aiguillées vers l'un au moins des équipements destinataires appropriés suivants : le système de conduite de vol FMS ou FGS, le système de gestion radio RMP, le transpondeur XPDR, un équipement de communication, un équipement d'affichage, ou un équipement de surveillance ISS, TAWS, ACAS ou radar météorologique. Procédé selon la revendication 1 ou 2, caractérisé en ce que le calculateur embarqué est l'un au moins des calculateurs suivants : un calculateur dédié, un calculateur intégré à l'unité de communication CMU ou un calculateur intégré au système de conduite de vol FMS ou FGS. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il est mis en oeuvre de façon automatique. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il est mis en oeuvre de façon semi-automatique, avec intervention de l'équipage pour engager une action. 30  1. A method for routing ATC digital clearances received by an aircraft, characterized in that an onboard computer (3) analyzes the clearances received on board and the needle to the destination equipment. A method according to claim 1, characterized in that the clearances are grouped according to the following categories: heading clearances, speed clearances, hold and level change clearances, clearances, clearances including context and negotiation messages intended for only to be displayed on a screen, clearances containing communication messages intended to be displayed on a screen and to be sent to a frequency selection equipment, clearances comprising identification request messages sent to the transponder, and clearances comprising requests for information of the REPORT and CONFIRM type, these clearances being directed to at least one of the following appropriate destination equipment: the flight control system FMS or FGS, the radio management system RMP, the transponder XPDR, a flight control equipment communication, display equipment, or monitoring equipment ISS, TAWS, ACAS or weather radar. Method according to Claim 1 or 2, characterized in that the on-board computer is at least one of the following computers: a dedicated computer, a computer integrated in the CMU communication unit or a computer integrated in the FMS flight control system. or FGS. Method according to one of claims 1 to 3, characterized in that it is implemented automatically. Method according to one of claims 1 to 3, characterized in that it is implemented semi-automatically, with intervention of the crew to engage an action. 30
FR0701933A 2007-03-16 2007-03-16 Digital clearance routing method for e.g. drone, involves analyzing digital clearances received on-board by aircraft, using on-board computer, and directing clearances towards recipient equipments by computer Pending FR2913799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0701933A FR2913799A1 (en) 2007-03-16 2007-03-16 Digital clearance routing method for e.g. drone, involves analyzing digital clearances received on-board by aircraft, using on-board computer, and directing clearances towards recipient equipments by computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0701933A FR2913799A1 (en) 2007-03-16 2007-03-16 Digital clearance routing method for e.g. drone, involves analyzing digital clearances received on-board by aircraft, using on-board computer, and directing clearances towards recipient equipments by computer

Publications (1)

Publication Number Publication Date
FR2913799A1 true FR2913799A1 (en) 2008-09-19

Family

ID=38535584

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0701933A Pending FR2913799A1 (en) 2007-03-16 2007-03-16 Digital clearance routing method for e.g. drone, involves analyzing digital clearances received on-board by aircraft, using on-board computer, and directing clearances towards recipient equipments by computer

Country Status (1)

Country Link
FR (1) FR2913799A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251851A1 (en) * 2009-05-14 2010-11-17 Honeywell International Inc. Aircraft clearance enforcement
FR2951005A1 (en) * 2009-10-02 2011-04-08 Thales Sa Process for assisting management of flight of aircraft, involves taking destination flight plan as secondary flight plan when consideration time is included in specific range of time
FR2953668A1 (en) * 2009-12-08 2011-06-10 Airbus Operations Sas METHOD AND DEVICE FOR PROCESSING A REQUEST MESSAGE RECEIVED IN AN AIRCRAFT FROM THE GROUND CONTROL VIA A DATA TRANSMISSION SYSTEM
FR2955959A1 (en) * 2010-02-02 2011-08-05 Thales Sa NAVIGATION ASSISTANCE SYSTEM FOR A DRONE
FR2958418A1 (en) * 2010-04-06 2011-10-07 Thales Sa FLIGHT MANAGEMENT SYSTEM OF AN AIRCRAFT WITHOUT PILOT ON AIRCRAFT
FR3010809A1 (en) * 2013-09-18 2015-03-20 Airbus Operations Sas METHOD AND DEVICE FOR AUTOMATIC MANAGEMENT ON BOARD AN AIRCRAFT AUDIO MESSAGE AIRCRAFT.
US10983248B2 (en) 2018-09-06 2021-04-20 International Business Machines Corporation Weather data collection through incentivized and collaborative drone flights
US11348474B2 (en) 2019-08-07 2022-05-31 Honeywell International Inc. Automation architecture for compliance with air traffic clearances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787658A1 (en) * 1998-12-18 2000-06-23 Sextant Avionique Ground/aircraft digital exchange management aircraft information provision having multiple communication links and calculator automatically determining transmission routing cost/zone dependent.
EP1158479A2 (en) * 2000-02-29 2001-11-28 TRW Inc. An integrated communications management unit and very high frequency data radio
US20030148736A1 (en) * 1995-11-14 2003-08-07 Harris Corporation Wireless, frequency-agile spread spectrum ground link-based aircraft data communication system
WO2004027732A1 (en) * 2002-09-20 2004-04-01 Thales Man-machine interface for controlling the automatic pilot of a heavier-than-air aircraft provided with an atn transmission network terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148736A1 (en) * 1995-11-14 2003-08-07 Harris Corporation Wireless, frequency-agile spread spectrum ground link-based aircraft data communication system
FR2787658A1 (en) * 1998-12-18 2000-06-23 Sextant Avionique Ground/aircraft digital exchange management aircraft information provision having multiple communication links and calculator automatically determining transmission routing cost/zone dependent.
EP1158479A2 (en) * 2000-02-29 2001-11-28 TRW Inc. An integrated communications management unit and very high frequency data radio
WO2004027732A1 (en) * 2002-09-20 2004-04-01 Thales Man-machine interface for controlling the automatic pilot of a heavier-than-air aircraft provided with an atn transmission network terminal

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10002538B2 (en) 2009-05-14 2018-06-19 Honeywell International Inc. Aircraft clearance enforcement
EP2251851A1 (en) * 2009-05-14 2010-11-17 Honeywell International Inc. Aircraft clearance enforcement
US8594863B2 (en) 2009-10-02 2013-11-26 Thales Method and device for aiding the management of an aircraft flight receiving a control clearance
FR2951005A1 (en) * 2009-10-02 2011-04-08 Thales Sa Process for assisting management of flight of aircraft, involves taking destination flight plan as secondary flight plan when consideration time is included in specific range of time
FR2953668A1 (en) * 2009-12-08 2011-06-10 Airbus Operations Sas METHOD AND DEVICE FOR PROCESSING A REQUEST MESSAGE RECEIVED IN AN AIRCRAFT FROM THE GROUND CONTROL VIA A DATA TRANSMISSION SYSTEM
US8332133B2 (en) 2009-12-08 2012-12-11 Airbus Operations (S.A.S.) Method and device for processing a request message received in an aircraft, from ground control, via a data transmission system
FR2955959A1 (en) * 2010-02-02 2011-08-05 Thales Sa NAVIGATION ASSISTANCE SYSTEM FOR A DRONE
EP2355069A1 (en) * 2010-02-02 2011-08-10 Thales System for helping navigation of a drone
US8751061B2 (en) 2010-02-02 2014-06-10 Thales Navigation aid system for a drone
US8515593B2 (en) 2010-04-06 2013-08-20 Thales Flight management system of an unmanned aircraft
EP2375299A1 (en) * 2010-04-06 2011-10-12 Thales Flight monitoring system for an unmanned aircraft
FR2958418A1 (en) * 2010-04-06 2011-10-07 Thales Sa FLIGHT MANAGEMENT SYSTEM OF AN AIRCRAFT WITHOUT PILOT ON AIRCRAFT
FR3010809A1 (en) * 2013-09-18 2015-03-20 Airbus Operations Sas METHOD AND DEVICE FOR AUTOMATIC MANAGEMENT ON BOARD AN AIRCRAFT AUDIO MESSAGE AIRCRAFT.
US9262927B2 (en) 2013-09-18 2016-02-16 Airbus Operations Sas Method and device for automatically managing audio air control messages on an aircraft
US10983248B2 (en) 2018-09-06 2021-04-20 International Business Machines Corporation Weather data collection through incentivized and collaborative drone flights
US11480710B2 (en) 2018-09-06 2022-10-25 International Business Machines Corporation Weather data collection through incentivized and collaborative drone flights
US11348474B2 (en) 2019-08-07 2022-05-31 Honeywell International Inc. Automation architecture for compliance with air traffic clearances

Similar Documents

Publication Publication Date Title
EP2355069B1 (en) System for helping navigation of a drone
FR3025920A1 (en) METHOD FOR REAL-TIME CALCULATION OF A PLANNED TRACK, IN PARTICULAR A FLIGHT PLAN, COMBINING A MISSION, AND A SYSTEM FOR MANAGING SUCH A TRAJECTORY
US10710710B2 (en) Unmanned aerial vehicle (UAV) compliance using standard protocol requirements and components to enable identifying and controlling rogue UAVS
FR2913799A1 (en) Digital clearance routing method for e.g. drone, involves analyzing digital clearances received on-board by aircraft, using on-board computer, and directing clearances towards recipient equipments by computer
US9310477B1 (en) Systems and methods for monitoring airborne objects
US8665121B2 (en) Systems and methods for aircraft flight tracking and display
EP2980775B1 (en) Remote air traffic surveillance data compositing based on datalinked radio surveillance
US11257384B2 (en) Adaptive scheduling of flight trajectory commands for autonomous or remotely controlled air systems executing air traffic control flight clearances
US20120215505A1 (en) Systems and methods for providing a vehicle movement path simulation over a network
FR2945360A1 (en) METHOD AND DEVICE FOR FACILITATING REALIZATION OF ALTITUDE CHANGE MANEUVER WITH REDUCED SPACES OF AN AIRCRAFT
US10157617B2 (en) System and method for rendering an aircraft cockpit display for use with ATC conditional clearance instructions
FR2906921A1 (en) Three dimensional emergency path providing method for aircraft, involves updating searched path based on changes in environmental conditions according to information provided by on-board sensors and exterior information
FR2939558A1 (en) METEOROLOGICAL MODELING METHOD FOR CALCULATING AN AIRCRAFT FLIGHT PLAN
FR3038750A1 (en) METHOD FOR INTEGRATING A NEW NAVIGATION SERVICE IN AN OPEN AIR ARCHITECTURE OPEN ARCHITECTURE SYSTEM OF A CLIENT-SERVER TYPE, IN PARTICULAR A FIM MANUFACTURING SERVICE
US11436930B2 (en) Recording data associated with an unmanned aerial vehicle
FR2935524A1 (en) DEVICE AND METHOD FOR MONITORING THE LOCATION OF GROUND AIRCRAFT
FR2910156A1 (en) Meteorological data e.g. temperature, updating method for aircraft, involves automatically executing request of meteorological data using airborne computer for anticipating updation of information as soon as updation is available
FR2893747A1 (en) SYSTEM, ASSISTED BY SATELLITE, COLLISION ALERT AND TRAFFIC MANAGEMENT OF VEHICLES, SUCH AS AIRCRAFT
FR2908219A1 (en) Aircraft e.g. civilian cargo airplane, guiding device, has guiding unit provided with aircraft guiding rules, and processing all guiding controls of aircraft irrespective of guiding modes, where controls are transmitted to activation unit
FR3056321A1 (en) METHOD AND DEVICE FOR IDENTIFYING AN AIRCRAFT TO AN AUDIO COMMUNICATION
FR2954490A1 (en) Method for dynamic management of flight procedure of flight plan of aircraft i.e. civil airplane, involves representing mandatory or optional flight characteristics of segment by additional attribute that is digitally coded in data base
WO2021046021A1 (en) Determining whether to service an unmanned aerial vehicle
FR2866171A1 (en) Air traffic control information e.g. aircraft position, transmitting method, involves formatting information contained in alarm into report based on preset format when alarm is detected, and sending report to air traffic control system
EP4330946A1 (en) Unmanned aerial vehicle response to object detection
FR3072816A1 (en) METHOD FOR DETERMINING THE DECISION LIMIT POINT (S) RELATING TO THE TRIGGERING OF AN AIRCRAFT EVENT MANEUVER, ASSOCIATED DEVICE AND COMPUTER PROGRAM