FR2738360A1 - Device for generating harmonic optical frequencies from fundamental - Google Patents
Device for generating harmonic optical frequencies from fundamental Download PDFInfo
- Publication number
- FR2738360A1 FR2738360A1 FR9303477A FR9303477A FR2738360A1 FR 2738360 A1 FR2738360 A1 FR 2738360A1 FR 9303477 A FR9303477 A FR 9303477A FR 9303477 A FR9303477 A FR 9303477A FR 2738360 A1 FR2738360 A1 FR 2738360A1
- Authority
- FR
- France
- Prior art keywords
- crystal
- generation
- optical frequencies
- fundamental frequency
- frequency according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 25
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 230000003993 interaction Effects 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims abstract description 9
- 230000006978 adaptation Effects 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VCZFPTGOQQOZGI-UHFFFAOYSA-N lithium bis(oxoboranyloxy)borinate Chemical compound [Li+].[O-]B(OB=O)OB=O VCZFPTGOQQOZGI-UHFFFAOYSA-N 0.000 description 2
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/3501—Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/3501—Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
- G02F1/3503—Structural association of optical elements, e.g. lenses, with the non-linear optical device
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/3501—Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
- G02F1/3509—Shape, e.g. shape of end face
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
- G02F1/3534—Three-wave interaction, e.g. sum-difference frequency generation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
- G02F1/397—Amplification of light by wave mixing involving an interference pattern, e.g. using photorefractive material
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
La présente invention concerne un dispositif pour la génération de fréquences optiques à partir d'une fréquence fondamentale.The present invention relates to a device for generating optical frequencies from a fundamental frequency.
L'interaction entre un champ électromagnétique et la matière réalise, dans des conditions particulières, un transfert de fréquence optique à partir d'une fréquence fondamentale issue d'un émetteur laser. Ce transfert met en oeuvre des procédés d'optique non linéaire et la présente invention utilise l'interaction non linéaire de trois ondes dans un matériau optiquement transparent et dont la structure n'est pas centro-symétrique.The interaction between an electromagnetic field and matter realizes, under special conditions, an optical frequency transfer from a fundamental frequency coming from a laser transmitter. This transfer implements non-linear optical methods and the present invention uses the non-linear interaction of three waves in an optically transparent material whose structure is not centro-symmetrical.
Les pulsations optiques des trois ondes et leurs vecteurs d'onde associés sont successivement désignés par wl, w2, W3, < kl > , < k2 > , < k3 > . Le signe < . > désigne une grandeur vectorielle. Dans l'interaction à trois ondes, la relation de conservation d'énergie s'exprime par : wl = w2 + W3 ; et la relation d'adaptation de phase s'exprime par < kl > = < k2 > + < k3 > . La génération de l'onde wl à partir des ondes W2 et W3 est traditionnellement appelée génération d'harmoniques. Ainsi, par exemple, lorsque
W2 = w3 = w, I'onde w est appelée onde fondamentale et wl = 2 w est appelée onde harmonique-2.Dans tous les cas l'addition des fréquences w2 et W3 engendre une énergie à la fréquence wl. La soustraction des fréquences wl et W2 pour engendrer une énergie à la fréquence harmonique W3 est une interaction moins usitée. La génération des ondes w2 et W3 à partir de l'onde wl est traditionnellement appelée amplification ou oscillation paramétrique.The optical pulses of the three waves and their associated wave vectors are successively designated by wl, w2, W3, <kl>, <k2>, <k3>. The <sign. > denotes a vector quantity. In the three-wave interaction, the energy conservation relationship is expressed by: wl = w2 + W3; and the phase adaptation relation is expressed by <kl> = <k2> + <k3>. The generation of the wl wave from the W2 and W3 waves is traditionally called generation of harmonics. So, for example, when
W2 = w3 = w, the wave w is called the fundamental wave and wl = 2 w is called the harmonic wave-2. In all cases the addition of the frequencies w2 and W3 generates energy at the frequency wl. The subtraction of the frequencies wl and W2 to generate energy at the harmonic frequency W3 is a less used interaction. The generation of the w2 and W3 waves from the wl wave is traditionally called parametric amplification or oscillation.
Quelle que soit la nature de l'interaction à trois ondes, le cristal optique qui est le siège du transfert de fréquence est souvent uni axe et parfois biaxe. La relation d'adaptation de phase consiste à repérer les conditions spatiales pour lesquelles les ellipsoïdes des indices relatives aux trois ondes ont des intersections communes. Certaines de ces zones d'intersection offrent des rendements énergétiques dans le transfert de fréquence plus importants que dans d'autres zones. Les zones pour lesquelles l'interaction est optimale dépendent également de la taille du cristal optique. Ainsi, par exemple, dans la génération de l'onde harmonique-2, la taille de type 1 consiste à ce que l'onde fondamental se propage sur l'onde ordinaire du cristal optique et l'onde harmonique-2 se propage sur l'onde extraordinaire du cristal optique.Il est courant de se placer dans les conditions de taille de type 1 ou de taille de type 2 dans l'interaction à trois ondes.Whatever the nature of the three-wave interaction, the optical crystal which is the seat of frequency transfer is often single-axis and sometimes biaxial. The phase adaptation relation consists in identifying the spatial conditions for which the ellipsoids of the indices relating to the three waves have common intersections. Some of these intersection zones offer higher energy yields in frequency transfer than in other zones. The areas for which the interaction is optimal also depend on the size of the optical crystal. Thus, for example, in the generation of the harmonic-2 wave, the type 1 size consists in that the fundamental wave propagates on the ordinary wave of the optical crystal and the harmonic-2 wave propagates on the extraordinary wave of the optical crystal. It is common to place oneself in type 1 or type 2 size conditions in three-wave interaction.
Traditionnellement, I'adaptation de phase se réalise en orientant le cristal vis à vis de (ou des) I'onde(s) incidente(s) de façon à ce que l'angle réalisé entre l'axe optique privilégié du cristal et le vecteur de Poynting de (ou des) I'onde(s) incidente(s) soit optimal. Dans ces conditions le rendement énergétique du transfert est maximum. Cet angle est désigné par angle critique d'adaptation de phase. Dans la direction perpendiculaire au plan de l'angle critique, I'orientation du cristal est moins délicate.Traditionally, phase adaptation is carried out by orienting the crystal with respect to the incident wave (s) so that the angle produced between the preferred optical axis of the crystal and the Poynting vector of (or of) the incident wave (s) is optimal. Under these conditions, the energy efficiency of the transfer is maximum. This angle is designated by critical phase adaptation angle. In the direction perpendicular to the plane of the critical angle, the orientation of the crystal is less delicate.
Ainsi, par exemple, la génération de l'onde harmonique-2 à partir d'une onde fondamentale accordable en fréquence, nécessite un réajustement de l'angle critique à chaque fois que la fréquence de l'onde fondamentale change sensiblement ; dans la direction perpendiculaire, le réajustement est inutile. L'un des inconvénients majeurs à un transfert de fréquence par génération d'harmoniques lorsque l'onde fondamentale est accordable et l'effet d'oeil de chat qui d'une part, limite la section du faisceau incident dans le cristal et décale d'autre part, le faisceau de l'onde harmonique parallèlement au faisceau incident.Thus, for example, the generation of the harmonic-2 wave from a fundamental wave tunable in frequency, requires a readjustment of the critical angle each time the frequency of the fundamental wave changes appreciably; in the perpendicular direction, readjustment is unnecessary. One of the major drawbacks to a frequency transfer by generation of harmonics when the fundamental wave is tunable and the cat eye effect which on the one hand limits the section of the incident beam in the crystal and shifts d on the other hand, the beam of the harmonic wave parallel to the incident beam.
Le dispositif selon l'invention permet de remédier à cet inconvénient. En effet, le cristal est taillé en forme de cylindre en respectant le type de taille et de façon à ce que le plan de section transverse du cylindre inclut l'angle critique d'adaptation de phase. La figure 1 représente en coupe, le dispositif selon l'invention. En référence à ce dessin, le dispositif présente le cristal (1) monté sur l'axe mécanique rotatif (2), les hublots (3) taillés en forme de lentilles planes concaves divergentes et le liquide d'adaptation d'indice (4).The device according to the invention overcomes this drawback. Indeed, the crystal is cut in the shape of a cylinder while respecting the type of size and in such a way that the plane of cross section of the cylinder includes the critical phase adaptation angle. Figure 1 shows in section, the device according to the invention. With reference to this drawing, the device presents the crystal (1) mounted on the rotary mechanical axis (2), the portholes (3) cut into the shape of divergent concave planar lenses and the index adaptation liquid (4) .
L'ensemble de ces constituants du dispositif est placé dans une enceinte (5) étanche. Les indices de réfraction des hublots et du liquide sont choisis de façon à ce que leurs valeurs s approchent pour les fréquences mises en oeuvre, le plus étroitement possible, d'une valeur moyenne des indices du cristal. L'ensemble hublots-cristal-liquide agit vis à vis de la lumière comme une lame à face parallèle fixe, quelle que soit l'orientation du cristal définit par l'axe mécanique. Ainsi, lorsque l'onde incidente change de fréquence, l'adaptation de phase est assurée sans diminuer l'ouverture optique du dispositif. L'onde harmonique générée reste dans une direction unique.All of these components of the device are placed in a sealed enclosure (5). The refractive indices of the windows and of the liquid are chosen so that their values approach, for the frequencies used, as closely as possible, an average value of the indices of the crystal. The window-crystal-liquid assembly acts with respect to light like a blade with a fixed parallel face, whatever the orientation of the crystal defined by the mechanical axis. Thus, when the incident wave changes frequency, the phase adaptation is ensured without reducing the optical aperture of the device. The harmonic wave generated remains in a single direction.
A titre d'exemple, dans le tri borate de lithium (LBO), la génération de ltharmonique-2 à partir d'une onde fondamentale issue d'un laser à saphir dopé par l'ion titane nécessite une variation de l'angle critique de 40 degrés lorsque l'onde fondamentale varie de 680 nm à 1050 nm. Le dispositif selon l'invention permet de générer une onde harmonique entre 340 nm et 525 nm sans effet d'oeil de chat.For example, in lithium tri borate (LBO), the generation of harmonic-2 from a fundamental wave from a sapphire laser doped with titanium ion requires a variation of the critical angle 40 degrees when the fundamental wave varies from 680 nm to 1050 nm. The device according to the invention makes it possible to generate a harmonic wave between 340 nm and 525 nm without the cat eye effect.
L'intervalle de liquide entre le cristal et les hublots est constant et minimum de façon à éviter les gradients thermiques qui peuvent s'installer au sein du liquide.The liquid interval between the crystal and the portholes is constant and minimum so as to avoid the thermal gradients which can settle inside the liquid.
Le dispositif selon l'invention peut également être utilisé pour amplification et l'oscillation paramétrique.The device according to the invention can also be used for amplification and parametric oscillation.
Le dispositif selon l'invention peut également être utilisé pour corriger la valeur de l'angle critique lorsque la température du cristal évolue.The device according to the invention can also be used to correct the value of the critical angle when the temperature of the crystal changes.
Le dispositif selon l'invention est particulièrement destiné aux applications civiles et militaires des lasers accordables en fréquence. The device according to the invention is particularly intended for civil and military applications of frequency tunable lasers.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9303477A FR2738360A1 (en) | 1993-03-24 | 1993-03-24 | Device for generating harmonic optical frequencies from fundamental |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9303477A FR2738360A1 (en) | 1993-03-24 | 1993-03-24 | Device for generating harmonic optical frequencies from fundamental |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2738360A1 true FR2738360A1 (en) | 1997-03-07 |
Family
ID=9445356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR9303477A Pending FR2738360A1 (en) | 1993-03-24 | 1993-03-24 | Device for generating harmonic optical frequencies from fundamental |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2738360A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2771519A1 (en) * | 1997-11-27 | 1999-05-28 | Univ Bourgogne | Nonlinear frequency tunable crystal optical radiation generator |
-
1993
- 1993-03-24 FR FR9303477A patent/FR2738360A1/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2771519A1 (en) * | 1997-11-27 | 1999-05-28 | Univ Bourgogne | Nonlinear frequency tunable crystal optical radiation generator |
WO1999028785A1 (en) * | 1997-11-27 | 1999-06-10 | Universite De Bourgogne | Means for generating optical radiations tuneable at least in frequency |
US6882465B1 (en) * | 1997-11-27 | 2005-04-19 | Jds Uniphase Corporation | Tunable frequency-converting optical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5309454A (en) | Apparatus for wavelength conversion of laser light | |
EA000847B1 (en) | Laser device | |
EP0546891A1 (en) | Frequency doubling device using an electrically driven optical index grating | |
FR2669747A1 (en) | METHOD AND APPARATUS FOR THE PARAMETRIC PRODUCTION OF LIGHT IN MEDIUM INFRARED BY KNBO3. | |
Suhre et al. | Imaging spectroradiometer for the 8–12-μm region with a 3-cm-1 passband acousto-optic tunable filter | |
FR2738360A1 (en) | Device for generating harmonic optical frequencies from fundamental | |
US9740081B1 (en) | Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials | |
Feve et al. | Experimental study of walk-off attenuation for type II second-harmonic-generation in KTP | |
US6882465B1 (en) | Tunable frequency-converting optical device | |
Qu et al. | Highly efficient 355 nm UV generation with non-collinear phase-matching by a prism-coupled device based on CsLiB6O10 | |
Voloshinov et al. | A dozen Bragg effects in tellurium dioxide single crystal | |
Kupka et al. | Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism | |
Debuisschért et al. | High-beam-quality unstable-cavity infrared optical parametric oscillator | |
EP0084192A2 (en) | Crystals for altering the frequency of an incident optical wave and apparatus and methods for using same | |
Liang et al. | Non-collinear nanosecond optical parametric oscillator based on periodically poled LN with tilted domain walls | |
Robertson et al. | Excimer pumped deuterated L‐arginine phosphate optical parametric oscillator | |
Voloshinov et al. | Acousto-optic processing of images in ultraviolet, visible and infrared regions of spectrum | |
Kandidov et al. | Talbot effect in Gaussian optical systems | |
Kotov et al. | Pulse modulation of multicolored radiation of an argon laser | |
Nesterov et al. | Radially polarized beam generation in the high-power CO2 laser | |
Berezovskii | Dependences of the spectra of second harmonics generated in tellurium and proustite on the phase-matching band | |
RU72556U1 (en) | OPTICAL PARAMETRIC GENERATOR | |
Grossman et al. | Blue light second harmonic generation in the organic crystal ortho-Dicyanovinyl-anisole | |
Kotov | Diffraction of three-colour radiation on an acoustic wave | |
Voloshinov et al. | Processing of convergent and divergent optical beams and images by means of tunable acousto-optic filters on base of paratellurite and KDP |