FR2626679A2 - Array detector for X-rays and gamma rays - Google Patents

Array detector for X-rays and gamma rays Download PDF

Info

Publication number
FR2626679A2
FR2626679A2 FR8801000A FR8801000A FR2626679A2 FR 2626679 A2 FR2626679 A2 FR 2626679A2 FR 8801000 A FR8801000 A FR 8801000A FR 8801000 A FR8801000 A FR 8801000A FR 2626679 A2 FR2626679 A2 FR 2626679A2
Authority
FR
France
Prior art keywords
rays
array detector
sensor according
local computers
photons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR8801000A
Other languages
French (fr)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8718262A external-priority patent/FR2625331A1/en
Application filed by Individual filed Critical Individual
Priority to FR8801000A priority Critical patent/FR2626679A2/en
Publication of FR2626679A2 publication Critical patent/FR2626679A2/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Detector characterised in that local computors are implanted on the CCD, and in that the scintillators are assemblies of bismuth germanate or cadmium tungstate crystals.

Description

Le brevet N 87 18262 indique dans la revendication 4 l'existence d'une comparaiscr ase réporses des avers pixels intéressés par une même scintillation pour en déduire la position d'origine de cette scintillation. La présente addition précise que cette comparaison consiste d'abord à additionner les réponses pour s'assurer que le photon X a bien produit le nombre de photons visibles auquel on s'attend. Dans le cas contraire, il s'agit d'un photon X parasite, qui n'est pas pris en compte. Ceci est important dans le cas d'une utilisation avec une gamma caméra, car les photons parasites produits par effet Compton sont plus nombreux que les photons utiles. Patent N 87 18262 indicates in claim 4 the existence of a comparison of the obverse pixels concerned with the same scintillation in order to deduce therefrom the original position of this scintillation. The present addition specifies that this comparison consists first of adding the responses to ensure that the X photon has indeed produced the number of visible photons that is expected. Otherwise, it is a parasitic X photon, which is not taken into account. This is important in the case of use with a gamma camera, since the parasitic photons produced by the Compton effect are more numerous than the useful photons.

Ce comptage permet de savoir s'il s'agit d'un photon utile, ou éventuellement d'une scintillation produite par deux OU plusieurs photons utiles dont les taches de scintillation se recouvrent partiellement. Dans ce dernier cas, Ze nombre de photons visible est un multiple entier du nomore auquel on s'attend pour un seul photons X utile. This count makes it possible to know whether it is a useful photon, or possibly a scintillation produced by two OR several useful photons whose scintillation spots partially overlap. In the latter case, the number of visible photons is an integer multiple of the nomore which is expected for a single useful X photon.

S'il n'existe qu'un seuZ photon utile le traitement consiste a calculer les moments en x et en y des charges des pixels par rapport â un pixel arbitraire. Ceci permet de déterminer le centre de gravité de la tache de scintillation. Le centre de gravité est situé au point d'impact du photon X utile. Cette détermination peut se faire soit en analogique, a la manière. If there is only one useful photon, the processing consists in calculating the moments in x and in y of the charges of the pixels with respect to an arbitrary pixel. This makes it possible to determine the center of gravity of the scintillation spot. The center of gravity is located at the point of impact of the useful photon X. This determination can be made either in analog, in the manner.

d'une $pesée d'ANGERS, soit en numérique.of a $ weigh of ANGERS, either in digital.

S'iZ existe N photons utiles, Ze traitement consiste a calculer tes moments d'ordre inférieurs ou égal à N, en x et en y. Ces quantités permeftent de déterminer le centre des divers taches en recouvrement partiels, Le traitement est simple si
N = 2, et se complique rapidement quant N croit.
If there are N useful photons, Ze processing consists in calculating your moments of order less than or equal to N, in x and in y. These quantities make it possible to determine the center of the various partial overlapping spots. The treatment is simple if
N = 2, and quickly becomes complicated when N believes.

Il est expédient de réaliser ce traitement par des calculateurs locaux directement implantés sur le CCD. A cette fin, chaque calculateur est rattaché à un pixel. Si le pixel de rattachement n'a pas reçu de photons visibles, le caloulateur reste au repos. Dans le cas contraire, il interroge les pixels voisins, et met en mémoire leur charge. Il explore ainsi son environnement jusqu'à rencontrer des pixels sans charges. Si au cours de cette exploration il rencontre un pixel auquel est rattaché un calculateur, il transmet ses informations à ce calculateur si ce dernier est situé à sa droite ou au dessus, et se met au repos. Dans le cas contraire il met au repos le calculateur rencontré après avoir prélevé le résultat des explorations effectuées par le calculateur rencontré.Cette procédure assure que chaque tache de scintillation est traitée par un seul calculateur. Ces traitements prennent un temps de l'ordre de la milliseconde. Les résultats des calculs sont mis en mémoire par tes calculateurs locaux, et les pixels sont vidés de leurs charges pour être disponibles pour l'arrivée de nouveaux photons X. Le processus se poursuit pendant le temps nécessaire d l'accumulation du nombre d'événements nécessaires pour l'application envisagée. A titre indicatif, pour des applications médicales,. ce temps est de l'ordre de la seconde. It is expedient to carry out this treatment by local computers directly located on the CCD. To this end, each computer is attached to a pixel. If the connecting pixel has not received visible photons, the calulator remains at rest. Otherwise, it interrogates the neighboring pixels, and stores their charge. He thus explores his environment until he encounters pixels without charges. If during this exploration it encounters a pixel to which a calculator is attached, it transmits its information to this calculator if the latter is located to its right or above, and goes to rest. Otherwise, it puts the computer encountered to rest after having taken the result of the explorations carried out by the computer encountered. This procedure ensures that each scintillation spot is treated by a single computer. These treatments take a time of the order of a millisecond. The results of the calculations are stored in memory by your local computers, and the pixels are emptied of their charges to be available for the arrival of new X photons. The process continues for the time necessary for the accumulation of the number of events necessary for the intended application. As an indication, for medical applications. this time is of the order of a second.

Après cette accumulation, les calculateurs locaux communiquent l'état de leurs mémoires aux organes externes qui traitent l'information captée.After this accumulation, the local computers communicate the state of their memories to the external bodies which process the information received.

Avant d'effectuer cette communication, les calculateurs locaux peuvent effectuer un traitement complémentaire, pendant l'accumulation suivante. Ce traitement peut consister à calculer les coefficients d'ondelettes. Les calculateurs locaux communiquent alors l'état de leurs mémoires une période d'accumulation plus tard que dans le cas précédent. Ils communiquent non pas le nombre et la localisation des impacts X, mais les coefficients d'ondelettes de la répartition des impacts
X. Ils se bornent à communiquer les coefficients significativement différents de zéro. Une compression d'information massive est ainsi effectuée.
Before carrying out this communication, the local computers can carry out additional processing during the following accumulation. This processing can consist in calculating the wavelet coefficients. The local computers then communicate the state of their memories an accumulation period later than in the previous case. They do not communicate the number and location of impacts X, but the wavelet coefficients of the distribution of impacts
X. They limit themselves to communicating the coefficients significantly different from zero. Massive information compression is thus carried out.

Le matériaux scintillant peut être un monocristal, ou un ensemble de cristaux juxtaposés. Le germanate de bismuth ou le tungstate de cadmium peuvent être utilisés.  The scintillating material can be a single crystal, or a set of juxtaposed crystals. Bismuth germanate or cadmium tungstate can be used.

Claims (3)

1 Capteur selon revendication 1, 4 et 7 du brevet N 87 1 sensor according to claim 1, 4 and 7 of patent N 87 18262, caractérisé en ce que le traitement indiqué revendication 4 est effectué par des calculateurs locaux directement gravés sur le CCD.18262, characterized in that the processing indicated in claim 4 is carried out by local computers directly engraved on the CCD. 2 Capteur selon revendication 2 ci-dessus caractérisé en ce que les calculateurs locaux effectuent le calcul des coefficients d'ondelettes, ou tout autre traitement capable d'effectuer une compression d'information. 2 sensor according to claim 2 above characterized in that the local computers perform the calculation of the wavelet coefficients, or any other processing capable of performing information compression. 3 Capteur selon revendication 2 du brevet N 87 18262 caractérisé en ce que le scintillateur est formé d'un cristal de germanate de bismuth ou de tungstate de cadmium, ou d'un assembZage de plusieurs cristaux de ces substances.  3 Sensor according to claim 2 of patent N 87 18262 characterized in that the scintillator is formed from a crystal of bismuth germanate or cadmium tungstate, or from an assembly of several crystals of these substances.
FR8801000A 1987-12-29 1988-01-28 Array detector for X-rays and gamma rays Pending FR2626679A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8801000A FR2626679A2 (en) 1987-12-29 1988-01-28 Array detector for X-rays and gamma rays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8718262A FR2625331A1 (en) 1987-12-29 1987-12-29 Array detector for X-rays and gamma rays
FR8801000A FR2626679A2 (en) 1987-12-29 1988-01-28 Array detector for X-rays and gamma rays

Publications (1)

Publication Number Publication Date
FR2626679A2 true FR2626679A2 (en) 1989-08-04

Family

ID=26226415

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8801000A Pending FR2626679A2 (en) 1987-12-29 1988-01-28 Array detector for X-rays and gamma rays

Country Status (1)

Country Link
FR (1) FR2626679A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696922A1 (en) * 1992-10-15 1994-04-22 Hamamatsu Photonics Kk Image processing appts. for medical X-rays - uses X-ray sensor to produce fluorescent image which is converted to electrical signal for processing
WO1995014245A1 (en) * 1993-11-19 1995-05-26 Ail Systems, Inc. Gamma ray imaging system
US5483070A (en) * 1994-08-02 1996-01-09 Packard Instrument Company Scintillation counter
US5606165A (en) * 1993-11-19 1997-02-25 Ail Systems Inc. Square anti-symmetric uniformly redundant array coded aperture imaging system
US5828067A (en) * 1993-10-20 1998-10-27 Cambridge Imaging Limited Imaging method and apparatus
WO2015173530A3 (en) * 2014-05-16 2016-01-07 Alain Iltis Method for improving the energy resolution of gamma ray scintillation detectors; associated system, component and application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696922A1 (en) * 1992-10-15 1994-04-22 Hamamatsu Photonics Kk Image processing appts. for medical X-rays - uses X-ray sensor to produce fluorescent image which is converted to electrical signal for processing
US5828067A (en) * 1993-10-20 1998-10-27 Cambridge Imaging Limited Imaging method and apparatus
WO1995014245A1 (en) * 1993-11-19 1995-05-26 Ail Systems, Inc. Gamma ray imaging system
US5606165A (en) * 1993-11-19 1997-02-25 Ail Systems Inc. Square anti-symmetric uniformly redundant array coded aperture imaging system
US5483070A (en) * 1994-08-02 1996-01-09 Packard Instrument Company Scintillation counter
WO2015173530A3 (en) * 2014-05-16 2016-01-07 Alain Iltis Method for improving the energy resolution of gamma ray scintillation detectors; associated system, component and application

Similar Documents

Publication Publication Date Title
CN100506154C (en) Nuclear medical apparatus
US6329658B1 (en) Device and method for processing signals from a radiation detector with semiconductors
Gaddis et al. Lava flow surface textures-SIR-B radar image texture, field observations, and terrain measurements
FR2626679A2 (en) Array detector for X-rays and gamma rays
Nilsson et al. Tests of HPGe-and scintillation-based backpack γ-radiation survey systems
EP0229497A1 (en) X-ray imaging system and method
FR2669439A1 (en) NUCLEAR DETECTION METHOD WITH BASIC POTENTIAL CORRECTION AND APPARATUS (IN PARTICULAR GAMMA-CAMERA) CORRESPONDING.
RU94001566A (en) CAMERA GAMMA-RADIATION SYSTEM
Marks et al. Improving performance of a CdZnTe imaging array by mapping the detector with gamma rays
Kreinovich et al. Inverse problems: fuzzy representation of uncertainty generates a regularization
FR2734372A1 (en) DEVICE FOR REMOTELY LOCATING RADIOACTIVE SOURCES AND SPECTROMETRIC MEASUREMENT IN AN OBSERVATION AREA
JP4400460B2 (en) Nuclear medicine imaging equipment
JPH1114755A (en) Photographing device using two-dimensional detector
Furenlid et al. Spatial pileup considerations for pixellated gamma-ray detectors
Ghebreyesus et al. Appropriate tools and methods for tropical microepidemiology: a case-study of malaria clustering in Ethiopia
JP2964648B2 (en) α ray detection method
JP6889476B2 (en) Radiation measuring device
Park et al. Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging
Bücherl et al. Real-time radiography at the NECTAR facility
van Dongen et al. Bernier and Dorre Islands vegetation cover report: 2019
JPH01320491A (en) Device for correcting scattered line for camera rotation type ect device
EP0199607A1 (en) Multiple detectors for tomoscintigraphy
JPH0587793B2 (en)
Ivanov et al. History of development and application of gamma-ray imagers in Russia since 1986
Wood et al. Remote Sensing the Patterns of Vector-borne Disease in El Nino and non-El Nino Years