FR2470356A1 - Heat transfer system working between two sources - by means of a third source hotter than either, used as refrigerant - Google Patents
Heat transfer system working between two sources - by means of a third source hotter than either, used as refrigerant Download PDFInfo
- Publication number
- FR2470356A1 FR2470356A1 FR7929213A FR7929213A FR2470356A1 FR 2470356 A1 FR2470356 A1 FR 2470356A1 FR 7929213 A FR7929213 A FR 7929213A FR 7929213 A FR7929213 A FR 7929213A FR 2470356 A1 FR2470356 A1 FR 2470356A1
- Authority
- FR
- France
- Prior art keywords
- equilibrium
- phases
- solid
- pyrolysis
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/08—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
- F25B17/083—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
On ne connait guère aujourd'hui qu'un seul procédé qui permette le transfert de chaleur entre deux sources A et B au moyen d'une troisième source C dont la température est plus élevée que les deux précédentes. Il s'agit du procédé dit "à absorption" dans lequel on condense et on évapore de l'ammoniac produit par le chauffage d'une solution aqueuse de ce gaz. Little is known today that a single process which allows the transfer of heat between two sources A and B by means of a third source C whose temperature is higher than the previous two. This is the so-called "absorption" process in which the ammonia produced is evaporated and condensed by heating an aqueous solution of this gas.
Un calcul simplifié permet d'établir le rendement thermique approximatif de ce type de dispositif. Dans le cas d'une utilisation comme système frigorifique, le rendement est défini comme le rapport de la quantité de chaleur enlevée à la source froide A à la température absolue TA sur la quantité de chaleur fournie à la source chaude C, à la température TC :
TA TC - TB
#frigo = # (1)
TC - TB - TA
Si, au contraire, c'est l'utilisation en pompe de chaleur qui est envisagée, le rendement est défini comme le rapport de la quantité de chaleur transférée à la source intermédiaire B, à la température
TB, sur la quantité de chaleur fournie à la source chaude C
TB Tc C B T,
ca .T o A (2)
lc ls - 1A
Il ressort de ces formules que, dans les deux cas, le rendement dépend en premier lieu des températures TA et TB, c'est-à-dire des conditions normales de fonctionnement de tout système frigorifique et, en second lieu, de la température de la source chaude Tc. Il est clair que le rendement sera d'autant meilleur que TC sera plus élevée.A simplified calculation makes it possible to establish the approximate thermal efficiency of this type of device. In the case of use as a refrigeration system, the efficiency is defined as the ratio of the quantity of heat removed from the cold source A to the absolute temperature TA over the quantity of heat supplied to the hot source C, at the temperature TC :
TA TC - TB
#frigo = # (1)
TC - TB - TA
If, on the contrary, it is the use as a heat pump which is envisaged, the efficiency is defined as the ratio of the quantity of heat transferred to the intermediate source B, at the temperature
TB, on the quantity of heat supplied to the hot source C
TB Tc CBT,
ca .T o A (2)
lc ls - 1A
It follows from these formulas that, in both cases, the efficiency depends firstly on the temperatures TA and TB, that is to say on the normal operating conditions of any refrigeration system and, secondly, on the temperature of the hot spring Tc. It is clear that the performance will be better the higher the TC.
Le dispositif objet de la présente invention permet théoriquement de fonctionner avec une température TC beaucoup plus grande qu'actuellement, et donc d'atteindre des rendements beaucoup plus élevés. Il est basé sur la loi des équilibres chimiques, appelée aussi la loi d'action de masse.Considérons un système équilibré, tel que
solide 1 = solide 2 + Gaz (3) alors la pression du gaz, s'il s'agit d'un gaz monomoléculaire -ce que nous supposons-, satisfera à la relation pnGaz = k(T) (4)
Dans cette formule, n est un exposant le plus souvent égal à l'unité et k une constante qui ne dépend que de la température, selon la relation classique
d(log k) - BH (5)
dT RT2
Il est ainsi possible de concevoir un dispositif dans lequel on réalise une zone de haute pression et une zone de basse pression il suffit que chacune de ces zones soit en communication avec une enceinte contenant les solides 1 et 2 à une température qui corresponde à la pression que l'on désire.Suivant la nature du gaz et les températures des sources froide et intermédiaire, on peut obtenir une condensation dans la zone de haute pression et une évaporation dans la zone de basse pression. On transfère ainsi de la chaleur de la source froide vers la source intermédiaire.The device which is the subject of the present invention theoretically makes it possible to operate with a temperature TC much higher than at present, and therefore to achieve much higher yields. It is based on the law of chemical equilibria, also called the law of mass action. Consider a balanced system, such as
solid 1 = solid 2 + Gas (3) then the pressure of the gas, if it is a monomolecular gas - which we assume -, will satisfy the relation pnGaz = k (T) (4)
In this formula, n is an exponent most often equal to unity and k a constant which only depends on the temperature, according to the classical relation
d (log k) - BH (5)
dT RT2
It is thus possible to design a device in which a high pressure zone and a low pressure zone are produced. It is sufficient that each of these zones is in communication with an enclosure containing the solids 1 and 2 at a temperature which corresponds to the pressure. Depending on the nature of the gas and the temperatures of the cold and intermediate sources, it is possible to obtain condensation in the high pressure zone and evaporation in the low pressure zone. Heat is thus transferred from the cold source to the intermediate source.
Le choix du système chimique solide 1, solide 2, gaz, dépend du domaine thermique dans lequel on veut fonctionner et aussi des contraintes technologiques. La température de la source intermédiaire, ou source tiède, doit être inférieure à la température critique du gaz ; ce dernier doit également être liquide et présenter une tension de vapeur suffisante à la température de la source froide. Les carbonates constituent une première famille de systèmes chimiques possibles au voisinage de la température ambiante. L'équa tion chimique s'écrira
carbonate = oxyde + CO2
L'exemple classique est celui du carbonate de calcium
CaCO3 = CaO + CO2
Mais on peut aussi citer les carbonates d'aluminium et de lanthanides.Les sulfites donnent lieu à de semblables réactions de décomposition
sulfite = oxyde + SO2
Les ammoniacates peuvent également être envisagés, bien que leur stabilité thermique ne permette pas, en général, de fonctionner à température très élevée. L'équation chimique est du type
X, nNH3 = X + n NH3
Dans un domaine thermique plus élevé, on utilisera la décomposition des hydrates. Aux plus basses températures, on provoquera la liquéfaction de l'oxygène, de l'azote ou de l'hydrogène en pyrolysant des oxydes, nitrures ou hydrures. Dans ces systèmes, toutefois, l'étude théorique est rendue plus complexe par l'existence de phases non-stoechiométriques, l'irréversîbilité de certains processus chimiques et la difficulté d'atteindre un équilibre thermodynamique rigoureux.La réalisation est cependant possible chaque fois que, suivant l'équation générale (3), l'ensemble des phases constituant le solide 2 présente, dans le même domaine de température, une f ble pression d'équilibre avec le gaz, et une cinétique de recomb naison assez rapide.The choice of the solid 1, solid 2, gas chemical system depends on the thermal domain in which one wants to operate and also on technological constraints. The temperature of the intermediate source, or warm source, must be lower than the critical temperature of the gas; the latter must also be liquid and have a sufficient vapor pressure at the temperature of the cold source. Carbonates constitute a first family of possible chemical systems near ambient temperature. The chemical equation will be written
carbonate = oxide + CO2
The classic example is that of calcium carbonate
CaCO3 = CaO + CO2
But we can also mention aluminum carbonates and lanthanides. Sulphites give rise to similar decomposition reactions.
sulfite = oxide + SO2
Ammoniacates can also be envisaged, although their thermal stability does not generally make it possible to operate at very high temperature. The chemical equation is of the type
X, nNH3 = X + n NH3
In a higher thermal domain, we will use the decomposition of hydrates. At lower temperatures, oxygen, nitrogen or hydrogen will be liquefied by pyrolyzing oxides, nitrides or hydrides. In these systems, however, the theoretical study is made more complex by the existence of non-stoichiometric phases, the irreversibility of certain chemical processes and the difficulty of achieving a rigorous thermodynamic equilibrium. However, realization is possible whenever , according to general equation (3), all of the phases constituting solid 2 have, in the same temperature range, a low equilibrium pressure with the gas, and a fairly rapid recombination kinetics.
Le procédé objet de la présente invention suppose que les équilibres thermodynamiques soient atteints ou approchés rapide'
Comme il s'agit de réaction en phase hétérogène, il importe que surface spécifique de la phase solide soit grande, et ne soit par excessivement affectée par les opérations répétées de décompositi et de recombinaison. Une des voies permettant d'atteindre ce rés tat consiste à disperser l'élément actif sur un support inerte.The process which is the subject of the present invention assumes that the thermodynamic equilibria are reached or approached rapidly.
As this is a heterogeneous phase reaction, it is important that the specific surface area of the solid phase is large, and is not excessively affected by the repeated operations of decompositi and recombination. One of the ways to achieve this result is to disperse the active element on an inert support.
Le dispositif objet de l'invention comporte les organes es sentiels de tout système frigorifique : condenseur, réservoir de fluide liquide, régleur, évaporateur. Son originalité réside dans l'obtention de hautes ou basses pressions de fluide frigorigène dans les différentes parties du système. Cette double fonction compression- aspiration est ici réalisée par voie chimique. On utilise une réaction chimique équilibrée du type
SOLIDE 1 = SOLIDE 2 + GAZ
Une élévation de température déplace l'équilibre vers la gauche haute pression de gaz. Le refroidissement provoque au contraire u baisse de pression.The device which is the subject of the invention comprises the essential elements of any refrigeration system: condenser, liquid fluid tank, regulator, evaporator. Its originality lies in obtaining high or low refrigerant pressures in the various parts of the system. This double compression-aspiration function is here performed chemically. We use a balanced chemical reaction of the type
SOLID 1 = SOLID 2 + GAS
A rise in temperature shifts the equilibrium to the left at high gas pressure. On the contrary, cooling causes a drop in pressure.
Le dispositif objet de l'invention est cyclique et comport deux enceintes symétriques. Au début du cycle, l'une des enceinte est refroidie et contient le solide 1. L'autre enceinte est chauf fée à haute température et contient le solide 2. Il peut être ast cieux de refroidir la première enceinte au moyen d'air pulsé et d'utiliser cet air chaud pour alimenter les brûleurs chauffant la seconde ; on réalise ainsi un transfert direct de calories de la source froide à la source chaude. Chacune des -deux enceintes est reliée au condenseur et à l'évaporateur au moyen de dispositifs anti-retour, de sorte que le fluide puisse aller de l'évaporateur à l'enceinte ou de l'enceinte au condenseur. The device which is the subject of the invention is cyclical and comprises two symmetrical enclosures. At the start of the cycle, one of the chambers is cooled and contains the solid 1. The other chamber is heated to high temperature and contains the solid 2. It may be wise to cool the first chamber by means of forced air and to use this hot air to supply the burners heating the second; a direct transfer of calories is thus carried out from the cold source to the hot source. Each of the two enclosures is connected to the condenser and the evaporator by means of non-return devices, so that the fluid can go from the evaporator to the enclosure or from the enclosure to the condenser.
Le mode de fonctionnement est cyclique : dans un premier temps, le solide 1 chauffé libère du gaz sous pression qui vient liquéfier dans le condenseur. Il pénètre dans l'évaporateur par ur régleur et est absorbe de façon continue par le solide 2. Lorsque tout le solide 1 est décomposé, la pression baisse et on arrive at second temps : il suffit d'inverser le processus et de chauffer l'enceinte froide et refroidir l'enceinte chaude. La production de froid est-alors réalisée de façon identique. Il y a évidemment un temps mort entre le moment où le système arrête de refroidir et celui où il recommence. The operating mode is cyclic: firstly, the heated solid 1 releases gas under pressure which comes to liquefy in the condenser. It enters the evaporator via a regulator and is continuously absorbed by the solid 2. When all the solid 1 is decomposed, the pressure drops and we arrive at a second time: just reverse the process and heat the cold enclosure and cool the hot enclosure. The production of cold is then carried out identically. There is obviously a dead time between the time the system stops cooling and the time it starts again.
Le schéma figurant en annexe illustre un mode de réalisation de l'invention, à titre d'exemple et nullement limitatif. Un récipient sphérique (5) garni d'éléments métalliques verticaux contient un mélange de carbonates. Ce récipient est chauffé par une rampe de brûleurs. Le tout se trouve dans une enceinte A soigneusement calorifugée. Une enceinte similaire B contient un récipient (6) chargé d'oxydes basiques. Le brûleur (8) ne fonctionne pas. Une soufflerie
(13) aspire de l'air frais à travers l'enceinte B pour alimenter le brûleur (7). Le gaz carbonique sous pression atteint le condenseur
(9) en traversant le dispositif anti-retour (en abrégé D.A.R.) (2).The diagram in the appendix illustrates an embodiment of the invention, by way of example and in no way limiting. A spherical container (5) lined with vertical metallic elements contains a mixture of carbonates. This container is heated by a burner bank. The whole is in a carefully insulated enclosure A. A similar enclosure B contains a container (6) charged with basic oxides. The burner (8) does not work. A wind tunnel
(13) sucks fresh air through enclosure B to supply the burner (7). Carbon dioxide under pressure reaches the condenser
(9) by crossing the non-return device (abbreviated to DAR) (2).
Celui-ci, ainsi que les autres D.A.R. 1, 3 et 4, comportent un système d'arrêt des particules solides. Le gaz carbonique liquide est collecté dans le réservoir (10) et pénètre dans l'évaporateur (12) par le régleur (11). Après évaporation, le gaz traverse le D.A.R. 4 pour être absorbé par les oxydes basiques contenus dans le réservoir (6). Les D.A.R. 1 et 3 empêchent le gaz de passer directement des zones de haute pression aux zones de basse pression.This, as well as the other D.A.R. 1, 3 and 4, include a system for stopping solid particles. Liquid carbon dioxide is collected in the tank (10) and enters the evaporator (12) through the regulator (11). After evaporation, the gas passes through the D.A.R. 4 to be absorbed by the basic oxides contained in the tank (6). The D.A.R. 1 and 3 prevent the gas from passing directly from the high pressure zones to the low pressure zones.
Lorsque les carbonates du récipient (5) sont décomposés, on inverse le sens de circulation de l'air au moyen de la soufflerie (13). Le brûleur (7) est éteint et on allume le brûleur (8). Dès que le récipient (5) est suffisamment refroidi, l'évaporateur peut recommencer à fonctionner. When the carbonates in the container (5) are broken down, the direction of air circulation is reversed by means of the blower (13). The burner (7) is off and the burner (8) is lit. As soon as the container (5) is sufficiently cooled, the evaporator can start operating again.
Ce procédé nouveau peut être utilisé soit comme système frigorifique, soit comme pompe de chaleur. Cette dernière utilisation permet, en raison du rendement thermodynamique élevé, de diminuer fortement la consommation de combustibles fossiles. De plus, la conception même du système rend possible la restitution de chaleur à des températures supérieures à 100 ou 2000 C. This new process can be used either as a refrigeration system or as a heat pump. This latter use allows, due to the high thermodynamic efficiency, to greatly reduce the consumption of fossil fuels. In addition, the very design of the system makes it possible to restore heat at temperatures above 100 or 2000 C.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7929213A FR2470356A1 (en) | 1979-11-26 | 1979-11-26 | Heat transfer system working between two sources - by means of a third source hotter than either, used as refrigerant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7929213A FR2470356A1 (en) | 1979-11-26 | 1979-11-26 | Heat transfer system working between two sources - by means of a third source hotter than either, used as refrigerant |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2470356A1 true FR2470356A1 (en) | 1981-05-29 |
Family
ID=9232151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR7929213A Withdrawn FR2470356A1 (en) | 1979-11-26 | 1979-11-26 | Heat transfer system working between two sources - by means of a third source hotter than either, used as refrigerant |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2470356A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2615602A1 (en) * | 1987-05-22 | 1988-11-25 | Faiveley Ets | PROCESS FOR PRODUCING COLD BY SOLID-GAS REACTION AND DEVICE THEREFOR |
FR2615601A1 (en) * | 1987-05-22 | 1988-11-25 | Faiveley Ets | DEVICE AND METHOD FOR PRODUCING COLD AND / OR HEAT BY SOLID-GAS REACTION |
WO1989009374A1 (en) * | 1988-03-30 | 1989-10-05 | Societe Nationale Elf Aquitaine | Chemical heat carrier, process for regenerating said heat carrier and use of the latter |
EP0443620A2 (en) * | 1990-02-23 | 1991-08-28 | Hitachi, Ltd. | Heat pump |
EP0520335A1 (en) * | 1991-06-26 | 1992-12-30 | ZEO-TECH Zeolith Technologie GmbH | Sorption system with regenerative heat exchange |
EP3037630A1 (en) * | 2014-12-22 | 2016-06-29 | NGK Insulators, Ltd. | Chemical heat pump |
-
1979
- 1979-11-26 FR FR7929213A patent/FR2470356A1/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2615602A1 (en) * | 1987-05-22 | 1988-11-25 | Faiveley Ets | PROCESS FOR PRODUCING COLD BY SOLID-GAS REACTION AND DEVICE THEREFOR |
FR2615601A1 (en) * | 1987-05-22 | 1988-11-25 | Faiveley Ets | DEVICE AND METHOD FOR PRODUCING COLD AND / OR HEAT BY SOLID-GAS REACTION |
WO1988009465A1 (en) * | 1987-05-22 | 1988-12-01 | Faiveley Entreprises | Method and device for producing cold by solid-gas reaction |
WO1988009466A1 (en) * | 1987-05-22 | 1988-12-01 | Faiveley Entreprises | Device and process for producing cold and/or heat by solid-gas reaction |
US4976117A (en) * | 1987-05-22 | 1990-12-11 | Faiveley Enterprises | Device and process for producing cold and/or heat by solid-gas reaction |
US4944159A (en) * | 1987-05-22 | 1990-07-31 | Faiveley Entreprises | Process for producing cold by solid-gas reaction and device pertaining thereto |
EP0336816A1 (en) * | 1988-03-30 | 1989-10-11 | Societe Nationale Elf Aquitaine | Chemical heat pipe, process of regeneration and use of same |
FR2629575A1 (en) * | 1988-03-30 | 1989-10-06 | Elf Aquitaine | CHEMICAL PIPE, METHOD FOR REGENERATING SUCH A PIPE AND USE OF THE SAME |
WO1989009374A1 (en) * | 1988-03-30 | 1989-10-05 | Societe Nationale Elf Aquitaine | Chemical heat carrier, process for regenerating said heat carrier and use of the latter |
EP0443620A2 (en) * | 1990-02-23 | 1991-08-28 | Hitachi, Ltd. | Heat pump |
EP0443620A3 (en) * | 1990-02-23 | 1991-11-27 | Hitachi, Ltd. | Heat pump |
EP0520335A1 (en) * | 1991-06-26 | 1992-12-30 | ZEO-TECH Zeolith Technologie GmbH | Sorption system with regenerative heat exchange |
EP3037630A1 (en) * | 2014-12-22 | 2016-06-29 | NGK Insulators, Ltd. | Chemical heat pump |
US9873826B2 (en) | 2014-12-22 | 2018-01-23 | Ngk Insulators, Ltd. | Chemical heat pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2470356A1 (en) | Heat transfer system working between two sources - by means of a third source hotter than either, used as refrigerant | |
GR3004188T3 (en) | ||
Young et al. | The anhydrous lower bromides of titanium | |
US6337058B1 (en) | Process for producing calcium sulfide | |
Allen et al. | The Explosion of Azomethane1 | |
US2295591A (en) | Method for preventing corrosion of hydrogen chloride burners and coolers | |
FR2707375B1 (en) | Process for obtaining very low temperatures. | |
Paulik et al. | Influence of foreign materials upon the thermal decomposition of dolomite, calcite and magnesite part II. Influence of the presence of water | |
Ishi et al. | Far infrared spectrum of crystalline carbon disulphide | |
Liang et al. | Laboratory studies of binary salt CVD in combustion gas environments | |
Brokaw et al. | Wall Effects in the Oxidation of Boron Triethyl Vapor. Ignition of n-Butane1 | |
US997908A (en) | Process of obtaining ammonia from coal. | |
Evershed | XLVI. Experiments on the radiation of heated gases | |
Teder et al. | The Sulfur Pressure over Liquid Polysulfides | |
Faraday | VI. On two new compounds of chlorine and carbon, and on a new compound of iodine, carbon, and hydrogen | |
SU1550383A1 (en) | Method of determining gold | |
US1376100A (en) | Process for generating and utilizing hydrocarbon vapors or gases | |
US17981A (en) | Allan pollock | |
US2367955A (en) | Means for vaporizing anesthetic liquids | |
Behnken | The crystallization of carbon-dioxide, nitrous oxide and ammonia | |
Wendt et al. | The Equilibrium of Carbon Dioxide with Carbon Monoxide and Oxygen in the Corona Discharge | |
KR830009808A (en) | Cold wall mounted separator | |
US269309A (en) | Manitfacttjke of cyanogen compounds and ammonia | |
CH87652A (en) | Liquid mixture dissolving ammonia gas, for refrigeration appliances. | |
Ohtani et al. | Growth of single crystals of VxSe2 by chemical transport with iodine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |