FR2814990A1 - Reservoir tout-composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule - Google Patents

Reservoir tout-composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule Download PDF

Info

Publication number
FR2814990A1
FR2814990A1 FR0012801A FR0012801A FR2814990A1 FR 2814990 A1 FR2814990 A1 FR 2814990A1 FR 0012801 A FR0012801 A FR 0012801A FR 0012801 A FR0012801 A FR 0012801A FR 2814990 A1 FR2814990 A1 FR 2814990A1
Authority
FR
France
Prior art keywords
tank
gas
plastic
composite
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0012801A
Other languages
English (en)
Other versions
FR2814990B1 (fr
Inventor
Eric Lacire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0012801A priority Critical patent/FR2814990B1/fr
Priority to DE60130787T priority patent/DE60130787T2/de
Priority to EP01976364A priority patent/EP1328754B1/fr
Priority to PCT/FR2001/003071 priority patent/WO2002029309A1/fr
Priority to ES01976364T priority patent/ES2290176T3/es
Publication of FR2814990A1 publication Critical patent/FR2814990A1/fr
Application granted granted Critical
Publication of FR2814990B1 publication Critical patent/FR2814990B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Dans ce réservoir tout-composite du type présentant une chemise interne (2) en plastique destinée à être en contact avec le gaz entourée par un bobinage filamentaire (3) noyé dans une matrice de résine, la matière plastique de la chemise interne et la résine du bobinage contiennent des charges conductrices thermiquement. Ces charges participent à la dissipation des calories du gaz naturel vers l'ambiante. La chemise devient ainsi conductrice thermique et non plus une barrière thermique et permet un remplissage rapide du réservoir en gaz sous pression.

Description

<Desc/Clms Page number 1>
Réservoir tout-composite de stockage de gaz naturel comprimé à haute pression à bord d'un véhicule
L'invention concerne un réservoir tout-composite de stockage de gaz naturel comprimé à haute pression à bord d'un véhicule.
Le stockage de gaz naturel sous forme de gaz comprimé à haute pression à bord d'un véhicule, représente un bon compromis d'un point de vue : - du ratio masse du réservoir/capacité en eau (exprimé en kg/litre), - et du coût.
La réglementation concernant les réservoirs haute pression pour le stockage à bord des véhicules automobiles du gaz naturel utilisé comme combustible, reconnaît 4 types de réservoirs de forme cylindrique : 1. les réservoirs entièrement métalliques (1 kg/litre) ; 2. les réservoirs frettés dont le"liner"ou chemise intérieure (partie en contact avec le gaz) assure à lui seul la résistance mécanique ; l'enroulement filamentaire autour de la chemise n'assure qu'un complément de sécurité par rapport à la rupture (0,8 kg/litre) ; 3. les réservoirs entièrement renforcés, constitués d'une chemise métallique assurant l'étanchéité et d'un renfort bobiné sur les parties cylindriques ainsi que sur les extrémités (0,4 kg/litre) ; 4. les réservoirs"tout-composites"constitués d'une chemise en matière plastique et bobinés sur les parties cylindriques ainsi que sur les extrémités (0,35 kg/litre). De tels réservoirs sont connus par exemple par les documents US 5025943 et US 5499739.
Ces 4 types de réservoirs répondent aux spécifications données par la réglementation et font l'objet de contrôles rigoureux pendant leur durée de vie. Soumis à des essais particulièrement sévères (statique, fatigue, impact de projectiles basse et haute énergie, feu), ils présentent le même niveau de sécurité.
La substitution d'un réservoir en acier (type 1) par un réservoir "tout-composite" (type 4) est donc une réponse à l'allégement du stockage de gaz, embarqué à bord d'un véhicule.
<Desc/Clms Page number 2>
Pour obtenir l'équivalent énergétique d'un carburant liquide (essence ou gasoil) contenu dans un volume V, il faut stocker, à 200 bar, un volume de gaz naturel égal à 4 fois le volume de carburant liquide (soit 4V).
De plus, le temps de remplissage d'un carburant gazeux est plus long que celui d'un carburant liquide, si la station n'est pas dimensionnée en conséquence.
A titre d'exemple, le temps nécessaire au remplissage d'un réservoir de gaz naturel à 200 bar d'une capacité égale à 100 litres (en eau) peut varier de 8 heures pour une station domestique (débit de remplissage :
Figure img00020001

3 m (n)/h), à 3 minutes pour une station-service utilisant un stockage tampon (débit de remplissage : 600 m (n)/h).
Ainsi, le remplissage rapide (remplissage dont la durée est équivalente à celle nécessaire pour effectuer le remplissage d'un carburant liquide) est possible, mais à condition que le réservoir dissipe correctement les calories du gaz engendrées par la compression dans un temps très court, vers l'extérieur. Or tel n'est pas le cas dans les réservoirs tout-composites connus. La substitution d'un réservoir en acier (type 1) par un réservoir tout-composite (type 4) n'est donc pas aujourd'hui la bonne solution pour réaliser un remplissage rapide.
Autrement dit, si on compare les réservoirs de type 1 (entièrement métalliques) et de type 4 (tout-composites), le bénéfice de l'allégement obtenu avec les seconds est perdu par des propriétés thermiques inférieures à celles des premiers.
Le but de l'invention est de proposer un réservoir tout-composite présentant des qualités thermiques améliorées et vraiment apte au remplissage rapide.
Le but de l'invention est atteint grâce à un réservoir toutcomposite, présentant une chemise interne en plastique, destinée à être en contact avec le gaz, dont la résistance mécanique est assurée par un bobinage filamentaire noyé dans une matrice de résine et caractérisé par la présence de charges conductrices thermiquement dans la matière plastique de la chemise interne. Ces charges participent à la dissipation des calories du gaz naturel vers l'ambiante. La chemise devient ainsi conductrice thermiquement et ne constitue plus une barrière thermique.
<Desc/Clms Page number 3>
Avantageusement, la résine de la matrice du bobinage filamentaire est elle-même chargée en matière thermiquement conductrice, qui confère au bobinage un rôle conducteur ou renforce ce rôle dans le cas où la fibre filamentaire du bobinage est déjà conductrice (comme la fibre de carbone par exemple).
Les produits qui peuvent être utilisés au titre de charge conductrice du plastique de la chemise et de la résine de la matrice sont avantageusement choisis parmi le groupe contenant : les poudres et paillettes métalliques (le métal étant l'aluminium, le fer, le cuivre, l'argent, etc. ) ; les microbilles de verre métallisées, recouvertes de cuivre ou d'autre métal ; les particules de 10 à 500 u. m de carbone (noir de carbone) ; de la fibre de carbone courte (coupée ou autre) ; des poussières de graphite ; de la mousse métallique ; de la mousse de fibres composites en petits fragments.
Avantageusement, la charge conductrice est une poudre métallique ajoutée dans une proportion de l'ordre de 10 à 30% en volume, et de préférence voisine de 20%, ce qui permet d'augmenter considérablement la conductivité sans pénaliser la masse totale de manière critique.
Les matières plastiques utilisées pour la chemise et les résines et les fibres utilisées pour la couche de bobinage sont les matières bien connues de l'homme du métier. La chemise peut notamment être en matière thermoplastique de type haute densité (P. H. D. E. ) et moyenne densité (P. M. D. E. ), et la résine être de type polyester, époxy, ou polyuréthanne.
L'enroulement filamentaire peut être de toutes les fibres composites connues (carbone, aramide, verre,...).
D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui va suivre, en référence aux dessins annexés sur lesquels : -la figure 1 est un graphe de simulation de l'évolution de la température du gaz dans un réservoir de 100 litres lors d'un remplissage rapide et lent, en fonction du temps t, -la figure 2 est un graphe montrant l'évolution de la température TO, oos ; t de la paroi extérieure (extrados) de la chemise intérieure d'un réservoir, d'épaisseur 0,008 m, en fonction du temps t, pour deux types de réservoir, à savoir un réservoir tout-composite et un réservoir en aluminium à iso- capacité en eau.
<Desc/Clms Page number 4>
-la figure 3 est un graphe montrant l'évolution de la température du gaz en fonction du temps dans les réservoirs de la figure 2, -la figure 4 est une vue schématique d'un réservoir tout-composite conforme à l'invention.
Ainsi, comme il a été dit précédemment, la substitution d'un réservoir entièrement métallique de gaz comprimé par un réservoir"toutcomposite"permet d'alléger le stockage embarqué à bord du véhicule, sans concessions sur les caractéristiques mécaniques (iso-niveau de sécurité), mais les caractéristiques thermiques des réservoirs métalliques et en matériaux composites sont par contre très différentes.
Pour obtenir un temps de remplissage comparable à celui d'un carburant liquide, il faut augmenter le débit de remplissage de la station avec les conséquences suivantes : * lors de la compression du gaz dans le réservoir, celui-ci s'échauffe d'autant plus vite que le remplissage est rapide : la densité du gaz et la masse de carburant embarquée est donc inférieure à celle qui le serait dans le cas d'un remplissage lent (plusieurs heures) à même seuil d'arrêt ( > 200 bars). L'autonomie du véhicule ayant ravitaillé dans une station à remplissage rapide est alors inférieure à celle indiquée dans le carnet de bord.
Dans l'hypothèse où le réservoir n'évacuerait pas la chaleur engendrée par la compression adiabatique (et c'est d'autant plus vrai que le remplissage est rapide), le graphe de la figure 1 montre l'évolution de la température du gaz dans celui-ci selon que le remplissage est isotherme (la température finale T est égale à la température initiale Tj, par exemple 15 C, un remplissage rapide à 540 Nm3/h et un remplissage lent à 3 Nm3/h (la température T du gaz varie entre la température initiale Tl correspondant à 1 bar et une température maximale correspondant à 200 bar, par exemple de l'ordre de 150 C) : * La surface d'échange d'un réservoir de forme cylindrique (rapport surface/volume faible) étant déjà faible, le réservoir"tout-composite"à
Figure img00040001

chemise plastique donne naissance à l'effet bouteille"Thermos" (S) (bouteille isotherme) s'il ne dissipe pas suffisamment vite les calories engendrées par la compression du gaz. Ces calories non dissipées engendrent un échauffement de la matière plastique de la chemise et
<Desc/Clms Page number 5>
donc une perte des propriétés mécaniques de celle-ci (passage d'un comportement élastique plastique à un comportement élastique caoutchouteux).
Pour compenser la chute de densité du gaz, l'exploitant de la station de remplissage augmente la pression de remplissage ; par là même, l'énergie nécessaire à la compression est plus importante et donc la dépense énergétique est accrue.
La diffusivité (rapport entre la conductibilité thermique et la chaleur calorifique d'un m3 de matériau) caractérise la capacité d'un matériau à conduire la chaleur.
Le tableau annexé montre que les propriétés thermiques entre les matériaux métalliques et les matières plastiques sont très différentes. Il en résulte des comportements thermiques très différents des réservoirs de type 3 et 4 qui sont comparés sur les graphes des figures 2 et 3. On constate qu'à
Figure img00050001

iso-épaisseur et iso-chargement thermique (la température finale du gaz Ta après un chargement rapide inférieur à 30s est fixée, par exemple à 140 oC et correspond à la température maximale du gaz à 200 bar), l'évolution de la température extérieure de la chemise intérieure est différente selon que le réservoir est de type 3 (chemise en aluminium) ou de type 4 (chemise en polyéthylène), comme le montre la figure 2
Les températures de la surface extérieure des chemises (extrados) évoluent asymptotiquement mais celle-ci est sensiblement atteinte beaucoup plus tardivement dans le cas de la chemise en plastique que dans le cas de la chemise en aluminium, du fait de la faible diffusivité du matériau plastique.
Cette différence de comportement thermique entre les deux types de réservoirs a les conséquences suivantes : - le réservoir "tout-composite" monte plus vite en pression sous l'effet des calories non dissipées ; la pression-seuil correspondant à l'arrêt de la station est atteinte plus rapidement et la masse de gaz embarquée est plus faible ; - le réservoir à chemise en aluminium permet d'assurer un refroidissement plus efficace du gaz. Si on fait abstraction du temps, le mode de conduction/convection en régime permanent, permet en effet, de décomposer la résistance thermique d'un réservoir en :
<Desc/Clms Page number 6>
Figure img00060001

* une résistance cylindrique faisant intervenir la conductibilité thermique du matériau À et ses caractéristiques géométriques ; 'une résistance due à la convection entre la surface externe du réservoir et l'air ambiant (constant quel que soit le type de matériau).
Le graphe de la figure 3 représente l'évolution de température du gaz naturel après remplissage, dans les deux cas étudiés :
On y voit que la nature du matériau a une influence sur la température du gaz après l'opération ; pour que la température du gaz revienne à 65 C (limite admissible en régime stabilisé), il faut : - 30 minutes pour un réservoir à chemiser en plastique ; - 24 minutes pour un réservoir à chemise en aluminium.
Le réservoir constitué d'une chemise en aluminium et entièrement bobiné par de la fibre de carbone (type 3) représente donc apparemment la meilleure solution technique car il est performant d'un point de vue : - Allégement (2,5 fois plus léger qu'un réservoir en acier à iso-capacité en eau) ; - thermique (7 fois plus"diffusant"que l'acier).
Néanmoins, cette solution est coûteuse du fait de la fabrication de la chemise en aluminium, comparée à celle de la chemise en plastique.
C'est pourquoi l'invention propose un réservoir cylindrique 1 (cf. figure 4) comportant une chemise intérieure en plastique 2 entourée par une couche 3 d'enroulement filamentaire noyé dans une matrice de résine, le réservoir déterminant une capacité intérieure de remplissage 4 accessible par une ouverture 5, dans lequel la chemise en plastique 2 ainsi que, de préférence, la résine de la couche 3 ont été chargées par des matières conductrices, les additifs conducteurs apportés ne modifiant pas le processus de fabrication du réservoir et améliorant la conductibilité thermique du réservoir sans pénaliser les fonctions d'étanchéité du plastique de la chemise et de liant de la résine de la couche d'enroulement filamentaire.
Les charges conductrices permettent de conférer au réservoir 1 sur toute son épaisseur une conductibilité suffisante sans augmentation prohibitive de masse ; en effet, un ajout de 20%, par exemple, d'aluminium
<Desc/Clms Page number 7>
(en volume) accroît de 100% la conductibilité thermique de la résine ainsi chargée et dégrade seulement de 10% la masse du réservoir.
La solution de l'invention ne modifie pas les procédés de fabrication de la chemise plastique car il s'agit d'un ajout de charges conductrices ni de l'enroulement filamentaire qui peut toujours être réalisé par voie sèche ou par voie humide.
En fin de production, la méthode de contrôle par potentionmétrie permet de s'assurer de la faible résistance thermique de la chemise interne : par application d'une tension électrique sur l'épaisseur du plastique, on mesure l'efficacité de la présence des charges conductrices grâce à une chute de tension variant dans le même sens que la thermoconductivité.
<Desc/Clms Page number 8>
Figure img00080001

TABLEAU
Figure img00080002

Masse Chaleur Conductibilité Diffuslvité volumique spécifique thermique FCaractéristiques Caractéristiques p (kg/m) Cp (Jikg. K) 1 (W/rn. K) À.
2 P. CP p. cp Matériaux Acier 7900 490 47 1, 2. 10'5 7 900 490 47 Métalliques Aluminium 2600 879 204 8, 9. 10'5 Cuivre 8800 394 384 Plastique Polyéthylène 950 1 800 0, 45 2. 6. 10. 7

Claims (4)

REVENDICATIONS
1. Réservoir tout-composite du type présentant une chemise interne (2) en plastique destinée à être en contact avec le gaz, entourée par un bobinage filamentaire (3) noyé dans une matrice de résine, caractérisé en ce que la matière plastique de la chemise interne (2) contient des charges conductrices thermiquement.
2. Réservoir selon la revendication l, caractérisé en ce que la résine de la matrice du bobinage filamentaire (3) contient des charges conductrices thermiquement.
3. Réservoir selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que les charges thermiquement conductrices sont choisies parmi le groupe contenant : les poudres et paillettes métalliques ; les microbilles de verre métallisées, les particules de 10 à 500 um de carbone ; de la fibre de carbone courte ; des poussières de graphite ; de la mousse métallique ; de la mousse de fibres composites en petits fragments.
4. Réservoir selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la charge conductrice est une poudre métallique ajoutée dans une proportion de l'ordre de 10 à 30% en volume.
FR0012801A 2000-10-06 2000-10-06 Reservoir tout-composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule Expired - Fee Related FR2814990B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR0012801A FR2814990B1 (fr) 2000-10-06 2000-10-06 Reservoir tout-composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule
DE60130787T DE60130787T2 (de) 2000-10-06 2001-10-05 Composite-druckbehälter zur speicherung von hochdruckerdgas für kraftfahrzeug
EP01976364A EP1328754B1 (fr) 2000-10-06 2001-10-05 Reservoir composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule
PCT/FR2001/003071 WO2002029309A1 (fr) 2000-10-06 2001-10-05 Reservoir composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule
ES01976364T ES2290176T3 (es) 2000-10-06 2001-10-05 Deposito compuesto para almacenamiento de gas natural comprimido a alta presion a bordo de un vehiculo.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0012801A FR2814990B1 (fr) 2000-10-06 2000-10-06 Reservoir tout-composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule

Publications (2)

Publication Number Publication Date
FR2814990A1 true FR2814990A1 (fr) 2002-04-12
FR2814990B1 FR2814990B1 (fr) 2003-01-10

Family

ID=8855076

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0012801A Expired - Fee Related FR2814990B1 (fr) 2000-10-06 2000-10-06 Reservoir tout-composite de stockage de gaz naturel comprime a haute pression a bord d'un vehicule

Country Status (5)

Country Link
EP (1) EP1328754B1 (fr)
DE (1) DE60130787T2 (fr)
ES (1) ES2290176T3 (fr)
FR (1) FR2814990B1 (fr)
WO (1) WO2002029309A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052228A1 (fr) * 2016-06-01 2017-12-08 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Reservoir composite pour le stockage de gaz sous pression

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374482B1 (ko) * 2012-09-17 2014-03-13 노스타콤포지트 주식회사 가스용기 제조 방법
DE102012023065A1 (de) 2012-11-26 2014-05-28 Volkswagen Aktiengesellschaft Druckbehälter und Kraftfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0003402A1 (fr) * 1978-01-23 1979-08-08 The British Petroleum Company p.l.c. Laminés renforcés, antistatiques et reliés à la terre, utilisables en tant que barrière contre des fluides inflammables par décharge électrostatique
US4272475A (en) * 1977-02-12 1981-06-09 Chi Chang S Process for the low temperature shaping processing of polyethylene terephthalate
EP0353850A2 (fr) * 1988-08-05 1990-02-07 The British Petroleum Company P.L.C. Réservoir pour des gaz sous haute pression
US5025943A (en) 1988-03-15 1991-06-25 Abb Plast Ab Pressure vessel having a filamentary wound structure
US5499739A (en) 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
US5647503A (en) * 1994-08-29 1997-07-15 Spectrum Solutions, Ltd. Tank for storing pressurized gas
US5798156A (en) * 1996-06-03 1998-08-25 Mitlitsky; Fred Lightweight bladder lined pressure vessels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272475A (en) * 1977-02-12 1981-06-09 Chi Chang S Process for the low temperature shaping processing of polyethylene terephthalate
EP0003402A1 (fr) * 1978-01-23 1979-08-08 The British Petroleum Company p.l.c. Laminés renforcés, antistatiques et reliés à la terre, utilisables en tant que barrière contre des fluides inflammables par décharge électrostatique
US5025943A (en) 1988-03-15 1991-06-25 Abb Plast Ab Pressure vessel having a filamentary wound structure
EP0353850A2 (fr) * 1988-08-05 1990-02-07 The British Petroleum Company P.L.C. Réservoir pour des gaz sous haute pression
US5499739A (en) 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
US5647503A (en) * 1994-08-29 1997-07-15 Spectrum Solutions, Ltd. Tank for storing pressurized gas
US5798156A (en) * 1996-06-03 1998-08-25 Mitlitsky; Fred Lightweight bladder lined pressure vessels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052228A1 (fr) * 2016-06-01 2017-12-08 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Reservoir composite pour le stockage de gaz sous pression

Also Published As

Publication number Publication date
DE60130787D1 (de) 2007-11-15
EP1328754A1 (fr) 2003-07-23
DE60130787T2 (de) 2008-07-17
EP1328754B1 (fr) 2007-10-03
FR2814990B1 (fr) 2003-01-10
WO2002029309A1 (fr) 2002-04-11
ES2290176T3 (es) 2008-02-16

Similar Documents

Publication Publication Date Title
US5499739A (en) Thermoplastic liner for and method of overwrapping high pressure vessels
FR2813235A1 (fr) Structure et reservoir thermoplastique
EP1328754B1 (fr) Reservoir composite de stockage de gaz naturel comprime a haute pression a bord d&#39;un vehicule
FR3102531A1 (fr) Réservoir de stockage d’énergie sous forme de gaz sous pression, en béton fibré à ultra haute performance
EP3887711B1 (fr) Enveloppe interne pour reservoir de stockage de fluide sous pression pour vehicule automobile
CN114923111B (zh) 一种车载高压储气瓶及其制造方法
WO2018055277A1 (fr) Compresseur d&#39;hydrogene a hydrure metallique
EP1067300B1 (fr) Réservoir en matériau composite destiné au stockage de gaz liquéfié sous pression
FR3037633A1 (fr) Reservoir composite et procede de controle et de reparation
Adekomaya et al. Investigating water absorption and thickness swelling tendencies of polymeric composite materials for external wall application in refrigerated vehicles
EP3479046B1 (fr) Batterie thermique à matériau à changement de phase
EP2935977B1 (fr) Reservoir pour le stockage d&#39;un gaz stocke par sorption comprenant des moyens d&#39;absorption de chocs
EP2981405A1 (fr) Liaison entre un liner métallique mince et une paroi en composite par enduction chargée de particules thermoplastiques
EP2560880A1 (fr) Materiau de protection thermique
EP2096348B1 (fr) Conduit d&#39;échappement, procédé de fabrication de ce conduit et véhicule équipé de ce conduit
EP3762219B1 (fr) Réservoir composite et son procédé de fabrication
EP3374686B1 (fr) Reservoir de stockage d&#39;hydrogene à hydrure metallique
CN111963891A (zh) 一种高压复合容器的塑料内胆
FR2963820A1 (fr) Reservoir composite et procede de fabrication
US20230010853A1 (en) High-pressure tank and method of manufacturing the same
FR3078650A1 (fr) Liner pour reservoir composite de stockage de gaz a haute pression
FR3078651A1 (fr) Procede de fabrication d&#39;un liner pour reservoir composite
FR2943757A1 (fr) Tuyau comportant une couche de recouvrement
FR2842581A1 (fr) Dispositif de protection thermique
FR3087948A1 (fr) Batterie comprenant une couche de retention en materiau composite

Legal Events

Date Code Title Description
TP Transmission of property
ST Notification of lapse

Effective date: 20160630