FR2644240A1 - Inductive angular position sensor - Google Patents

Inductive angular position sensor Download PDF

Info

Publication number
FR2644240A1
FR2644240A1 FR8902953A FR8902953A FR2644240A1 FR 2644240 A1 FR2644240 A1 FR 2644240A1 FR 8902953 A FR8902953 A FR 8902953A FR 8902953 A FR8902953 A FR 8902953A FR 2644240 A1 FR2644240 A1 FR 2644240A1
Authority
FR
France
Prior art keywords
rotor
angular position
magnetic circuits
stator
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8902953A
Other languages
French (fr)
Other versions
FR2644240B1 (en
Inventor
Guy Lemarquand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN SNR Roulements SA
Original Assignee
Societe Nouvelle de Roulements SNR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nouvelle de Roulements SNR SA filed Critical Societe Nouvelle de Roulements SNR SA
Priority to FR8902953A priority Critical patent/FR2644240B1/en
Publication of FR2644240A1 publication Critical patent/FR2644240A1/en
Application granted granted Critical
Publication of FR2644240B1 publication Critical patent/FR2644240B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2216Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/73Targets mounted eccentrically with respect to the axis of rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles
    • G01D2205/775Tapered profiles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Inductive sensor for the angular position of a shaft 1 integral with a cylindrical rotor 2 revolving in a stator with wound magnetic circuits 3-4, characterised in that the rotor 2, made in a manner which is known per se of a ferromagnetic material, is associated with means for varying the air gap "e" formed between the rotor 2 and the wound magnetic circuits during rotation of the rotor.

Description

Capteur inductif de position angulaire
L'invention concerne un capteur inductif de position angulaire d'un arbre solidaire d'un rotor cylindrique tournant dans un stator à circuits magnétiques bobinés.Un indicateur de position électromécanique connu comporte deux parties mobiles l'une par rapport à l'autre dans une direction prédéterminée. L'une de ces parties ou rotor est munie d'un enroulement primaire agencé de telle manière que, lorsqu'il est alimenté avec un courant alternatif, il engendre un flux magnétique alternatif sensiblement normal à ladite direction de mouvement, ce flux magnétique variant au moins dans ladite direction d'une manjère prédéterminée. L'autre partie ou stator est munie d'au moins deux enroulements de détection décalés entre eux dans ladite direction. Ces enroulements de détection détectent le flux magnétique régnant dans leurs zones d'étendue respectives.
Inductive angular position sensor
The invention relates to an inductive angular position sensor of a shaft secured to a cylindrical rotor rotating in a stator with wound magnetic circuits. A known electromechanical position indicator comprises two parts which are movable relative to one another in a predetermined direction. One of these parts or rotor is provided with a primary winding arranged in such a way that, when it is supplied with an alternating current, it generates an alternating magnetic flux substantially normal to said direction of movement, this magnetic flux varying at less in said direction in a predetermined manner. The other part or stator is provided with at least two detection windings offset between them in said direction. These detection windings detect the magnetic flux prevailing in their respective extent zones.

Des dispositifs rotatifs de ce type sont particulièrement utiles pour mesurer des angles. Un dispositif de ce genre est le résol- veur, qui comporte deux enroulements de détection en quadrature.Rotary devices of this type are particularly useful for measuring angles. One such device is the resolver, which has two quadrature sensing windings.

Un autre dispositif de ce genre est le zynchrodétecteur qui comporte trois enroulements décalés angulairement entre eux de 1200.Another device of this kind is the zynchrodetector which has three windings offset angularly between them by 1200.

Les résolveurs et les synchrodétecteurs sont normalement utilisés pour transmettre des données représentant der angles dSun disposi- tif d'émission à un dispositif de réception. On peut obtenir une transmission angulaire continue bien que ces appareils puissent également Itre utilisés en tant que dispositifs de mesure d'angle. Resolvers and synchrodetectors are normally used to transmit data representing angles from a transmitting device to a receiving device. Continuous angular transmission can be obtained although these devices can also be used as angle measuring devices.

De tels dispositifs de mesure d'angle peuvent être utilisés pour mesurer des angles avec le degré de précision voulue, par exemple dans des appareils de pointage ou de visée pour armes à feu, etc.Such angle measuring devices can be used to measure angles with the desired degree of precision, for example in pointing or aiming devices for firearms, etc.

Le couplage entre l'enroulement du rotor (inducteur) et l'enroule- ment du stator (induit) induit une grandeur sinusoïdale reprXsen- tative de l'angle de rotation du rotor par rapport au stator.The coupling between the rotor winding (inductor) and the stator winding (armature) induces a sinusoidal quantity representative of the angle of rotation of the rotor relative to the stator.

Lorsque le rotor est alimenté par un courant de la forme i + I cos wt dans lequel W est la pulsation de l'exitation, les tensions aux bornes des enroulements du stator dun résolveur sont
U1 - kI cos Wt x sin a
U2 - kI cos Wt x cos a et d'un synchrodetecteur U1 = ki con Wt. sin a
U2 = kI cos Wt. sin < a - 2 #/3) US = ki cos Wt. sin (&alpha; - 4 #/3)
Des circuits de traitement spécialisés permettant l'obtention de la valeur numérique de l'angle a qui mesure la position angulaire du rotor par rapport au stator.
When the rotor is supplied by a current of the form i + I cos wt in which W is the excitation pulse, the voltages across the stator windings of a resolver are
U1 - kI cos Wt x sin a
U2 - kI cos Wt x cos a and a synchrodetector U1 = ki con Wt. sin a
U2 = kI cos Wt. sin <a - 2 # / 3) US = ki cos Wt. sin (&alpha; - 4 # / 3)
Specialized processing circuits for obtaining the digital value of the angle a which measures the angular position of the rotor relative to the stator.

L'invention a pour objet un capteur inductif de position angulaire dans lequel l'agencement du rotor permet la mesure de la valeur absolue de l'angle &alpha;. Conformément à l'invention le rotor réalisé en un matériau ferromagnétique est associé à des moyens de variation de l'entrefer e formé entre le rotor et les circuits magnéti- ques bobinés du stator au cours de la rotation du rotor. Dans le capteur ainsi réalisé la tension ae bornes de chaque circuit magnétique bobiné varie périodquement au cours de la rotation du rotor et est de la forme ut = k I cos Wt x + (B; e) dans laquelle a mesure la position angulaire de l'arbre.The invention relates to an inductive angular position sensor in which the arrangement of the rotor allows the measurement of the absolute value of the angle &alpha;. According to the invention, the rotor made of a ferromagnetic material is associated with means for varying the air gap formed between the rotor and the wound magnetic circuits of the stator during the rotation of the rotor. In the sensor thus produced, the voltage at the terminals of each wound magnetic circuit varies periodically during the rotation of the rotor and is of the form ut = k I cos Wt x + (B; e) in which a measures the angular position of l 'tree.

Des modes de réalisation de l'invention seront maintenant décrits en référence au dessin annexé dans lequel les figures 1 et 2 sont des représentations schématiques du capteur comportant un rotor ferromagnéti que cylindrique tournant autour d un axe excentré tournant a l'intérieur d'un stator comportant 2 ou 3 circuits magnétiques bobinés sur des pots en ferrite.Embodiments of the invention will now be described with reference to the accompanying drawing in which FIGS. 1 and 2 are schematic representations of the sensor comprising a ferromagnetic, cylindrical rotor rotating around an eccentric axis rotating inside a stator comprising 2 or 3 magnetic circuits wound on ferrite pots.

Les figures 3 et 4 sont des représentations schématiques du capteur comportant un rotor dont la face avant possède un mouvement de nutation devant les circuits magnétiques bobinés.Figures 3 and 4 are schematic representations of the sensor comprising a rotor whose front face has a nutation movement in front of the wound magnetic circuits.

La figure 5 est une représentation schématique vue de face d'un rotor tournant dans un stator porteur de circuits magnétiques bobinés en deux parties.Figure 5 is a schematic front view of a rotor rotating in a stator carrying magnetic circuits wound in two parts.

En référence des figures, 1 désigne l'arbre tournant portant le rotor 2 cylindrique. Le rotor 2 tourne a l'intérieur d'un stator qui porte un certain nombre de circuits magnétiques 3 portant un bobinage 4. A la figure 1 le stator porte deux circuits disposés radialement à 90 . A la figure 2 le stator porte trois circuits disposés à 1200. Le rotor 2 possède un axe de révolution A et un axe de rotation B parallèles dans le but de réaliser au cours de la rotation une variation continue de l'entrefer e. Selon les figures 3 et 4 le rotor 2 possède une face avant 20 en matériau ferromagnétique qui présente une inclinaison e sur son axe de rotation B confondu dans le cas présent avec l'axe de révolution
A. Au cours de la nutation de la face 20, entrefer axial e entre la ladite face et le plan P des circuits bobinés 3, 4 varie.
With reference to the figures, 1 designates the rotating shaft carrying the cylindrical rotor 2. The rotor 2 rotates inside a stator which carries a certain number of magnetic circuits 3 carrying a coil 4. In FIG. 1 the stator carries two circuits arranged radially at 90. In Figure 2 the stator carries three circuits arranged at 1200. The rotor 2 has an axis of revolution A and an axis of rotation B parallel in order to achieve during the rotation a continuous variation of the air gap e. According to Figures 3 and 4 the rotor 2 has a front face 20 of ferromagnetic material which has an inclination e on its axis of rotation B coincides in this case with the axis of revolution
A. During the nutation of the face 20, axial air gap e between the said face and the plane P of the wound circuits 3, 4 varies.

Les circuits magnétiques au nombre de 2 ou 3 réalisés de manière conventionnelle sont fixés dans le stator et sont équidistants radialement par rapport à l'axe A,B.The magnetic circuits 2 or 3 in number produced in a conventional manner are fixed in the stator and are equidistant radially from the axis A, B.

La figure 5 illustre schématiquement la face avant du stator et du rotor. Les circuits bobints 4, 4 sont divisés de manière à favorizer la mesure différentielle de la position angulaire de l'axe B. Figure 5 schematically illustrates the front face of the stator and the rotor. The bobint circuits 4, 4 are divided so as to favor the differential measurement of the angular position of the B axis.

Claims (4)

REVENDICATIONS 1 / Capteur inductif de la position angulaire d'un arbre (1) solidaire d'un rotor (2) cylindrique tournant dans un stator a circuits magnétiques bobinés (3 - 4), caractérisé par le fait que le rotor (2) réalisé de manière en soi connue en un matériau ferromagnétique est associé à des moyens de variation de l'entre- fer "e" formé entre le rotor (2) et les circuits magnétiques bobinés en cours de la rotation du rotor.1 / Inductive sensor of the angular position of a shaft (1) integral with a cylindrical rotor (2) rotating in a stator with wound magnetic circuits (3 - 4), characterized in that the rotor (2) made of per se known manner in a ferromagnetic material is associated with means for varying the air gap "e" formed between the rotor (2) and the magnetic circuits wound during the rotation of the rotor. 2 / Capteur selon la revendication 1, caractérisé par le fait que le moyen de variation de l'entrefer est constitué par le montage excentré de l'axe (B) de rotation du rotor par rapport à l'axe (A) de révolution de ce dernier.2 / sensor according to claim 1, characterized in that the means for varying the air gap is constituted by the eccentric mounting of the axis (B) of rotation of the rotor relative to the axis (A) of revolution of this last. 3 J Capteur selon la revendication 1, caractérisé par le fait que le moyen de variation de l'entrefer est généré par le mouvement de nutation de la face avant du rotor autour de l'axe de rotation de dernier et devant les circuits magnétiques bobinés (3,4) radial en ment équidistants.3 J Sensor according to claim 1, characterized in that the means for varying the air gap is generated by the nutation movement of the front face of the rotor around the axis of rotation of the last and in front of the wound magnetic circuits ( 3,4) radially equidistant. 4 / Capteur selon l'une quelconque des revendications 1 a 3, caractérisé par le fait que chaque circuit bobiné est en deux parties favorisant la mesure différentielle de la position angulaire. 4 / sensor according to any one of claims 1 to 3, characterized in that each wound circuit is in two parts promoting the differential measurement of the angular position.
FR8902953A 1989-03-07 1989-03-07 INDUCTIVE ANGULAR POSITION SENSOR Expired - Fee Related FR2644240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8902953A FR2644240B1 (en) 1989-03-07 1989-03-07 INDUCTIVE ANGULAR POSITION SENSOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8902953A FR2644240B1 (en) 1989-03-07 1989-03-07 INDUCTIVE ANGULAR POSITION SENSOR

Publications (2)

Publication Number Publication Date
FR2644240A1 true FR2644240A1 (en) 1990-09-14
FR2644240B1 FR2644240B1 (en) 1993-10-01

Family

ID=9379441

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8902953A Expired - Fee Related FR2644240B1 (en) 1989-03-07 1989-03-07 INDUCTIVE ANGULAR POSITION SENSOR

Country Status (1)

Country Link
FR (1) FR2644240B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544575A1 (en) 1991-11-26 1993-06-02 Sagem Sa Variable reluctance absolute angular position sensor
WO2008060801A1 (en) 2006-11-14 2008-05-22 Raytheon Company Angular position measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH375531A (en) * 1958-10-14 1964-02-29 Philips Nv Device for measuring axial displacements and / or eccentricities of rotating shafts
GB1245697A (en) * 1969-02-19 1971-09-08 Westinghouse Brake & Signal Transducer
DE2432032A1 (en) * 1974-07-03 1976-01-22 Ustav Pro Vyzkum Motorovych Vo Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc
US4114960A (en) * 1973-01-18 1978-09-19 Societe Europeenne De Propulsion Radial displacement detector device for a magnetic bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH375531A (en) * 1958-10-14 1964-02-29 Philips Nv Device for measuring axial displacements and / or eccentricities of rotating shafts
GB1245697A (en) * 1969-02-19 1971-09-08 Westinghouse Brake & Signal Transducer
US4114960A (en) * 1973-01-18 1978-09-19 Societe Europeenne De Propulsion Radial displacement detector device for a magnetic bearing
DE2432032A1 (en) * 1974-07-03 1976-01-22 Ustav Pro Vyzkum Motorovych Vo Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544575A1 (en) 1991-11-26 1993-06-02 Sagem Sa Variable reluctance absolute angular position sensor
US5428290A (en) * 1991-11-26 1995-06-27 Societe D'applications Generales D'electricite Et De Mecanique Sagem Variable reluctance absolute angular position sensor with sectored housing and rotor
WO2008060801A1 (en) 2006-11-14 2008-05-22 Raytheon Company Angular position measurement device
US7550965B2 (en) 2006-11-14 2009-06-23 Raytheon Company Angular position measurement device

Also Published As

Publication number Publication date
FR2644240B1 (en) 1993-10-01

Similar Documents

Publication Publication Date Title
EP0162780B1 (en) Apparatus for detecting the angular position of the rotor in a rotating machine
EP2338030B2 (en) Magnetic position sensor with field direction measurement and flux collector
EP1949036B1 (en) Magnetic angular position sensor for a course up to 360°
FR3022348B1 (en) ROTATION SENSOR
FR2893409A1 (en) Angular position sensor for steering column of motor vehicle, has magnetosensitive elements located at same point and measuring tangential component and radial or axial component of magnetic field for providing sinusoidal signals
FR2369728A1 (en) BRUSHLESS DC MOTOR
FR2622967A1 (en) POSITION TRANSDUCER AND MOTOR STEP
FR3051552A1 (en) LINEAR INDUCTIVE POSITION SENSOR FOR AN ANGULAR MEASUREMENT OF A MECHANICAL PIECE IN ROTATION
FR3077880A1 (en) TORQUE SENSOR INCORPORATING SENSOR WITH ANGULAR POSITION OF A ROTATING ELEMENT
FR2653507A1 (en) DEVICE FOR THE SYNCHRONOUS COUPLING OF ROTATING ELEMENTS OF A MACHINE, IN PARTICULAR A PRINTING MACHINE.
FR3023611A1 (en) ASSEMBLY COMPRISING A MOTOR VEHICLE ENGINE COMPRISING TARGETS AND AN ANGULAR POSITION SENSOR
EP0949510A1 (en) Dynamic seal &#34;type cassette &#34; with angular detection device; it&#39;s producing method
WO2001088466A1 (en) Star-connected sensor
WO2017212151A1 (en) Apparatus for measuring the angular position of a shaft or the like
EP0800055B1 (en) Linear and angular position sensor
EP0939293B1 (en) Multipolar magnetic ring
JP2733504B2 (en) Multi-rotation position detector
FR2644240A1 (en) Inductive angular position sensor
EP2966414A1 (en) Mounting of a system for determining angular position on a rotating member
EP0527673B1 (en) Homopolar variable reluctance sensor
FR2497945A1 (en) OPTICAL TRANSDUCER FOR MOVEMENTS
CA3203870A1 (en) Contactless position sensor comprising a permanent magnet
EP3708963A1 (en) System for determining at least one rotation parameter of a rotating member
FR2973926A1 (en) MULTISECTOR ROTARY VARIABLE DIFFERENTIAL TRANSFORMER, METHOD FOR DETERMINING AN ANGULAR POSITION OF A ROTATING MOBILE MEMBER, AND CORRESPONDING CONTROL DEVICE
FR2829574A1 (en) Position sensors for magnetic object moving along axis in ferromagnetic cylinder, has magnetic sub-circuits in airgaps at ends or along cylindrical casing formed from two half shells

Legal Events

Date Code Title Description
ST Notification of lapse