FI126553B - Process and equipment for preparing concentrates of ore for pelleting - Google Patents

Process and equipment for preparing concentrates of ore for pelleting Download PDF

Info

Publication number
FI126553B
FI126553B FI20136277A FI20136277A FI126553B FI 126553 B FI126553 B FI 126553B FI 20136277 A FI20136277 A FI 20136277A FI 20136277 A FI20136277 A FI 20136277A FI 126553 B FI126553 B FI 126553B
Authority
FI
Finland
Prior art keywords
moisture content
mixture
concentrate
water
sensor
Prior art date
Application number
FI20136277A
Other languages
Finnish (fi)
Swedish (sv)
Inventor
Suvi Rannantie
Olli Pekkala
Jaakko Pelttari
Original Assignee
Outotec Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outotec Finland Oy filed Critical Outotec Finland Oy
Priority to FI20136277A priority Critical patent/FI126553B/en
Priority to CN201480073271.8A priority patent/CN105917010A/en
Priority to PCT/FI2014/051013 priority patent/WO2015092137A1/en
Priority to ZA2016/04264A priority patent/ZA201604264B/en
Application granted granted Critical
Publication of FI126553B publication Critical patent/FI126553B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D22/00Control of humidity
    • G05D22/02Control of humidity characterised by the use of electric means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

METHOD AND EQUIPMENT FOR PREPARING ORE CONCENTRATE FOR PELLETIZING
FIELD OF THE INVENTION
The present invention relates to a method and equipment for preparing ore concentrate for pelletizing.
BACKGROUND OF THE INVENTION
In prior art there is known, e.g. from publication WO2012/172174 A1, a method and equipment for preparing ore concentrate for pelletizing. The raw material is obtained from a mine. The ore concentrate is stored and initially fed to the process from a concentrate bin. Typically at this stage the ore concentrate has moisture content more than 1 w-%. In the method the concentrate is fed from a concentrate bin to a grinder. In the grinder the concentrate is ground to a predetermined grain size together with an amount of water and possibly added additives to obtain a mixture thereof. The mixture is mixed in a slurry mixer. Thereafter the mixture is led to a filter for filtering the mixture to form a dewatered mixture. From the filter the dewatered mixture is then conveyed on a first conveyor to a buffer bin wherein the mixture is buffer stored. From the buffer bin the mixture is conveyed to a mixer on a second conveyor while adding additives from additive bins. In the mixer the mixture and the additives are mixed. If needed, an amount of water is fed to the mixer. The water is fed to the mixer via a pipeline having a control valve by which the amount of water to be fed can be regulated. A transfer means transfers the mixture from the mixer to a pelletizing device wherein the mixture is pelletized to form green pellets for subsequent indurating which can be made by a sintering/indurating process.
In the pelletizing device, the type of which can be a rotating drum or table, the green pellets are formed gradually by a snow-ball effect wherein the concentrate particles are bound together by the moisture residing between the particles holding them together. The size and strength of the green pellets mainly depends on the grain size and the moisture content of the mixture from which the green pellets are formed of. The grain size is normally adjusted to constant in the grinder. Thereafter the pellet size can only be regulated by regulating the moisture content of the mixture. If the moisture content of the mixture is too low, the green pellets are not formed properly or their size is too small. If the moisture content of the mixture is too high, the size of the green pellets will be too large. It is known that the optimal moisture content to obtain an optimal pellet size and strength for example for chromite concentrate mixture before pelletizing is 9 - 10 w-% by which the optimal pellet diameter about 12 mm can be obtained.
Conventionally the method of regulating the moisture content of the mixture before pelletizing is based on manual sampling of the mixture and measurement of the moisture content of the sample is performed in a laboratory. A sample has been taken from the same place from the pelletizing feed. The amount of water to be fed to the mixer has been regulated on the basis of these results obtained in the laboratory analysis. The interval between consecutive samplings has typically been two hours and the laboratory analysis takes several minutes. The long response time for regulating the moisture content of the mixture causes problems and the moisture content of the mixture in the process can vary substantially within such a period before adjustment of the moisture content can take place. Manual sampling may lead to unreliable measurement results due to dynamic nature of the process, long sampling intervals, disturbances and other failure. Sampled moisture data always includes some random variation, inaccuracy and errors that cannot be eliminated from the results. Manual sampling and laboratory analysis also requires costly human work input and working time of the process operators.
OBJECTIVE OF THE INVENTION
The objective of the invention is to alleviate the disadvantages mentioned above.
In particular, it is an objective of the present invention to provide a method and equipment by which the measurement of the moisture content can be made continuously and the measurement results can be immediately used to continuously regulate the moisture content of the mixture to ensure that the mixture has a predetermined moisture content to produce green pellets having a predetermined pellet size and/or strength.
SUMMARY OF THE INVENTION
According to a first aspect, the present invention provides a method for preparing ore concentrate for pelletizing, the method comprising a) feeding the concentrate from a concentrate bin to a grinder, b) grinding the concentrate in the grinder to a predetermined grain size together with an amount of water, if needed, and possibly added additives to obtain a mixture, c) mixing the mixture in a slurry mixer, d) filtering the mixture in a filter to form a dewatered mixture, e) conveying the dewatered mixture on a first conveyor from the filter to a buffer bin, f) buffer storing the mixture in the buffer bin, g) conveying the mixture from the buffer bin on a second conveyor to a mixer while adding additives from additive bins, h) mixing the mixture and the additives in the mixer, i) if needed, feeding an amount of water to the mixer, j) transferring the mixture from the mixer to a pelletizing device, and k) pelletizing the mixture in a pelletizing device to form green pellets for subsequent indurating or sintering.
According to the invention, in the method, the moisture content of the concentrate and/or mixture is continuously measured by an online measurement method, wherein the online measurement method is a high-frequency capacitive measurement method, during at least one of said method steps d) to j), and the amount of water to be fed into the mixer (8) in the mixing step h) is continuously regulated on the basis of said measured moisture content value to ensure that the mixture has a predetermined moisture content to produce green pellets having a predetermined pellet size and/or strength.
The moisture content to be measured includes the water on the surface of the concentrate particles and between the particles, hygroscopic water, capillary water, pore water and added water. In fact, measurement of the moisture content means measuring of the content of residual water and added water.
According to a second aspect, the present invention provides an equipment to prepare ore concentrate for pelletizing, the equipment comprising - a concentrate bin for feeding the concentrate, - a grinder to receive the concentrate from the concentrate bin and for grinding the concentrate to a predetermined grain size together with an amount of water, if needed, and possibly added additives to a mixture, - a slurry mixer to receive the mixture from the grinder for mixing the mixture, - a filter to receive the mixture from the slurry mixer for filtering the mixture to a dewatered mixture, - a first conveyor to receive the dewatered mixture from the filter for conveying, - a buffer bin to receive the mixture from the first conveyor for buffer storing of the mixture, - additive bins to store and feed additives, - a second conveyor to receive the mixture from the buffer bin and additives from additive bins for conveying the mixture and additives, - a mixer to receive the mixture and additives from the second conveyor for mixing, - a first pipeline for feeding water to the mixer, a first control valve in the first pipeline for regulating of the amount of water to be fed to the mixer, a transfer means to receive the mixture from the mixer for transferring, and a pelletizing device to receive the mixture from the transfer device for pelletizing the mixture to green pellets.
According to the invention the equipment comprises one or more online moisture content sensors arranged to measure moisture content of the concentrate and/or mixture, said sensor being disposed in connection with one or more of the devices including the filter, the first conveyor, the buffer bin, the second conveyor, the mixer and/or the transfer means), wherein the moisture content sensor is a high-frequency capacitive measurement sensor which senses the dielectricity of the concentrate and/or mixture subject to measurement; and a control unit arranged to continuously control the first control valve to regulate the amount of water to be fed to the mixer on the basis of the moisture content measurement results obtained from the one or more online moisture content sensors, the control unit being arranged to calculate the moisture content on the basis of the measured dielectricity to ensure that the mixture has a predetermined moisture content to produce green pellets having a predetermined pellet size and/or strength.
The invention has many advantages. The process for preparing ore concentrate for pelletizing can be monitored online and adjusted in real time. The measurement of the moisture content can be made continuously and the measurement results can be immediately used as a feedback to continuously regulate the moisture content of the mixture to ensure that the mixture has a predetermined moisture content to produce green pellets having a predetermined pellet size and/or strength. The response time to control the process is remarkably shortened. Proper moisture control further produces significant cost savings; for instance pelletizing (agglomeration) process becomes more stable and thus good green pellet quality is secured. In addition, process operator will have more time for performing other tasks when moisture content is con trolled automatically. Manual sampling can be reduced or even avoided.
In an embodiment of the method, the moisture content of the concentrate is measured in at least one of the method steps a) to b), and that the an amount of water to be fed to the grinder is regulated continuously on the basis of said measured moisture content value.
In an embodiment of the method, the moisture content of the concentrate and/or the mixture is measured by a non-contact high-frequency capacitive measurement sensor which has no direct contact to the material subject to measurement.
In an embodiment of the method, the amount of water to be fed into the mixer in the mixing step h) is calculated by the difference between the measured moisture content value and a target value known to produce optimal size and/or strength for the green pellets.
In an embodiment of the method, if the measured moisture content value is smaller than the predetermined target value, a calculated amount of water is fed into the mixer in the mixing step h) , and if the measured moisture content value is the same or greater than the predetermined target value, no water is fed into the mixer in the mixing step h).
In an embodiment of the method, the moisture content of the concentrate is measured with a moisture content sensor placed in and/or after the filter.
In an embodiment of the method, the filtration effect of the filter is regulated on the basis of said measured moisture content value.
In an embodiment of the method, the moisture content of the mixture is measured during conveying the concentrate on the conveyor.
In an embodiment of the method, the first conveyor and/or the second conveyor being a belt conveyor having a moving belt on which the mixture is placed as a material bed the moisture content of the material bed lying on the belt is measured in a contact or non-contact manner by a high-frequency capacitive measurement sensor which is placed above or underneath the moving belt.
In an embodiment of the method, a high-frequency capacitive measurement sensor being placed above the moving belt, the sensor is arranged to direct constant contact with the upper surface of the material bed.
In an embodiment of the method, the high-frequency capacitive measurement sensor being placed underneath the moving belt, the sensor is arranged to direct constant contact with the underside of the moving belt.
In an embodiment of the method, the moisture content of the mixture is measured while storing the concentrate in the intermediate bin.
In an embodiment of the method, the moisture content of the mixture is measured in at least one measurement point located after the mixing step h) and before the pelletizing step k).
In an embodiment of the method, the moisture content of the mixture is measured during the transferring step j).
In an embodiment of the method, an additional amount of water is fed to the mixture just before feeding the mixture to the pelletizing device or directly to the pelletizing device if the measured moisture content value of the mixture is below the target value, and the amount of additional water to be fed is regulated on the basis of said moisture content value of the mixture measured in said at least one measurement point located after the mixing step h) and before the pelletizing step k).
In an embodiment of the method, in the transferring step j) the moisture content of the mixture is measured during conveying the concentrate on a third conveyor .
In an embodiment of the method, the third conveyor is a belt conveyor having a moving belt on which the mixture is placed as a material bed; and the moisture content of the material bed lying on the belt is measured in a contact or non-contact manner by a high-frequency capacitive measurement sensor which is placed above or underneath the moving belt.
In an embodiment of the method, a high-frequency capacitive measurement sensor being placed above the moving belt, the sensor is arranged to direct constant contact with the upper surface of the material bed.
In an embodiment of the method, the high-frequency capacitive measurement sensor being placed underneath the moving belt, the sensor is arranged to direct constant contact with the underside of the moving belt.
In an embodiment of the method, the type of grinder in the grinding step b) being a ball mill, the amount of grinding media to be fed into the ball mill is regu lated on the basis of the moisture measured in at least one of the method steps a) to b).
In an embodiment of the method, the ore concentrate is chromite or iron or manganese or ilmenite or nickel or niobium concentrate or any combination thereof.
In an embodiment of the equipment, the equipment comprises a second pipeline for feeding water to the grinder and a second control valve in the second pipeline for regulating of the amount of water to be fed to the grinder; that a moisture content sensor is disposed in the concentrate bin and/or in the grinder; and that the control unit is arranged to continuously control the second control valve to regulate the amount of water to be fed to the grinder on the basis of the moisture content measurement results obtained from said moisture content sensor disposed in the concentrate bin and/or in the grinder.
In an embodiment of the equipment, the first conveyor and/or the second conveyor is a belt conveyor including an endless moving belt having an upper side on which the mixture is lying as a material bed and an underside .
In an embodiment of the equipment, the transfer device is a third belt conveyor arranged between the mixer and the pelletizing device, said third belt conveyor having a moving belt having an upper side on which the mixture is lying as a material bed and an underside.
In an embodiment of the equipment, the equipment comprises a third pipeline for spraying water onto the mixture bed travelling on the third belt conveyor at a water spraying point, and a third control valve in the third pipeline for regulating of the amount of water; and a moisture content sensor is disposed before and/or after said water spraying point; and that the control unit to control the first third control valve to regulate the amount of water to be fed to the mixture bed.
In an embodiment of the equipment, the equipment comprises a fourth pipeline for feeding water to the pelletizing device, and a fourth control valve in the second pipeline for regulating of the amount of water to be fed to the pelletizing device; and that the control unit is arranged to continuously control the fourth control valve to regulate the amount of water to be fed into the pelletizing device on the basis of the moisture content measurement results obtained from a moisture content sensor disposed to measure the moisture content of the mixture bed travelling on the moving belt of the third belt conveyor.
In an embodiment of the equipment, the moisture content sensor is arranged to direct constant contact with the upper surface of the material bed travelling on the upper side of the moving belt.
In an embodiment of the equipment, the moisture content sensor is placed underneath the moving belt, and that the sensor is arranged to direct constant contact with the underside of the moving belt.
In an embodiment of the equipment, the control unit is arranged to calculate the amount of water to be fed to the grinder and/or to the mixer and/or to the mixture material bed on the third conveyor and/or to the pelletizing device by the difference between the measured moisture content and a target value, said target value being known to produce an optimal size or strength for the green pellets.
In an embodiment of the equipment, the control unit is arranged to adjust the filtration effect of the filter for controlling the moisture content of the filtration cake on the basis of the moisture content value measured by said one or more moisture content sensors.
In an embodiment of the equipment, the type of grinder is a ball mill, and that the control unit is arranged regulate the amount of grinding media to be fed into the ball mill on the basis of the moisture measured in the concentrate bin and/or in the ball mill.
In an embodiment of the equipment, the equipment comprises - a mounting frame arranged below the moving belt, to which frame the moisture content sensor is mounted, and an adjustment means for adjusting the height position of the sensor in relation to the moving belt and for pressing the sensor against the underside of the moving belt for non-contact measurement of the moisture content of the mixture travelling on the upper side of the moving belt.
In an embodiment of the equipment, the equipment comprises a mechanical level control device, such as a ski, a scraper, a plough or like, which is disposed at a height above the moving belt and upstream in relation to the moisture content sensor to control the thickness of least the part of the material bed which passes the moisture content sensor.
In an embodiment of the equipment, a moisture content sensor is connected to the mechanical level control device and arranged to direct contact with the upper surface of the mixture bed travelling on the moving belt.
It is to be understood that the aspects and embodiments of the invention described above may be used in any combination with each other. Several of the aspects and embodiments may be combined together to form a further embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the invention and constitute a part of this specification, illustrate embodiments of the invention and together with the description help to explain the principles of the invention. In the drawings:
Figure 1 shows a schematic flow chart of a process and process equipment of a first embodiment of the invention for preparing ore concentrate for pelletizing,
Figure 2 shows a schematic flow chart of a process and process equipment of a second embodiment of the invention for preparing ore concentrate for pelletizing
Figure 3 is a cross-section III - III of the second conveyor of the equipment of Figure 1,
Figure 4 is a cross-section IV - IV of Figure 3,
Figure 5 shows a first alternative embodiment for the embodiment of Figure 3,
Figure 6 shows a cross-section VI - VI of Figure 5,
Figure 7 shows a second alternative embodiment for the embodiment of Figure 3, and
Figure 8 shows a cross-section VIII - VIII of Figure 7 .
DETAILED DESCRIPTION OF THE INVENTION
Referring to Figure 1, the raw material is obtained from a mine. The raw material, coarse ore concentrate, is stored and initially fed to the process from a concentrate bin 1. The equipment and method is suitable for any ore concentrate such as chromite or iron or manganese or ilmenite or nickel or niobium concentrate or any combination thereof.
The equipment further comprises a wet or dry grinder 2 for grinding the coarse ore concentrate to a suitable grain size. Dry grinder is a grinder which is more closely disclosed in WO2012/172174 A1. The grinder 2 receives the concentrate from the concentrate bin 1 and grinds the concentrate to a predetermined grain size together with an amount of water and possibly added additives to a mixture. The grinder 2 may be a ball mill, whereto the material to be ground is fed together with the addition of water if the grinder is a wet grinder. A ball mill 2 is a rotating drum which is partially filled with the material to be ground and grinding medium. Different materials are used as grinding media, including ceramic balls, flint pebbles and steel balls. As the drum rotates the grinding media rise with the aid of centrifugal force along with the inner surface of the drum and eventually fall on the material to be ground. Various factors, like the size of the grinding media and the rotation speed of the drum, affect to the degree of grinding.
The grinder 2 is followed by a slurry mixer 3 which is arranged to mix the slurry discharged from the grinder 2 .
The mixture mixed in the slurry mixer 3 is then led to a filter 4, which can be a pressure filter or a capillary-effect ceramic disc filter. The filter 4 is arranged to dewater the mixture by filtering to form a dewatered mixture.
From the filter 4 the mixture is conveyed by a first conveyor 5 to a buffer bin 6a. Also other additives, solid fuel (coke fine which acts as a fuel in the subsequent sintering/indurating process), process dust and binding agent are stored in additive bins 6 b, c, d. The mixture from the buffer bin 6a and additives from the additive bins 6 b, c, d are distributed onto a second conveyor 7 which conveys these materials to a mixer 8.
The mixer 8 mixes the mixture with solid fuel, process dust and binder to form a homogenous mixture of these.
An amount of water is added, if needed, via a first pipeline 12 and regulated by a control valve 13 into the mixer 8 to ensure that the mixture has predetermined moisture content for pelletizing. A third belt conveyor 11 receives the mixture from the mixer 8 for transferring it to a pelletizing device 9 for pelletizing the mixture to green pellets.
One or more online moisture content sensors 10 are arranged to measure moisture content of the mixture. The sensor 10 or sensors 10 is/are disposed in connection with one or more of the devices including the filter 4, the first conveyor 5, the buffer bin 6a, the second conveyor 7, and/or the mixer 8. The equipment comprises a control unit 14. The control unit 14 is arranged to continuously control the first control valve 13 to regulate the amount of water to be fed to the mixer 8 on the basis of the moisture content measurement results obtained from the one or more online moisture content sensors 10. The control unit 14 calculates the amount of water to be fed into the mixer 8 by the difference between the measured moisture content value and a target value known to produce optimal size and/or strength for the green pellets. If the measured moisture content value is smaller than the predetermined target value, the control unit 14 controls the first control valve 13 to feed a calculated amount of water into the mixer 8. If the measured moisture content value is the same or greater than predetermined target value, the control unit 14 shuts off the first control valve 13, so that no water is fed into the mixer 8. This ensures that the mixture has a predetermined moisture content to produce green pellets having a predetermined pellet size and/or strength.
Although Figure 1 shows an embodiment which is shown to include all the above-mentioned moisture content sensors 10, it should be understood that less or more sensors 10 (but at least one sensor 10) may be used in other embodiments.
The moisture content of the mixture is continuously measured by an online measurement method - during or after filtering the mixture in a filter 4 to form a dewatered mixture, and/or during or after conveying the dewatered mixture on a first conveyor 5 from the filter 4 to a buffer bin 6a, and/or - during or after buffer storing the mixture in the buffer bin 6a, and/or - during or after conveying the mixture from the buffer bin 6a on a second conveyor 7 while adding additives from additive bins 6b, c, d, to a mixer 8, and/or - during mixing the mixture and the additives in the mixer (8) . The amount of water to be fed into the mixer 8 via the first pipeline 12 during mixing in the mixer 8 is continuously regulated on the basis of said measured moisture content. This is to ensure that the mixture has a predetermined moisture content to produce green pellets having a predetermined pellet size and/or strength.
The first conveyor 5 and the second conveyor 7 are belt conveyors including an endless moving belt 17 having an upper side 18 on which the mixture is lying as a material bed and an underside 19. Also the transfer device 11 between the mixer 8 and the pelletizing device 9 is a third belt conveyor 11. The third belt conveyor 11 also has a moving belt 17 having an upper side 18 on which the mixture is lying as a material bed and an underside 19. The arrangement of moisture content sensors 10 in connection with the belt conveyors is more closely disclosed in connection with Figures 3 - 8 .
Figure 2 shows a further modification of the equipment shown in Figure 1 having the common features as disclosed in connection with Figure 1.
Referring to Figure 2, it shows that the moisture content of the concentrate can be measured during feeding the concentrate from a concentrate bin 1 to a grinder 2, and/or during grinding the concentrate in the grinder 2, and that the amount of water to be fed to the grinder 2 can be regulated continuously on the basis of said measured moisture content value. For this purpose the eguipment comprises a second pipeline 15 for feeding water to the grinder 2 and a second con trol valve 16 in the second pipeline for regulating of the amount of water to be fed to the grinder 2. One or more moisture content sensors 10 are disposed in the concentrate bin 1 and/or in the grinder 2. The control unit 14 is arranged to continuously control the second control valve 16 to regulate the amount of water to be fed to the grinder 2 on the basis of the moisture content measurement results obtained from said moisture content sensor 10 disposed in the concentrate bin 1 and/or in the grinder 2.
Figure 2 also schematically shows that the filtration effect of the filter 4 can be regulated by the control unit 14 on the basis of a moisture content value measured by a moisture content sensor 10 arranged in or after the filter 4.
Further, Figure 2 shows that the equipment may comprise a third pipeline 20 for spraying water onto the mixture bed travelling on the third belt conveyor 11 at a water spraying point, and a third control valve 21 in the third pipeline for regulating of the amount of water. The moisture content sensor 10 is disposed before and after said water spraying point. Then control unit 14 controls the first third control valve 21 to regulate the amount of water to be fed to the mixture bed.
Further Figure 2 shows that the equipment may comprise a fourth pipeline 22 for feeding water to the pelletizing device 9. A fourth control valve 23 is in the second pipeline 22 for regulating of the amount of water to be fed to the pelletizing device 9, The control unit 14 is arranged to continuously control the fourth control valve 23 to regulate the amount of water to be fed into the pelletizing device 9 on the basis of the moisture content measurement results ob tained from a moisture content sensor 10 disposed to measure the moisture content of the mixture bed travelling on the moving belt 17 of the third belt conveyor 11.
The type of grinder 2 being a ball mill, the control unit 14 may also regulate the amount of grinding media to be fed into the ball mill on the basis of the moisture measured in the concentrate bin 1 and/or in the ball mill 2. By this way also the grain size of the concentrate may be adjusted.
The additional moisture content measuring sensors 10 arranged in the concentrate bin 1, in the grinder 2 and in connection with the third belt conveyor 11 may be used separately in different embodiments or in combination in one embodiment. Likewise the additional water feeding to the grinder 2, on the third belt conveyor 11 or into the pelletizing drum 9 may be used separately in different embodiments or in combination in one embodiment.
Figures 3 to 6 show two alternative embodiments of arranging the moisture content sensor 10 in connection with a conveyor belt when the sensor 10 is placed underneath the moving belt 17 of the conveyor. The sensor 10 is arranged to direct constant contact with the underside 19 of the moving belt 17. The moving belt 17 is typically an endless loop of rubber belt. This kind of arrangement wherein the sensor 10 is out of contact to the mixture to be measured is especially advantageous when the particles in the material to be measured are very hard, sharp-edged and abrasive, like in the case of chromite concentrate. In this kind of case the moisture content sensor 10 cannot be arranged to direct constant contact with the material bed travelling on the moving belt since the particles tend to adhere rapidly to the sensor 10 and the mechanical level control device 26. The abrasive material also causes rapid wear of the sensor head.
The moisture content sensor 10 is preferably a high-frequency capacitive measurement sensor which senses the dielectricity of the concentrate and/or mixture subject to measurement. In that case the control unit 14 is arranged to calculate the moisture content on the basis of the measured dielectricity. A mounting frame 24 is arranged below the moving belt 17. The high-frequency capacitive measurement sensor 10 is mounted to the frame 24. An adjustment means 25 is arranged for adjusting the height position of the sensor 10 in relation to the moving belt 17 and for pressing the sensor 10 against the underside 19 of the moving belt for non-contact measurement of the moisture content of the mixture travelling on the upper side 18 of the moving belt. A mechanical level control device 26, such as a ski, a scraper, a plough or like, is disposed at a height above the moving belt 17 and upstream in relation to the moisture content sensor 10 to control the thickness s of least the part of the material bed which passes the moisture content sensor 10 .
In Figures 3 and 4 the adjustment means 25 is mechanical and implemented with springs to produce the pressing effect.
In figures 5 and 6 desired action of the adjustment means 25 is implemented with a parallelogram and a hydraulic cylinder.
Figures 7 and 8 show that the moisture content sensor 10 may be arranged to direct constant contact with the upper surface of the material bed travelling on the upper side 18 of the moving belt 17. A mechanical level control device 26, such as a ski, a scraper, a plough or like, is disposed at a height above the moving belt 17 and upstream in relation to the moisture content sensor 10 to control the thickness of least the part of the material bed which passes the moisture content sensor 10. The moisture content sensor 10 is connected to the mechanical level control device 26, such as a ski, arranged to direct contact with the upper surface of the mixture bed travelling on the moving belt 17.
Although the invention has been the described in conjunction with a certain type of process equipment, it should be understood that the invention is not limited to any certain type of process equipment. While the present invention has been described in connection with a number of exemplary embodiments, and implementations, the present inventions are not so limited, but rather cover various modifications, and equivalent arrangements, which fall within the purview of prospective claims.

Claims (33)

1. Menetelmä malmirikasteen valmistamiseksi pelletoin-tia varten, joka menetelmä käsittää a) rikasteen syöttämisen rikastesäiliöstä (1) jauhimeen (2), b) rikasteen jauhamisen jauhimessa (2) ennalta määrättyyn raekokoon tarvittaessa yhdessä jonkin määrän vettä ja mahdollisesti lisättyjen lisäaineiden kanssa seoksen saamiseksi, c) seoksen sekoittamisen lietesekoittimessa (3) , d) seoksen suodattamisen suodattimessa (4) seoksen, josta on poistettu vettä, muodostamiseksi, e) seoksen, josta on poistettu vettä, kuljettamisen ensimmäisen kuljettimen (5) päällä suodattimesta (4) puskurisäiliöön (6a), f) seoksen puskurivarastoimisen puskurisäiliöön (6a) , g) seoksen kuljettamisen puskurisäiliöstä (6a) toisen kuljettimen (7) päällä, lisäten samalla lisäaineita lisäainesäiliöistä (6b,c, d) , sekoittimeen (8) , h) seoksen ja lisäaineiden sekoittamisen se-koittimessa (8), i) tarvittaessa jonkin määrän vettä syöttämisen sekoittimeen (8), j) seoksen siirtämisen sekoittimesta pelle-tointilaitteeseen (9), ja k) seoksen pelletoimisen pelletointilaittees-sa (9) tuorepellettien muodostamiseksi, tunnettu siitä, että rikasteen ja/tai seoksen kosteuspitoisuutta mitataan jatkuvasti online-mittausmenetelmällä, jossa online-mittausmenetelmä on suuren taajuuden ka-pasitiivinen mittausmenetelmä, vähintään yhden mainituista menetelmävaiheista d) - j) aikana ja sekoitti- meen (8) syötettävän veden määrää säädetään jatkuvasti sekoitusvaiheessa h) mainitun mitatun kosteuspitoi-suusarvon perusteella sen varmistamiseksi, että seoksella on ennalta määrätty kosteuspitoisuus tuorepel-lettien, joilla on ennalta määrätty pellettikoko ja/tai lujuus, tuottamiseksi.A process for preparing ore concentrate for pelletizing, comprising: a) feeding the concentrate from the concentrate tank (1) to a refiner (2), b) refining the concentrate in the refiner (2) to a predetermined grain size, together with water and any additives added; c) mixing the mixture in the slurry mixer (3), d) filtering the mixture in the filter (4) to form a dewatered mixture, e) transporting the dehydrated mixture on the first conveyor (5) from the filter (4) to the buffer tank (6a). , f) storing the mixture in a buffer container (6a); g) transporting the mixture from the buffer container (6a) onto a second conveyor (7) while adding additives from the additives containers (6b, c, d), to the mixer (8); (i) if necessary, supplying a quantity of water to the mixer (8), j) transferring the blend from the mixer to the pelletizer (9); and k) blending the blend in the pelletizer (9) to form fresh pellets, characterized in that the moisture content of the concentrate and / or blend is continuously measured by a high-frequency online measurement method. a positive measurement method, the amount of water to be fed to at least one of said method steps d) to j) and to the mixer (8) is continuously adjusted on the basis of said measured moisture content to ensure that the mixture has a predetermined moisture content of fresh pellets having a predetermined pellet size and / or strength. 2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että rikasteen kosteuspitoisuutta mitataan vähintään yhdessä menetelmävaiheista a) - b), ja että jauhimeen (2) syötettävän veden määrää säädetään jatkuvasti mainitun mitatun kosteuspitoisuusarvon perusteella.A method according to claim 1, characterized in that the moisture content of the concentrate is measured in at least one of process steps a) to b) and that the amount of water fed to the refiner (2) is continuously adjusted based on said measured moisture content. 3. Jonkin patenttivaatimuksista 1-2 mukainen menetelmä, tunnettu siitä, että rikasteen ja/tai seoksen kosteuspitoisuutta mitataan kosketuksettomalla suuren taajuuden kapasitiivisella mittausanturilla (10), joka ei ole suorassa kosketuksessa mittauksen kohteena olevaan materiaaliin.Method according to one of Claims 1 to 2, characterized in that the moisture content of the concentrate and / or mixture is measured by a non-contact high-frequency capacitive measuring sensor (10) which is not in direct contact with the material being measured. 4. Jonkin patenttivaatimuksista 1-3 mukainen menetelmä, tunnettu siitä, että sekoittimeen (8) sekoitusvaiheessa h) syötettävän veden määrä lasketaan mitatun kosteuspitoisuusarvon ja kohdearvon, jonka tiedetään tuottavan tuorepelleteille optimaalinen koko ja/tai lujuus, välisen erotuksen perusteella.Method according to one of Claims 1 to 3, characterized in that the amount of water fed to the mixer (8) in the mixing step h) is calculated on the basis of the difference between the measured moisture content value and the target value known to provide optimum size and / or strength for fresh pellets. 5. Patenttivaatimuksen 4 mukainen menetelmä, tunnettu siitä, että jos mitattu kosteuspitoisuusarvo on pienempi kuin ennalta määrätty kohdearvo, sekoittimeen (8) syötetään laskettu määrä vettä sekoitusvaiheessa h), ja jos mitattu kosteuspitoisuusarvo on sama tai suurempi kuin ennalta määrätty kohdearvo, sekoittimeen (8) ei syötetä vettä sekoitusvaiheessa h).A method according to claim 4, characterized in that, if the measured moisture content is less than a predetermined target value, a calculated amount of water is supplied to the mixer (8) in mixing step h), and if the measured moisture content is equal to or greater than a predetermined target value water is not supplied in mixing step h). 6. Jonkin patenttivaatimuksista 1-5 mukainen menetelmä, tunnettu siitä, että rikasteen kosteuspitoisuutta mitataan kosteuspitoisuusanturilla (10), joka sijoitetaan suodattimeen (4) tai sen jälkeen.Method according to one of Claims 1 to 5, characterized in that the moisture content of the concentrate is measured by a moisture content sensor (10) which is placed on or after the filter (4). 7. Jonkin patenttivaatimuksista 1-6 mukainen menetelmä, tunnettu siitä, että suodattimen (4) suo-datustehoa säädetään mainitun mitatun kosteuspitoi-suusarvon perusteella.Method according to one of Claims 1 to 6, characterized in that the filtering power of the filter (4) is adjusted on the basis of said measured moisture content. 8. Jonkin patenttivaatimuksista 1-7 mukainen menetelmä, tunnettu siitä, että seoksen kosteuspitoisuutta mitataan kuljetettaessa rikastetta kuljettimen (5, 7) päällä.Method according to one of Claims 1 to 7, characterized in that the moisture content of the mixture is measured during the transport of concentrate on the conveyor (5, 7). 9. Jonkin patenttivaatimuksista 1-8 mukainen menetelmä, tunnettu siitä, että ensimmäisen kuljettimen (5) ja/tai toisen kuljettimen (7) ollessa hihna-kuljetin, jossa on liikkuva hihna (17), jonka päälle seos sijoitetaan materiaalipetinä, hihnan päällä olevan materiaalipedin kosteuspitoisuutta mitataan koske-tuksellisesti tai kosketuksettomasti suuren taajuuden kapasitiivisella mittausanturilla (10), joka sijoitetaan liikkuvan hihnan yläpuolelle tai alapuolelle.Method according to one of Claims 1 to 8, characterized in that the first conveyor (5) and / or the second conveyor (7) is a belt conveyor having a movable belt (17) on which the mixture is placed as a material bed, a material bed on the belt. the moisture content is measured by touch or non-contact with a high-frequency capacitive measuring sensor (10) placed above or below the movable belt. 10. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että suuren taajuuden kapasitiivisen mittausanturin (10) ollessa sijoitettu liikkuvan hihnan (17) yläpuolelle anturi järjestetään suoraan jatkuvaan kosketukseen materiaalipedin yläpinnan kanssa.Method according to Claim 9, characterized in that, when the high frequency capacitive measuring sensor (10) is positioned above the movable belt (17), the sensor is arranged in direct contact with the upper surface of the material bed. 11. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että suuren taajuuden kapasitiivisen mittausanturin (10) ollessa sijoitettu liikkuvan hihnan (17) alapuolelle anturi järjestetään suoraan jät- kuvaan kosketukseen liikkuvan hihnan alaosan (19) kanssa.Method according to Claim 9, characterized in that, when the high frequency capacitive measuring sensor (10) is located below the moving belt (17), the sensor is provided in direct contact with the lower part (19) of the moving belt. 12. Jonkin patenttivaatimuksista 1-9 mukainen menetelmä, tunnettu siitä, että seoksen kosteuspitoisuutta mitataan varastoitaessa rikaste välisäiliöön (6a) .Method according to one of Claims 1 to 9, characterized in that the moisture content of the mixture is measured when the concentrate is stored in an intermediate container (6a). 13. Jonkin patenttivaatimuksista 1-12 mukainen menetelmä, tunnettu siitä, että seoksen kosteuspitoisuutta mitataan vähintään yhdessä mittauspisteessä, joka sijaitsee sekoitusvaiheen h) jälkeen ja ennen pelletointivaihetta k).Method according to one of Claims 1 to 12, characterized in that the moisture content of the mixture is measured at at least one measuring point located after the mixing step h) and before the pelleting step k). 14. Patenttivaatimuksen 13 mukainen menetelmä, tunnettu siitä, että seoksen kosteuspitoisuutta mitataan siirtovaiheen j) aikana.Method according to claim 13, characterized in that the moisture content of the mixture is measured during the transfer step j). 15. Patenttivaatimuksen 13 tai 14 mukainen menetelmä, tunnettu siitä, että syötetään lisämäärä vettä seokseen juuri ennen seoksen syöttämistä pelletointi-laitteeseen (9) tai suoraan pelletointilaitteeseen, jos seoksen mitattu kosteuspitoisuusarvo on kohdearvon alapuolella, ja syötettävän lisäveden määrää säädetään sekoitusvaiheen h) jälkeen ja ennen pelletointivaihetta k) sijaitsevassa mainitussa vähintään yhdessä mittauspisteessä mitatun seoksen mainitun kosteuspitoi-suusarvon perusteella.Method according to Claim 13 or 14, characterized in that an additional amount of water is introduced into the mixture just before the mixture is fed to the pelletizer (9) or directly to the pelletizer if the measured moisture content is below the target value and after the mixing step h) pelleting step k) based on said moisture content of the mixture measured at said at least one measuring point. 16. Jonkin patenttivaatimuksista 1-15 mukainen menetelmä, tunnettu siitä, että siirtovaiheessa j) seoksen kosteuspitoisuutta mitataan kuljetettaessa rikastetta kolmannen kuljettimen (11) päällä.Method according to one of Claims 1 to 15, characterized in that, during transfer step j), the moisture content of the mixture is measured during the transport of concentrate on the third conveyor (11). 17. Patenttivaatimuksen 16 mukainen menetelmä, tunnettu siitä, että kolmas kuljetin (11) on hihna kuljetin, jossa on liikkuva hihna (17), jonka päälle seos sijoitetaan materiaalipetinä; ja hihnan päällä olevan materiaalipedin kosteuspitoisuutta mitataan kosketuksellisesti tai kosketuksettomasti suuren taajuuden kapasitiivisella mittausanturilla (10), joka sijoitetaan liikkuvan hihnan yläpuolelle tai alapuolelle.A method according to claim 16, characterized in that the third conveyor (11) is a belt conveyor having a movable belt (17) on which the mixture is placed as a material bed; and the moisture content of the material bed on the belt is contacted or non-contacted by a high-frequency capacitive measuring transducer (10) positioned above or below the movable belt. 18. Patenttivaatimuksen 17 mukainen menetelmä, tunnettu siitä, että suuren taajuuden kapasitiivisen mittausanturin (10) ollessa sijoitettu liikkuvan hihnan (17) yläpuolelle anturi järjestetään suoraan jatkuvaan kosketukseen materiaalipedin yläpinnan kanssa.The method according to claim 17, characterized in that, when the high frequency capacitive measuring sensor (10) is positioned above the movable belt (17), the sensor is provided in direct contact with the upper surface of the material bed. 19. Patenttivaatimuksen 17 mukainen menetelmä, tunnettu siitä, että suuren taajuuden kapasitiivisen mittausanturin (10) ollessa sijoitettu liikkuvan hihnan alapuolelle anturi järjestetään suoraan jatkuvaan kosketukseen liikkuvan hihnan alaosan kanssa.Method according to claim 17, characterized in that, when the high-frequency capacitive measuring sensor (10) is located below the moving belt, the sensor is provided in direct continuous contact with the lower part of the moving belt. 20. Jonkin patenttivaatimuksista 1-19 mukainen menetelmä, tunnettu siitä, että malmirikaste on kro-miitti- tai rauta- tai mangaani- tai ilmeniitti- tai nikkeli- tai niobiumrikaste tai niiden mikä tahansa yhdistelmä.Process according to one of Claims 1 to 19, characterized in that the ore concentrate is a chromite or iron or manganese or ilmenite or nickel or niobium concentrate or any combination thereof. 21. Laitteisto malmirikasteen valmistamiseksi pelle-tointia varten, joka laitteisto käsittää - rikastesäiliön (1) rikasteen syöttämiseksi, - jauhimen (2) rikasteen vastaanottamiseksi rikastesäiliöstä ja rikasteen jauhamiseksi ennalta määrättyyn raekokoon tarvittaessa yhdessä jonkin määrän vettä ja mahdollisesti lisättyjen lisäaineiden kanssa seokseksi, - lietesekoittimen (3) seoksen vastaanottamiseksi jauhimesta (2) seoksen sekoittamiseksi, - suodattimen (4) seoksen vastaanottamiseksi lietesekoittimesta (3) seoksen suodattamiseksi seokseksi, josta on poistettu vettä, - ensimmäisen kuljettimen (5) seoksen, josta on poistettu vettä, vastaanottamiseksi suodattimesta (4) kuljettamista varten, - puskurisäiliön (6a) seoksen vastaanottamiseksi ensimmäisestä kuljettimesta (5) seoksen puskuri-varastoimiseksi, - lisäainesäiliöitä (6b, c, d) lisäaineiden varastoimiseksi ja syöttämiseksi, - toisen kuljettimen (7) seoksen vastaanottamiseksi puskurisäiliöstä (6a) ja lisäaineiden vastaanottamiseksi lisäainesäiliöistä (6b, c, d) seoksen ja lisäaineiden kuljettamiseksi, sekoittimen (8) seoksen ja lisäaineiden vastaanottamiseksi toisesta kuljettimesta (7) sekoittamista varten, - ensimmäisen putkilinjan (12) veden syöttämiseksi sekoittimeen (8), ensimmäisen ohjausventtiilin (13) ensimmäisessä putkilinjassa (12) sekoittimeen (8) syötettävän veden määrän säätämiseksi, - siirtovälineen (11) seoksen vastaanottamiseksi sekoittimesta (8) siirtämistä varten, ja pelletointilaitteen (9) seoksen vastaanottamiseksi siirtolaitteesta (11) seoksen pelletoimisek-si tuorepelleteiksi, tunnettu siitä, että laitteisto käsittää yhden tai useamman online-kosteuspitoisuusanturin (10), joka on järjestetty mittaamaan rikasteen ja/tai seoksen kosteuspitoisuutta, jossa mainittu anturi (10) on järjestetty yhden tai useamman laitteista, joihin kuuluu suodatin (4), ensimmäinen kuljetin (5), puskurisäiliö (6a), toinen kuljetin (7), sekoitin (8) ja/tai siirtoväline (11), yhteyteen, jossa kosteuspitoisuusanturi (10) on suuren taajuuden kapasitiivinen mittausanturi, joka havaitsee mittauksen kohteena olevan rikasteen ja/tai seoksen dielektrisyyden; ja - ohjausyksikön (14), joka on järjestetty ohjaamaan ensimmäistä ohjausventtiiliä (13) jatkuvasti sekoittimeen (8) syötettävän veden määrän säätämiseksi yhdestä tai useammasta online-kosteuspitoisuusanturista (10) saatujen kosteuspitoi-suusmittaustulosten perusteella, jossa ohjausyksikkö (14) on järjestetty laskemaan kosteuspitoisuuden mitatun dielektrisyyden perusteella sen varmistamiseksi, että seoksella on ennalta määrätty kosteuspitoisuus tuorepellettien, joilla on ennalta määrätty pellettikoko ja/tai lujuus, tuottamiseksi.Apparatus for preparing ore concentrate for pelleting, comprising: - a concentrate tank (1) for feeding concentrate, - a refiner (2) for receiving concentrate from the concentrate tank and grinding the concentrate to a predetermined grain size, if necessary together with some water and possibly added additives, 3) receiving the mixture from the refiner (2) for mixing the mixture, - filter (4) receiving the mixture from the slurry mixer (3) for filtering the mixture into a dewatered mixture, - receiving a first conveyor (5) from the filter (4). for: - a buffer container (6a) for receiving the mixture from the first conveyor (5) for buffer storage of the mixture, - for the additives container (6b, c, d) for storing and feeding the additives, - for receiving the second conveyor (7) from the buffer container. for receiving a mixture and additives from a second conveyor (7) for mixing, - a first pipeline (12) for supplying water to the mixer (8), the first (12a) and the additives (6b, c, d) for transporting the mixture and additives; a control valve (13) in the first pipeline (12) for adjusting the amount of water to be fed to the mixer (8), for receiving a mixture (11) for transferring the mixture from the mixer (8) and for receiving the mixture from the transfer device (11) into fresh pellets, characterized in that the apparatus comprises one or more first conveyors (5) of an online moisture content sensor (10) arranged to measure the moisture content of the concentrate and / or mixture, wherein said sensor (10) is arranged on one or more devices (5) ), buffer tank (6a), second conveyor (7) , a mixer (8) and / or transfer means (11), in connection with the moisture content sensor (10) being a high frequency capacitive measuring sensor which detects the dielectricity of the concentrate and / or mixture being measured; and - a control unit (14) configured to drive the first control valve (13) to continuously adjust the amount of water to be fed to the mixer (8) based on the moisture content measurement results obtained from one or more online humidity sensors (10); dielectric to ensure that the blend has a predetermined moisture content to produce fresh pellets having a predetermined pellet size and / or strength. 22. Patenttivaatimuksen 21 mukainen laitteisto, tunnettu siitä, että laitteisto käsittää toisen putkilinjan (15) veden syöttämiseksi jauhimeen (2) ja toisessa putkilinjassa olevan toisen ohjausventtiilin (16) jauhimeen syötettävän veden määrän säätämiseksi; että rikastesäiliöön (1) ja/tai jauhimeen (2) on järjestetty kosteuspitoisuusanturi (10); ja että ohjausyksikkö (14) on järjestetty ohjaamaan jatkuvasti toista ohjausventtiiliä (16) jauhimeen syötettävän veden määrän säätämiseksi rikastesäiliöön ja/tai jauhimeen järjestetystä mainitusta kosteuspitoisuusanturista (10) saatujen kosteuspitoisuusmittaustulosten perusteella .Apparatus according to claim 21, characterized in that the apparatus comprises a second pipeline (15) for supplying water to the refiner (2) and a second control valve (16) in the second pipeline for controlling the amount of water to be supplied to the refiner; that a moisture content sensor (10) is provided in the concentrate tank (1) and / or the refiner (2); and that the control unit (14) is arranged to continuously control the second control valve (16) for controlling the amount of water to be fed to the refiner based on the moisture content measurement results obtained from said moisture content sensor (10) provided in the concentrate tank and / or refiner. 23. Patenttivaatimuksen 21 tai 22 mukainen laitteisto, tunnettu siitä, että ensimmäinen kuljetin (5) ja/tai toinen kuljetin (7) on hihnakuljetin, jossa on päättymätön liikkuva hihna (17), jossa on yläosa (18), jonka päällä seos on materiaalipetinä, ja alaosa (19).Apparatus according to claim 21 or 22, characterized in that the first conveyor (5) and / or the second conveyor (7) is a belt conveyor having an endless movable belt (17) having an upper portion (18) on which the mixture is a material bed. , and the lower part (19). 24. Jonkin patenttivaatimuksista 21 - 23 mukainen laitteisto, tunnettu siitä, että siirtolaite (11) on kolmas hihnakuljetin (11), joka on järjestetty sekoittimen (8) ja pelletointilaitteen (9) väliin, jossa mainitussa kolmannessa hihnakuljettimessa (11) on liikkuva hihna (17), jossa on yläosa (18), jonka päällä seos on materiaalipetinä, ja alaosa (19).Apparatus according to one of Claims 21 to 23, characterized in that the transfer device (11) is a third belt conveyor (11) disposed between a mixer (8) and a pelletizing device (9), said third belt conveyor (11) having a movable belt (11). 17) having an upper part (18) on which the mixture is a material bed and a lower part (19). 25. Patenttivaatimuksen 24 mukainen laitteisto, tunnettu siitä, että laitteisto käsittää kolmannen putkilinjan (20) veden ruiskuttamiseksi kolmannen hihnakuljettimen (11) päällä kulkevalle seospedille vedenruiskutuspisteessä ja kolmannen ohjausventtiilin (21) kolmannessa putkilinjassa veden määrän säätämiseksi; ja ennen mainittua vedenruiskutuspistettä ja/tai sen jälkeen on järjestetty kosteuspitoisuusan-turi (10); ja että ohjausyksikkö (14) ohjaa kolmatta ohjausventtiiliä (21) seospetiin syötettävän veden määrän säätämiseksi.Apparatus according to claim 24, characterized in that the apparatus comprises a third pipeline (20) for injecting water onto the alloy bed on the third belt conveyor (11) at the water injection point and a third control valve (21) for adjusting the amount of water; and a moisture content sensor (10) is provided before and / or after said water injection point; and that the control unit (14) controls a third control valve (21) to adjust the amount of water to be fed into the mixing bed. 26. Patenttivaatimuksen 24 tai 25 mukainen laitteisto, tunnettu siitä, että laitteisto käsittää neljännen putkilinjan (22) veden syöttämiseksi pelletointi-laitteeseen (9) ja neljännen ohjausventtiilin (23) neljännessä putkilinjassa pelletointilaitteeseen syötettävän veden määrän säätämiseksi; ja että ohjausyksikkö (14) on järjestetty ohjaamaan jatkuvasti neljättä ohjausventtiiliä (23) pelletointilaitteeseen (9) syötettävän veden määrän säätämiseksi kolmannen hihnakul j ettimen (11) liikkuvan hihnan (17) päällä kulkevan seospedin kosteuspitoisuutta mittaamaan järjestetystä kosteuspitoisuusanturista (10) saatujen kosteuspitoi-suusmittaustulosten perusteella.Apparatus according to claim 24 or 25, characterized in that the apparatus comprises a fourth pipeline (22) for supplying water to the pelletizing device (9) and a fourth control valve (23) for controlling the amount of water to be fed to the pelletizing device; and that the control unit (14) is arranged to continuously control the fourth control valve (23) for adjusting the amount of water to be fed to the pelletizer (9) to measure the moisture content of the alloy bed on the moving belt . 27. Jonkin patenttivaatimuksista 23 - 26 mukainen laitteisto, tunnettu siitä, että kosteuspitoi- suusanturi (10) on järjestetty suoraan jatkuvaan kosketukseen liikkuvan hihnan (17) yläosan päällä (18) kulkevan materiaalipedin yläpinnan kanssa.Apparatus according to one of Claims 23 to 26, characterized in that the moisture content sensor (10) is arranged in direct contact with the upper surface of the material bed running over the upper part (18) of the moving belt (17). 28. Jonkin patenttivaatimuksista 23 - 27 mukainen laitteisto, tunnettu siitä, että kosteuspitoi-suusanturi (10) on sijoitettu liikkuvan hihnan (17) alapuolelle ja että anturi (10) on järjestetty suoraan jatkuvaan kosketukseen liikkuvan hihnan (17) alaosan (19) kanssa.Apparatus according to one of Claims 23 to 27, characterized in that the moisture content sensor (10) is disposed below the movable belt (17) and that the sensor (10) is arranged in direct continuous contact with the lower part (19) of the movable belt (17). 29. Jonkin patenttivaatimuksista 21 - 28 mukainen laitteisto, tunnettu siitä, että ohjausyksikkö (14) on järjestetty laskemaan jauhimeen (2) ja/tai se-koittimeen (8) ja/tai kolmannen kuljettimen (11) päällä olevaan seosmateriaalipetiin ja/tai pelletointi-laitteeseen (9) syötettävän veden määrän mitatun kosteuspitoisuuden ja kohdearvon välisen erotuksen perusteella, jossa mainitun kohdearvon tiedetään tuottavan tuorepelleteille optimaalinen koko tai lujuus.Apparatus according to one of Claims 21 to 28, characterized in that the control unit (14) is arranged to lower the refiner (2) and / or mixer (8) and / or the mixing material bed and / or pelletizing unit on the third conveyor (11). based on the difference between the measured moisture content and the target value of the amount of water to be fed to the device (9), said target value being known to provide optimum size or strength for fresh pellets. 30. Jonkin patenttivaatimuksista 21 - 29 mukainen laitteisto, tunnettu siitä, että ohjausyksikkö (14) on järjestetty säätämään suodattimen (4) suoda-tustehoa suodatuskakun kosteuspitoisuuden kontrolloimiseksi mainitun yhden tai useamman kosteuspitoisuus-anturin (10) mittaaman kosteuspitoisuusarvon perusteella .Apparatus according to one of claims 21 to 29, characterized in that the control unit (14) is arranged to adjust the filtering power of the filter (4) to control the moisture content of the filter cake based on the moisture content measured by said one or more moisture content sensors (10). 31. Patenttivaatimuksen 28 - 30 mukainen laitteisto, tunnettu siitä, että laitteisto käsittää - kiinnitysrungon (24), joka on järjestetty liikkuvan hihnan (17) alapuolelle, johon runkoon on kiinnitetty kosteuspitoisuusanturi (10), ja - säätövälineen (25) anturin (10) korkeusaseman säätämiseksi suhteessa liikkuvaan hihnaan (17) ja anturin (10) painamiseksi liikkuvan hihnan alaosaa (19) vasten liikkuvan hihan yläosan (18) päällä kulkevan seoksen kosteuspitoisuuden mittaamiseksi kosketuk-settomasti.Apparatus according to one of claims 28 to 30, characterized in that the apparatus comprises: - a mounting frame (24) arranged below the movable belt (17) to which the moisture content sensor (10) is attached, and - a sensor (10) for adjusting means (25). for adjusting the height relative to the movable belt (17) and for pressing the sensor (10) against the lower part (19) of the movable belt to measure the moisture content of the mixture passing over the upper part (18) of the movable belt. 32. Jonkin patenttivaatimuksista 21 - 31 mukainen laitteisto, tunnettu siitä, että laitteisto käsittää mekaanisen pinnankorkeuden säätölaitteen (26) , kuten suksen, kaapimen, auran tai vastaavan, joka on järjestetty jollekin korkeudelle liikkuvan hihnan (17) yläpuolelle ja ennen kosteuspitoisuusanturia (10) vähintään materiaalipedin osan, joka ohittaa kosteuspi-toisuusanturin (10), paksuuden (s) säätämiseksi.Apparatus according to any one of claims 21 to 31, characterized in that the apparatus comprises a mechanical level control device (26), such as a ski, scraper, plow or the like, arranged at a height above the moving belt (17) and for adjusting the thickness (s) of the portion of the material bed which bypasses the moisture content sensor (10). 33. Patenttivaatimuksen 32 mukainen laitteisto, tunnettu siitä, että mekaaniseen pinnankorkeuden säätölaitteeseen (26) on kytketty kosteuspitoisuusan-turi (10), joka on järjestetty suoraan kosketukseen liikkuvan hihnan (17) päällä kulkevan seospedin yläpinnan kanssa.Apparatus according to Claim 32, characterized in that a moisture level sensor (10) is connected to the mechanical level adjusting device (26), which is arranged in direct contact with the upper surface of the alloy bed running on the movable belt (17).
FI20136277A 2013-12-17 2013-12-17 Process and equipment for preparing concentrates of ore for pelleting FI126553B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FI20136277A FI126553B (en) 2013-12-17 2013-12-17 Process and equipment for preparing concentrates of ore for pelleting
CN201480073271.8A CN105917010A (en) 2013-12-17 2014-12-16 Method and equipment for preparing ore concentrate for pelletizing
PCT/FI2014/051013 WO2015092137A1 (en) 2013-12-17 2014-12-16 Method and equipment for preparing ore concentrate for pelletizing
ZA2016/04264A ZA201604264B (en) 2013-12-17 2016-06-23 Method and equipment for preparing ore concentrate for pelletizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20136277A FI126553B (en) 2013-12-17 2013-12-17 Process and equipment for preparing concentrates of ore for pelleting

Publications (1)

Publication Number Publication Date
FI126553B true FI126553B (en) 2017-02-15

Family

ID=52339155

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20136277A FI126553B (en) 2013-12-17 2013-12-17 Process and equipment for preparing concentrates of ore for pelleting

Country Status (4)

Country Link
CN (1) CN105917010A (en)
FI (1) FI126553B (en)
WO (1) WO2015092137A1 (en)
ZA (1) ZA201604264B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113136487A (en) * 2021-04-07 2021-07-20 内蒙古金辉稀矿股份有限公司 Preparation process of bentonite additive based on pellet production
CN113549757A (en) * 2020-04-24 2021-10-26 中冶长天国际工程有限责任公司 Balling rate adjusting method and device of disc pelletizer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918605A (en) * 2015-12-28 2017-07-04 航天信息股份有限公司 A kind of conveying grain into storehouse system
EP3877742B1 (en) 2018-11-06 2023-01-04 Metso Outotec Finland Oy Method and apparatus for continuously ensuring sufficient quality of green pellets
CN109988909B (en) * 2019-04-28 2020-12-04 中冶长天国际工程有限责任公司 Material adjusting method and device for pelletizer
CN109988906B (en) * 2019-04-28 2021-03-30 湖南长天自控工程有限公司 Water adding amount adjusting method and device for pelletizer
CN109988904B (en) * 2019-04-28 2021-03-30 湖南长天自控工程有限公司 Water adding amount adjusting method and device for pelletizer
CN109988910B (en) * 2019-04-28 2020-12-04 湖南长天自控工程有限公司 Water adding amount adjusting method and device for pelletizer
CN113564355A (en) * 2021-09-02 2021-10-29 宝武集团环境资源科技有限公司 Rotary hearth furnace production system capable of controlling water content
CN115323168B (en) * 2022-08-02 2023-07-18 重庆赛迪热工环保工程技术有限公司 Granulating control device and granulating control method applied to rotary hearth furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3148971A (en) * 1961-02-14 1964-09-15 Koppers Co Inc Method and apparatus for measuring and controlling moisture in a sinter mix
US3864118A (en) * 1973-02-07 1975-02-04 Bethlehem Steel Corp Method for producing manganese oxide pellets
GB1550625A (en) * 1975-07-29 1979-08-15 British Steel Corp Balling process
SU800219A1 (en) * 1978-05-30 1981-01-30 Научно-Производственное Объеди-Нение "Тулачермет" Method of agglomeration charge pelletizing control
WO2010073718A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Sintering material granulation method using x-ray ct
CN201429789Y (en) * 2009-06-24 2010-03-24 北京宇宏泰测控技术有限公司 Infrared moisture measuring and control system for mixtures
JP2011111662A (en) * 2009-11-30 2011-06-09 Jfe Steel Corp Method for producing molded raw material for producing reduced iron
CN202011894U (en) * 2010-08-25 2011-10-19 邯郸市进步自控工程有限公司 Device for detecting moisture content of loose materials on line
FI9406U1 (en) 2011-06-15 2011-10-11 Outotec Oyj Apparatus for making ore concentrate for pelleting
CN102914499B (en) * 2012-11-02 2015-03-18 中冶长天国际工程有限责任公司 Method and device for detecting moisture in mixed material during sintering process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549757A (en) * 2020-04-24 2021-10-26 中冶长天国际工程有限责任公司 Balling rate adjusting method and device of disc pelletizer
CN113136487A (en) * 2021-04-07 2021-07-20 内蒙古金辉稀矿股份有限公司 Preparation process of bentonite additive based on pellet production

Also Published As

Publication number Publication date
WO2015092137A1 (en) 2015-06-25
ZA201604264B (en) 2017-08-30
CN105917010A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
FI126553B (en) Process and equipment for preparing concentrates of ore for pelleting
JP2011525854A (en) Method and equipment for controlling the grinding process
US20100326065A1 (en) Hydraulic power transmission system for a mineral material processing plant, a method for controlling the same, a screening machine and a crushing machine
CN209997568U (en) stirring device containing fine aggregate moisture content automatic monitoring
US5110056A (en) Method and apparatus for reducing brittle material for subsequent grinding
CN106423528A (en) Material layer thickness control system and method used in vertical roller mill
AU2014304564A1 (en) A method of compaction of a powder and a roller compaction device
US7182204B2 (en) Treatment method and device, in particular for excavation material
RU2312013C1 (en) Processing line for pressed building material production
GB2102270A (en) Straw briquetting press
WO2010113119A1 (en) Method for controlling the material feed to a roller mill and such similar mills
US5102586A (en) Agglomerating process of sinter mix and apparatus therefor
JPH0137972B2 (en)
EP1306199A2 (en) Method and plant for producing pellets
CN101036032B (en) Charging device for a strip sintering machine
FI70249C (en) FOERFARANDE OCH ANORDNING VID SUGSINTRING
US3293003A (en) Controlling water and carbon black feed responsive to weight of feed to pelletizer
US3497803A (en) Temperature compensated moisture meter having bridge zero varying potentiometer and ganged rheostats
CN1081628A (en) Utilize rod mill to obtain the method for uniform paste fluid product
JP4813420B2 (en) Fly ash granulation system
US3344921A (en) Method and apparatus for measurement and control of moisture
KR101178362B1 (en) Process and plant for the production of fine green agglomerates
GB2046455A (en) Method and plant for automatically forming batches of raw rubber
FR2678646A1 (en) PROCESS FOR THE PREPARATION OF A DRY AGGREGATE FOR THE PRODUCTION OF ELECTRODES.
JPH11262650A (en) Automatic granulating apparatus for powder

Legal Events

Date Code Title Description
PC Transfer of assignment of patent

Owner name: OUTOTEC (FINLAND) OY

FG Patent granted

Ref document number: 126553

Country of ref document: FI

Kind code of ref document: B