FI90919C - Method and apparatus for measuring the amount of water contained in a material - Google Patents

Method and apparatus for measuring the amount of water contained in a material Download PDF

Info

Publication number
FI90919C
FI90919C FI910784A FI910784A FI90919C FI 90919 C FI90919 C FI 90919C FI 910784 A FI910784 A FI 910784A FI 910784 A FI910784 A FI 910784A FI 90919 C FI90919 C FI 90919C
Authority
FI
Finland
Prior art keywords
water
measuring
mixture
amount
current
Prior art date
Application number
FI910784A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI910784A0 (en
FI910784A (en
FI90919B (en
Inventor
Sirpa Pahlman
Original Assignee
Sirpa Pahlman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sirpa Pahlman filed Critical Sirpa Pahlman
Priority to FI910784A priority Critical patent/FI90919C/en
Publication of FI910784A0 publication Critical patent/FI910784A0/en
Publication of FI910784A publication Critical patent/FI910784A/en
Application granted granted Critical
Publication of FI90919B publication Critical patent/FI90919B/en
Publication of FI90919C publication Critical patent/FI90919C/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

i 90919i 90919

MENETELMÅ ja laite materiaalin sisåltaman VESIMAÅRAN MITTAAMISEKSIMETHOD AND APPARATUS FOR MEASURING THE WATER VOLUME IN THE MATERIAL

Keksinnon kohteena on menetelma ja laite materiaalin sisSltåmån vesimaårån mittaamiseksi.The invention relates to a method and an apparatus for measuring the amount of water contained in a material.

Nykyisin kåytosså olevat vesimaaråa mittaavat lait-teet ovat joko jatkuvatoimisia tai jaksottain nayt-teita ottavia. Jatkuvatoimiset laitteet perustuvat yleensa voiman mittaukseen, infrapunamittaukseen, op-tiseen mittaukseen, mikroaaltomittaukseen tai ra-dioaktiiviseen mittaukseen.The water volume measuring devices currently in use are either continuous or periodically sampled. Continuous devices are usually based on force measurement, infrared measurement, optical measurement, microwave measurement or radioactive measurement.

Nykyisillå mittalaitteilla ei kuitenkaan pystyta mit-taamaan vesimåaria materiaaleista, joiden kuiva-aine-pitoisuus on suuri tai laitteet eivåt mittaa suuria materiaalimååriå kokonaisuudessaan, vaan mittaavat yleensM mittarin valittomåstS laheisyydestS tai otta-vat nSytteen materiaalista mahdollisesti antaen koko-naisuudesta vaaran tuloksen veden ollessa epåhomogee-nisesti jakautuneena materiaalissa. Samoin mittarit mittaavat våarin veden faasin vaihtuessa. Mittareita ei ole kehitetty myoskMan mittamaan useita veden faase ja yhtaaikaa. Yleenså mittarit mittaavat virheelli-sesti myos lampotilan, kuiva-aineen varin tai optis-ten ominaisuuksien muuttuessa.However, current measuring devices are not able to measure water levels from materials with a high dry matter content or do not measure large amounts of material as a whole, but generally measure the meter from indiscriminate proximity or take a sample of the material, possibly withheld from water. distributed in the material. Similarly, the meters measure the color as the water phase changes. Meters have not been developed to measure multiple water phases and simultaneously. Generally, meters also incorrectly measure temperature, dry matter color, or optical properties.

Keksinnon mukaisella menetelmMUM ja laitteella saa-daan aikaan ratkaiseva parannus esitetyissa epakoh-dissa. Taman toteuttamiseksi keksinnon mukaiselle me-netelmalle ja laitteelle on ominaista se, mita patentt ivaatimuksen 1 ja 3 tunnusmerkkiosissa on esi-tetty.The method and device according to the invention provide a decisive improvement in the above-mentioned drawbacks. To achieve this, the method and the device according to the invention are characterized by what is set forth in the characterizing parts of claims 1 and 3.

Keksinnon tarkeimpinM etuina voidaan pitåM sen kykyå jatkuvatoimisesti mitata vesimaaria myos materiaa- 2 leista, joissa on suuria kiintoainemååriå. Lisaksi menetelmållå ja laitteella voidaan mitata vesimååråå olipa vesi misså faasissa tahansa ja siten låmpotila voi vaihdella laajassa skaalassa. Lisaksi se mittaa vesimåårån halutun suuruisesta materiaalimååråstå ei-ka ainoastaan mittarin vålittomåstå låheisyydestå tai tietysta nåytteenottokohdasta. Se ei myoskåån ole riippuvainen materiaalin optisista ominaisuuksista.The most important advantages of the invention are its ability to continuously measure water content even from materials with large amounts of solids. In addition, the method and the device can measure the amount of water in any phase and thus the temperature can vary on a large scale. In addition, it measures the amount of water from the desired amount of material, not only from the immediate proximity of the meter or from a particular sampling point. It also does not depend on the optical properties of the material.

Menetelman eråasså sovellutuksessa (kuva 1) materiaa-li virtaa metallilieridsså, joka muodostaa yhden (ulko-) elektrodin 1). Tåmån lierion keskelle on sijoi-tettu toinen (siså-)elektrodi 2). Nåiden vålille joh-detaan vakiosåhkokenttå. Såhkovuon tiheys on riippuvainen materiaalin kuiva-aineen ja veden permittivi-teetistå. Yleenså materiaalin polarisoitumisesta joh-tuva kiintoaineen permittiviteetti on hyvin paljon pienempi kuin veden permittiviteetti ja hyvin låhellå ilman permittiviteettiå. Siten mittaamalla materiaalin låpåisevåå virtaa saadaan vesimolekyylien mååråån verrannollinen tulos.In one embodiment of the method (Figure 1), the material flows in a metal cylinder which forms one (outer) electrode 1). A second (inner) electrode 2) is placed in the middle of this lesion. A standard electric field is routed between them. The density of the electric flux depends on the permeability of the dry matter and water of the material. In general, the permeability of the solid due to the polarization of the material is very much lower than the permeability of water and very close to the permeability of air. Thus, by measuring the current flowing through the material, a result proportional to the number of water molecules is obtained.

Kuvan 1 mukaisen laitteen keskielektrodiin kytketty elektroniikkayksikdn låhetin 3) låhettåå materiaaliin vakiojånnitteisen ja vakiotaajuisen signaalin. Mitå suureropi on aineen permittiviteetti, sitå suurempi on materiaalin låpåisevå virta. Virtasignaali mitataan ja muutetaan mittamuuntajassa 4) tasavirraksi, joka on verrannollinen veden mååråån ja luettavissa nåyt-tolaitteelta.The transmitter of the electronics unit connected to the central electrode of the device according to Fig. 1 3) transmits a constant voltage and a constant frequency signal to the material. The greater the permeability of a substance, the greater the current through the material. The current signal is measured and converted in a measuring transformer 4) to a direct current that is proportional to the amount of water and can be read from the display device.

Mittauspaikan maantieteellisestå sijainnista riippuen saattaa veden permittiviteetti vaihdella vuodenaiko-jen mukaan. Keksinnon mukaiseen menetelmåån kuuluu toisella elektrodi11a tapahtuva kompensointimittaus, jolla mitataan pelkån esiintyvån veden permittivi-Depending on the geographical location of the measurement site, the permeability of the water may vary according to the seasons. The method according to the invention includes a compensation measurement at the second electrode 11a, which measures only the permittivity of the water present.

IIII

90919 3 teettiå ja elektroniikkayksikosså kompensoidaan mah-dolliset vaihtelut.90919 3 and the electronics unit compensates for possible variations.

Menetelman eraasså toisessa sovellutuksessa (kuva 2) sijaitsee materiaali kahden elektrodin vålisså, josta mittaus suoritetaan samalla menetelmallaIn another embodiment of the method (Figure 2), the material is located between two electrodes, from which the measurement is performed by the same method

Claims (4)

44 1. Menetelmå kiintoaineen ja veden seoksen sisåltåmån vesimåårån mittaamiseksi, jossa menetelmåsså mate-riaalin låpi johdetaan suuritaajuinen, 1 - 100 MHz oleva såhkovirta ja mitataan seoksen låpi kulkevan ja seoksen permittiviteetistå riippuvan virran måårå, tunnettu siitå, ettå mitattava veden ja kiintoaineen seos johdetaan jatkuvana virtauksena yhtenå elektrodina toimivan metallisen putken (1) låpi, jol-loin toinen elektrodi (2) on asetettu putken keskel-le, ettå suuritaajuinen såhkokenttå mitattavaan mate-riaaliin muodostetaan kytkemållå elektrodien (1, 2) vålille jånnnitteeltåån ja taajuudeltaan vakio vaih-tojånnite, jolloin putken (1) låpi virtaavan veden ja kiinto-aineen seoksen vesimåårå voidaan mitata jatku-vasti elektrodien (1, 2) vålillå virtaavan virran pe-rusteella.A method for measuring the amount of water contained in a mixture of solid and water, comprising passing a high frequency electric current of 1 to 100 MHz through the material and measuring the amount of current passing through the mixture and the flow dependent on the permeability of the mixture. through a metal tube (1) acting as one electrode, wherein the second electrode (2) is placed in the middle of the tube, that a high-frequency electric field is formed in the material to be measured by switching between the electrodes (1, 2) at a voltage and frequency constant; the amount of water and the mixture of solids flowing through the tube (1) can be measured continuously on the basis of the current flowing between the electrodes (1, 2). 2. Patenttivaatimuksen 1 mukainen menetelmå tunnettu siitå, ettå seoksessa olevan veden permit-tiviteetti mitatan erikseen ilman kiintoainetta joh-tamalla veden låpi taajuudeltaan ja jånnitteeltåån vakion vaihtojånnitteen avulla saatu såhkovirta ja ettå putken låpi virtaavan veden ja kiintoaineen seoksen mittauksesta saatu vesimåårån arvo korjataan erikseen mitatun veden permittiviteetin arvon perus-teella vastaamaan todellista vesimåårån arvoa.Method according to Claim 1, characterized in that the permeability of the water in the mixture is measured separately without solids by passing an electric current obtained by means of a constant AC voltage through the water and a constant amount of water obtained by measuring the mixture of water flowing through the pipe. on the basis of the value of the permittivity to correspond to the actual value of the water volume. 3. Laite veden ja kiintoaineen seoksen sisåltåmån vesimåårån mittaamiseksi, johon laitteeseen kuuluu elektrodeja (1, 2) ja niihin kytketty mittalåhetin (3) suuritaajuisen såhkovirran muodostamiseksi sekå mittalaite (4) veden ja kiintoaineen seoksen låpi kulkevan virran mittaamiseksi, tunnettu siitå, ettå laitteistoon kuuluu ensimmåinen metalliput- 90919 5 kesta (1) muodostettu ulkoelektrodi ja sen keskellå oleva sisSelektrodi (2), ettå mittalåhetin (3) syot-tåå elektrodien (1, 2) vålille taajuudeltaan ja jan-nitteeltåan vakion vaihtojannitteen, jolloin seoksen vesimaarån jatkuvaa mittaamista vårten seos johdetaan jatkuvana virtauksena ulkoelektrodin muodostavan put-ken (1) låpi ja vesimåårå mitataan virtauksesta jat-kuvasti.An apparatus for measuring the amount of water contained in a mixture of water and solids, the apparatus comprising electrodes (1, 2) and a measuring transmitter (3) connected thereto for generating a high-frequency electric current, and a measuring device (4) for measuring current through a mixture of water and solids. the first outer electrode formed by the housing (1) of the metal tube 90919 5 and the inner electrode (2) in the middle thereof, that the measuring transmitter (3) supplies a constant alternating voltage of frequency and voltage between the electrodes (1, 2), thereby continuously measuring the water content of the mixture is passed as a continuous flow through the tube (1) forming the outer electrode and the amount of water is continuously measured from the flow. 4. Patenttivaatimuksen 3 mukainen laite, t u n -n e t t u siitå, etta såhkovirran mittaamiseksi sii-hen kuuluu mittamuuntaja (4), joka muuttaa suurijan-nitteisen vaihtovirran seoksen permittiviteettiin ja siten siinå olevan veden maåråån verrannolliseksi ta-savirraksi. 6Device according to Claim 3, characterized in that it comprises a measuring transformer (4) for measuring the electric current, which converts the high-voltage alternating current into a direct current proportional to the permittivity of the mixture and thus to the amount of water therein. 6
FI910784A 1991-02-18 1991-02-18 Method and apparatus for measuring the amount of water contained in a material FI90919C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FI910784A FI90919C (en) 1991-02-18 1991-02-18 Method and apparatus for measuring the amount of water contained in a material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI910784 1991-02-18
FI910784A FI90919C (en) 1991-02-18 1991-02-18 Method and apparatus for measuring the amount of water contained in a material

Publications (4)

Publication Number Publication Date
FI910784A0 FI910784A0 (en) 1991-02-18
FI910784A FI910784A (en) 1992-08-19
FI90919B FI90919B (en) 1993-12-31
FI90919C true FI90919C (en) 1994-04-11

Family

ID=8531939

Family Applications (1)

Application Number Title Priority Date Filing Date
FI910784A FI90919C (en) 1991-02-18 1991-02-18 Method and apparatus for measuring the amount of water contained in a material

Country Status (1)

Country Link
FI (1) FI90919C (en)

Also Published As

Publication number Publication date
FI910784A0 (en) 1991-02-18
FI910784A (en) 1992-08-19
FI90919B (en) 1993-12-31

Similar Documents

Publication Publication Date Title
US5260667A (en) Method and apparatus for determining the percentage water condent of oil in water emulsion by specific admittance measurement
US4203067A (en) Apparatus for determining the water content of isotropic materials by means of microwave absorption
AU669137B2 (en) Water percentage meter and method
US3924175A (en) D.C. system for conductivity measurements
CA1236992A (en) Apparatus for the measurement of the fraction of gas in a two component fluid flow
US3396331A (en) Method of and apparatus for measuring the electrical conductivity of a solution
US20140116117A1 (en) Impedance method and arrangement for determining the composition of a multi-phase mixture
Rodriguez-Frias et al. Dual-modality 4-terminal electrical capacitance and resistance tomography for multiphase flow monitoring
FI90919C (en) Method and apparatus for measuring the amount of water contained in a material
US3255405A (en) Apparatus for measuring the electrical conductivity of a sample
US3076929A (en) Means and methods for electrically measuring the amount of oxygen in a gas
CN211086144U (en) Gas-liquid two-phase flow phase content detection device based on coaxial line phase method
Tournaire Dependence of the instantaneous response of impedance probes on the local distribution of the void fraction in a pipe
US3593118A (en) Apparatus for measuring the electrical conductivity of liquids having dielectric-faced electrodes
Libert et al. Capacitive Probe for Gas-Liquid Flow Characterization
CN110658218B (en) Gas-liquid two-phase flow phase content detection device and method based on coaxial line phase method
SU851238A1 (en) Device for measuring humidity
SU851240A1 (en) Conductivity meter sensing element
SU391459A1 (en) ELECTRONIC WATER
Lockhart et al. Apparatus for dielectric measurements on fluids and dispersions
SU1165961A1 (en) Device for measuring specific resistance of non-magnetic materials
JPS5557142A (en) Continuous liquid quality change measuring device by contactless method
SU748214A1 (en) Conductometer immersion-type transducer
SU110291A1 (en) Instrument for measuring high direct currents
RU2034288C1 (en) Meter of grain moisture

Legal Events

Date Code Title Description
BB Publication of examined application