FR2477730A1 - Liquid crystal display cell transparent electrode mfr. - includes heat treatment in nitrogen atmos. to increase laser absorption - Google Patents

Liquid crystal display cell transparent electrode mfr. - includes heat treatment in nitrogen atmos. to increase laser absorption Download PDF

Info

Publication number
FR2477730A1
FR2477730A1 FR8005195A FR8005195A FR2477730A1 FR 2477730 A1 FR2477730 A1 FR 2477730A1 FR 8005195 A FR8005195 A FR 8005195A FR 8005195 A FR8005195 A FR 8005195A FR 2477730 A1 FR2477730 A1 FR 2477730A1
Authority
FR
France
Prior art keywords
electrode
liquid crystal
heat treatment
transparent electrode
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR8005195A
Other languages
French (fr)
Inventor
Michel Hareng
Serge Le Berre
Maurice Le Galguen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to FR8005195A priority Critical patent/FR2477730A1/en
Publication of FR2477730A1 publication Critical patent/FR2477730A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/155Deposition methods from the vapour phase by sputtering by reactive sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

The electrode is formed by applying a transparent conductive layer via cathode sputtering on a transparent substrate, before subjecting it to heat treatment in a nitrogen atmos. Pref. the cathode sputtering is carried out in a reduced argon atmos. with the electrode layer comprising equal parts of indiun and tin. The heat treatment is carried out at a temp of 400 deg.C which is attained over a period of about 30 minutes, with the subsequent cooling down taking between 1 and 3 hours. The characteristics of the electrode can be varied by controlling the heating and cooling down phases of the heat treatment process. The latter allows a refractive index of 2.3 to be obtained for the electrode, so that it absorbs about 50 per cent of the energy of a YAG laser used to inscribe the display information.

Description

La présente invention se rapporte aux procédés de fabrication d'une électrode transparente qui permettent de former sur un substrat lui-même transparent une electrode destinée à recevoir une tension électrique et permettant le passage des rayons lumineux. The present invention relates to methods of manufacturing a transparent electrode which make it possible to form, on a substrate which is itself transparent, an electrode intended to receive an electric voltage and allowing the passage of light rays.

Elle concerne également les électrodes transparentes fabriquées selon ce procédé, et les cellules à cristal liquide dans lesquelles on utilise de telles électrodes transparentes pour visualiser des informations.It also relates to the transparent electrodes produced by this process, and to the liquid crystal cells in which such transparent electrodes are used to display information.

Il est connu de réaliser une cellule à cristal liquide en enfermant entre deux lames de verre une couche mince de cristal liquide en phase smectique. Pour inscrire les informations dans cette couche de cristal liquide on utilise un effet thermo-optique qui consiste à chauffer localement le cristal liquide au point que l'on désire inscrire pour le porter dans la phase liquide isotrope. En refroidissant ensuite brutalement ces emplacements ainsi chauffés, le cristal liquide repasse dans la phase smectique mais prend alors une structure diffusante dite en conique focale. Pour effacer ensuite les informations ainsi inscrites on soumet le cristal liquide à un champ électrique suffisant par I1 intermédiaire de deux électrodes déposées sur les faces internes des lames de verre qui contiennent le cristal liquide.L'une au moins de ces électrodes, si l'on travaille par réflexion, et éventuellement les deux, si l'on travaille par transmission, doivent être transparentes au rayonnement lumineux utilisé par la visualisation, et de préférence à l'ensemble du spectre lumineux visible. It is known to produce a liquid crystal cell by enclosing between two glass slides a thin layer of liquid crystal in the smectic phase. To register the information in this layer of liquid crystal, a thermo-optical effect is used which consists in locally heating the liquid crystal to the point that it is desired to register in order to carry it in the isotropic liquid phase. By then brutally cooling these locations thus heated, the liquid crystal returns to the smectic phase but then takes on a diffusing structure called a focal conic. To then erase the information thus entered, the liquid crystal is subjected to a sufficient electric field by means of two electrodes deposited on the internal faces of the glass slides which contain the liquid crystal. At least one of these electrodes, if the one works by reflection, and possibly both, if one works by transmission, must be transparent to the light radiation used by the display, and preferably to the entire visible light spectrum.

Pour obtenir ce chauffage local de la couche de cristal liquide, on utilise le plus souvent un laser dont on défléchit le faisceau de sortie pour balayer la cellule selon le motif à inscrire. To obtain this local heating of the liquid crystal layer, a laser is most often used, the output beam of which is deflected to scan the cell according to the pattern to be registered.

Ce laser émet de préférence dans l'infra-rouge et est par exemple un laser YAG de longueur d'onde 1,05 microns, ou un laser semiconducteur du type Gazas de longueur d'onde 0,85 microns. Le chauffage s'effectue par absorption du faisceau infra-rouge dans la cellule aux endroits balayés. This laser preferably emits in the infrared and is for example a YAG laser of wavelength 1.05 microns, or a semiconductor laser of the Gazas type of wavelength 0.85 microns. The heating is carried out by absorption of the infrared beam in the cell at the scanned places.

Comme les éléments de cette cellule sont transparents pour les besoins de la visualisation, l'absorption lumineuse est relativement faible même dans le proche infra-rouge. As the elements of this cell are transparent for viewing purposes, the light absorption is relatively low even in the near infrared.

On est donc amené à utiliser un laser de grande puissance, et éventuellement un balayage de faible vitesse, pour obtenir un chauffage suffisant en utilisant la faible absorption existante. La plus grande partie de l'énergie fournie par ce laser est donc perdue, et le laser est fortement surdîmensionné par rapport à ce qui serait necessaire si on pouvait absorber une fraction plus importante de son flux lumineux. It is therefore necessary to use a high power laser, and possibly a low speed scan, to obtain sufficient heating using the low existing absorption. Most of the energy supplied by this laser is therefore lost, and the laser is greatly oversized compared to what would be necessary if we could absorb a larger fraction of its luminous flux.

Pour obtenir une électrode qui soit à la fois transparente dans le visible, et absorbante dans l'infra-rouge, l'invention propose un procédé de fabrication d'une électrode transparente, du type consistant à déposer sur un substrat une couche conductrice transparente, et à lui faire subir un recuit, principale caractérisé en ce que ce recuit s'effectue sous atmosphère d'azote. To obtain an electrode which is both transparent in the visible, and absorbent in the infrared, the invention provides a method of manufacturing a transparent electrode, of the type consisting in depositing on a substrate a transparent conductive layer, and to subject it to an annealing, the main characterized in that this annealing takes place under a nitrogen atmosphere.

D'autres particularités et avantages de l'invention apparaitront clairement dans la description suivante présentée à titre d'exemple non limitatif -notamment quant aux valeurs numériques citées. Other particularities and advantages of the invention will appear clearly in the following description presented by way of nonlimiting example -notably as regards the numerical values cited.

La première étape de la fabrication consiste à déposer un alliage conducteur transparent sous une épaisseur convenable sur le substrat choisi. The first stage of manufacturing consists in depositing a transparent conductive alloy under a suitable thickness on the chosen substrate.

Pour cela on procède à la pulvérisation cathodique d'un mélange d'indium et d'étain en parties sensiblement égales sur un substrat en verre. This is done by sputtering a mixture of indium and tin in substantially equal parts on a glass substrate.

L'atmosphère de enceinte de pulvérisation est un mélange d'argon et d'oxygène avec des pressions partielles dans un rapport 15/1 et une pression totale d'environ 10 Torrs. The spray enclosure atmosphere is a mixture of argon and oxygen with partial pressures in a ratio 15/1 and a total pressure of approximately 10 Torrs.

En alimentant le dispositif de pulvérisation sous une puissance de 900 watts, et en le laissant fonctionner pendant 15 minutes, on obtient une couche d'une épaisseur d'environ 0,9 microns. By supplying the spraying device with a power of 900 watts, and leaving it to operate for 15 minutes, a layer with a thickness of approximately 0.9 microns is obtained.

Pour stabiliser la couche ainsi obtenue et avoir des caractéristiques électriques bien déterminées, il est nécessaire de proce- der ensuite à un recuit. Les caractéristiques obtenues sont variables en fonction de ce recuit et les meilleurs résultats ont jusqu'ici été obtenus en procédant à un recuit simple dans l'atmosphère ambiante à une température de 4000 Celsius pendant 2 heures. In order to stabilize the layer thus obtained and to have well-defined electrical characteristics, it is then necessary to anneal it. The characteristics obtained are variable as a function of this annealing and the best results have so far been obtained by carrying out a simple annealing in the ambient atmosphere at a temperature of 4000 Celsius for 2 hours.

Après ce traitement la couche presente une résistivité de surface égale à 120 ohms - carré, une couleur jaunâtre, et un#coeffi- dent de transmission sensiblement constant et égal à 85% pour des longueurs d'onde de la lumière comprises entre 0,4 microns et 1,2 microns. After this treatment, the layer has a surface resistivity equal to 120 ohms - square, a yellowish color, and a # constant transmission coefficient equal to 85% for wavelengths of light between 0.4 microns and 1.2 microns.

Selon l'invention on effectue le traitement thermique sous azote. According to the invention, the heat treatment is carried out under nitrogen.

Pour cela le substrat recouvert de la couche précédemment obtenue par pulvérisation cathodique est placé dans une enceinte parcourue par un courant d'azote à la pression atmosphèrique. Après avoir maintenu un débit initial assez important pour obtenir une bonne purge de cette enceinte, ce débit est réduit à quelques litres par heure de manière à simplement entrainer les quelques résidus de dégazage éventuels et à ne pas laisser rentrer d'autres gaz. For this, the substrate covered with the layer previously obtained by sputtering is placed in an enclosure traversed by a stream of nitrogen at atmospheric pressure. After maintaining an initial flow rate that is large enough to obtain good purging of this enclosure, this flow rate is reduced to a few liters per hour so as to simply entrain any degassing residues that may be present and not to allow other gases to enter.

Cette enceinte est placée dans un four et on fait croitre la température depuis l'ambiante jusque environ 4000 Celsius, et ceci en une durée d'environ 30 minutes. This enclosure is placed in an oven and the temperature is increased from the ambient to approximately 4000 Celsius, and this in a period of approximately 30 minutes.

Dès que cette température de 4000 Celsius est atteinte, on procéde à un refroidissement relativement long qui peut durer environ 1 heure. As soon as this temperature of 4000 Celsius is reached, one proceeds to a relatively long cooling which can last approximately 1 hour.

Les caractéristiques de la couche après ce traitement sont profondement différentes de celles obtenues après le recuit à l'air. The characteristics of the layer after this treatment are significantly different from those obtained after air annealing.

La résistivité de surface est tombée aux environs de la dizaine d'ohms-carré. Elle varie sensiblement de 5 à 15 ohms-carré selon la durée du recuit en augmentant lorsque le temps de recuit augmente de 1 à 3 heures. The surface resistivity fell to around ten square ohms. It varies significantly from 5 to 15 ohms-square depending on the duration of the annealing, increasing when the annealing time increases by 1 to 3 hours.

La couleur de la couche est gris verdâtre et sa transmission est toujours sensiblement constante et égale à 85%, mais seulement dans une gamme de 0,4 à 0,7 microns de longueur d'onde, c'est à dire sensiblement dans la gamme des lumières visibles. A partir de 0,7 microns, cette transmission chute et atteint une valeur de 50% pour une longueur d'onde de 1,06microns.  The color of the layer is greenish gray and its transmission is always substantially constant and equal to 85%, but only in a range of 0.4 to 0.7 microns in wavelength, i.e. substantially in the range visible lights. From 0.7 microns, this transmission drops and reaches a value of 50% for a wavelength of 1.06 microns.

L'indice de la couche est relativement élevé puisqu'il atteint la valeur n 1 2,30. The layer index is relatively high since it reaches the value n 1 2.30.

On constate donc qu'une telle couche permet d'absorber à son niveau 502 des radiations lumineuses fournies par un laser du type YANG. Compte-tenu de l'absorption dans le restant de la cellule, qui n'est pas négligeable, et de l'éventuelle traversée de deux électrodes, on arrive ainsi à absorber nettement plus de la moitié de l'énergie du laser dans une cellule d'affichage à cristal liquide. Ceci permet de construire des dispositifs d'affichage à cristal liquide par adressage avec un laser de petite taille et donc très intéressants.  It is therefore found that such a layer makes it possible to absorb at its level 502 light radiation supplied by a laser of the YANG type. Given the absorption in the rest of the cell, which is not negligible, and the possible crossing of two electrodes, we thus manage to absorb significantly more than half of the laser energy in a cell liquid crystal display. This makes it possible to build liquid crystal display devices by addressing with a small laser and therefore very interesting.

Claims (10)

REVENDICATIONS 1. Procédé de fabrication d'une électrode transparente, du type consistant à déposer sur un substrat une couche conductrice transparente, et à lui faire subir un recuit, caractérisé en ce que ce recuit s'effectue sous atmosphère d'azote. 1. A method of manufacturing a transparent electrode, of the type consisting in depositing on a substrate a transparent conductive layer, and in making it undergo annealing, characterized in that this annealing is carried out under a nitrogen atmosphere. 2. Procédé selon la revendication 1, caractérisé en ce que la couche conductrice est formée d'un mélange d'indium et d'étain. 2. Method according to claim 1, characterized in that the conductive layer is formed of a mixture of indium and tin. 3. Procédé selon la revendication 2, caractérisé en ce que ce mélange est sensiblement en parties égales. 3. Method according to claim 2, characterized in that this mixture is substantially in equal parts. 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dépôt est obtenu par pulvérisation cathodique sous pression réduite d'argon en présence résiduelle d'oxygene. 4. Method according to any one of claims 1 to 3, characterized in that the deposit is obtained by cathode sputtering under reduced pressure of argon in the residual presence of oxygen. 5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la température de recuit est de sensiblement 4000 Celsius. 5. Method according to any one of claims 1 to 4, characterized in that the annealing temperature is substantially 4000 Celsius. 6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la montée en température s'effectue en sensiblement 30 minutes. 6. Method according to any one of claims 1 to 5, characterized in that the temperature rise takes place in substantially 30 minutes. 7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le refroidissement s'effectue en une durée comprise entre 1 et 3 heures. 7. Method according to any one of claims 1 to 6, characterized in that the cooling takes place in a period of between 1 and 3 hours. 8. Procédé selon la revendication 7, caractérisé en ce que le refroidissement s'effectue en sensiblement 1 heure. 8. Method according to claim 7, characterized in that the cooling takes place in substantially 1 hour. 9. Electrode transparente, caractériséeence qu'elle est obtenue par un procédé selon l'une quelconque des revendications 1 à 8. 9. Transparent electrode, characterized in that it is obtained by a process according to any one of claims 1 to 8. 10. Cellule à cristal liquide, du type comprenant une couche de cristal liquide insérée entre deux substrats supportant chacun au moins une électrode, l'une de ces électrodes au moins étant transparente, caractériséeen ce que cette électrode transparente est une électrode selon la revendication 9. 10. Liquid crystal cell, of the type comprising a layer of liquid crystal inserted between two substrates each supporting at least one electrode, at least one of these electrodes being transparent, characterized in that this transparent electrode is an electrode according to claim 9 .
FR8005195A 1980-03-07 1980-03-07 Liquid crystal display cell transparent electrode mfr. - includes heat treatment in nitrogen atmos. to increase laser absorption Withdrawn FR2477730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8005195A FR2477730A1 (en) 1980-03-07 1980-03-07 Liquid crystal display cell transparent electrode mfr. - includes heat treatment in nitrogen atmos. to increase laser absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8005195A FR2477730A1 (en) 1980-03-07 1980-03-07 Liquid crystal display cell transparent electrode mfr. - includes heat treatment in nitrogen atmos. to increase laser absorption

Publications (1)

Publication Number Publication Date
FR2477730A1 true FR2477730A1 (en) 1981-09-11

Family

ID=9239449

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8005195A Withdrawn FR2477730A1 (en) 1980-03-07 1980-03-07 Liquid crystal display cell transparent electrode mfr. - includes heat treatment in nitrogen atmos. to increase laser absorption

Country Status (1)

Country Link
FR (1) FR2477730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718751A (en) * 1984-11-16 1988-01-12 Seiko Epson Corporation Optical panel and method of fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718751A (en) * 1984-11-16 1988-01-12 Seiko Epson Corporation Optical panel and method of fabrication

Similar Documents

Publication Publication Date Title
EP1232407B1 (en) Heat-absorbing filter and method for making same
EP0350362B1 (en) Process for the production of a transparent layer with a low resistance
EP2118031B2 (en) Method for depositing and treating a silver based thin layer
CA2849422A1 (en) Method of heat treatment of silver layers
EP0843889B1 (en) Laser surface treatment device and method
Serna et al. In situ growth of optically active erbium doped Al2O3 thin films by pulsed laser deposition
FR2674768A1 (en) PROCESS FOR THE PHOTOCHEMICAL TREATMENT OF A MATERIAL USING A LIGHT SOURCE WITH LIGHT TUBES.
FR2542327A1 (en)
FR2532297A1 (en) METHOD OF REFURBING A PHOSPHOSILICATE GLASS LAYER, IN PARTICULAR FOR TREATING SEMICONDUCTOR COMPONENTS
EP0034982B1 (en) Process for preparing homogeneous films of hg1-xcdxte
FR2611074A1 (en) DATA RECORDING MEDIUM FOR REPEATING
JPH077744B2 (en) Evaporation enhancement method from laser heating target
FR2477730A1 (en) Liquid crystal display cell transparent electrode mfr. - includes heat treatment in nitrogen atmos. to increase laser absorption
US5652062A (en) Devices using transparent conductive GaInO3 films
EP2744760B1 (en) Antireflection glazing unit equipped with a porous coating and method of making
FR2586156A1 (en) Method of adjusting the vapour density in coating processes using a plasma with arc-discharge evaporators, and corresponding device for coating substrates with the aid of plasma
EP0579517B1 (en) Process for making a preform for optical fibre
EP3577250B1 (en) Method for anti-reflective and scratch-resistant treatment of synthetic sapphire
CA2295711C (en) Devices for absorbing infrared radiation comprising a quasi-crystalline element
FR2471671A1 (en) AMORPHOUS SILICON PHOTOVOLTAIC DEVICE PRODUCING HIGH VOLTAGE IN OPEN CIRCUIT
Chan y Díaz et al. SnO 2 thin films grown by pulsed Nd: YAG laser deposition
WO2011124826A1 (en) Method of selectively metallizing a silica-based glass monolith and product obtained by this method
EP0045676B1 (en) Method of manufacturing an amorphous silicon layer, and electronic device applying this method
Boughaba et al. Optical Properties of Tantalum Oxide Films Deposited on BK7 Substrates by Excimer Laser Ablation
WO2005095296A2 (en) Method of preparing a rare-earth-doped film

Legal Events

Date Code Title Description
ST Notification of lapse