FR2545957A1 - High-throughput binary multiplier - Google Patents

High-throughput binary multiplier Download PDF

Info

Publication number
FR2545957A1
FR2545957A1 FR8307793A FR8307793A FR2545957A1 FR 2545957 A1 FR2545957 A1 FR 2545957A1 FR 8307793 A FR8307793 A FR 8307793A FR 8307793 A FR8307793 A FR 8307793A FR 2545957 A1 FR2545957 A1 FR 2545957A1
Authority
FR
France
Prior art keywords
bits
multiplier
group
latches
multiplicand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8307793A
Other languages
English (en)
French (fr)
Other versions
FR2545957B1 (enrdf_load_stackoverflow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EFCIS
Original Assignee
EFCIS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EFCIS filed Critical EFCIS
Priority to FR8307793A priority Critical patent/FR2545957A1/fr
Publication of FR2545957A1 publication Critical patent/FR2545957A1/fr
Application granted granted Critical
Publication of FR2545957B1 publication Critical patent/FR2545957B1/fr
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • G06F7/5334Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
    • G06F7/5336Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
    • G06F7/5338Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm each bitgroup having two new bits, e.g. 2nd order MBA
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • G06F2207/386Special constructional features
    • G06F2207/3884Pipelining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)
FR8307793A 1983-05-10 1983-05-10 High-throughput binary multiplier Granted FR2545957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8307793A FR2545957A1 (en) 1983-05-10 1983-05-10 High-throughput binary multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8307793A FR2545957A1 (en) 1983-05-10 1983-05-10 High-throughput binary multiplier

Publications (2)

Publication Number Publication Date
FR2545957A1 true FR2545957A1 (en) 1984-11-16
FR2545957B1 FR2545957B1 (enrdf_load_stackoverflow) 1989-01-13

Family

ID=9288750

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8307793A Granted FR2545957A1 (en) 1983-05-10 1983-05-10 High-throughput binary multiplier

Country Status (1)

Country Link
FR (1) FR2545957A1 (enrdf_load_stackoverflow)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611286A1 (fr) * 1987-02-23 1988-08-26 Dassault Electronique Circuit integre multiplieur, et son procede de composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189767A (en) * 1978-06-05 1980-02-19 Bell Telephone Laboratories, Incorporated Accessing arrangement for interleaved modular memories

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189767A (en) * 1978-06-05 1980-02-19 Bell Telephone Laboratories, Incorporated Accessing arrangement for interleaved modular memories

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON COMPUTERS, volume C-24, no. 9, septembre 1975 (NEW YORK, US) C.I. TOMA "Cellular logic array for high-speed signed binary number multiplication", pages 932-935 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611286A1 (fr) * 1987-02-23 1988-08-26 Dassault Electronique Circuit integre multiplieur, et son procede de composition

Also Published As

Publication number Publication date
FR2545957B1 (enrdf_load_stackoverflow) 1989-01-13

Similar Documents

Publication Publication Date Title
EP0322966B1 (fr) Circuit et structure de réseau de neurones
EP0692762B1 (fr) Circuit logique de multiplication parallèle
FR2593620A1 (fr) Circuit arithmetique et logique multifonction
EP0262032B1 (fr) Additionneur binaire comportant un opérande fixé, et multiplieur binaire parallèle-série comprenant un tel additionneur
EP0437876B1 (fr) Multiplieur série programmable
EP0259231B1 (fr) Dispositif de détermination de la transformée numérique d'un signal
EP0110767B1 (fr) Multiplieur binaire rapide
EP0773499B1 (fr) Multiplieur rapide pour multiplier un signal numérique par un signal périodique
FR2648585A1 (fr) Procede et dispositif pour la multiplication rapide de codes a complement a 2 dans un systeme de traitement de signal numerique
EP0939363B1 (fr) Procédé de mise en oeuvre d'une multiplication modulaire selon la méthode de Montgoméry
FR2545957A1 (en) High-throughput binary multiplier
EP0242258B1 (fr) Dispositif de mise en oeuvre d'un algorithme dit de LEROUX- GUEGUEN,pour le codage d'un signal par prédiction linéaire
EP0341097B1 (fr) Additionneur de type récursif pour calculer la somme de deux opérandes
FR2599526A1 (fr) Additionneur mos et multiplicateur binaire mos comprenant au moins un tel additionneur
EP0175623A1 (fr) Dispositif de traitement en temps réel de signal numérique par convolution
EP0780775A1 (fr) Architecture d'un système de tableaux de processeurs à structures parallèles multiples
FR2563349A1 (fr) Multiplieur matriciel systolique de traitement de donnees numeriques
FR2559285A1 (fr) Unite arithmetique et logique avec indicateur de debordement
EP0112768B1 (fr) Opérateur élémentaire, notamment pour multiplieur du type en cascade
EP0128072B1 (fr) Multiplieur binaire avec extension de signe pour la multiplication de nombres signés ou non signés
EP0718755B1 (fr) Composant électronique capable notamment d'effectuer une division de deux nombres en base 4
EP0122843B1 (fr) Intégrateur modulaire
FR2540261A1 (fr) Multiplieur parallele en circuit integre mos du type pipe-line
FR2650088A1 (fr) Procede pour la generation de schemas logiques de circuits multiplieurs parametrables a decodeur de booth au moyen d'un ordinateur et circuits multiplieurs correspondants
EP0046105B1 (fr) Dispositif opérateur numérique rapide

Legal Events

Date Code Title Description
ST Notification of lapse