FI20220014A1 - Arrangement comprising ventilator and valve assembly - Google Patents

Arrangement comprising ventilator and valve assembly Download PDF

Info

Publication number
FI20220014A1
FI20220014A1 FI20220014A FI20220014A FI20220014A1 FI 20220014 A1 FI20220014 A1 FI 20220014A1 FI 20220014 A FI20220014 A FI 20220014A FI 20220014 A FI20220014 A FI 20220014A FI 20220014 A1 FI20220014 A1 FI 20220014A1
Authority
FI
Finland
Prior art keywords
port
subspace
pouch
valve
space
Prior art date
Application number
FI20220014A
Other languages
Finnish (fi)
Swedish (sv)
Inventor
Johannes Kokkila
Original Assignee
Planmeca Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Planmeca Oy filed Critical Planmeca Oy
Priority to FI20220014A priority Critical patent/FI20220014A1/en
Priority to PCT/FI2023/050134 priority patent/WO2023170342A1/en
Publication of FI20220014A1 publication Critical patent/FI20220014A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/207Membrane valves with pneumatic amplification stage, i.e. having master and slave membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0216Materials providing elastic properties, e.g. for facilitating deformation and avoid breaking

Abstract

This disclosure concerns an arrangement comprising a ventilator and a valve assembly, wherein the valve assembly (10) comprises a valve space (20) comprising a ventilator port (11) for receiving breathing gas from the ventilator, a patient port (12) for exchanging gases with a patient and an exhalation port (13) in connection to ambient. Within the valve space (20) is arranged a pouch-like deformable valve member (14) such that it divides the valve space (20) into a first subspace (201) and a second subspace (202) such that the first subspace (201) is in connection with the ventilator port (11) and the second subspace (202) with the patient port (12). The pouch-like deformable valve member (14) comprises a structure like e.g. a lid (15) which provides a unidirectional flow connection from the first subspace (201) to the second subspace (202).

Description

VENTILATOR WITH BREATHING VALVE ASSEMBLY
FIELD OF THE DISCLOSURE
This disclosure concerns an arrangement comprising a ventilator and a valve assembly.
BACKGROUND
Pressure responsive respiratory apparatus are known in the art which are designed to enable positive pressure from a source of pressure to be applied to a user's airway, and to allow for lead- ing an ingress of breathing gas into a user's airway during inha- lation and egress of expired tidal volume of gases from the us- er's respiratory system to be exited during exhalation, while al- lowing control of positive end-expiratory pressure (PEEP). Many of such known systems are mechanically complex and may e.g. not be able to properly prevent rebreathina of expired gases.
BRIEF DESCRIPTION
The arrangements according to this disclosure and embodiments discussed herein relate to e.g. addressing a problem of rebreath- ing of expired gas as well as complexity of a breathing circuit of the system. The arrangement and embodiments thereof of this disclosure include features of the valve assembly being designed . to allow for venting gases only during an exhalation cycle while
N also e.g. providing protection against high lung pressures and,
N on the other hand, a basically resistance-free breathing valve in 2 30 case of ventilator failure. oO z DESCRIPTION OF FIGURES a &
S The disclosure below will be referring to the attached Figures,
N 35 out of which
N
Fig. 1 shows, as an example, an overview of an arrangement com- prising a ventilator and a valve assembly,
Fig. 2 shows one example of a construction of a valve assembly according to this disclosure,
Figs. 3 and 3a show, as an example, a frame defining a valve space,
Fig. 4 shows, as an example, a pouch-like deformable object de- signed to be placed within a frame defining a valve space,
Figs. 5a-5c show, as an example, a few different operational sta- tuses of a valve assembly,
Figs. 6a-6b show, as an example, a few operational statuses of a valve assembly relating to safety of the assembly,
Figs. 7 is a flow chart showing an example of operation of a sys- tem to control an arrangement according to this disclosure,
Fig. 8 shows, as an example, an overview of an arrangement com- prising a ventilator and a valve assembly used in connection with an anaesthesia system.
N DETAILED DESCRIPTION OF THE FIGURES
N
& 0 Fig. 1 shows one embodiment comprising a ventilator and a valve = assembly. The arrangement includes a control system which con- > 30 trols a flow of breathing gas to the valve assembly. The valve
E assembly is configured to enable providing of breathing gas to a = patient, exchange of gases between the valve assembly and the pa- tient as well as to allow for flowing of gases from the valve as- sembly to atmosphere (ambient).
Fig. 2a shows, as an example, a construction of one valve assem- bly according to this disclosure. The valve assembly (10) of Fig. 2 comprises a valve space (20) comprising a ventilator port (11) for re- ceiving breathing gas from the ventilator, a patient port (12) for ex- changing gases with a patient and an exhalation port (13) in connection to ambient. Within the valve space (20) is arranged a pouch-like de- formable valve member (14) such that it is in contact with struc- tures defining the valve space (20) in an area between the venti- lator port (11) and the exhalation port (13) such that the pouch- like deformable valve member (14) divides the valve space (20) into a first subspace (201) and a second subspace (202) such that the first subspace (201) is in connection with the ventilator port (11) and the second subspace (202) with the patient port (12). The pouch-like deformable valve member (14) extends from said area between the ventilator port (11) and the exhalation port (13) where it is in contact with structures defining the valve space (20) towards the patient port (12) and is deformable in the valve space (20) such that the pouch-like deformable valve member (14) is able to, via its deforming and as dependent on an operational status of the valve assembly (10), partially or com- pletely open and close a flow connection from the second subspace (202) to the exhalation port (13), and wherein the pouch-like de- formable valve member (14) comprises an opening structure (15) providing, as dependent on an operational status of the valve as- sembly, a unidirectional flow connection from the first subspace (201) to the second subspace (202).
N In the context of Fig. 2 the opening structure (15) is a lid which opens
N towards the second subspace (202) but not towards the first subspace 3 30 (201) . In another embodiment not shown in the Figs. the opening structure 2 (15) may be a mere opening arranged in the pouch-like deformable valve
I member (14) at such location that when the pouch-like deformable 5 valve member (14) is in an operational stage as shown in Fig. 2a,
S the opening provides a passage between the first and second sub-
N 35 spaces but when collapsed, as will be discussed further below,
N the opening gets pressed against the wall of the valve space and thus prevents flow of gases between the first and second sub- space.
In reference to Figs. 3, 3a, 4, and 5a-5c, the pouch-like deformable valve member (14) is configured to partially or completely close a flow connection from the second subspace (202) to the exhala- tion port (13) when pressure in the second subspace (202) is not higher than pressure in the first subspace (201), and partially or completely open the flow connection from the second subspace (202) to the exhalation port (13) when pressure in the first sub- space (201) is lower than pressure in the second subspace (202).
The pouch-like deformable valve member (14) with the opening structure (15) is designed to provide a unidirectional flow con- nection from the first subspace (201) to the second subspace (202) when pressure in the first subspace (201) is higher than pressure in the second subspace (202) and not to provide flow connection between the first subspace (201) and the second sub- space (202) when pressure in the first subspace (201) is lower than pressure in the second subspace (202).
The arrangement of the Figs. comprises a frame structure (21) comprising inner walls which delimit the valve space (20) and, concerning a sub-volume within the valve space (20) which extends from the area where the pouch-like deformable valve member (14) is in contact with the structures defining the valve space (20) to an end of the pouch-like deformable valve member (14) in the
N direction of the patient port (12) and concerning the pouch-like
N deformable valve member (14) as not deformed by any external 3 30 force acting on it, the pouch-like deformable valve member (14) 2 comprises a section with larger diameter than the diameter of the
I inner wall of the valve space (20) within that section. s
S Further, the arrangement of the Figs. comprises a frame structure
N 35 (21) comprising inner walls which delimit the valve space (20)
N and, concerning a sub-volume within the valve space (20) which extends from said area where the pouch-like deformable valve mem- ber (14) is in contact with the structures defining the valve space (20) to an end of the pouch-like deformable valve member 5 (14) in the direction of the patient port (12) and concerning the pouch-like deformable valve member (14) as not deformed by any external force acting on it, concerning a section extending to- wards the end of the pouch-like deformable valve member (14) in the direction of the patient port (12) from where the exhalation port (13) is located, the pouch-like deformable valve member (14) comprises a section with larger diameter than the diameter of the inner wall of the valve space (20) within that section. That is, and this also concerns what has been presented in the previous paragraph, to present the matter differently, the pouch-like de- formable valve member (14), when not assembled inside the frame (21) and not squeezed in any way, has a section away from its pouch-like end which has a larger diameter than the diameter at the section of the inner wall of the valve space (20) whereto that section of the pouch-like deformable valve member (14) gets positioned when assembled. And this in turn means that concerning such section of the valve assembly (20), when there isn't any pressure difference which would cause forces acting on the pouch- like deformable valve member (14), the pouch-like deformable valve member (14) will be in contact with the inner wall of the valve space (20). . Above-kind embodiments may thus be presented such that the pouch-
N like deformable valve member (14), when not assembled within the
N valve space (20) and when no external forces act on it which 3 30 would squeeze it, has a section of larger diameter than that of 2 inner walls of the valve space (20) along a corresponding section = of the valve space whereto said section of the pouch-like deform- 5 able valve member (14) gets positioned when assembled, such sec-
S tion starting at the end or from a proximity of the end of the
N 35 pouch-like deformable valve member (14) which when assembled
N within the valve space (20) gets positioned beyond a location of the exhalation port (13) in the direction of the ventilator port (11) and continuing therefrom towards the patient port (12), op- tionally beyond location of the exhalation port (13).
The frame structure (21) comprises inner walls which delimit the valve space (20), wherein the inner walls may comprise a protrud- ing sub-area at and next to a location of the exhalation port (13), as shown in Fig. 3a which shows a (part of a) profile of a cross-sectional cut of the valve space from where exhalation ports (13) are located. Such protruding sub-area optionally ex- tends a distance towards the patient port (12) and thus provides beside it a space for gases to enter between the frame structure (21) and the pouch-like deformable valve member (14). Such struc- ture may ease collapsing of the pouch-like deformable valve mem- ber (14), i.e. separation of the pouch-like deformable valve mem- ber (14) from the frame (21) when pressure increases within the second subspace (202).
In an embodiment, there are three exhalation ports (13) each lo- cating at the same distance from both the ventilator port (11) and the patient port (12) and locating at even distances from each other, as like partially shown in Fig. 3.
As one particular safety aspect, the arrangement may be arranged devoid of a non-return valve between the ventilator port (11) and . the ventilator. This enables flowing of gases towards the venti-
N lator in case pressure in the valve assembly (10) gets too high.
N Besides there being no non-return valve, the arrangement may be 3 30 arranged to be devoid of any structure that could as such prevent 2 the ventilation port (12) to be in connection via the ventilator
I with ambient a
Xx
S The valve space (20) may be delimited as for its cross-section by
N 35 a rotationally symmetrical or elliptic frame (21) having a virtu-
N al central axis and wherein the ventilator port (11) and the pa- tient port (12) are located on the virtual central axis at the ends of the frame (21) and at least one exhalation port (13) on the frame (21) at a location or locations between the ventilator port (11) and the patient port (12).
In embodiments, the frame (21) has an area of smaller inner radi- us at a location in the direction where the patient port (12) is located than at a location where the exhalation port or ports (13) is/are located.
In embodiments, the pouch-like deformable valve member (14) is as for its general overall shape a rotationally symmetrical or el- liptic object having a virtual central axis and has an area of smaller outer radius at a location in the direction where the pa- tient port (12) is located than at a location where the exhala- tion port or ports (13) is/are located.
In view of what has presented above, Fig. ba shows an operational status of the valve assembly (10) where pressure in the first subspace (201) is greater than in the second subspace (202) and the breathing gas may flow through the opening structure (15) towards the patient port (12) while the exhalation port (13) is closed. In Fig. 5b the situation as far as pressures in the subspaces (201, 202) is concerned is reversed, whereby the opening structure (15) closes and the pouch-like deformable valve member (14) collapses, thereby providing a flow channel for gases s trough the exhalation port (13). Fig. 5c shows a status of the
N valve assembly (10) when there is equal pressure in the subspaces
N (201, 202). The ventilator may be used to control pressures in the valve
S 30 assembly so as to control a degree of opening of the exhalation port (13) 2 e.g. near an end of the arrangement being in an exhalation mode. x 5 In reference to Fig. 6a, concerning a situation where there is over-
S pressure on the patient side of the valve assembly (10), the pouch-like
N 35 deformable valve member - which can be e.g. a membrane made of
N silicone - collapses so as to allow for a leak out of gases form the ex- halation port (13). The higher the over pressure, the more the membrane will collapse. In addition, the ventilator controller may be configured to decreases the pressure on the ventilator side to actively help reduc- ing the overpressure.
In reference to Fig. 6b, in case of such complete ventilator failure that the pressure from the ventilator disappears, a patient will still be able to breathe spontaneously with very low resistance from the arrangement.
During inhalation, in case resistance through ventilator is too high, a lower pressure on the patient end of the valve assembly will first open the opening structure (15) which will equal the pressure within the valve space (20), after which when pressure in the valve space (20) will be smaller than ambient pressure, the pouch-like deformable valve member (14) will collapses which then allows for the air to be drawn via the exhalation port (13).
In embodiments, the arrangement comprises in connection with the second subspace (202) a measuring sensor (16) which is arranged in functional connection with the control system, wherein the control system is configured to control providing of the breath- ing gas as a response to a signal received from the measuring sensor (16).
In embodiments, the control system is configured to provide breathing gas to the ventilator port (11) when a signal value re- ; ceived from the measuring sensor (16) is higher than a given set
N
N target signal value and decrease or cease providing breathing gas
N to the ventilator port (11) when a signal value received from the
O
? 30 measuring sensor (16) is higher than a given set target signal oO — value.
I
Ao a < In embodiments, the measuring sensor (16) is a pressure sensor.
O oS
N
N
O
N
In embodiments, the control system comprises an inspiration mode wherein the first target signal value is a first target pressure higher than ambient pressure and wherein the control system is configured to control the providing of the breathing gas so as to, when reaching the first target pressure, maintain the pres- sure in the second subspace at said first target pressure, where- by during the inspiration mode the pouch-like deformable valve member (14) is pressed against the exhalation port (13) and thus prevents flow from the second subspace (202) to the exhalation port (13) while the opening structure (15) does provide the uni- directional flow connection from the first subspace (201) to the second subspace (202),, and an exhalation mode wherein the second target signal value is a second target pressure lower than the first target pressure and wherein the control system is config- ured to control the providing of the breathing gas so as to allow for the pressure in the second subspace (202) to be higher than pressure in the first subspace (201), whereby the pouch-like de- formable valve member (14) collapses from the side of the second subspace (202) and thereby opens the exhalation port (13) and al- lows for flow from the second subspace (202) to the exhalation port (13) and whereby the opening structure (15) providing the unidirectional flow connection from the first subspace (201) to the second subspace (202) closes and prevents flow from the sec- ond subspace (202) to the first subspace (101).
One possible circuit to implement controlling of the arrangement is shown : in Fig. 7. There, Goal is set by user or by algorithms to define the tar-
N get for the system, i.e. Set value. Set value is given to Controller,
N which is an algorithm that compares Set value and Feedback value(s) from
ST 30 Sensor(s) and decides appropriate System Input. System herein comprises 2 of the whole physical system including ventilator electronics, mechanics, z pneumatics, actuators, patient breathing circuit, actual patient and all > related noise. With a System Input the System has a specific Output based
S on its systemic transfer function. The Output is measured with the Sensor
S within its accuracy, noise and sampling rate (its transfer function). The measurement is given to the Controller as Feedback signal.
Fig. 8 shows an overview of an arrangement comprising a ventilator and a valve assembly as discussed herein, which can be used e.g. as an actuator operating bellows included in an anaesthesia system.
N
N
O
N
O
<Q o
TT
I
Ao a + oO o
N
N
O
N

Claims (14)

1. Arrangement comprising a ventilator and a valve assembly, wherein the ventilator is arranged to provide breathing gas to the valve assembly, wherein the valve assembly (10) comprises a valve space (20) comprising a ventilator port (11) for receiving breathing gas from the ventilator, a patient port (12) for ex- changing gases with a patient and an exhalation port (13) in con- nection to ambient, characterized in that within said valve space (20) is arranged a pouch-like deformable valve member (14) such that it is in contact with structures defining the valve space (20) in an area between the ventilator port (11) and the exhalation port (13) such that the pouch-like deformable valve member (14) divides the valve space (20) into a first sub- space (201) and a second subspace (202) such that the first sub- space (201) is in connection with the ventilator port (11) and the second subspace (202) with the patient port (12), and wherein the pouch-like deformable valve member (14) extends from said ar- ea between the ventilator port (11) and the exhalation port (13) where it is in contact with structures defining the valve space (20) towards the patient port (12) and is deformable in the valve space (20) such that the pouch-like deformable valve member (14) is able to, via its deforming and as dependent on an operational status of the valve assembly (10), partially or completely open and close a flow connection from the second subspace (202) to the exhalation port (13), and wherein the pouch-like deformable valve s member (14) comprises an opening structure (15) providing, as de- N pendent on an operational status of the valve assembly, a unidi- N rectional flow connection from the first subspace (201) to the 3 30 second subspace (202). 2
E 2. Arrangement according to claim 1, characterized in & that the pouch-like deformable valve member (14) is configured 3 to partially or completely close a flow connection from the sec- N 35 ond subspace (202) to the exhalation port (13) when pressure in N the second subspace (202) is not higher than pressure in the first subspace (201), and partially or completely open the flow connection from the second subspace (202) to the exhalation port (13) when pressure in the first subspace (201) is lower than pressure in the second subspace (202), and wherein the pouch-like deformable valve member (14) with said opening structure (15) providing the unidirectional flow connection from the first sub- space (201) to the second subspace (202) is configured to provide said unidirectional flow connection when pressure in the first subspace (201) is higher than pressure in the second subspace (202) and not to provide flow connection between the first sub- space (201) and the second subspace (202) when pressure in the first subspace (201) is lower than pressure in the second sub- space (202).
3. Arrangement according to claim 1 or 2, characterized in that the arrangement comprises a frame structure (21) com- prising inner walls which delimit the valve space (20) and, con- cerning a sub-volume within the valve space (20) which extends from said area where the pouch-like deformable valve member (14) is in contact with the structures defining the valve space (20) to an end of the pouch-like deformable valve member (14) in the direction of the patient port (12), and concerning the pouch-like deformable valve member (14) as not deformed by any external force acting on it, the pouch-like deformable valve member (14) comprises a section with larger diameter than the diameter of the s inner wall of the valve space (20) within that section. N
N 4. Arrangement according to any of the claims 1 - 3, charac- 3 30 terized in that the arrangement comprises a frame struc- 2 ture (21) comprising inner walls which delimit the valve space = (20) and, concerning a sub-volume within the valve space (20) & which extends from said area where the pouch-like deformable S valve member (14) is in contact with the structures defining the N 35 valve space (20) to an end of the pouch-like deformable valve N member (14) in the direction of the patient port (12), and con- cerning the pouch-like deformable valve member (14) as not de- formed by any external force acting on it, concerning a section extending towards the end of the pouch-like deformable valve merm- ber (14) in the direction of the patient port (12) from where the exhalation port (13) is located, the pouch-like deformable valve member (14) comprises a section with larger diameter than the di- ameter of the inner wall of the valve space (20) within that sec- tion.
5. Arrangement according to claims 1 or 2, characterized in that the pouch-like deformable valve member (14), when not assembled within the valve space (20) and when no external forces act on it which would squeeze it, has a section of larger diame- ter than that of inner walls of the valve space (20) along a cor- responding section of the valve space whereto said section of the pouch-like deformable valve member (14) gets positioned when as- sembled, such section starting at the end or from a proximity of the end of the pouch-like deformable valve member (14) which when assembled within the valve space (20) gets positioned beyond a location of the exhalation port (13) in the direction of the ven- tilator port (11) and continuing therefrom towards the patient port (12), optionally beyond location of the exhalation port (13).
6. Arrangement according to any of the claims 1 - 5, charac- : terized in that the arrangement comprises a frame struc- N ture (21) comprising inner walls which delimit the valve space N (20), the inner walls comprising a protruding sub-area at and 3 30 next to a location of the exhalation port (13), which protruding 2 sub-area optionally extends a distance towards the patient port I (12). o +
S 7. Arrangement according to any of the claims 1 - 6, charac- N 35 terized in that the arrangement comprises three exhala- N tion ports (13) each locating at the same distance from both the ventilator port (11) and the patient port (12) and locating at even distances from each other.
8. Arrangement according to any of the claims 1 - 7, charac- terized in that the arrangement is devoid of a non- return valve between the ventilator port (11) and the ventilator (10), and of any structure that could as such prevent the venti- lation port (12) to be in connection via the ventilator with am- bient.
9. Arrangement according to any of the claims 1 - 8, charac- terized in that the valve space (20) is delimited as for its cross-section by a rotationally symmetrical or elliptic frame (21) having a virtual central axis and wherein the ventilator port (11) and the patient port (12) are located on the virtual central axis at the ends of the frame (21) and at least one exha- lation port (13) on the frame (21) at a location or locations be- tween the ventilator port (11) and the patient port (12).
10. Arrangement according to claim 9, characterized in that the frame (21) has an area of smaller inner radius at a location in the direction where the patient port (12) is located than at a location where the exhalation port or ports (13) is/are located. 5
11. Arrangement according to any of the claims 1 - 10, char- N acterized in that the pouch-like deformable valve mem- N ber (14) is as for its general overall shape a rotationally sym- 3 30 metrical or elliptic object having a virtual central axis and has 2 an area of smaller outer radius at a location in the direction = where the patient port (12) is located than at a location where a the exhalation port or ports (13) is/are located. S N N
12. Arrangement according to any of the claims 1 - 11, char - acterized in that the arrangement comprises in connec- tion with the second subspace (202) a measuring sensor (16) which is arranged in functional connection with the control systen, wherein the control system is configured to control providing of the breathing gas as a response to a signal received from the measuring sensor (16).
13. Arrangement according to claim 12, characterized in that the control system is configured to provide breathing gas to the ventilator port (11) when a signal value received from the measuring sensor (16) is higher than a given set target signal value and decrease or cease providing breathing gas to the venti- lator port (11) when a signal value received from the measuring sensor (16) is higher than a given set target signal value.
14. Arrangement according to claim 12, characterized in that the control system comprises an inspiration mode wherein a first target signal value is a first target pressure higher than ambient pressure and wherein the control system is configured to controi the providing of the breathing gas so as to, when reaching the first target pressure, maintain the pressure in the second subspace at said first target pressure, whereby during the inspiration mode the pouch-like de- formable valve member (14) is pressed against the exhalation port (13) and thus prevents flow from the second subspace (202) to the s exhalation port (13) while the opening structure (15) does pro- N vide the unidirectional flow connection from the first subspace N (201) to the second subspace (202), and S 30 an exhalation mode wherein the second target signal value is a 2 second target pressure lower than the first target pressure and z wherein the control system is configured to control the providing < of the breathing gas so as to allow for the pressure in the sec- S ond subspace (202) to be higher than pressure in the first sub- N 35 space (201), whereby the pouch-like deformable valve member (14) N collapses from the side of the second subspace (202) and thereby opens the exhalation port (13) and allows for flow from the sec- ond subspace (202) to the exhalation port (13) and whereby the opening structure (15) providing the unidirectional flow connec- tion from the first subspace (201) to the second subspace (202) closes and prevents flow from the second subspace (202) to the first subspace (101). N Ql O N O ? o I = + o S N Ql O N
FI20220014A 2022-03-10 2022-03-10 Arrangement comprising ventilator and valve assembly FI20220014A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20220014A FI20220014A1 (en) 2022-03-10 2022-03-10 Arrangement comprising ventilator and valve assembly
PCT/FI2023/050134 WO2023170342A1 (en) 2022-03-10 2023-03-09 Ventilator with breathing valve assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20220014A FI20220014A1 (en) 2022-03-10 2022-03-10 Arrangement comprising ventilator and valve assembly

Publications (1)

Publication Number Publication Date
FI20220014A1 true FI20220014A1 (en) 2023-09-11

Family

ID=87890117

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20220014A FI20220014A1 (en) 2022-03-10 2022-03-10 Arrangement comprising ventilator and valve assembly

Country Status (2)

Country Link
FI (1) FI20220014A1 (en)
WO (1) WO2023170342A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2535613B1 (en) * 1982-11-05 1986-04-25 Lejeune Seitz Ameline Labo IMPROVEMENT IN RESPIRATORY VALVES
EP2121093B1 (en) * 2007-03-21 2016-11-02 Resmed Paris SAS Passive gas regulating valve for a respiratory system
US8365731B2 (en) * 2007-07-31 2013-02-05 Ric Investments, Llc Pressure reducing valve with flexible cuff

Also Published As

Publication number Publication date
WO2023170342A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
EP0532578B1 (en) Respirator triggering mechanism
WO1999052581A1 (en) Ventilator triggering device
EP1935445B1 (en) Respiratory monitoring with cannula receiving respiratory airflows
US8161972B2 (en) Detecting ventilator system anomalies while in a speaking mode
AU2013378605B2 (en) Resuscitation assembly with peep valve
US20070113850A1 (en) Respiratory monitoring with cannula receiving respiratory airflows and differential pressure transducer
US20070113847A1 (en) Respiratory monitoring with cannula receiving first respiratory airflows and second respiratory airflows
US9962514B2 (en) Ventilator flow valve
JP6840736B2 (en) Ventilator with error detector for flow sensor
CN102186522A (en) Ventilator with limp mode
CN102711889A (en) Automatically controlled ventilation system
JP2010502402A5 (en)
PL104663B1 (en) DEVICE FOR VENTILATION OF THE PLUC
US20070113848A1 (en) Respiratory monitoring with cannula receiving respiratory airflows and exhaled gases
CN111182939A (en) Method and apparatus for breathing a patient
US6929006B2 (en) Device and process for metering breathing gas
WO2015200878A1 (en) Ventilator flow valve
EP3013398A1 (en) Ventilator flow valve
FI20220014A1 (en) Arrangement comprising ventilator and valve assembly
US3913576A (en) Breathing apparatus
US4016876A (en) Breathing apparatus
US20230218843A1 (en) Medical ventilator
US20220054792A1 (en) Ventilator for high-flow oxygen therapy
US20220096765A1 (en) Ventilation apparatus and ventilation method
CA2556695A1 (en) Self-contained micromechanical ventilator