FR2901923A1 - Source laser pour application lidar - Google Patents

Source laser pour application lidar Download PDF

Info

Publication number
FR2901923A1
FR2901923A1 FR0604811A FR0604811A FR2901923A1 FR 2901923 A1 FR2901923 A1 FR 2901923A1 FR 0604811 A FR0604811 A FR 0604811A FR 0604811 A FR0604811 A FR 0604811A FR 2901923 A1 FR2901923 A1 FR 2901923A1
Authority
FR
France
Prior art keywords
main
laser
cavity
laser source
source according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0604811A
Other languages
English (en)
Other versions
FR2901923B1 (fr
Inventor
Simon Richard
Arnaud Brignon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to FR0604811A priority Critical patent/FR2901923B1/fr
Priority to EP07729531A priority patent/EP2021827A1/fr
Priority to US12/301,063 priority patent/US20100034222A1/en
Priority to PCT/EP2007/055104 priority patent/WO2007138013A1/fr
Publication of FR2901923A1 publication Critical patent/FR2901923A1/fr
Application granted granted Critical
Publication of FR2901923B1 publication Critical patent/FR2901923B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/235Regenerative amplifiers

Abstract

L'invention concerne une source laser comportant une cavité laser principale auto-adaptative comportant au moins un milieu amplificateur principal selon une direction principale et plusieurs miroirs permettant de créer un hologramme de gain au sein dudit milieu amplificateur principal par interférence d'une première onde optique selon la direction principale et une seconde onde optique selon une direction différente de la direction principale, lesdites ondes étant générées par le milieu amplificateur principal caractérisée en ce qu'elle comprend en outre une source laser secondaire délivrant des photons à une fréquence qu'ils imposent à la cavité principale et des moyens d'introduction desdits photons au sein de la cavité laser principale.

Description

Source laser pour application Lidar Le domaine de l'invention est celui
des sources laser de forte énergie pour les systèmes LIDAR, pour notamment des applications optroniques, industrielles et scientifiques. Par exemple, ces systèmes sont largement utilisés dans les sciences atmosphériques (détection de polluant et d'aérosols, mesures dynamiques des déplacements des masses d'air et des nuages), les sciences des planètes (cartographie des reliefs des planètes, Lidars embarqués sur satellites pour mesures météorologiques). Ces systèmes peuvent également être utilisés en aéronautique (Lidars aéroportés ou Lidars dans les aéroports) pour détecter les turbulences et permettre d'augmenter le trafic aérien tout en assurant une sécurité accrue. De manière générale, la qualité spatiale et spectrale du laser utilisé dans un système Lidar ainsi que son énergie et sa puissance sont cruciales et déterminent directement les performances globales du système. Cependant, il devient difficile de maintenir une bonne qualité de faisceau lorsque l'énergie ou la puissance du laser augmente. En effet, les effets thermiques au sein du cristal laser utilisé comme milieu amplificateur, apportent de fortes aberrations de phase qui contribuent à distordre le front d'onde et à diminuer la qualité de faisceau. Les sources lasers conventionnelles sont donc souvent limitées en énergie / puissance à cause de ces problèmes. Par ailleurs, les sources lasers pour les systèmes LIDAR utilisent un certain nombre de composants critiques, complexes et coûteux pour créer des impulsions et pour affiner spectralement l'émission laser : • Pour obtenir des impulsions de quelques dizaines de nanoseconde, les sources conventionnelles utilisent un système de déclenchement actif tel que une cellule de Pockels ou une cellule acousto-optique. • Pour affiner spectralement l'émission laser, il faut asservir la cavité laser sur un autre laser monofréquence continu de faible puissance. Pour réaliser cet asservissement, il faut monter un des miroirs de la cavité laser sur une câle piézo-électrique pour ajuster au moyen d'une boucle électronique de contre-réaction la longueur de la cavité. La longueur de la cavité laser doit être ainsi contrôlée en temps réel au moyen d'une boucle électronique de contre-réaction.
La figure 1 illustre ce type de source laser : La cavité comporte entre 2 miroirs R1 et R2, un milieu amplificateur MAI pouvant typiquement être un barreau laser en Nd3+ :Y3AI5O12 (Nd:YAG) pompé par lampes ou diodes, la longueur L de la cavité est ainsi définie entre les miroirs R1 et R2. Pour bénéficier d'une source impulsionnelle de forte énergie, la cavité comporte par ailleurs un déclencheur non représenté qui joue le rôle de commutateur permettant au bout d'un certain temps d'accumulation de l'énergie au sein de ladite cavité, de libérer le faisceau laser.
Pour forcer la cavité laser à osciller sur un seul mode longitudinal correspondant à une fréquence unique, on asservit cette cavité laser par une petite cavité laser dite secondaire SL par rapport à la cavité principale préalablement définie. Le petit laser secondaire présentant une longueur de cavité I, est un laser monofréquence qui permet d'injecter dans la cavité laser primaire des photons hv à une fréquence unique v. Le faisceau laser dans la cavité principale oscille préférentiellement sur cette fréquence à condition que cette fréquence corresponde à une fréquence de résonance de la cavité primaire. Pour que cette condition soit satisfaite il est nécessaire que les longueurs respectives des cavités répondent à l'équation : L/1=NX avec N nombre entier et X la longueur d'onde laser Cette condition est satisfaite en introduisant dans la cavité du laser primaire une cale piézoélectrique Cl permettant de régler la longueur L de la cavité du laser primaire et ce pour toute fréquence de fonctionnement.
Afin de contrôler spatialement (correction des aberrations des cristaux lasers), temporellement (génération d'impulsions) et spectralement (fonctionnement monofréquence) le laser, il a aussi été proposé un autre type d'architecture de source qui utilise le mélange à quatre ondes dans le milieu laser comme illustré en figure 2 et qui est notamment décrit dans les articles suivants : Bel'dyugin et alii, Solid-state lasers with self-pumped phase-conjugate mirrors in an active medium, Sov. J. Quantum Electron., vol. 19, pages 740-742 (1989) ; Damzen, Green et Syed, Self-adaptive solidstate laser oscillator formed by dynamic gain-grating holograms, Optics Letters, vol. 20, pages 1704-1706 (1995) ; Sillard, Brignon et Huignard, Gain- grating analysis of a self-starting self-pumped phase-conjugate Nd :YAG loop resonator, IEEE J. Quant. Electron, vol. 34, pages 465-472 (1998). Une telle architecture permet d'obtenir une émission monofréquence sans le recours à un laser secondaire. Ce laser en anneau est formé d'un miroir de sortie possédant une faible réflectivité R1 (typiquement 4% - 10%) et un milieu amplificateur MAI (tête laser 1) dans lequel les ondes inscrivent un hologramme de gain dynamique. Pour cela les miroirs sont disposés de telle manière qu'il soit possible de faire interférer des ondes selon des directions différentiées. Le ~o milieu amplificateur génère des ondes dans toutes les directions, seules certaines peuvent être amplifiées dans la cavité laser. Sur la figure 2, le phénomène d'interférence est schématisé par l'interférence des ondes Al, A3. Les ondes Al et A3 inscrivent un réseau de gain en transmission, encore appelé hologramme en amplitude. L'onde A2 relit le réseau et génère une 15 onde diffractée A4. Les ondes A2 et A3 inscrivent également un réseau en réflexion qui est relu par l'onde Al. L'onde Al est ainsi appelée onde de pompe car inscrivant un réseau en transmission. 20 L'onde A2 est également désignée comme étant une onde de pompe car inscrivant un réseau en réflexion. L'onde A3 est une onde signal L'onde A4 est une onde conjuguée de relecture des réseaux inscrits dans le milieu amplificateur. 25 L'hologramme correspondant aux réseaux d'amplitude inscrits, constitue dans certaines conditions un miroir à conjugaison de phase, c'est à dire que l'onde A4 est l'onde conjuguée en phase de l'onde signal A3. Si l'onde A3 a subi des distorsions de phase lors de sa propagation dans la cavité, l'onde A4 conjuguée en phase va se corriger de ses aberrations lors 30 de sa propagation inverse dans la cavité. . Un tel miroir à conjugaison de phase va donc permettre de compenser les aberrations de phase des milieux laser et donc de créer un faisceau de sortie de bonne qualité spatiale. Pour que l'hologramme de gain soit efficace il faut que le contraste des franges d'interférence soit élevé. II est donc important que les ondes Al 35 et A3 présentent des amplitudes du même ordre de grandeur. Pour favoriser ce phénomène, on introduit dans la cavité un élément non réciproque ENR, permettant d'introduire des pertes dans le sens des aiguilles d'une montre indiqué en figure 2 et non dans le sens inverse. L'élément non réciproque peut typiquement être constitué d'un rotateur de Faraday, de deux polariseurs et d'une lame demi-onde. Au départ, le processus est initié par l'émission spontanée issue du milieu amplificateur MAI. Les ondes Al, A2, A3 et A4 issues de ce bruit commencent à inscrire l'hologramme de gain. Cet hologramme possède une efficacité de diffraction rt. Il est également possible d'introduire d'autres milieux lasers possédant un gain G (MA2 illustré en figure 2 ) pour augmenter l'efficacité du système. Les pertes de la cavité pour une onde oscillant dans le sens inverse des aiguilles d'une montre sur la figure 2 sont désignées par la lettre T. Lorsque lx G x T >1, la condition d'oscillation est vérifiée et les 4 ondes à l'intérieur de la cavité deviennent de plus en plus intenses à chaque tour dans la cavité. L'intensité en sortie du laser croît en proportion. En quelques dizaines de nanosecondes, l'amplification du faisceau extrait toute l'énergie stockée dans les milieux amplificateurs et l'oscillation s'arrête. Le laser fournit donc une impulsion lumineuse. L'émission laser est naturellement mono-fréquence, l'hologramme de gain réalisant un filtre spectral de grande finesse. Néanmoins bien que ce type de cavité laser auto-adaptative soit monofréquence, d'une impulsion à l'autre cette fréquence peut varier. Pour résoudre ce problème, la présente invention propose une nouvelle source laser du même type avec cavité audo-adaptive avec mélange quatre ondes et présentant une source secondaire permettant de forcer la source principale à fonctionner sur la fréquence imposée par cette petite source annexe. Plus précisément l'invention a pour objet une source laser comportant une cavité laser principale auto-adaptative comportant au moins un milieu amplificateur principal selon une direction principale et plusieurs miroirs permettant de créer un hologramme de gain au sein dudit milieu amplificateur principal par interférence d'une première onde optique selon la direction principale et une seconde onde optique de direction différente, lesdites ondes étant générées par le milieu amplificateur principal. La source comprend en outre une source laser secondaire délivrant des photons à une fréquence qu'ils imposent à la cavité principale et des moyens d'introduction desdits photons au sein de la cavité laser principale. Avantageusement, la source laser secondaire est placée selon la direction de la seconde onde optique.
Avantageusement, la source laser comprend un élément non-réciproque permettant de créer des pertes de manière non-réciproque sur des ondes circulant dans un sens ou dans l'autre au sein de la cavité laser principale. Cet élément peut être composé d'un rotateur de Faraday, de 10 deux polariseurs et d'une lame de phase demi-onde. Selon une variante de l'invention, les miroirs sont fortement réfléchissants, le faisceau laser étant extrait de la cavité laser principale par la voie de perte que génère l'élément non-réciproque. Selon une variante de l'invention, la source laser comprend en 15 outre des moyens optiques pour créer une homothétie sur les première et seconde ondes de manière à compenser la divergence qui affecte les ondes après propagation au sein de la cavité laser principale. Les moyens optiques peuvent être de type paire de lentille convergente et lentille divergente. 20 Ils peuvent être placés à proximité du milieu amplificateur principal. Selon une variante de l'invention, la cavité principale comprend au moins un second milieu amplificateur pour augmenter le gain d'amplification au sein de la cavité laser principale. 25 Selon une variante de l'invention, ce second milieu amplificateur peut être avantageusement remplacé par deux milieux amplificateurs entre lesquels est placé un rotateur de polarisation à 90 pour compenser les effets de dépolarisation introduit par effet thermique dans ces deux milieux amplificateurs. 30 L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre et grâce aux figures annexées parmi lesquelles : - la figure 1 illustre un exemple de source laser pour Lidar selon 35 l'art connu ; la figure 2 illustre un exemple de source laser pour Lidar comprenant une cavité auto-adaptative à quatre ondes selon l'art connu ; - la figure 3 illustre un premier exemple de source laser pour Lidar selon l'invention ; la figure 4 illustre un second exemple de source laser pour Lidar selon l'invention ; la figure 5 illustre un troisième exemple de source laser selon l'invention comprenant un milieu amplificateur dédoublé et un rotateur de polarisation à 90 .
De manière générale, la source laser selon l'invention comprend un milieu amplificateur au sein duquel est créé un réseau de gain en transmission comme décrit dans une cavité auto-adaptative selon l'art connu. 15 Pour résoudre le problème de la fréquence du laser susceptible de changer d'une impulsion à l'autre qui peut être de l'ordre de 1 GigaHertz selon l'art antérieur, l'invention propose d'utiliser un petit laser de faible puissance permettant d'injecter des photons dans la cavité laser principale, ces photons sont amplifiés et imposent leur fréquence à la cavité laser 20 principale. Dans les systèmes d'injection classique, pour que les photons injectés puissent être amplifiés, il faut que leur fréquence soit résonnante avec les fréquences propres de la cavité comme cela a été explicité dans le préambule de l'invention. II faut placer un des miroirs de la cavité à injecter sur une cale piézo-électrique pour ajuster au moyen d'une boucle 25 électronique de contre-réaction, la longueur de la cavité. Selon l'invention, il n'y a plus besoin de contrôler la longueur de la cavité à injecter puisque la cavité est auto-adaptative et refermée par un miroir non-linéaire formé par le mélange à quatre ondes du faisceau présent dans la cavité. L'hologramme de gain dynamique qui se forme dans le milieu 30 amplificateur principal est donc automatiquement adapté à la fréquence du laser continu. La figure 3 illustre un premier exemple de laser selon l'invention utilisant avantageusement 3 milieux amplificateurs. En effet on préférera en général utiliser plusieurs milieux à gain pour obtenir un gain maximal (égal à 35 la somme des gains de chaque milieu amplificateur) au sein de la cavité 10 laser : un premier milieu amplificateur MAI au sein duquel est généré l'hologramme de gain par interférences des ondes Al et A3 et des ondes A2 et A3, un second milieu amplificateur MA2 et un troisième milieu amplificateur MA3.
La petite source laser dite secondaire SLs de faible puissance et monofréquence est injectée dans la cavité laser principale par l'intermédiaire d'un élément non-réciproque de type isolateur de Faraday Is pour éviter les retours de faisceau depuis la cavité principale en direction de ladite source secondaire. io Un ensemble de miroirs HR de haute réflectivité permet de constituer la cavité laser principale comme selon la configuration de l'art connu comportant une cavité auto-adaptative. Par contre avantageusement le miroir R1 correspondant au miroir de sortie de l'art antérieur est remplacé par un miroir fortement réfléchissant Rmax pour diminuer les pertes dans la 15 cavité et le faisceau laser de sortie Fs est récupéré au niveau de l'élément non-réciproque RF qui peut typiquement être composé d'un rotateur de Faraday et d'une lame de phase demi-onde, insérés entre deux polariseurs Poil et Pol2. Typiquement, il a été validé expérimentalement que les utilisations du miroir Rmax et de la sortie au niveau de l'élément nonréciproque permettait une augmentation de l'énergie de sortie d'un facteur entre 2 et 3.
Selon une variante de l'invention il est également proposé d'utiliser des moyens optiques pour compenser la divergence qui est créée 25 sur le faisceau laser amplifié intra-cavité. Ces moyens optiques peuvent avantageusement être de type télescope. La figure 4 illustre une telle configuration dans laquelle un ensemble de lentilles convergente et divergente est introduit à proximité du milieu amplificateur MAI dans lequel sont produites les interférences. Ce 30 télescope permet d'adapter la dimension du faisceau à celle des barreaux lasers. En calculant notamment l'évolution de la dimension du faisceau dans la cavité, il apparaît que sans télescope, le faisceau pourrait atteindre naturellement des dimensions très importantes (diamètre de 10 mm au maximum au niveau des ondes Al et A2). Or les barreaux lasers ont 35 généralement une dimension plus petite (typiquement 4 - 7 mm de diamètre).
Il en résulte un effet de vignetage très important qui dégrade très fortement la qualité de faisceau et la stabilité du laser. Le télescope permet de diminuer la taille du faisceau afin qu'il reste toujours adapté à la taille des barreaux laser. Ce télescope Tel peut avoir une valeur de grandissement typique de 1,5 (par exemple une lentille divergente de focale -100 mm associée à une lentille convergente de focale +150 mm). Le télescope permet donc une amélioration de la qualité de faisceau et une meilleure stabilité des performances globales du laser.
De manière générale, les lasers délivrant des impulsions de forte puissance subissent des problèmes d'échauffement générant des problèmes de dépolarisation. Or, la plupart des applications laser ont besoin d'un faisceau de sortie polarisée notamment pour pouvoir faire des opérations de conversion de fréquence dans des cristaux non-linéaires. Par ailleurs la dépolarisation affecte directement la qualité de faisceau et peut diminuer l'énergie de sortie du laser. Lorsque les milieux lasers sont utilisés à forte cadence (typiquement >100 Hz), les effets de dépolarisation deviennent extrêmement gênants.
Afin de partiellement compenser cet effet, une variante de l'invention propose de dédoubler le milieu amplificateur qui se trouve juste avant la sortie du laser comme le montre la figure 5. L'utilisation de 2 milieux amplificateurs identiques MA2, MA2' et d'un rotateur de polarisation à 90 entre les deux permet de compenser la dépolarisation de ces deux milieux amplificateurs. Cette figure illustre par ailleurs des positionnements de lentilles f1, f2, f3, f4 permettant d'adapter le faisceau au sein de la cavité.
Exemple de réalisation La source laser selon l'invention comprend : une petite source laser secondaire continu, délivrant quelques centaines de pW la cavité auto-adaptative comprend 3 milieux amplificateurs en Nd :YAG pompés par lampe flash ou par diodes lasers à 100 35 Hz, 2 milieux amplificateurs correspondant aux milieux dédoublés illustrés en figure 5. Typiquement il peut s'agir de barreaux laser de diamètre égal à 6 mm et présentant chacun un gain goL de 3,5, le facteur exp (goL) correspondant au facteur d'amplification du faisceau laser au sein de la cavité.
L'énergie de sortie obtenue peut être ainsi supérieure à 300 mJ délivrant des impulsions de 20 ns avec une qualité de faisceau 1,5 fois la limite de diffraction.
Avec des diamètres de barreau de 10 mm, dans une 10 configuration identique à la précédente, l'énergie de sortie délivrée devient de l'ordre du Joule.

Claims (10)

REVENDICATIONS
1. Source laser comportant une cavité laser principale auto-adaptative comportant au moins un milieu amplificateur principal (MAI) selon une direction principale et plusieurs miroirs (HR) permettant de créer un hologramme de gain au sein dudit milieu amplificateur principal par interférence d'une première onde optique (Al) selon la direction principale et une seconde onde optique (A3) selon une direction différente de la direction principale, lesdites ondes étant générées par le milieu amplificateur principal caractérisée en ce qu'elle comprend en outre une source laser secondaire (SLs) délivrant des photons à une fréquence qu'ils imposent à la cavité principale et des moyens d'introduction desdits photons (Is) au sein de la cavité laser principale.
2. Source laser selon la revendication 1, caractérisée en ce la source laser secondaire est placée selon la direction de la seconde onde 15 optique
3. Source laser selon la revendication 1, caractérisée en ce qu'elle comprend un élément non-réciproque (RF) permettant de créer des pertes de manière non-réciproque sur des ondes circulant dans un sens ou dans 20 l'autre au sein de la cavité laser principale.
4. Source laser selon la revendication 3, caractérisée en ce que l'élément non-réciproque est composé d'un rotateur de Faraday 25
5. Source laser selon l'une des revendications 3 ou 4, caractérisée en ce que les miroirs sont fortement réfléchissants, le faisceau laser étant extrait de la cavité laser principale depuis l'élément non-réciproque qui génère des pertes. 30
6. Source laser selon l'une des revendications 3 à 5, caractérisée en ce qu'elle comprend en outre un rotateur de polarisation pour compenser les effets de dépolarisation introduit par les effets thermiques dans les milieux amplificateurs introduits dans la cavité.15
7. Source laser selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comprend en outre des moyens optiques (Tel) pour créer une homothétie sur les première et seconde ondes de manière à adapter le diamètre des faisceaux au diamètre du ou des milieux amplificateurs de la cavité.
8. Source laser selon la revendication 7, caractérisée en ce que les moyens optiques sont de type paire de lentille convergente et lentille 10 divergente.
9. Source laser selon l'une des revendications 7 ou 8, caractérisée en ce que les moyens optiques sont placés à proximité du milieu amplificateur principal.
10. Source laser selon l'une des revendications 1 à 9, caractérisée en ce que la cavité principale comprend au moins un second milieu amplificateur (MA2, MA2') pour augmenter le gain d'amplification au sein de la cavité laser principale. 20
FR0604811A 2006-05-30 2006-05-30 Source laser pour application lidar Active FR2901923B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR0604811A FR2901923B1 (fr) 2006-05-30 2006-05-30 Source laser pour application lidar
EP07729531A EP2021827A1 (fr) 2006-05-30 2007-05-25 Source laser pour application lidar
US12/301,063 US20100034222A1 (en) 2006-05-30 2007-05-25 Laser source for lidar application
PCT/EP2007/055104 WO2007138013A1 (fr) 2006-05-30 2007-05-25 Source laser pour application lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0604811A FR2901923B1 (fr) 2006-05-30 2006-05-30 Source laser pour application lidar

Publications (2)

Publication Number Publication Date
FR2901923A1 true FR2901923A1 (fr) 2007-12-07
FR2901923B1 FR2901923B1 (fr) 2009-11-20

Family

ID=37600846

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0604811A Active FR2901923B1 (fr) 2006-05-30 2006-05-30 Source laser pour application lidar

Country Status (4)

Country Link
US (1) US20100034222A1 (fr)
EP (1) EP2021827A1 (fr)
FR (1) FR2901923B1 (fr)
WO (1) WO2007138013A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10337996B2 (en) * 2016-08-25 2019-07-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Lidar instrument and method of operation
CN107339953B (zh) * 2017-03-02 2020-02-07 天津大学 一种适用于多反射场景的自适应照明优化方法
CN106996754B (zh) * 2017-03-02 2019-02-15 天津大学 一种基于正弦光栅投影的自适应照明优化方法
RU192951U1 (ru) * 2018-12-10 2019-10-08 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Твердотельный лазер высокой яркости с управляемыми спектральными свойствами

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025367A1 (fr) * 1994-03-15 1995-09-21 The Secretary Of State For Defence Systeme oscillateur laser

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272733A (en) * 1978-10-20 1981-06-09 Allied Chemical Corporation Broadly tunable chromium-doped beryllium aluminate lasers and operation thereof
US4949358A (en) * 1988-04-25 1990-08-14 Coherent, Inc. Ring laser with improved beam quality
US5305334A (en) * 1992-12-16 1994-04-19 Litton Systems, Inc. Pulsed solid state ring laser injection locking stabilizer
GB9618131D0 (en) * 1996-08-30 1996-10-09 Sgs Thomson Microelectronics Improvements in or relating to an ATM switch
GB9618158D0 (en) * 1996-08-30 1996-10-09 Sgs Thomson Microelectronics Improvements in or relating to an ATM switch
GB9618137D0 (en) * 1996-08-30 1996-10-09 Sgs Thomson Microelectronics Improvements in or relating to an ATM switch
GB9618129D0 (en) * 1996-08-30 1996-10-09 Sgs Thomson Microelectronics Improvements in or relating to an ATM switch
GB9618132D0 (en) * 1996-08-30 1996-10-09 Sgs Thomson Microelectronics Improvements in or relating to an ATM switch
GB9618128D0 (en) * 1996-08-30 1996-10-09 Sgs Thomson Microelectronics Improvements in or relating to an ATM switch
FR2860291B1 (fr) * 2003-09-26 2005-11-18 Thales Sa Dispositif capteur de vitesse de rotation interferometrique a fibre optique
FR2869162B1 (fr) * 2004-04-14 2006-07-14 Centre Nat Rech Scient Cnrse Source laser accordable a adressage optique de la longueur d'onde
FR2880204B1 (fr) * 2004-12-23 2007-02-09 Thales Sa Source laser a recombinaison coherente de faisceaux

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025367A1 (fr) * 1994-03-15 1995-09-21 The Secretary Of State For Defence Systeme oscillateur laser

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MINASSIAN A ET AL: "SELF-STARTING TI:SAPPHIRE HOLOGRAPHIC LASER OSCILLATOR", OPTICS LETTERS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 22, no. 10, 15 May 1997 (1997-05-15), pages 697 - 699, XP000656834, ISSN: 0146-9592 *
RUSSELL P M GREEN ET AL: "Dynamic Laser Control Using Feedback from a Gain Grating", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 32, no. 3, March 1996 (1996-03-01), XP011051326, ISSN: 0018-9197 *
THOMPSON B A ET AL: "EFFICIENT OPERATION OF A SOLID-STATE ADAPTIVE LASER OSCILLATOR", APPLIED OPTICS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 41, no. 27, 20 September 2002 (2002-09-20), pages 5638 - 5644, XP001130497, ISSN: 0003-6935 *
TREW M ET AL: "MULTIWATT CONTINUOUS-WAVE ADAPTIVE LASER RESONATOR", OPTICS LETTERS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 25, no. 18, 15 September 2000 (2000-09-15), pages 1346 - 1348, XP000975110, ISSN: 0146-9592 *

Also Published As

Publication number Publication date
US20100034222A1 (en) 2010-02-11
FR2901923B1 (fr) 2009-11-20
WO2007138013A1 (fr) 2007-12-06
EP2021827A1 (fr) 2009-02-11

Similar Documents

Publication Publication Date Title
EP0390662B1 (fr) Générateur laser de puissance avec contrôle de la direction d'émission du faisceau de sortie
EP2929603B1 (fr) Système et procédé de génération d'une salve d'impulsions laser ultracourtes et de forte puissance
EP3738180B1 (fr) Systeme laser et procede de generation d'impulsions laser de tres haute cadence
FR2977988A1 (fr) Dispositif et procede passif de combinaison coherente de deux faisceaux optiques amplifies et/ou elargis spectralement.
EP0403340B1 (fr) Laser de puissance à haut rendement à structure MOPA
EP1878096A1 (fr) Dispositif laser declenche a fibre photonique
FR3081737A1 (fr) Procedes et systemes pour la generation d'impulsions laser de forte puissance crete
FR2901923A1 (fr) Source laser pour application lidar
EP2567431B1 (fr) Cavité laser à extraction centrale par polarisation pour couplage cohérent de faisceaux intracavité intenses
WO2000025396A1 (fr) Filtres auto-adaptes pour l'affinement de l'emission laser
EP0559878A1 (fr) Laser de puissance a deflexion.
EP3074815B1 (fr) Système pour générer des impulsions optiques courtes de durée inférieure à la période de la porteuse optique utilisant le principe de l'amplification paramétrique
EP0197848B1 (fr) Dispositif permettant d'allonger les impulsions d'un laser
EP1175716B1 (fr) Dispositif et procede permettant le mode-blocage d'un laser
FR2786938A1 (fr) Dispositif de generation d'un faisceau laser de puissance, de haute qualite
EP2443706B1 (fr) Générateur et système laser a sous cavités couplées
FR3035274A1 (fr) Systeme d'emission laser impulsionnelle accordable
WO2024003068A1 (fr) Système et procédé de compression d'impulsions lumineuses
FR2966291A1 (fr) Source laser nanoseconde
FR2858475A1 (fr) Source laser de puissance a grande finesse spectrale
FR2742009A1 (fr) Procede et dispositif pour produire une impulsion laser d'une duree longue ajustable
FR2562341A1 (fr) Laser a impulsions ultra-breves
WO2005015700A2 (fr) Source laser de puissance a cavite optique en anneau a grande finesse spectrale
WO2003095133A2 (fr) Laser a impulsions ultracourtes de puissance

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 15

PLFP Fee payment

Year of fee payment: 16

PLFP Fee payment

Year of fee payment: 17

PLFP Fee payment

Year of fee payment: 18

PLFP Fee payment

Year of fee payment: 19