FR2545957A1 - High-throughput binary multiplier - Google Patents
High-throughput binary multiplier Download PDFInfo
- Publication number
- FR2545957A1 FR2545957A1 FR8307793A FR8307793A FR2545957A1 FR 2545957 A1 FR2545957 A1 FR 2545957A1 FR 8307793 A FR8307793 A FR 8307793A FR 8307793 A FR8307793 A FR 8307793A FR 2545957 A1 FR2545957 A1 FR 2545957A1
- Authority
- FR
- France
- Prior art keywords
- bits
- multiplier
- group
- latches
- multiplicand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/533—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
- G06F7/5334—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
- G06F7/5336—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
- G06F7/5338—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm each bitgroup having two new bits, e.g. 2nd order MBA
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/3804—Details
- G06F2207/386—Special constructional features
- G06F2207/3884—Pipelining
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Complex Calculations (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8307793A FR2545957A1 (en) | 1983-05-10 | 1983-05-10 | High-throughput binary multiplier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8307793A FR2545957A1 (en) | 1983-05-10 | 1983-05-10 | High-throughput binary multiplier |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2545957A1 true FR2545957A1 (en) | 1984-11-16 |
FR2545957B1 FR2545957B1 (enrdf_load_stackoverflow) | 1989-01-13 |
Family
ID=9288750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8307793A Granted FR2545957A1 (en) | 1983-05-10 | 1983-05-10 | High-throughput binary multiplier |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2545957A1 (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2611286A1 (fr) * | 1987-02-23 | 1988-08-26 | Dassault Electronique | Circuit integre multiplieur, et son procede de composition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4189767A (en) * | 1978-06-05 | 1980-02-19 | Bell Telephone Laboratories, Incorporated | Accessing arrangement for interleaved modular memories |
-
1983
- 1983-05-10 FR FR8307793A patent/FR2545957A1/fr active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4189767A (en) * | 1978-06-05 | 1980-02-19 | Bell Telephone Laboratories, Incorporated | Accessing arrangement for interleaved modular memories |
Non-Patent Citations (1)
Title |
---|
IEEE TRANSACTIONS ON COMPUTERS, volume C-24, no. 9, septembre 1975 (NEW YORK, US) C.I. TOMA "Cellular logic array for high-speed signed binary number multiplication", pages 932-935 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2611286A1 (fr) * | 1987-02-23 | 1988-08-26 | Dassault Electronique | Circuit integre multiplieur, et son procede de composition |
Also Published As
Publication number | Publication date |
---|---|
FR2545957B1 (enrdf_load_stackoverflow) | 1989-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0322966B1 (fr) | Circuit et structure de réseau de neurones | |
EP0692762B1 (fr) | Circuit logique de multiplication parallèle | |
FR2593620A1 (fr) | Circuit arithmetique et logique multifonction | |
EP0262032B1 (fr) | Additionneur binaire comportant un opérande fixé, et multiplieur binaire parallèle-série comprenant un tel additionneur | |
EP0437876B1 (fr) | Multiplieur série programmable | |
EP0259231B1 (fr) | Dispositif de détermination de la transformée numérique d'un signal | |
EP0110767B1 (fr) | Multiplieur binaire rapide | |
EP0773499B1 (fr) | Multiplieur rapide pour multiplier un signal numérique par un signal périodique | |
FR2648585A1 (fr) | Procede et dispositif pour la multiplication rapide de codes a complement a 2 dans un systeme de traitement de signal numerique | |
EP0939363B1 (fr) | Procédé de mise en oeuvre d'une multiplication modulaire selon la méthode de Montgoméry | |
FR2545957A1 (en) | High-throughput binary multiplier | |
EP0242258B1 (fr) | Dispositif de mise en oeuvre d'un algorithme dit de LEROUX- GUEGUEN,pour le codage d'un signal par prédiction linéaire | |
EP0341097B1 (fr) | Additionneur de type récursif pour calculer la somme de deux opérandes | |
FR2599526A1 (fr) | Additionneur mos et multiplicateur binaire mos comprenant au moins un tel additionneur | |
EP0175623A1 (fr) | Dispositif de traitement en temps réel de signal numérique par convolution | |
EP0780775A1 (fr) | Architecture d'un système de tableaux de processeurs à structures parallèles multiples | |
FR2563349A1 (fr) | Multiplieur matriciel systolique de traitement de donnees numeriques | |
FR2559285A1 (fr) | Unite arithmetique et logique avec indicateur de debordement | |
EP0112768B1 (fr) | Opérateur élémentaire, notamment pour multiplieur du type en cascade | |
EP0128072B1 (fr) | Multiplieur binaire avec extension de signe pour la multiplication de nombres signés ou non signés | |
EP0718755B1 (fr) | Composant électronique capable notamment d'effectuer une division de deux nombres en base 4 | |
EP0122843B1 (fr) | Intégrateur modulaire | |
FR2540261A1 (fr) | Multiplieur parallele en circuit integre mos du type pipe-line | |
FR2650088A1 (fr) | Procede pour la generation de schemas logiques de circuits multiplieurs parametrables a decodeur de booth au moyen d'un ordinateur et circuits multiplieurs correspondants | |
EP0046105B1 (fr) | Dispositif opérateur numérique rapide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |