FR2503520A1 - High frequency induction system with self tuning resonant balance - to maintain heat input to successive welds or adhesive joints with varying dielectric properties - Google Patents
High frequency induction system with self tuning resonant balance - to maintain heat input to successive welds or adhesive joints with varying dielectric properties Download PDFInfo
- Publication number
- FR2503520A1 FR2503520A1 FR8106679A FR8106679A FR2503520A1 FR 2503520 A1 FR2503520 A1 FR 2503520A1 FR 8106679 A FR8106679 A FR 8106679A FR 8106679 A FR8106679 A FR 8106679A FR 2503520 A1 FR2503520 A1 FR 2503520A1
- Authority
- FR
- France
- Prior art keywords
- applicator
- generator
- products
- series
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 9
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 9
- 230000006698 induction Effects 0.000 title claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000003990 capacitor Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims description 6
- 230000001360 synchronised effect Effects 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 238000007669 thermal treatment Methods 0.000 claims 2
- 239000003822 epoxy resin Substances 0.000 claims 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 229920000647 polyepoxide Polymers 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000003466 welding Methods 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract 1
- 229920001169 thermoplastic Polymers 0.000 abstract 1
- 239000004416 thermosoftening plastic Substances 0.000 abstract 1
- 239000002023 wood Substances 0.000 description 10
- 238000004026 adhesive bonding Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004023 plastic welding Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009732 tufting Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000001145 finger joint Anatomy 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1403—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
- B29C65/1425—Microwave radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91641—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
- B29C66/91643—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91651—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
- B29C66/91653—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the voltage, i.e. the electric potential difference or electric tension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91651—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
- B29C66/91655—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/46—Dielectric heating
- H05B6/48—Circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/93—Measuring or controlling the joining process by measuring or controlling the speed
- B29C66/934—Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
- B29C66/93431—Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being kept constant over time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/93—Measuring or controlling the joining process by measuring or controlling the speed
- B29C66/939—Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/94—Measuring or controlling the joining process by measuring or controlling the time
- B29C66/949—Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/95—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
- B29C66/959—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
- B29C66/9592—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2711/00—Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
- B29K2711/14—Wood, e.g. woodboard or fibreboard
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
Procédé visant à maintenir constante l'énergie thermique dissipée dans un produit placé dans un applicateur alimenté par un champ haute fréquence, dispositifs de mise en oeuvre, application à certaines fabrications en continu : aboutage de bois, collages. Process aimed at keeping constant the thermal energy dissipated in a product placed in an applicator supplied by a high frequency field, implementation devices, application to certain continuous manufacturing: wood butting, bonding.
La présente invention concerne le secteur des applications industrielles des H.F. On met à profit le fait que la H.F. permet d'apporter par pertes diélectriques des calories au sein des matériaux pour accélérer certains processus industriels comme la soudure des plastiques, la polymérisation des colles, etc. L'invention est d'autant plus intéressante qu'elle se rapporte à des matériaux à faibles pertes diélectriques. The present invention relates to the sector of industrial applications of HF. It takes advantage of the fact that HF makes it possible to supply calories by dielectric losses within materials to accelerate certain industrial processes such as the welding of plastics, the polymerization of adhesives, etc. . The invention is all the more interesting as it relates to materials with low dielectric losses.
A l'heure actuelle lorsqu'on désire traiter un matériau par H.F.. on le place dans un applicateur alimenté par un générateur H.F. Suivant la forme géométrique du matériau, l'applicateur est du type condensateur plan, en guirlande, etc. Pour relier l'applicateur
C au générateur H.F. (du type piloté à quartz ou autooscillateur) on emploie soit un couplage direct : figure 1, soit un couplage indirect par mutuelle induction figure 2. Actuellement, compte tenu des normes de stabilité en fréquence auxquelles doit répondre le générateur, le montage de la figure 1 est pratiquement abandonné. (Le montage 1 s'avère le plus simple possible,
L'échantillon est placé directement dans le condensateur du circuit oscillant. Il est sûr qu'un tel montage fonctionnera du premier coup, sans problème.Malheureusement, si les propriétés diélectriques du matériau viennent à varier la fréquence de l'oscillateur sera modifiée. Cela est inévitable. Meme si le matériau avait toujours la même texture, le même degré d'humidité, la fréquence serait quand même modifiée ne serait-ce que du fait de la polymérisation de la colle, La loi imposant des normes strictes de stabilité en fréquence (pour la bande de fréquence centrée sur 27,12 MHZ il est toléré une dérive de - 0,6 %) il en résulte que ce montage est à rejeté).Pour réaliser un transfert optimal de l'énergie H.F. du générateur vers le matériau, il est nécessaire que la fréquence f de résonance du circuit applicateur soit égale à celle f du générateur et que
o l'impédance d'entrée de l'applicateur vue des points A et B soit la complexe conjuguée de celle de sortie vue des points A et B du générateur, figure 2. Pour réaliser ces deux conditions on joue sur le nombre de spires du transformateur de sortie et on place comme le montre la figure 3 des condensateurs C1 et C2 en série ou en parallèle avec l'applicateur. On remplace parfois ces condensateurs par des selfs. Par tatonnements successifs on adapte au mieux le transfert d'énergie du générateur H. F. En effet, lorsque l'applicateur n'est pas à la résonance son impédance est très grande et la consommation du tube oscillateur ou amplificateur est très faible.Dans le cas contraire, celui de l'accord, elle est maximale. On a donc ainsi à sa disposition une indication permettant de contrôler cet accord. Actuellement, la technologie des applications industrielles de la H.F. se heurte à deux difficultés. La première résulte du fait qu'en cours de traitement le matériau soumis aux ondes s'échauffe ce qui est bien sur le but recherché. Malheureusement cet échauffement entraîne une variation de ses propriétés électriques en particulier de ses constantes diélectriques #'r et #"r . Cela se traduit par un désaccord de l'applicateur. D'autre partXpour un traitement au défilé,lorsqu'on passe d'un échantillon a un autre, si le suivant n'est pas rigoureusement le même que le précédent, l'accord de l'applicateur est a nouveau perdu.A ces deux ennuis il faut ajouter les instabilités en fréquence du générateur lui-même. Ces instabilités sont provoquées par les fluctuations de la tension d'alimentation, les dilatations thermiques et surtout la réaction du circuit applicateur sur le circuit oscillant de l'auto-oscillateur. Cette difficulté pourrait être supprimée en utilisant un générateur H.F. piloté par quartz. Compte tenu de toutcela l'utilisateur d'une machine H.F. est alors amené a retoucher des réglages manuels ce qui est désastreux pour une machine automatique. Pour surmonter ces écueils, certains ontpréconisé des dispositifs utilisant un condensateur d'asservissement (placé comme
C2 de la figure 3), condensateur entraîné par un moteur de telle façon que le courant débité par le tube du générateur H.F. reste constant.Cette voie est difficile et n'a pas conduit a des applicationg industrielles.Currently when you want to treat a material with HF. it is placed in an applicator powered by an HF generator. Depending on the geometric shape of the material, the applicator is of the flat capacitor type, in a daisy chain, etc. To connect the applicator
C to the HF generator (of the quartz piloted or self-oscillating type), either direct coupling is used: FIG. 1, or indirect coupling by mutual induction Figure 2. Currently, taking into account the frequency stability standards which the generator must meet, the Figure 1 assembly is practically abandoned. (Assembly 1 is as simple as possible,
The sample is placed directly in the oscillating circuit capacitor. It is certain that such an assembly will work the first time, without problem. Unfortunately, if the dielectric properties of the material come to vary the frequency of the oscillator will be modified. This is inevitable. Even if the material always had the same texture, the same degree of humidity, the frequency would still be modified if only because of the polymerization of the glue, The law imposing strict standards of frequency stability (for the frequency band centered on 27.12 MHZ a drift of - 0.6% is tolerated) it results that this assembly is rejected). To achieve an optimal transfer of HF energy from the generator to the material, it is necessary that the resonant frequency f of the applicator circuit is equal to that f of the generator and that
o the input impedance of the applicator seen from points A and B, ie the complex combined with that of output seen from points A and B of the generator, Figure 2. To achieve these two conditions, we play on the number of turns of the output transformer and place as shown in Figure 3 capacitors C1 and C2 in series or in parallel with the applicator. These capacitors are sometimes replaced by inductors. By successive trial and error, the energy transfer from the HF generator is best adapted. Indeed, when the applicator is not at resonance its impedance is very high and the consumption of the oscillator or amplifier tube is very low. , that of the agreement, it is maximum. We therefore have at their disposal an indication enabling this agreement to be checked. Currently, HF industrial application technology faces two challenges. The first results from the fact that during treatment the material subjected to waves heats up which is of course the desired goal. Unfortunately this heating leads to a variation of its electrical properties in particular of its dielectric constants # 'r and # "r. This results in a disagreement of the applicator. On the other handXfor treatment at the parade, when passing from one sample to another, if the next one is not strictly the same as the previous one, the agreement of the applicator is again lost. To these two troubles it is necessary to add the instabilities in frequency of the generator itself. instabilities are caused by fluctuations in the supply voltage, thermal expansions and especially the reaction of the applicator circuit on the oscillating circuit of the self-oscillator.This difficulty could be eliminated by using an HF generator controlled by quartz. In any case, the user of an HF machine is then led to touch up manual settings, which is disastrous for an automatic machine. To overcome these pitfalls, some have recommended devices using a servo capacitor (placed as
C2 of Figure 3), capacitor driven by a motor so that the current delivered by the tube of the HF generator remains constant. This path is difficult and has not led to industrial applications.
Le procédé et les dispositifs suivant l'invention permettent d'éviter ces inconvénients. En éffet même si les propriétés de l'échantillon du fait de son échauffement viennent a varier en cours de traitement, ou si l'on passe en cours de fabrication en continu d'un échantillon à un autre de dimensions ou de propriétés électriques légèrement différentes le dispositif objet de l'invention permet de dissiper toujours la meme puissance dans l'échantillon. L'invention permet donc en outre pour la première fois d'envisager des chaînes de fabrication en continu, dans certaines applications. The method and the devices according to the invention make it possible to avoid these drawbacks. In effect even if the properties of the sample due to its heating come to vary during processing, or if one passes during continuous manufacturing from one sample to another of slightly different dimensions or electrical properties the device which is the subject of the invention makes it possible to always dissipate the same power in the sample. The invention therefore also makes it possible, for the first time, to envisage continuous production lines, in certain applications.
Ces applications sont toutes les applications où l'on désire chauffer des matériaux par haute fréquence,comme pour la soudure des plastiques (mise sous berlingot d'un liquide, fabrication de certains tissus synthétiques, réalisation d'objet de maroquinerie en PVC), le collage ou aboutage de pièces de bois par polymérisation de colle ou toutes autres applications énergétiques des H.F.These applications are all the applications where it is desired to heat materials by high frequency, such as for the welding of plastics (placing in a carton of a liquid, manufacture of certain synthetic fabrics, production of PVC leather goods), gluing or butt-jointing of wood pieces by glue polymerization or any other energy application of HF
D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre et en se référant au dessin annexé sur lequel - la figure 1 représente un montage connu a couplage
direct, - la figure 2 représente un montage connu à couplage
indirect par mutuelle induction, - la figure 3 représente une variante d'un montage connu, - la figure 4 représente le schéma de principe d'un
montage permettant de mettre en oeuvre le procédé selon
l'invention, - la figure 5, qui se compose des figures 5a, b, c et d,
représente un mode de réalisation de l'ensemble C de
v
la figure 4 (5b) et une vue de dessus de la partie
active de cet ensemble (5a), le symbole représentatif
de cet ensemble (5c), et la variation de la capacité
C de cet ensemble C en fonction du temps (5d).Other characteristics and advantages of the invention will be better understood on reading the description which will follow and with reference to the appended drawing in which - FIG. 1 represents a known assembly with coupling
direct, - Figure 2 shows a known assembly with coupling
indirect by mutual induction, - Figure 3 shows a variant of a known arrangement, - Figure 4 shows the block diagram of a
assembly for implementing the method according to
the invention, - Figure 5, which consists of Figures 5a, b, c and d,
represents an embodiment of the set C of
v
Figure 4 (5b) and a top view of the part
active of this set (5a), the representative symbol
of this set (5c), and the variation of the capacity
C of this set C as a function of time (5d).
v - la figure 6, qui se compose des graphes 6a, b et c,
représente dans le cadre de l'invention la tension
aux bornes de l'applicateur (-), le courant du tube
émetteur (6c), et le rappel du graphe représenté sur
la figure 5d, en fonction du temps - la figure 7, qui se compose des figures 7a et b
représente la tension aux bornes de l'applicateur,
respectivement selon l'état de la technique et selon l'invention - la figure 8 représente une variante améliorée de
montage pour la mise en oeuvre du procédé selon
l'invention ; - la figure 9 représente le système à balayage utilisé
selon l'invention correspondant à l'exemple 1 d'exécution
donné.v - Figure 6, which consists of graphs 6a, b and c,
represents in the context of the invention the tension
across the applicator (-), the tube current
transmitter (6c), and the recall of the graph represented on
Figure 5d, as a function of time - Figure 7, which consists of Figures 7a and b
represents the voltage across the applicator,
respectively according to the state of the art and according to the invention - Figure 8 shows an improved variant of
assembly for implementing the method according to
the invention; - Figure 9 shows the scanning system used
according to the invention corresponding to example 1 of execution
given.
- la figure 10 représente un exemple de montage permettant
l'aboutage de bois - la figure 11 représente une chaîne de fabrication en
continu de panneaux de toiture comportant la machine
d'aboutage par H.F. représentée sur la figure 10.- Figure 10 shows an example of mounting allowing
wood butting - Figure 11 shows a production line in
continuous roof panels comprising machine
butt joint by HF shown in Figure 10.
Sur ces dessins, les mêmes références ont les mêmes significations, qui sont les suivantes 1. matériauà traiter (par exemple, zone d'aboutage
de chevrons).In these drawings, the same references have the same meanings, which are as follows 1. material to be treated (for example, butting area
rafters).
r résistance de cathode.r cathode resistance.
C applicateur.C applicator.
C élément de modulation selon l'invention.
C modulation element according to the invention.
v 2 lame mobile. v 2 movable blade.
3 lames fixes.3 fixed blades.
M moteur 4 conducteur.M 4-conductor motor.
5 isolant.5 insulator.
G désigne dans un but de simplification le générateur
H.F. comportant l'élément C selon l'invention et
v
alimentant l'applicateur C du côté où ce dernier
n'est pas relié à la terre (cf. figure 4 et 8). G designates, for the purpose of simplification, the generator
HF comprising element C according to the invention and
v
feeding the applicator C from the side where the latter
is not earthed (see Figures 4 and 8).
8. Chariot mobile sur les rails 13, portant les
générateurs G et les applicateurs C.8. Mobile carriage on the rails 13, carrying the
generators G and applicators C.
10. remise des bois à zéro.10. reset wood.
11. vérins de blocage des bois.11. wood blocking cylinders.
12. vérin d'avancement.12. advancement cylinder.
13. rails de guidage.13. guide rails.
14. suite de la chaîne de fabrication.14. Continuation of the production line.
(a) et (b) : séries de chevrons traitées en parallèle,
dans l'exemple non limitatif de
chaîne considérée, "pour donner directement en
bout de chaîne )s panneaux de toiture visés.(a) and (b): series of chevrons processed in parallel,
in the nonlimiting example of
string considered, "to give directly in
end of chain) s roof panels targeted.
15. découpe complémentaire de deux chevrons devant être
aboutés, obtenue a la touffeteuse, après encollage
et emboîtement (cf. figure 11).15. complementary cutting of two rafters to be
butt-jointed, obtained with a tufting machine, after gluing
and nesting (see Figure 11).
Les symboles électriques sont utilisés sur le dessin annexé dans leur sens habituel. The electrical symbols are used in the accompanying drawing in their usual sense.
Le procédé objet de l'invention est caractérisé en ce qu'il comporte un système de balayage en fréquence permettant de moduler la fréquence de résonance série f de l'applicateur de part et d'autre de celle f du
o générateur. La figure 4 donne le schéma de principe du montage réalisé. Sur cette figure on distingue en parallèle sur l'applicateur C qui peut être de type quelconque (condensateur, plan, stray field, etc.) un ensemble C qui fait partie de l'invention et peut être
v dans une première version constitué par un condensateur papillon dont les lames mobiles sont entraînées selon un mouvement de rotation par un moteur.Les figures 5a, 5b, 5c, 5d donnent respectivement le schéma de principe de ce condensateur, un exemple de réalisation, son symbole représentatif et la variation de sa capacité C en fonction du temps. Si l'on s'arrange pour que la résonance du circuit secondaire contenant l'applicateur se produise a f (fréquence du générateur) lorsque la
o lame mobile est & demi engagée entre les lames fixes, on comprend que la tension aux bornes de l'applicateur va évoluer comme indiqué sur le graphique 6b.The method which is the subject of the invention is characterized in that it comprises a frequency sweeping system making it possible to modulate the series resonance frequency f of the applicator on either side of that f of the
o generator. Figure 4 gives the block diagram of the assembly carried out. In this figure, in parallel, on the applicator C, which can be of any type (capacitor, plane, stray field, etc.), there is a set C which is part of the invention and can be
v in a first version consisting of a butterfly capacitor whose movable blades are driven in a rotational movement by a motor. Figures 5a, 5b, 5c, 5d respectively give the block diagram of this capacitor, an embodiment, its representative symbol and the variation of its capacity C as a function of time. If it is arranged so that the resonance of the secondary circuit containing the applicator occurs af (generator frequency) when the
o movable blade is half engaged between the fixed blades, it is understood that the voltage across the terminals of the applicator will change as indicated in graph 6b.
Le graphique 6a identique a 5d est uniquement îa pour montrer la liaison temporelle exis tant entre l'évolution de la valeur de la capacité C
v et la tension V aux bornes de 11 applicateur ainsi que le courant du tube émetteur. Ce courant figure 6c a la même allure, au fond continu près Io, qui subsiste meme Si le circuit secondaire contenant l'applicateur n'est pas accordé. 10 varie en sens inverse du coefficient de surtension du circuit oscillant de puissance du générateur H.F.On conçoit aisément que1si la capacité propre de l'applicateur vient å varier par suite d'une modification des propriétés ou des dimensions du produit a traiter sa fréquence de résonance se produit pour des fréquences légèrement supérieures ou inférieures f . Cette variation de capacité n'aura donc aucun effet
Cmax. + Cmin.The graph 6a identical to 5d is only there to show the temporal link existing between the evolution of the value of the capacity C
v and the voltage V across the terminals of the applicator as well as the current of the transmitter tube. This current in FIG. 6c has the same shape, except for the continuous background near Io, which remains even if the secondary circuit containing the applicator is not tuned. 10 varies in opposite direction to the overvoltage coefficient of the oscillating power circuit of the HFO generator. produced for slightly higher or lower frequencies f. This variation in capacity will therefore have no effect
Cmax. + Cmin.
tout au moins tant qu'elle reste inférieure à
2
Pour caler la fréquence de résonance du circuit appli- cateur au voisinage de f0 il est nécessaire de prévoir a cet effet un condensateur de tarage Ct disposé en parallèle sur l'applicateur. Le dispositif objet de 1 'inven- tionpermet donc de s'afranchir des fluctuations de la fréquence de résonance du circuit applicateur. Dans le cas classique on obtient, figure 7a1aux bornes de l'applicateur une tension dont l'amplitude dépend de l'accord de l'applicateur. Dans le cas où l'on utilise notre dispositif, on obtient des impulsions de tension figure 7b.La puissance moyenne dissipée dans l'échantillon passe donc, si f varie, de quelque chose de très variable pour une installation classique à quelque chose de pratiquement constant lorsque on utilise notre invention ce qui est bien îà le but recherché. I1 est à noter que pour un générateur H.F. classique sans balayage il n'y a pas de temps mort, l'applicateur étant alimenté en.permanence. La présence du balayage conduit a une alimentation impulsionelle donnant un plus faible facteur d'utilisation. Ce fait pourrait se révéler un inconvénient pour l'invention de la présente demande en pratique il ne conduit à aucune perte de rendement car lorsque le circuit de 11 applicateur n'est pas accordé le générateur H.F. consomme une puissance négligeable.at least as long as it stays below
2
To set the resonant frequency of the applicator circuit in the vicinity of f0 it is necessary to provide for this purpose a calibration capacitor Ct placed in parallel on the applicator. The device which is the subject of the invention therefore makes it possible to overcome fluctuations in the resonance frequency of the applicator circuit. In the classic case, in FIG. 7a1, a voltage is obtained at the terminals of the applicator, the amplitude of which depends on the agreement of the applicator. If we use our device, we obtain voltage pulses in figure 7b. The average power dissipated in the sample therefore goes, if f varies, from something very variable for a conventional installation to something practically constant when using our invention which is well îà the desired goal. It should be noted that for a conventional HF generator without scanning there is no dead time, the applicator being supplied with permanent power. The presence of the sweep leads to a pulse supply giving a lower utilization factor. This fact could prove to be a drawback for the invention of the present application in practice, it does not lead to any loss of efficiency because when the circuit of the applicator is not tuned the HF generator consumes negligible power.
Pour compenser ce facteur d'utilisation plus faible il suffit d'augmenter la puissance instantanée du générateur
H. F. On peut le faire sans dommage en conservant le même tube que celui d'une installation classique de même puissance puisque seuX compte pour le dimensionnement de ce composant la puissance moyenne délivrée. On réalise alors une sorte de générateur a porteuse contrôlée. Il est possible de réguler autour d'une valeur de consigne ou même de faire évoluer en fonction du temps suivant un programme prédéterminé la puissance dissipée dans le produit placé dans l'applicateur. En effet, le courant du tube de puissance du générateur (donc la puissance
H.F. dissipée dans le produit placé dans l'applicateur) évolue de la même façon que la tension de l'applicateur.To compensate for this lower utilization factor, it suffices to increase the instantaneous power of the generator.
HF It can be done without damage by keeping the same tube as that of a conventional installation of the same power since seuX counts for the dimensioning of this component the average power delivered. A kind of generator with controlled carrier is then produced. It is possible to regulate around a set point or even to change, as a function of time, according to a predetermined program, the power dissipated in the product placed in the applicator. Indeed, the current of the generator power tube (therefore the power
HF dissipated in the product placed in the applicator) changes in the same way as the tension of the applicator.
I1 est donc possible en comparant la valeur moyenne de la tension apparaissant aux bornes de la résistance placée dans le circuit de cathode du tube émetteur, figure 8, à une tension de référence d'obtenir un signal d'erreur positif ou négatif. En utilisant pour le générateur H.F. une alimentation contrôlée (par thyristors ou par inductance saturable) il est possible grâce au signal d'erreur précédemment élaboré de piloter l'alimentation du générateur H.F. donc de réguler la puissance dissipée dans l'échantillon. Si la tension de référence évolue suivant une certaine loi la puissance dissipée dans l'échantillon suit la même loi. Cette possibilité peut être mise à profit pour le soudage de matière plastique permettant ainsi d'utiliser une puissance plus faible en début de soudure lorsque l'échantillon est froid diminuant ainsi les risques de claquage.Notons que, l'applicateur travaillant toujours de façon impulsionelle,les risques de claquage sont diminués même si l'on augmente un peu la puissance instantanée. C'est le phénomène qui fait qu'à courant égal un interrupteur supporte beaucoup mieux un courant alternatif qu'un courant continu. Notons que dans le cas d'un générateur H.F. piloté le contrôle de puissance ne s'effectuera pas sur l'étage de puissance mais sur l'"exciter". La puissance à contrôler est alors beaucoup plus faible ce qui diminue le coût de l'asservissement. It is therefore possible by comparing the average value of the voltage appearing across the resistance placed in the cathode circuit of the emitting tube, FIG. 8, with a reference voltage to obtain a positive or negative error signal. By using a controlled supply for the H.F. generator (by thyristors or by saturable inductance) it is possible, thanks to the error signal previously developed, to control the supply of the H.F. generator and therefore to regulate the power dissipated in the sample. If the reference voltage changes according to a certain law, the power dissipated in the sample follows the same law. This possibility can be taken advantage of for the welding of plastic material, thus making it possible to use a lower power at the start of welding when the sample is cold, thereby reducing the risks of breakdown. Note that the applicator always works in impulse fashion. , the risk of breakdown is reduced even if the instantaneous power is slightly increased. It is the phenomenon which makes that with equal current a switch supports an alternating current much better than a direct current. Note that in the case of a controlled H.F. generator, the power control will not be carried out on the power stage but on the "exciter". The power to be controlled is then much lower, which reduces the cost of the control.
Remarquons que dans ce dernier cas l'étage de puissance du générateur H.F. devra obligatoirement fonctionner en amplificateur linéaire. La description du système de balayage à condensateur a été donnée ci-dessus.Note that in the latter case the power stage of the H.F. generator must necessarily operate as a linear amplifier. The description of the capacitor scanning system has been given above.
En pratique, nous utiliserons un condensateur papillon professionnel. Les lames mobiles seront entraînées à vitesse constante par un moteur synchrone de façon à décrire par exemple 50 fois par seconde la courbe de résonance du circuit de l'applicateur. Une variante du système peut être faite en utilisant une self variable. I1 suffit pour cela d'employer une espèce de U en gros fil devant lequel on fait tourner un disque comprenant des secteurs isolants (résines phénoliques ou époxy) et des secteurs conducteurs en cuivre, figure 9. Le passage d'une lame de cuivre parallèlement au plan de l'épingle modifie dans de grandes proportions la self vue des points A et B de l'épingle. Dans ce cas là, le dispositif de balayage n'est pas placé en parallèle sur l'applicateur mais en série.In practice, we will use a professional butterfly capacitor. The moving blades will be driven at constant speed by a synchronous motor so as to describe for example 50 times per second the resonance curve of the applicator circuit. A variant of the system can be made using a variable choke. I1 suffices for this to use a kind of U in coarse wire in front of which a disk is made up comprising insulating sectors (phenolic resins or epoxy) and conductive sectors in copper, figure 9. The passage of a copper strip in parallel in the plane of the pin modifies in large proportions the self view of points A and B of the pin. In this case, the scanning device is not placed in parallel on the applicator but in series.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée. The following examples illustrate the invention without, however, limiting its scope.
EXEMPLE 1 : aboutage de bois
L'aboutage de bois consiste à pratiquer des découpes complémentaires à l'extrémité de chevrons, par passage à la touffeteuse, à encoller ces découpes et à emboiter les chevrons pour obtenir une longueur suffisante de bois.EXAMPLE 1: wood butting
Joining wood consists of making complementary cuts at the end of the rafters, by passing through a tufting machine, gluing these cuts and nesting the rafters to obtain a sufficient length of wood.
Cette technique, ainsi que ses impératifs et les inconvénients des procédés connus, sont décrits en détail dans la demande de brevet français nO 81/06670 déposée par la Demanderesse le même jour que la présente demande, et à laquelle on pourra se reporter. This technique, as well as its imperatives and the drawbacks of the known methods, are described in detail in French patent application No. 81/06670 filed by the Applicant on the same day as the present application, and to which reference may be made.
/ Les colles utilisables dans le procédé selon l'invention d'aboutage par H.F. sont toutes les colles qui réagissent aux hautes fréquences. Ces colles sont connues. Cependant, on utilisera de préférence, parmi ces colles1 la Résorcine qui est d'emploi courant dans la technique d'aboutage, rendue sensible aux H.F. par adjonction de 5 à 20 % de phénol7. On a utilisé ici la colle "PLACURITE 76-476" (résorcine + 15 % phénol). / The adhesives which can be used in the process according to the invention for butt jointing by H.F. are all the adhesives which react at high frequencies. These adhesives are known. However, use will preferably be made, among these adhesives, of resorcinol, which is commonly used in the butting technique, made sensitive to H.F. by the addition of 5 to 20% of phenol7. The adhesive "PLACURITE 76-476" was used here (resorcinol + 15% phenol).
Les chevrons aboutés présentent une épaisseur (e) de 85 mm. The butted rafters have a thickness (e) of 85 mm.
L'applicateur C est constitué de deux plaques d'aluminium (16) de 90 mm de côté (cette dimension est largement suffisante pour assurer une répartition homogène de la densité de puissance haute fréquence au niveau de la zone d'aboutage (15) / cf. figure 197. The applicator C consists of two aluminum plates (16) with a side of 90 mm (this dimension is largely sufficient to ensure a homogeneous distribution of the high frequency power density at the level of the butting zone (15) / see figure 197.
On a utilisé le montage de la figure 4, dans lequel l'élément C (monté en série et non en parallèle)
v était tel que représenté sur la figure 9. Il faut prendre soin de bien centrer la zone d'aboutage entre les plaques (tolérance maximale + 1 cl). We used the assembly of Figure 4, in which the element C (mounted in series and not in parallel)
v was as shown in Figure 9. Care must be taken to center the butting area between the plates (maximum tolerance + 1 cl).
Une application de l'énergie H.F. durant 30 s permet d'obtenir un collage tout a fait suffisant des chevrons, correspondant aux exigences des professionnels en la matière (résistance a la flexion au moins égale a celle des chevrons i en traction, le bois casse avant l'aboutage). An application of the HF energy for 30 s makes it possible to obtain a completely sufficient bonding of the rafters, corresponding to the requirements of the professionals in the matter (resistance to bending at least equal to that of the rafters i in traction, the wood breaks before joining).
Les normes-HF. ont été respectées sans difficulté. HF standards. were met without difficulty.
EXEMPLE 2 : Chatne d'aboutage en continu -
Les résultats de l'exemple 1 montrent que l'aboutage en continu par H.F. est possible.EXAMPLE 2: Continuous finger joint -
The results of Example 1 show that continuous butting by HF is possible.
On a utilisé la chaîne représentée sur la figure Il. The chain shown in Figure II was used.
Cette chaîne est identique à celle décrite dans la demande de brevet français précitée déposée le même jour par la Demanderesse. sauf en ce que le dispositif à micro-ondes a été remplacé par un dispositif H.F. This chain is identical to that described in the aforementioned French patent application filed the same day by the Applicant. except that the microwave device has been replaced by an H.F.
selon la présente invention.according to the present invention.
Pour le fonctionnement général de la chaîne, on se reportera donc à ladite demande. For the general operation of the chain, reference will therefore be made to said request.
La caractéristique essentielle de cette chaîne est que les trains de chevrons se déplacent à, par exemple, 3 m/min., tandis que les applicateurs C accompagnent ce mouvement de manière que la zone oiaboutage reste sensiblement en regard des plaques 16. The essential characteristic of this chain is that the chevron trains move at, for example, 3 m / min., While the applicators C accompany this movement so that the jointing zone remains substantially facing the plates 16.
Pour respecter le temps nécessaire d'application de l'énergie H.F. déterminé a l'exemple 1, on voit qu'il suffit que l'applicateur accompagne la zone d'aboutage sur environ 1,5 m. In order to respect the time required for the application of the H.F. energy determined in Example 1, it can be seen that it is sufficient for the applicator to accompany the butting zone over approximately 1.5 m.
Les bois aboutés obtenus satisfont les deux critères retenus dans la profession pour apprécier la qualité de l'aboutage, c'est-a-dire que 1) le % d'arrachement de l'aboutage est très proche de 100 % en sortie de chatne et 2) la résistance des bois a la flexion est au moins égale a la résistance avant aboutage. The finger-jointed timber obtained meets the two criteria used in the profession to assess the quality of butting, that is to say that 1) the% tearing of the butting is very close to 100% at the end of the chain and 2) the resistance of the wood to bending is at least equal to the resistance before finger jointing.
EXEMPLE 3
Dans l'exemple 2, on a remplacé l'élément de modulation selon la figure 9 par celui selon les figures 5 (a) et Çb), monté en parallèle.EXAMPLE 3
In Example 2, the modulation element according to FIG. 9 has been replaced by that according to FIGS. 5 (a) and Çb), mounted in parallel.
On a obtenu sensiblement les mêmes résultats. The same results were obtained.
Claims (24)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR8106679A FR2503520A1 (en) | 1981-04-02 | 1981-04-02 | High frequency induction system with self tuning resonant balance - to maintain heat input to successive welds or adhesive joints with varying dielectric properties |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR8106679A FR2503520A1 (en) | 1981-04-02 | 1981-04-02 | High frequency induction system with self tuning resonant balance - to maintain heat input to successive welds or adhesive joints with varying dielectric properties |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| FR2503520A1 true FR2503520A1 (en) | 1982-10-08 |
| FR2503520B3 FR2503520B3 (en) | 1984-02-03 |
Family
ID=9256941
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| FR8106679A Granted FR2503520A1 (en) | 1981-04-02 | 1981-04-02 | High frequency induction system with self tuning resonant balance - to maintain heat input to successive welds or adhesive joints with varying dielectric properties |
Country Status (1)
| Country | Link |
|---|---|
| FR (1) | FR2503520A1 (en) |
-
1981
- 1981-04-02 FR FR8106679A patent/FR2503520A1/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| FR2503520B3 (en) | 1984-02-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2763435C2 (en) | Method and device for activating glue | |
| CA2222163C (en) | Joining method | |
| FR2620648A1 (en) | METHOD OF COLLAGE ASSEMBLY USING A RESISTIVE ELEMENT INCORPORATED IN THE GLUE | |
| FR2667256A1 (en) | Device for removing the icing formed on the surface of a wall, especially of an optical or radio frequency window | |
| CN1305745C (en) | Method and device for joining individual sheets | |
| FR2503520A1 (en) | High frequency induction system with self tuning resonant balance - to maintain heat input to successive welds or adhesive joints with varying dielectric properties | |
| EP0526371A1 (en) | Process for deep laser beam cutting of a material coating substrate and devices for performing such process | |
| EP0036363A1 (en) | Method and apparatus for treating polymeric material bands by electrical discharge | |
| EP0367687A1 (en) | Method for the high-frequency welding of polycarbonate | |
| LU83535A1 (en) | METHOD FOR MODULATING A LASER BEAM | |
| FR2502441A1 (en) | Control for power dissipation in dielectric subject to HF field - by automatic resonance tuning and a reference voltage cycle | |
| JP2004001524A (en) | Method for processing seam of flexible imaging member and processing method for processing seam of flexible imaging member and processing device using this method | |
| FR2584336A1 (en) | Method for continuously bonding crossed films of wood and plywood panels | |
| EP0394081B1 (en) | Method for producing a composite comprising a thermoplastic matrix reinforced with long fibres, and composite obtained by this method | |
| EP0140746B1 (en) | Method for the heat treatment of electrical conducting coatings on dielectric substrates by microwaves | |
| US4243454A (en) | Solar heating panel forming apparatus and method | |
| FR2799886A1 (en) | Thermoelectric generator and manufacturing means, comprising set of aggregates connected in parallel | |
| WO2000027576A1 (en) | Laser treatment of materials, in particular cutting and welding | |
| OA11486A (en) | Method and device for manufacturing a plurality of thermocouples, and thermoelectric converter thus obtained. | |
| FR3075687A1 (en) | IMPROVED GLUE CORD ASSEMBLY METHOD | |
| FR2503015A1 (en) | Roof timber jointing by microwave hardening of adhesive - applied to prepared ends and heated in multimode cavity | |
| FR2523797A1 (en) | METHOD AND DEVICE FOR MICROWAVE PROCESSING OF SHEET PRODUCTS | |
| FR2727780A1 (en) | Laser surface treatment of electronic modules support band | |
| FR2733447A1 (en) | Laser cutting of strip material esp. for cutting self-adhesive postal stamps and labels | |
| EP1992418A2 (en) | Machine for applying glue and varnish to covering panels |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| TP | Transmission of property | ||
| ST | Notification of lapse |