FI130738B1 - Method for spreading a light catalyst surface coating - Google Patents

Method for spreading a light catalyst surface coating Download PDF

Info

Publication number
FI130738B1
FI130738B1 FI20205572A FI20205572A FI130738B1 FI 130738 B1 FI130738 B1 FI 130738B1 FI 20205572 A FI20205572 A FI 20205572A FI 20205572 A FI20205572 A FI 20205572A FI 130738 B1 FI130738 B1 FI 130738B1
Authority
FI
Finland
Prior art keywords
nozzle
air
compressed air
temperature
compressor
Prior art date
Application number
FI20205572A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20205572A1 (en
Inventor
Jukka Laks
Pasi Keinänen
Original Assignee
Nanoksi Group Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoksi Group Oy filed Critical Nanoksi Group Oy
Priority to FI20205572A priority Critical patent/FI130738B1/en
Priority to EP21743550.2A priority patent/EP4157529A1/en
Priority to PCT/FI2021/050399 priority patent/WO2021245333A1/en
Publication of FI20205572A1 publication Critical patent/FI20205572A1/en
Application granted granted Critical
Publication of FI130738B1 publication Critical patent/FI130738B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4543Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension by spraying, e.g. by atomising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/24Titanium dioxide, e.g. rutile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

Esillä on uudenkaltainen menetelmä valokatalyyttipinnoitteen levittämiseksi, jossa tuotetaan paineilmaa kompressorilla, sekoitetaan paineilmaan käsittelyainetta ilmahajoitteisessa suuttimessa, ja syötetään paineilman ja käsittelyaineen sekoitus suuttimesta hienojakoisen sumun levittämiseksi käsiteltävälle pinnalle. Paineilmaan tuodaan lämpöenergiaa niin, että suuttimen pintalämpötila on suurempi kuin 20°C valokatalyyttipinnoitteen levittämisen aikana.Presented is a novel method for applying a photocatalyst coating, in which compressed air is produced with a compressor, a treatment agent is mixed with the compressed air in an air-dispersed nozzle, and a mixture of compressed air and treatment agent is fed from the nozzle to spread a fine mist on the treated surface. Thermal energy is introduced into the compressed air so that the surface temperature of the nozzle is greater than 20°C during the application of the photocatalyst coating.

Description

MENETELMÄ VALOKATALYYTTIPINNOITTEEN LEVITTÄMISEKSIMETHOD FOR APPLYING A PHOTOCATALYST COATING

TEKNIIKAN ALAENGINEERING

[0001] Esillä oleva keksintö liittyy pintojen käsittelemiseen valokatalyyttisellä käsittelyaineella. Erityisesti keksintö koskee valokatalyyttisen pinnoitteen levittämistä — ruiskuttamalla. Tarkemmin sanottuna keksintö koskee patenttivaatimuksen 1 johdanto-osan mukaista menetelmää.[0001] The present invention relates to treating surfaces with a photocatalytic treatment agent. In particular, the invention concerns the application of a photocatalytic coating — by spraying. More precisely, the invention concerns the method according to the preamble of claim 1.

TAUSTABACKGROUND

[0002] Valokatalyysillä tarkoitetaan kemiallista reaktiota, jota kiihdyttää auringon valo. Valokatalyytti on aine, joka aiheuttaa reaktion osallistumatta itse siihen ja — valokatalyyttipinnoite on aine, joka sisältää valokatalyyttiä. Valokatalyysissä käynnistetään valon avulla kemiallinen reaktio, jossa vapautuvat happiradikaalit reagoivat pinnalla olevien mikrobien kanssa ja tuhoavat ne. Reaktioon tarvitaan katalyyttinä toimiva aine, titaanidioksidi. Menetelmää käytetään yleisesti myös puhdistettaessa vettä ja ilmaa erilaisista haitta-aineista Katalyysipinnoite tuhoaa yhdessä valon kanssa viruksia, — bakteereja, homeitiöitä ja muita haihtuvia orgaanisia yhdisteitä. Ruiskutettavat, uuden sukupolven valokatalyyttiset materiaalit kuitenkin aktivoituvat jo näkyvästä valosta.[0002] Photocatalysis refers to a chemical reaction that is accelerated by sunlight. A photocatalyst is a substance that causes a reaction without participating in it itself and — a photocatalyst coating is a substance that contains a photocatalyst. In photocatalysis, a chemical reaction is started with the help of light, where the released oxygen radicals react with the microbes on the surface and destroy them. The reaction requires a substance acting as a catalyst, titanium dioxide. The method is also commonly used when cleaning water and air from various harmful substances. The catalytic coating together with light destroys viruses, — bacteria, mold spores and other volatile organic compounds. Injectable, new-generation photocatalytic materials, however, are already activated by visible light.

Valokatalyyttisissa pinnoitteissa käytettävä titaanidioksidi on myrkytöntä ja turvallista ainetta. Pintakäsittelyyn käytettävä aine on tavallisesti vettä, joka pieniä määriä titaanidioksidia ja mahdollisesti piioksidia tai muita lisäaineita. Vaikuttavan aineen määrä — on pieni, noin 1 painoprosentti levitettävän aineen määrästä ja mahdollisten lisäaineiden o määrä on sitäkin pienempi. Siten levitettävä aine on koostumukseltaan veden kaltaista.The titanium dioxide used in photocatalytic coatings is a non-toxic and safe substance. The substance used for surface treatment is usually water with small amounts of titanium dioxide and possibly silicon oxide or other additives. The amount of the active substance — is small, about 1% by weight of the amount of the substance to be applied, and the amount of possible additives is even smaller. Thus, the substance to be applied has a composition similar to water.

S Vain vähän vaikuttavaa ainetta sisältävän aineen levittäminen erilaisille pinnoille onS Applying a substance containing only a small amount of active substance to various surfaces is

S haastavaa koska liiallista kostumista on usein vältettävä, aktiivisen pinnoitteen määrä o pinnalla on saatava riittäväksi ja pinnoitteen peiton on oltava samoin riittävän yhtenäinen. x aChallenging because excessive wetting must often be avoided, the amount of active coating on the surface must be sufficient and the coverage of the coating must also be sufficiently uniform. x a

N 25 YHTEENVETO 10N 25 SUMMARY 10

N [0003] Keksinnön tarkoituksena on saada aikaan uusi levitysmenetelmä erityisestiN [0003] The purpose of the invention is to provide a new spreading method in particular

N nanopartikkelikokoisten valokatalyyttisten pinnoitteiden levittämiseen.For the application of N nanoparticle-sized photocatalytic coatings.

[0004] Keksinnölle on tunnusomaista se, mitä on lausuttu itsenäisen patenttivaatimuksen tunnusmerkkiosassa.[0004] The invention is characterized by what is stated in the characterizing part of the independent claim.

[0005] Keksinnön yhden piirteen mukaan valokatalyyttisen pinnoitteen levittäminen tehdään ilmahajoitteisella suuttimella, suuttimen ilma tuotetaan kompressorilla, jossa ilma lämpiää kokoon puristuessaan ja suuttimen lämpötila pidetään korkeampana kuin ympäristön lämpötila.[0005] According to one aspect of the invention, the application of the photocatalytic coating is done with an air-dispersed nozzle, the air in the nozzle is produced by a compressor, where the air heats up when compressed and the temperature of the nozzle is kept higher than the ambient temperature.

SOVELLUTUSMUODOTFORMS OF APPLICATION

[0006] MÄÄRITELMÄT[0006] DEFINITIONS

[0007] Tässä asiayhteydessä ilmaisu *ympäristön lämpötila” tarkoittaa työskentely- — ympäristön lämpötilaa ja tarkemmin yleisesti huoneen lämpötilana pidettyä 20° C lämpötilaa.[0007] In this context, the expression "ambient temperature" means the temperature of the working environment and more specifically the temperature of 20° C, which is generally considered room temperature.

[0008] Nanopartikkelimuodossa olevaa valokatalyyttiä sisältävä käsittelyaine vastaa ominaisuuksiltaan läheisesti vettä Siten se poikkeaa olennaisesti tavanomaisista pintakäsittelyaineista kuten lakoista ja maaleista. Veden viskositeetti on näihin verrattuna — pieni ja kiintoaineen määrä lähes olematon. Pinnoite on myös käytännössä näkymätöntä, joten tasaisen peiton aikaansaaminen voi olla haastavaa. Ilmahajoitteisessa suuttimessa käsittelyaine hajoitetaan pisaramuotoon nopeasti virtaavan ilmavirran avulla. Tämä ilmavirta saadaan aikaan kompressorilla. Kun ilmaa ja käsittelyainetta syötetään suuttimen suutinaukon läpi tapahtuu tehokas pisaroituminen. Ilmahajoitteisessa suuttimessa voidaan — ilmavirtaa ja syötettävän käsittelyaineen määrää säätää erikseen. Tämä on tarpeen o nanopartikkeleita sisältävän valokatalyyttipinnoitteen levittämisessä, koska tarvittava[0008] A treatment agent containing a photocatalyst in nanoparticle form closely resembles water in its properties. Thus, it differs substantially from conventional surface treatment agents such as varnishes and paints. Compared to these, the viscosity of water is low and the amount of solids almost non-existent. The coating is also practically invisible, so achieving even coverage can be challenging. In an air-dispersed nozzle, the treatment agent is dispersed into droplets with the help of a fast-flowing air stream. This airflow is created by a compressor. When air and processing agent are fed through the nozzle opening of the nozzle, effective dripping occurs. In the air-dispersed nozzle, — the air flow and the amount of treatment agent to be fed can be adjusted separately. This is necessary when applying a photocatalyst coating containing o nanoparticles, because the necessary

O käsittelyaineen määrä on pieni ja tehokkaaseen pisaroitumiseen tarvitaan nopeaO The quantity of the treatment agent is small, and a fast one is needed for efficient dripping

O ilmavirtaus, joka vaatii riittävän ilman tilavuusvirran.O air flow, which requires a sufficient volume flow of air.

S [0009] Nanopartikkelimuodossa oleva valokatalyytti on erittäin tehokas biologistenS [0009] Photocatalyst in nanoparticle form is very effective in biological

E 25 — epäpuhtauksien ja orgaanisten yhdisteiden hajottamisen käytettävä aine. ValokatalyyttinäE 25 — substance used for the decomposition of impurities and organic compounds. As a photocatalyst

N on tavallisesti ainakin titaanidioksidi, mutta käsittely aine voi sisältää muitakin aineita, 3 esimerkiksi piioksidia. Aktiivinen aineosa on sekoitettuna veteen ja käsittelyaineenN is usually at least titanium dioxide, but the treatment agent may also contain other substances, 3 for example silicon oxide. The active ingredient is mixed with water and a treatment agent

N kokonaiskiintoainepitoisuus on noin 1 painoprosentti. Levitys tehdään ilmahajoitteisella suuttimella, erityisesti korkeapaineisella ilmahajoitteisella suuttimella. Siinä paineistettua — ilmaa tuotetaan kompressorilla ja paineilma syötetään suuttimeen, johon syötetään samalla käsittelyainetta. Käsittelyaine ja ilma sekoittuvat suuttimessa ja leviävät suuttimen aukosta hienojakoisena sumuna €käsiteltävälle pinnalle Kun ilmaa puristetaan kokoon kompressorissa, sen lämpötila nousee. Ilman lämpenemistä hyödynnetään pinnoitteen levittämisessä. Kuuman ilman sisältämä lämpöenergia vaikuttaa energiataseeseen — suuttimessa ja suuttimesta lähtevässä käsittelyainesumussa. Käytännössä on havaittu, että kompressorissa kuumennella ilmalla tehdyllä käsittelyainesumulla saadaan aikaan nopeammin kuivuva ja tasalaatuisempi pinnoite. Niinpä on ajateltavissa, että korkea ilman paine ja sitä kautta suuri syöttö- ja sekoitusnopeus suuttimessa yhdistettynä korotettuun lämpötilaan tuottavat hyvin hienojakoisen ja nopeasti kuivuvan käsittelyainesumun.The total solid content of N is about 1% by weight. Application is made with an air-dispersed nozzle, especially a high-pressure air-dispersed nozzle. In it, compressed air is produced by a compressor and the compressed air is fed into the nozzle, which is fed with the treatment agent at the same time. The treatment agent and air mix in the nozzle and spread from the nozzle opening as a fine mist onto the surface to be treated €When the air is compressed in the compressor, its temperature rises. Air heating is used to apply the coating. The thermal energy contained in the hot air affects the energy balance — in the nozzle and in the processing material mist leaving the nozzle. In practice, it has been found that a treatment agent mist made with heated air in the compressor results in a coating that dries faster and is of a more uniform quality. Therefore, it is conceivable that the high air pressure and thereby the high feeding and mixing speed in the nozzle, combined with the elevated temperature, produce a very fine and fast-drying treatment agent mist.

[0010] Yksi kaupallisesti saatavilla oleva pinnoituslaite on FinishPro HVLP 9.5[0010] One commercially available coating device is the FinishPro HVLP 9.5

Procomp Series Sprayer. Laitteen valmistaja on GRACO. Tässä laitteessa on erillinen kompressori paineilman tuottamista varten ja erillinen syöttö käsittelyaineelle. Laitteen suunniteltu käyttöalue on paksujen käsittelyaineiden levittäminen. Sen kompressorilla saavutetaan 25 psi:n (172 N/m?) paine ja paine on hienosäädettävissä painesäätimen ja — mittarin avulla. Suositeltu työpaine on 10 psi (69 N/m”). Tällä laitteella saadaan aikaan hyvin hienojakoinen suihku/sumu ja lämmin ilma kuivattaa ohuen pinnoitekerroksen hyvin nopeasti.Procomp Series Sprayer. The manufacturer of the device is GRACO. This device has a separate compressor for producing compressed air and a separate supply for the processing agent. The planned area of use of the device is the application of thick treatment materials. Its compressor achieves a pressure of 25 psi (172 N/m?) and the pressure can be fine-tuned using a pressure regulator and — gauge. Recommended working pressure is 10 psi (69 N/m”). With this device, a very fine spray/fog is created and the warm air dries the thin coating layer very quickly.

[0011] Yllä = mainitusta laitteesta on mitattu käytön aikaisia lämpötiloja.[0011] Temperatures during use have been measured from the device mentioned above.

Paineilmaletkun ja suuttimen kahvan lämpötila olivat noin 30 astetta C, suuttimen — pintalämpötila 32 astetta C ja suuttimesta ulostuleva sumu 25 astetta C, vaihteluväli 24-28 astetta C. Kompressorin lämpötila oli noin 90-115 astetta C. Pinnoite läheltä suutinta noin 15 astetta C (energiaa menee ilmeisesti haihtumiseen). Nämä ovat siis pintamittauksia laitteen ulkopinnoilta eli letkun sisällä ja muualla virtausteissä ilma on todennäköisestiThe temperature of the compressed air hose and the handle of the nozzle were about 30 degrees C, the surface temperature of the nozzle 32 degrees C and the mist coming out of the nozzle 25 degrees C, the range 24-28 degrees C. The temperature of the compressor was about 90-115 degrees C. The coating near the nozzle about 15 degrees C ( energy apparently goes to evaporation). These are therefore surface measurements from the outer surfaces of the device, i.e. inside the hose and elsewhere in the flow there is probably air

S lämpimämpää. Edellä olevan perusteella on ajateltavissa, että lämpimän ilman energiaS warmer. Based on the above, it is conceivable that the energy of the warm air

O 25 — haihduttaa yhdessä suuttimessa tapahtuvan paineen laskun kanssa tehokkaasti kosteutta = käsittelyaineesta. Jotta tämä etu saataisiin on paineilman lämpötilaa nostettavaO 25 — together with the drop in pressure in the nozzle effectively evaporates moisture = from the treatment agent. In order to get this advantage, the temperature of the compressed air must be increased

I korkeammalle kuin ympäristön lämpötila, eli yli 20*C. Käsittelyaine ei kuitenkaan saa a höyrystyä, joten ilman lämpötilan ai tulisi ylittää 100* C. On myös ajateltavissa, että 5 käsittelyainetta lämmitetään, mutta sen vaikutus on vähäinen koska käsittelyaineenI higher than the ambient temperature, i.e. above 20*C. However, the treatment agent must not vaporize, so the air temperature ai should exceed 100* C. It is also conceivable that the treatment agent is heated, but its effect is minor because the treatment agent

N 30 — massavirta on pieni ilman massavirtaan verrattuna. Mittausten perusteella on havaittavissa,N 30 — the mass flow is small compared to the mass flow of air. Based on the measurements, it can be observed,

N että edulliset vaikutukset voidaan saavuttaa, jos suuttimen ulkopinnan pintalämpötila on yli 20° C. Tällöin sekoitetun ilman ja käsittelyaineen lämpötila on tätä suurempi. Toisaalta suutin voi myös kuumentua virtauksen vaikutuksesta, mikä puolestaan lämmittää sumutettava ainetta. Suuttimen lämpötila onkin indikaatio oikealla lämpötila-alueella toimimisesta.N that advantageous effects can be achieved if the surface temperature of the nozzle's outer surface is above 20° C. In this case, the temperature of the mixed air and the processing agent is higher than this. On the other hand, the nozzle can also heat up due to the flow, which in turn heats the substance to be atomized. The temperature of the nozzle is an indication of operating in the correct temperature range.

[0012] On toki ajateltavissa, että paineilmaa lämmitetään erillisellä lämmittimellä, mutta sellainen lisää laitteiston hintaa.[0012] Of course, it is conceivable that the compressed air is heated with a separate heater, but this increases the price of the equipment.

[0013] Eräs syy miksi korkeampi lämpötila toimii paremmin on selitettävissä päällystysaineen sisältämän nanokolloidin polymeeriosalla. Ruiskutettu valokatalyyttinen pinta sisältää sidosaineen eli matriisin joka on jotakin vesiliukoista termoplastista polymeeria tai liukenematonta polymeerikolloidia (esimerkiksi lateksia). Nostettaessa — kolloidin lämpötila polymeerin lasittumislämpötilan (Tg), tai jopa sulamislämpötilan (Tm) yläpuolelle se pehmenee/sulaa ja osuessaan applikoitavaan pintaan muovautuu helpommin pinnan mukaan. Paremmin pinnan mukaan muotoutunut matriisi saa aikaan paremman adheesion pinnan kanssa sillä fysikaaliskemialliset voimat, jotka sitovat pinnat toisiinsa ovat suoraan riippuvaisia niiden kontaktipinta-alasta. Toisaalta lämpötilan nosto aikaansaa — veden pintajännityksen sekä viskositeetin alenemisesta joka mahdollistaa tietyllä paineella pienemmän pisarakoon. Samaan tulokseen voidaan päätyä myös käyttämällä jotakin pinta- aktiivista kemiallista yhdistettä. Pienempi pisarakoko mahdollistaa nopeamman veden haihtumisen lämpötilan ja haihtumispinta-alan kasvaessa, jolloin kolloidin osuessa pintaan se on jo hyvin konsentroituneessa tilassa jolloin vältetään nk. valuminen, pinta kuivuu — nopeammin ja siitä tulee tasalaatuisempi.[0013] One reason why a higher temperature works better can be explained by the polymer part of the nanocolloid contained in the coating agent. The sprayed photocatalytic surface contains a binding agent, i.e. a matrix, which is a water-soluble thermoplastic polymer or an insoluble polymer colloid (e.g. latex). When the temperature of the colloid is raised above the glass transition temperature (Tg) or even the melting temperature (Tm) of the polymer, it softens/melts and when it hits the surface to be applied, it molds more easily to the surface. A matrix shaped better according to the surface achieves better adhesion with the surface, because the physico-chemical forces that bind the surfaces to each other are directly dependent on their contact surface area. On the other hand, raising the temperature causes — a decrease in the water's surface tension and viscosity, which enables a smaller droplet size at a given pressure. The same result can also be reached by using a surface-active chemical compound. A smaller droplet size enables faster evaporation of water as the temperature and evaporation surface increase, so when the colloid hits the surface it is already in a highly concentrated state, which avoids so-called runoff, the surface dries — faster and becomes more uniform.

TEOLLINEN KÄYTTÖKELPOISUUSINDUSTRIAL APPLICABILITY

S [0014] Keksintöä voidaan soveltaa pintojen käsittelyyn, erityisesti pintojenS [0014] The invention can be applied to the treatment of surfaces, especially surfaces

OO

N suojaamiseen mikrobeilta ja käsitellyn tilan mikrobiologiseen puhdistamiseen pinnoitteenN for protection from microbes and microbiological cleaning of the coating in the treated space

OO

<Q toiminnan kautta.<Q through action.

OO

I a aI a a

NOF

MNMN

LOLO

LOLO

OO

NOF

OO

NOF

Claims (5)

PATENTKRAVPATENT CLAIMS 1. Förfarande för applicering av en fotokatalysatorbeläggning, vilket förfarande om- fattar att: — tryckluft genereras medelst en kompressor, — behandlingsämne blandas i tryckluften i en luftspridande dys och — blandningen av tryckluft och behandlingsämne matas frän dysen för applicering av finfördelad spray pä en yta C avsedd att behandlas — tryckluften tillförs värmeenergi pä sä sätt, att dysens yttemperatur är större än 20°C under appliceringen av fotokatalysatorbeläggningen, kännetecknat av att behandlingsämnets fotokatalysator utgörs av nanopartiklar av titandioxid i nanopartikelform och behandlingsämnet innehäller en polymerkolloid.1. Method for applying a photocatalyst coating, which method comprises that: — compressed air is generated by means of a compressor, — treatment substance is mixed in the compressed air in an air spreading nozzle and — the mixture of compressed air and treatment substance is fed from the nozzle for the application of finely divided spray on a surface C intended to be treated — the compressed air is supplied with heat energy in such a way that the surface temperature of the nozzle is greater than 20°C during the application of the photocatalyst coating, characterized in that the photocatalyst of the treatment substance consists of nanoparticles of titanium dioxide in nanoparticle form and the treatment substance contains a polymer colloid. 2. Förfarande i enlighet med patentkrav 1, där värmeenergi tillförs tryckluften i kom- pressorn.2. Method in accordance with patent claim 1, where thermal energy is supplied to the compressed air in the compressor. 3. Förfarande i enlighet med nägot av de föregäende patentkraven, där dysens yt- temperatur är över 32°C.3. Method according to any of the preceding patent claims, where the surface temperature of the nozzle is above 32°C. 4. Förfarande i enlighet med något av de föregående patentkraven, där den från kom- pressorn kommande luftens temperatur uppgår till 90 — 115°C.4. Method according to one of the preceding patent claims, where the temperature of the air coming from the compressor amounts to 90 — 115°C. N N 5. Förfarande i enlighet med nägot av de föregäende patentkraven, där den frän dysen S 20 kommande sprayens temperatur uppgår till 24 — 28°C. O <Q 0 N I a a N MN LO LO O N O N5. Method according to any of the preceding patent claims, where the temperature of the spray coming from the nozzle S 20 amounts to 24 - 28°C. O <Q 0 N I a a N MN LO LO O N O N
FI20205572A 2020-06-01 2020-06-01 Method for spreading a light catalyst surface coating FI130738B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FI20205572A FI130738B1 (en) 2020-06-01 2020-06-01 Method for spreading a light catalyst surface coating
EP21743550.2A EP4157529A1 (en) 2020-06-01 2021-06-01 Method for spreading a photocatalyst coating
PCT/FI2021/050399 WO2021245333A1 (en) 2020-06-01 2021-06-01 Method for spreading a photocatalyst coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20205572A FI130738B1 (en) 2020-06-01 2020-06-01 Method for spreading a light catalyst surface coating

Publications (2)

Publication Number Publication Date
FI20205572A1 FI20205572A1 (en) 2021-12-02
FI130738B1 true FI130738B1 (en) 2024-02-20

Family

ID=76999900

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20205572A FI130738B1 (en) 2020-06-01 2020-06-01 Method for spreading a light catalyst surface coating

Country Status (3)

Country Link
EP (1) EP4157529A1 (en)
FI (1) FI130738B1 (en)
WO (1) WO2021245333A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616532A (en) * 1990-12-14 1997-04-01 E. Heller & Company Photocatalyst-binder compositions
JP2008100122A (en) * 2005-02-25 2008-05-01 Ishihara Sangyo Kaisha Ltd Coating method for forming coating film containing photocatalyst
WO2009051817A1 (en) * 2007-10-19 2009-04-23 One Green World, Inc. Photocatalytic titanium dioxide nanocrystals
WO2013006125A1 (en) * 2011-07-05 2013-01-10 Välinge Photocatalytic Ab Coated wood products and method of producing coated wood products
MX366483B (en) * 2012-12-21 2019-07-09 Vaelinge Photocatalytic Ab A method for coating a building panel and a building panel.
PL3204156T3 (en) * 2014-10-10 2021-07-12 Photocat A/S Method to produce a photocatalytic bituminous product
RO133342B1 (en) * 2017-11-22 2023-04-28 Institutul Naţional De Cercetare-Dezvoltare Textile Şi Pielărie-Sucursala Institutul De Cercetare Pielărie-Încălţăminte Hides with antimicrobial and self-cleaning properties and process for preparing the same
CN110560024A (en) * 2019-08-13 2019-12-13 久保清新材料科技(上海)有限公司 Preparation method of photocatalytic coating for inorganic material

Also Published As

Publication number Publication date
EP4157529A1 (en) 2023-04-05
WO2021245333A1 (en) 2021-12-09
FI20205572A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP2552246B2 (en) Spray application of plastic additives to polymers
JP5175195B2 (en) Liquid dripping method
US20070000407A1 (en) Nano composite photocatalytic coating
RU2017101067A (en) TREATMENT OF PLANT SEEDS
JP2008543369A5 (en)
FI130738B1 (en) Method for spreading a light catalyst surface coating
JP2015522678A (en) Use of aqueous composite binders and alkyds for coatings
RU2006136017A (en) METHOD AND INSTALLATION FOR COATING WITH WATER VAPOR
CN105694706A (en) Novel formaldehyde removal anti-microbial water-based UV paint
WO2012135895A1 (en) Wetting composition
CN109071989A (en) The ethylene without bisphenol-A/(methyl) acrylic copolymer composition for metal can coating
US20140187469A1 (en) Aqueous formulation for dispensing as a spray polymeric microcapsules containing at least one active ingredient
JP2008056746A (en) Aqueous emulsified dispersion of polyolefin resin and its production method
CA2541404A1 (en) Process and apparatus for cooling and atomizing liquid or pasty-like substances
US6723363B2 (en) Coating foods and pharmaceuticals with an edible polymer using carbon dioxide
BE1023525B1 (en) ENCLOSED ADDITIVES
KR19980083239A (en) Heat-drying bio-antibacterial paint and steel plate coated with it
WO2004101167A1 (en) Surface-spraying device
AU2019344436B2 (en) Manifold with auxiliary heat for distributing heated epoxy for spray application
US5218024A (en) Water- and solvent-free release agent for polyurethane foaming
CN108855663B (en) Coating spraying system and method using ionic liquid mixed with high-pressure carbon dioxide as mixed solvent
CA3111722C (en) Hose and manifold for distributing heated epoxy for spray application
CN107027312A (en) Environmental hormone degradation composition, coated steel sheet and its manufacture method using it
KR102604421B1 (en) Adhesive paint for interior walls of buildings
KR20180009447A (en) Paint coating method