FI124739B - Autoclave, procedure for emptying an autoclave and use of a connecting line - Google Patents

Autoclave, procedure for emptying an autoclave and use of a connecting line Download PDF

Info

Publication number
FI124739B
FI124739B FI20136302A FI20136302A FI124739B FI 124739 B FI124739 B FI 124739B FI 20136302 A FI20136302 A FI 20136302A FI 20136302 A FI20136302 A FI 20136302A FI 124739 B FI124739 B FI 124739B
Authority
FI
Finland
Prior art keywords
pressure vessel
line
autoclave
connecting line
drain
Prior art date
Application number
FI20136302A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20136302A (en
Inventor
John O'callaghan
Timo Haakana
Original Assignee
Outotec Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outotec Finland Oy filed Critical Outotec Finland Oy
Priority to FI20136302A priority Critical patent/FI124739B/en
Priority to PCT/FI2014/051024 priority patent/WO2015092147A1/en
Application granted granted Critical
Publication of FI20136302A publication Critical patent/FI20136302A/en
Publication of FI124739B publication Critical patent/FI124739B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

An autoclave, a method for draining an autoclave and use of aAn autoclave, a method for draining an autoclave and use of a

CONNECTION LINE FIELD OF THE INVENTIONCONNECTION LINE FIELD OF THE INVENTION

The present invention relates to an autoclave, and more particularly to an autoclave according to the preamble of claim 1.The present invention relates to an autoclave, and more particularly to an autoclave according to the preamble of claim 1.

The present invention relates also to a method for draining an autoclave, and more particularly to a method according to the preamble of claim 7.The present invention is also limited to a method for draining an autoclave, and more particularly to a method according to the preamble of claim 7.

The present invention relates also to a use of a connection line, and more particularly to a use according to claim 9.The present invention is also concerned with the use of a connection line, and more particularly with the use of a claim 9.

BACKGROUND OF THE INVENTIONBACKGROUND OF THE INVENTION

The invention relates to an autoclave for pressure leaching or oxidation of sulphide ores and concentrates. According to the invention the autoclave has combined water injection line and drain line. From now on in this application the water injection line for adding water or other liquid to the autoclave is referred as a supply line and a drainage line for draining slurry from the autoclave is referred a drain line.The invention relates to an autoclave for pressure leaching or oxidation of sulphide ores and concentrates. According to the invention, the autoclave has a combined water injection line and drain line. From now on in this application the water injection line for adding water or other liquid to the autoclave is referred to as a supply line and a drainage line for draining slurry from the autoclave is referred to as a drain line.

In a pressure leaching process a chemical dissolution of soluble minerals within a solid ore or concentrate is carried out at high temperatures and elevated pressures such that a solution containing metals is recovered. The pressure leaching process is carried out in autoclaves. The slurry of ore is heated and fed into the autoclave, where high-pressure steam, water or other liquid, chemicals and oxygen are applied to oxidize or leach of slurry ore by a chemical reaction. Invariably when leaching valuable metals leached iron, aluminum or other species will precipitate within the autoclave. Whenever there are large amounts of precipitation occurring there are invariably large amounts of scale also formed. Scale is almost always formed in the process and the requirement to remove scale mostly determines the length of time the autoclave is online. Another factor that affects the operational time online is internal maintenance within the autoclave. Autoclaves will need to be shut down and be descaled and/or repaired and can be multiple times a year depending on scale formation rate and autoclave design.In a pressure leaching process, the chemical dissolution of soluble minerals within a solid ore or Concentrate is carried out at high temperatures and elevated pressures such that the solution containing metals is recovered. The pressure leaching process is carried out in autoclaves. The slurry in the air is heated and fed into the autoclave, where high-pressure steam, water or other liquid, chemicals and oxygen are applied to oxidize or leach the slurry in the air by a chemical reaction. Invariably when leaching valuable metals leached iron, aluminum or other species will precipitate within the autoclave. Whenever there are large amounts of Precipitation occurring there are invariably large amounts of scale also formed. Scale is almost always formed in the process and requirement to remove scale Mostly determines the length of time the autoclave is online. Another factor that affects operational time online is internal maintenance within the autoclave. Autoclaves will need to be shut down and be descaled and / or repaired and can be multiple times a year depending on scale formation rate and autoclave design.

It is commonly known that most autoclaves include drain nozzles installed into the bottom of the autoclave to allow for solution drainage and to allow scale removal. There are many problems with the use of drain nozzles.It is commonly known that most autoclaves include drain nozzles installed into the bottom of the autoclave to allow for solution drainage and to allow scale removal. There are many problems with the use of drain nozzles.

One is that the removal of the bottom drain nozzle flange cover is a major hazard. Manual unbolting of the cover by personnel is hazardous because it is often not known to what extent drainage has occurred in the autoclave and how much solution or slurry is above the nozzle. Another problem is that the drain nozzles become blocked with scale and slurry and become inoperable without physical intervention, i.e. the drain nozzle does not actually drain. A typical autoclave comprises a cylindrical chamber divided into different compartments, an inlet and an outlet for the media to enter and to exit the autoclave and a waste piping connected to the lower part of the cylindrical chamber of the autoclave. Scale is removed from the autoclave through a nozzle to which the drain line is connected, i.e. a cluster nozzle, or through an agitator nozzle. First the autoclave is drained and then the scale is removed either manually lifted out through the agitator nozzle in the upper part of the autoclave or if a bottom cluster nozzle is installed the scale can be removed through the bottom nozzle but since the scale is formed inside the autoclave also on top of the nozzle it is difficult to open and then remove the scale. US 5535992A discloses an autoclave configuration for pressure leaching lateritic ores at elevated temperatures. The autoclave configuration includes at least one primary autoclave. The primary autoclave includes a slurry inlet port for receiving slurries of lateritic ore from a lateritic slurry supply, an acid inlet port for receiving leaching acids, an agitation means for agitating the slurries of lateritic ore, and an outlet port for removing partially leached slurries of lateritic ore. A multi-compartment autoclave follows the primary autoclave. The multi-compartment autoclave is divided into at least two chambers connected in series. The chambers contain a means for agitating the partially leached slurries and divider walls for separating the chambers. An inlet port is connected to the first of the chambers for receipt of the partially leached slurries. An outlet port is connected to the last of the series of chambers for removal of the finally leached slurries. A bypass conduit is connected to the lateritic slurry supply and the multi-compartment autoclave. The bypass conduit is for periodically isolating the primary autoclave for removal of scale while leaching lateritic ore in the multi-compartment autoclave.One is that removal of the bottom drain nozzle flange cover is a major hazard. Manual unbolting of cover by personnel is hazardous because it is often not known to what extent drainage has occurred in autoclave and how much solution or slurry is above the nozzle. Another problem is that the drain nozzles become blocked with scale and slurry and become inoperable without physical intervention, i.e. the drain nozzle does not actually drain. A typical autoclave comprises a cylindrical chamber divided into different compartments, an inlet and an outlet for the media to enter and exit the autoclave and a waste piping connected to the lower part of the cylindrical chamber of the autoclave. Scale is removed from the autoclave through a nozzle to which the drain line is connected, i.e. a cluster nozzle, or through an agitator nozzle. First the autoclave is drained and then the scale is removed either manually lifted out through the agitator nozzle in the upper part of the autoclave or if the bottom cluster is installed the scale can be removed through the bottom nozzle but since the scale is formed inside the autoclave also on top of the nozzle it is difficult to open and then remove the scale. US 5535992A discloses an autoclave configuration for pressure leaching lateral ores at elevated temperatures. The autoclave configuration includes at least one primary autoclave. The primary autoclave includes a slurry inlet port for receiving slurries of lateritic air, an acid inlet port for receiving leaching acids, an agitation means for agitating the slurries of lateritic air, and an outlet port for removing partially leached slurries of lateritic in the air. A multi-compartment autoclave follows the primary autoclave. The multi-compartment autoclave is divided into at least two Chambers connected in series. The Chambers contain means for agitating the partially leached slurries and divider walls for separating the Chambers. An Inlet port is connected to the first of the Chambers for a receipt of partially leached slurries. An outlet port is connected to the last of a series of chambers for removal of the finally leached slurries. A bypass conduit is connected to the lateritic slurry supply and the multi-compartment autoclave. The bypass conduit is for periodically isolating the primary autoclave for removal of scale while leaching lateritic air in the multi-compartment autoclave.

The autoclave has to be drained for cleaning and maintenance purposes and a problem with a typical autoclave is that there is a drain nozzle on the bottom of the autoclave which with time will be blocked with scale and unblocking the drain nozzle with undrained acidic slurry sitting above it is hazardous and time-consuming because of the blockage above the drain nozzle. One of the problems associated with the arrangement disclosed in US 5535992A is that it needs a separate bypass conduit which itself is an extra investment and in addition requires space in the process.The autoclave has to be drained for cleaning and maintenance purposes and the problem with a typical autoclave is that there is a drain nozzle on the bottom of the autoclave which with time will be blocked with scale and unblocking the drain nozzle with undrained acidic slurry sitting above it is hazardous and time-consuming because of the blockage above the drain nozzle. One of the problems associated with the arrangement disclosed in US 5535992A is that it needs a separate bypass conduit which itself is an extra investment and requires additional space in the process.

BRIEF DESCRIPTION OF THE INVENTIONBRIEF DESCRIPTION OF THE INVENTION

An object of the present invention is thus to provide an autoclave and a method for draining the autoclave so as to alleviate the above disadvantages. The objects of the invention are achieved by an autoclave and a method which are characterized by what is stated in the independent claims. The object of the invention is also achieved by a use of a connection line as stated in the independent claim. The preferred embodiments of the invention are disclosed in the dependent claims.An object of the present invention is thus to provide an autoclave and a method for draining the autoclave so as to alleviate the above disadvantages. The objects of the invention are achieved by an autoclave and a method which is characterized by what is stated in the independent claims. The object of the invention is also achieved by the use of a connection line as stated in the independent claim. The preferred embodiments of the invention are disclosed in the dependent claims.

The invention is based on the idea of having a combined line for adding water to the autoclave and draining the autoclave. The invention is further based on the idea of having a supply line for adding water to the autoclave which is always online or regularly used and connecting it to the drain nozzle so that the drain nozzle remains without scale sitting above and that autoclave can be drained once shutdown. With this invention there is no uncertainty about how much potentially acidic liquid remains in the autoclave above the drain nozzle and the drain nozzle is not blocked and it can be used without intervention or clearing a blocked nozzle.The invention is based on the idea of having a combined line for adding water to the autoclave and draining the autoclave. The invention is further based on the idea of having a supply line for adding water to the autoclave which is always online or regularly used and connecting it to the drain nozzle so that the drain nozzle remains without scale sitting above and that autoclave can be drained once shutdown. With this invention there is no uncertainty about how much potentially acidic liquid remains in the autoclave above the drain nozzle and the drain nozzle is not blocked and can be used without intervention or clearing a blocked nozzle.

This invention provides for improved drainage that helps minimize the risk associated with autoclave drainage by providing positive drainage of solution and slurry above the nozzle that will be removed during autoclave cleaning and maintenance. The drain nozzle will remain unobstructed because of the quench water being online during operation of the autoclave and that way keeping the water pipeline always clear and when the autoclave is shutdown there will be a complete drainage of the autoclave.This invention provides an improved drainage that helps reduce the risk associated with autoclave drainage by providing a positive drainage solution and slurry above the nozzle that will be removed during autoclave cleaning and maintenance. The drain nozzle will remain unobstructed because of the quench water being online during the operation of the autoclave and that way keeping the water pipeline always clear and when the autoclave is shutdown there will be a complete drainage of the autoclave.

The invention is based on the idea of having a common line for adding liquid to the autoclave and for draining the autoclave. The leaching of sulphide ores and concentrates require that quench water is added. The quench water is added through a supply line for adding liquid. By supplying cooling liquid to the autoclave an aperture comprising a drain nozzle in the bottom part of the autoclave remains open and without scale blocking it so that when the autoclave is drained the drainage occurs effectively and without any blockages. In other words a fluid communication between the autoclave and the connection line is arranged in the bottom part of the autoclave and liquid from the supply line through the connection line keeps the fluid communication open such that the fluid communication between the autoclave and the connection line is formed so that the drainage from the autoclave through the connection line and further through the drain line can be arranged effectively. The fluid communication between the autoclave and the connection line is formed through an aperture in the bottom part of the autoclave. The aperture preferably comprises a drain nozzle. So the autoclave further comprises a drain nozzle for draining the autoclave and said drain nozzle is arranged in the bottom part of the autoclave and said connection line is connected to the autoclave via the drain nozzle. The drain nozzle is preferably bidirectional so that liquid can flow through the drain nozzle from the connection line into the autoclave or that the autoclave can be drained through the drain nozzle into the connection line.The invention is based on the idea of having a common line for adding liquid to the autoclave and for draining the autoclave. The leaching of sulphide ores and concentrates require that quench water is added. The quench water is added through a supply line for adding liquid. By supplying the cooling liquid to the autoclave an Aperture comprising a drain nozzle in the bottom part of the autoclave remains open and without scale blocking it so that when the autoclave is drained the drainage occurs effectively and without any blockages. In other words, fluid communication between the autoclave and the connection line is arranged in the bottom part of the autoclave and liquid from the supply line through the connection line keeps the fluid communication open such that the fluid communication between the autoclave and the connection line is formed so that the drainage from the autoclave through the connection line and further through the drain line can be arranged effectively. The fluid communication between the autoclave and the connection line is formed through an Aperture in the bottom part of the autoclave. The Aperture preferably consists of a drain nozzle. So the autoclave further comprises a drain nozzle for draining the autoclave and said drain nozzle is arranged in the bottom part of the autoclave and said connection line is connected to the autoclave via the drain nozzle. The drain nozzle is preferably bidirectional so that the liquid can flow through the drain line from the connection line into the autoclave or that the autoclave can be drained through the drain nozzle into the connection line.

According to the invention the autoclave for leaching and oxidising ores comprises an inlet for receiving slurries of ore into the autoclave, agitation means for agitating slurries of ore in the autoclave and an outlet for removing at least partially leached slurries of ore from the autoclave. The autoclave further comprises a supply line in a fluid communication with the autoclave for adding liquid into the autoclave, a drain line in a fluid communication with the autoclave for draining the autoclave, and a connection line connected to the autoclave and being in a fluid communication with the autoclave. The connection line is in a fluid communication also with the supply line and with the drain line such that the supply line and the drain line are connected to the autoclave through the same connection line. The autoclave further comprises at least one valve such that the flow direction in the connection line is changeable either from the supply line via the connection line to the autoclave or from the autoclave via the connection line to the drain line. In this application the term fluid communication means that there is a connection for a fluid flow to go from one location to another.According to the invention, the autoclave for leaching and oxidizing ores comprises an inlet for receiving slurries from ore into the autoclave, agitation means for agitating slurries from ore in the autoclave, and an outlet for removing at least partially leached slurries from ore from the autoclave. The autoclave further comprises a supply line in the fluid communication with the autoclave for adding liquid to the autoclave, the drain line in the fluid communication with the autoclave for draining the autoclave, and the connection line connected to the autoclave and being in fluid communication. with the autoclave. The connection line is in fluid communication also with the supply line and with the drain line such that the supply line and the drain line are connected to the autoclave through the same connection line. The autoclave further comprises at least one valve such that the flow direction in the connection line is changeable either from the supply line via the connection line to the autoclave or from the autoclave via the connection line to the drain line. In this application, the term fluid communication means that there is a connection for a fluid flow to go from one location to another.

The autoclave comprises a supply line for adding liquid into the autoclave and a drain line for draining slurry from the autoclave and a connection line connected to the autoclave and being in a fluid communication with the autoclave. The supply line and the drain line have a fluid communication with the connection line and with the autoclave through said connection line, the supply line and the drain line have a valve for closing and opening said line.The autoclave comprises a supply line for adding liquid into the autoclave and a drain line for draining slurry from the autoclave and the connection line connected to the autoclave and being in fluid communication with the autoclave. The supply line and drain line have fluid communication with the connection line and with the autoclave through said connection line, the supply line and the drain line have a valve for closing and opening said line.

According to the method of the invention for draining an autoclave, the autoclave has sulphide ores and liquid or other fluidic substance inside the autoclave and the autoclave comprises a supply line for adding liquid into the autoclave for quenching. The autoclave further comprises a drain line for draining slurry from the autoclave and a connection line connected to the autoclave and being in a fluid communication with the autoclave. The supply line and the drain line have a fluid communication with the connection line and with the autoclave through said connection line, the supply line and the drain line have a valve for closing and opening said line. The method comprises the steps of closing the valve in the supply line for closing the fluid communication between the supply line and the connection line, opening the valve in the drain line for opening the fluid communication between the drain line and the connection line, and draining slurry or liquid or other fluidic substance from the autoclave through the connection line and through the drain line out of the autoclave. In a preferred embodiment of the invention the method further comprises a step of changing a flow direction in the connection line with a bidirectional valve in a drain nozzle arranged in the autoclave.According to the method of the invention for draining an autoclave, the autoclave has sulphide ores and liquid or other fluid substance inside the autoclave and the autoclave comprises a supply line for adding liquid into the autoclave for quenching. The autoclave further comprises a drain line for draining slurry from the autoclave and the connection line connected to the autoclave and being in fluid communication with the autoclave. The supply line and drain line have fluid communication with the connection line and with the autoclave through said connection line, the supply line and the drain line have a valve for closing and opening said line. The method comprises the steps of closing the valve in the supply line for closing the fluid communication between the supply line and the connection line, opening the valve in the drain line for opening the fluid communication between the drain line and the connection line, and draining slurry or liquid or other fluid substance from the autoclave through the connection line and through the drain line out of the autoclave. In a preferred embodiment of the invention, the method further comprises a step of changing the flow direction in the connection line with a bidirectional valve in a drain nozzle arranged in the autoclave.

So according to the method of the invention an autoclave having slurry or liquid or other fluidic substance inside the autoclave is drained in the following manner: closing the valve in the supply line for closing the fluid communication between the supply line and the connection line, opening the valve in the drain line for opening the fluid communication between the drain line and the connection line, changing the flow direction in the connection line with a bidirectional valve, and draining slurry or liquid or other fluidic substance from the autoclave through the connection line and through the drain line out of the autoclave.So according to the method of the invention an autoclave having slurry or liquid or other fluid substance inside the autoclave is drained in the following continent: closing the valve in the supply line for closing the fluid communication between the supply line and the connection line, opening the valve in the drain line for opening the fluid communication between the drain line and the connection line, changing the flow direction in the connection line with a bidirectional valve, and draining slurry or liquid or other fluid substance from the autoclave through the connection line and through the drain line out of the autoclave.

According to the use of the invention the connection line in an autoclave is used for adding liquid into the autoclave and for draining slurry or liquid or other fluidic substance out from the autoclave.According to the use of the invention, the connection line in an autoclave is used for adding liquid into the autoclave and for draining slurry or liquid or other fluid substance out of the autoclave.

An advantage of this invention is that separate nozzles are not required for the liquid supply and for the drainage of slurry so the number of nozzles in the autoclave can be minimized which reduces costs of the autoclave considerably. Another advantage of the invention is that the risks with maintenance are minimized when considering opening the drain nozzle because the slurry sitting above the drain nozzle is minimized when the fluid communication keeps the area clear from scale. Another advantage of the invention is that the operation time will be longer since the requirement for removing scale is smaller.An advantage of this invention is that the separate nozzles are not required for the liquid supply and for the drainage of the slurry so the number of nozzles in the autoclave can be minimized which burdens the autoclave significantly. Another advantage of the invention is that the risks with maintenance are minimized when considering opening the drain nozzle because the slurry sitting above the drain nozzle is minimized when fluid communication keeps the area clear from the scale. Another advantage of the invention is that the operation time will be longer since the requirement for removing scale is smaller.

BRIEF DESCRIPTION OF THE DRAWINGSBRIEF DESCRIPTION OF THE DRAWINGS

In the following the invention will be described in greater detail by means of preferred embodiments with reference to the attached drawing, in whichThe invention will be described in greater detail by means of preferred embodiments with reference to the attached drawing, in which

Figure 1 shows an autoclave according to the invention.Figure 1 shows an autoclave according to the invention.

DETAILED DESCRIPTION OF THE INVENTIONDETAILED DESCRIPTION OF THE INVENTION

Figure 1 shows an autoclave 1 for leaching sulphides and concentrates and ores, said autoclave 1 comprising an inlet 2 for receiving slurries of ore into the autoclave 1, agitation means 3 for agitating the slurries of ore in the autoclave 1 and an outlet 4 for removing the at least partially leached slurries of ore from the autoclave 1. The autoclave 1 further comprises a supply line 5 in a fluid communication with the autoclave 1 for adding liquid into the autoclave 1. The autoclave 1 further comprises a drain line 6 in a fluid communication with the autoclave 1 for draining the autoclave 1, and a connection line 7 connected to the autoclave 1 and being in a fluid communication with the autoclave 1, the connection line 7 being in a fluid communication also with the supply line 5 and with the drain line 6 such that the supply line 5 and the drain line 6 are connected with the autoclave through the connection line 7.Figure 1 shows an autoclave 1 for leaching sulphides and concentrates and ores, said autoclave 1 comprising an inlet 2 for receiving slurries from the air into the autoclave 1, agitation means 3 for agitating the slurries from the air into the autoclave 1 and an outlet 4 for removing the at least partially leached slurries of air from the autoclave 1. The autoclave 1 further comprises a supply line 5 in a fluid communication with the autoclave 1 for adding liquid to the autoclave 1. The autoclave 1 further comprises a drain line 6 in a fluid communication with the autoclave 1 for draining the autoclave 1 and the connection line 7 connected to the autoclave 1 and being in the fluid communication with the autoclave 1, the connection line 7 being in the fluid communication also with the supply line 5 and with the drain line 6 such that supply line 5 and drain line 6 are connected to the autoclave through connection line 7.

The autoclave 1 further comprises at least one valve 8, 9 such that a flow direction in the connection line 7 is changeable either from the supply line 5 via the connection line 7 to the autoclave 1 or from the autoclave 1 via the connection line 7 to the drain line 6.The autoclave 1 further comprises at least one valve 8, 9 such that the flow direction in the connection line 7 is changeable either from the supply line 5 to the autoclave 1 or from the autoclave 1 via the connection line 7 to the drain line 6.

The autoclave 1 that comprises the supply line 5 for adding liquid into the autoclave 1, the drain line 6 for draining slurry from the autoclave 1 and the connection line 7 connected to the autoclave 1 and being in a fluid communication with the autoclave 1, said supply line 5 and said drain line 6 having a fluid communication with the autoclave 1 through the connection line 7, is used for leaching ores and a part of the process for leaching ores is that liquid, which is typically water, is added during the process. The liquid is added to the process such that the supply line 5 supplies liquid and the connection line 7 further leads the liquid coming from the supply line 5 into the autoclave 1. From time to time the autoclave 1 has to be drained in which the method for draining the autoclave 1 is used. The method comprises the steps of closing the valve 8 in the supply line 5 for closing the fluid communication between the supply line 5 and the connection line 7, opening the valve 9 in the drain line 6 for opening the fluid communication between the drain line 6 and the connection line 7, changing the flow direction in the connection line 7 with a bidirectional valve 10, and draining slurry or liquid or other fluidic substance from the autoclave 1 through the connection line 7 and through the drain line 6 out of the autoclave 1.The autoclave 1 that comprises the supply line 5 for adding liquid into the autoclave 1, the drain line 6 for draining slurry from the autoclave 1 and the connection line 7 connected to the autoclave 1 and being in a fluid communication with the autoclave 1, said supply line 5 and said drain line 6 having fluid communication with the autoclave 1 through the connection line 7, is used for leaching ores and is a part of the process for leaching ores, which is typically water, is added during the process . The liquid is added to the process such that the supply line 5 supplies the liquid and the connection line 7 further leads the liquid coming from the supply line 5 into the autoclave 1. From time to time the autoclave 1 has to be drained in which method for draining the autoclave 1 is used. The method comprises the steps of closing the valve 8 in the supply line 5 for closing the fluid communication between the supply line 5 and the connection line 7, opening the valve 9 in the drain line 6 for opening the fluid communication between the drain line 6 and connection line 7, changing flow direction in connection line 7 with a bidirectional valve 10, and draining slurry or liquid or other fluid substance from the autoclave 1 through the connection line 7 and through the drain line 6 out of the autoclave 1 .

In a preferred embodiment of the invention the autoclave 1 comprises an aperture forming fluid communication between the autoclave 1 and the connection line 7 and the aperture is arranged in the bottom part of the autoclave 1. The material of the connection line 7 is preferably alloy steel or some other corrosion resistant material.In a preferred embodiment of the invention, the autoclave 1 comprises an Aperture forming fluid communication between the autoclave 1 and the Aperture is arranged in the bottom part of the autoclave 1. The material of the connection line 7 is preferably alloy steel. or some other corrosion resistant material.

The connection line 7 is used for adding liquid into the autoclave 1 and for draining slurry or liquid or other fluidic substance out from the autoclave 1 so it directs fluid in both directions in the connection line 7.The connection line 7 is used for adding liquid into autoclave 1 and for draining slurry or liquid or other fluid substance out of autoclave 1 so it directs fluid in both directions in connection line 7.

It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.It will be obvious to a person skilled in the art that, as technology advances, the Inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.

Claims (9)

1. Painesäiliö (1) sulfidimalmin ja rikasteen liuottamiseksi ja/tai hapettamiseksi, mainittu painesäiliö (1) käsittää sisääntuloaukon (2) malmi-lietteen vastaanottamiseksi paineastiaan (1), sekoitusvälineet (3) malmiliet-teiden sekoittamiseksi painesäiliössä (1) ja ulosmenoaukon (4) vähintään osittain liuenneen malmilietteen poistamiseksi painesäiliöstä (1), painesäiliö (1) edelleen käsittää syöttölinjan (5), joka on virtausyhteydessä painesäiliön (1) kanssa nesteen lisäämiseksi painesäiliöön (1) jäähdyttämistä varten, tunnettu siitä, että painesäiliö (1) edelleen käsittää tyhjennyslinjan (6), joka on virtausyhteydessä painesäiliön (1) kanssa painesäiliön (1) tyhjentämiseksi, ja yhdyslinjan (7), joka on yhdistetty painesäiliöön (1) ja on virtausyhteydessä painesäiliön (1) kanssa, yhdyslinja (7) on virtausyhteydessä myös syöttölinjan (5) ja tyhjennyslinjan (6) kanssa siten, että syöttölinja (5) ja tyhjennyslinja (6) on yhdistetty painesäiliöön (1) yhdyslinjan (7) kautta.A pressure vessel (1) for dissolving and / or oxidizing sulfide ore and concentrate, said pressure vessel (1) comprising an inlet (2) for receiving ore slurry in a pressure vessel (1), mixing means (3) for mixing ore slurry in the pressure vessel (1) and outlet (4). ) for removing at least partially dissolved ore slurry from the pressure vessel (1), the pressure vessel (1) further comprises a feed line (5) in fluid communication with the pressure vessel (1) for cooling the pressure vessel (1), characterized in that the pressure vessel (1) (6), which is in fluid communication with the pressure vessel (1) for emptying the pressure vessel (1), and a connecting line (7) connected to the pressure vessel (1) and in fluid communication with the pressure vessel (1), ) and the drain line (6) so that the feed line (5) and the drain line (6) are inserted into the pressure vessel (1) via the connecting line (7). 2. Patenttivaatimuksen 1 mukainen painesäiliö (1), tunnettu siitä, että virtausyhteys painesäiliön (1) ja yhdyslinjan (7) välillä on järjestetty painesäiliön (1) pohjaosaan.Pressure vessel (1) according to claim 1, characterized in that the flow connection between the pressure vessel (1) and the connecting line (7) is arranged in the bottom part of the pressure vessel (1). 3. Patenttivaatimuksen 1 tai 2 mukainen painesäiliö (1), tunnettu siitä, että painesäiliö edelleen käsittää tyhjennyssuuttimen painesäiliön (1) tyhjentämiseksi, mainittu tyhjennyssuutin on järjestetty painesäiliön (1) alaosaan ja mainittu yhdyslinja (7) on yhdistetty painesäiliöön (1) tyhjennyssuuttimen kautta.Pressure vessel (1) according to claim 1 or 2, characterized in that the pressure vessel further comprises an emptying nozzle for emptying the pressure vessel (1), said emptying nozzle being arranged at the lower part of the pressure vessel (1) and said connecting line (7) connected to the pressure vessel (1). 4. Patenttivaatimuksen 3 mukainen painesäiliö (1), tunnettu siitä, että tyhjennyssuutin on kaksisuuntainen siten, että neste voi virrata tyhjennyssuuttimen kautta yhdyslinjasta (7) painesäiliöön (1) tai että painesäiliö (1) voidaan tyhjentää tyhjennyssuuttimen kautta yhdyslinjaan (7).Pressure container (1) according to claim 3, characterized in that the drain nozzle is bidirectional so that the liquid can flow through the drain nozzle from the connecting line (7) to the pressure tank (1) or the pressure tank (1) can be drained through the drain nozzle to the connecting line (7). 5. Jonkin patenttivaatimuksen 1 - 4 mukainen painesäiliö (1), tunnettu siitä, että painesäiliö (1) edelleen käsittää vähintään yhden venttiilin (8, 9) siten, että virtaussuunta yhdyslinjassa (7) on vaihdettavissa joko syöttölinjasta (5) yhdyslinjan (7) kautta painesäiliöön (1) tai painesäiliöstä (1) yhdyslinjan (7) kautta tyhjennyslinjaan (6).Pressure vessel (1) according to one of Claims 1 to 4, characterized in that the pressure vessel (1) further comprises at least one valve (8, 9) such that the flow direction in the connecting line (7) can be changed either from the supply line (5) to the connecting line (7). through the pressure vessel (1) or from the pressure vessel (1) via the connecting line (7) to the discharge line (6). 6. Jonkin patenttivaatimuksen 1 - 5 mukainen painesäiliö (1), tunnettu siitä, että yhdyslinjan (7) materiaali on seostettua terästä tai jotain muuta korroosiota kestävää materiaalia.Pressure vessel (1) according to one of Claims 1 to 5, characterized in that the material of the connecting line (7) is made of alloy steel or some other corrosion-resistant material. 7. Menetelmä painesäiliön (1) tyhjentämiseksi, jossa painesäiliössä (1) on sisällä sulfidimalmia ja nestettä tai muuta nestemäistä ainetta, mainittu painesäiliö (1) käsittää syöttölinjan (5) nesteen lisäämiseksi painesäiliöön (1) jäähdyttämistä varten, tunnettu siitä, että painesäiliö (1) edelleen käsittää tyhjennyslinjan (6) lietteen tyhjentämiseksi painesäiliöstä (1) ja yhdyslinjan (7), joka on yhdistetty painesäiliöön (1) ja on virtausyhteydessä painesäiliön (1) kanssa, mainittu syöttölinja (5) ja mainittu tyhjennyslinja (6) ovat virtausyhteydessä yhdyslinjan (7) ja painesäiliön (1) kanssa mainitun yhdyslinjan (7) kautta, syöttölinjalla (5) ja tyhjennyslinjalla (6) on venttiili (8, 9)mainitun linjan sulkemiseksi ja avaamiseksi, menetelmä käsittää vaiheet: - suljetaan venttiili (8) syöttö linjassa (5) virtausyhteyden sulkemiseksi syöttölinjan (5) ja yhdyslinjan (7) välillä, - avataan venttiili (9) tyhjennyslinjassa (6) virtausyhteyden avaamiseksi tyhjennyslinjan (6) ja yhdyslinjan (7) välillä, ja - tyhjennetään liete tai neste tai muu nestemäinen aine paine-säiliöstä (1) yhdyslinjan (7) ja tyhjennyslinjan (6) kautta painesäiliöstä (1) ulos.A method for emptying a pressure vessel (1), wherein the pressure vessel (1) contains sulfide ore and liquid or other liquid substance, said pressure vessel (1) comprising a feed line (5) for adding liquid to the pressure vessel (1) for cooling, characterized in that ) further comprises an emptying line (6) for emptying sludge from the pressure vessel (1) and a connecting line (7) connected to the pressure vessel (1) and in fluid communication with the pressure vessel (1), said supply line (5) and said emptying line (6) 7) and with the pressure vessel (1) via said connecting line (7), the supply line (5) and the drain line (6) having a valve (8, 9) for closing and opening said line, the method comprising the steps of: closing the valve (8) 5) to close the flow connection between the feed line (5) and the connecting line (7), - open the valve (9) in the drain line (6) vi for opening a flow connection between the discharge line (6) and the connecting line (7), and - discharging the slurry or liquid or other liquid material from the pressure vessel (1) through the connecting line (7) and the discharge line (6) out of the pressure vessel (1). 8. Patenttivaatimuksen 7 mukainen menetelmä, tunnettu siitä, että menetelmä edelleen käsittää vaiheen virtaussuunnan vaihtamiseksi yhdyslinjassa (7) painesäiliöön järjestetyssä tyhjennyssuuttimessa olevalla kaksisuuntaisella venttiilillä (10)The method according to claim 7, characterized in that the method further comprises the step of reversing the flow direction in the connection line (7) by means of a two-way valve (10) in the discharge nozzle provided in the pressure vessel. 9. Yhdyslinjan (7) käyttö patenttivaatimuksen 1 mukaisessa paine-säiliössä (1) nesteen lisäämiseksi painesäiliöön (1) ja lietteen tai nesteen tai nestemäisen aineen tyhjentäminen painesäiliöstä (1) ulos.Use of a connecting line (7) in a pressure vessel (1) according to claim 1 for adding liquid to the pressure vessel (1) and evacuating the slurry or liquid or liquid substance from the pressure vessel (1).
FI20136302A 2013-12-20 2013-12-20 Autoclave, procedure for emptying an autoclave and use of a connecting line FI124739B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20136302A FI124739B (en) 2013-12-20 2013-12-20 Autoclave, procedure for emptying an autoclave and use of a connecting line
PCT/FI2014/051024 WO2015092147A1 (en) 2013-12-20 2014-12-18 An autoclave, a method for draining an autoclave and use of a connection line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20136302 2013-12-20
FI20136302A FI124739B (en) 2013-12-20 2013-12-20 Autoclave, procedure for emptying an autoclave and use of a connecting line

Publications (2)

Publication Number Publication Date
FI20136302A FI20136302A (en) 2015-01-15
FI124739B true FI124739B (en) 2015-01-15

Family

ID=52281660

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20136302A FI124739B (en) 2013-12-20 2013-12-20 Autoclave, procedure for emptying an autoclave and use of a connecting line

Country Status (2)

Country Link
FI (1) FI124739B (en)
WO (1) WO2015092147A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2143073A (en) * 1936-10-10 1939-01-10 Jay A Winans Method for treating ore
US5535992A (en) 1995-03-07 1996-07-16 Goro Nickel S.A. Apparatus and method for acidic leaching of lateritic ores
US20030040651A1 (en) * 1998-10-20 2003-02-27 Wilson Joseph H. Apparatus and method for chemically reducing waste materials
US6110255A (en) * 1998-04-17 2000-08-29 Barrick Gold Corporation Nozzle for low pressure flash tanks for ore slurry
CN201620183U (en) * 2010-02-10 2010-11-03 长沙有色冶金设计研究院 Horizontal agitated reactor oxygen pipeline

Also Published As

Publication number Publication date
WO2015092147A1 (en) 2015-06-25
FI20136302A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP6224448B2 (en) Ball valve with slurry discharge function and slurry discharge method from valve cavity
US3018170A (en) Pressure leaching apparatus
FI124739B (en) Autoclave, procedure for emptying an autoclave and use of a connecting line
CN108368611A (en) For to line or the pickling of line component and phosphatization processing equipment and for the processing method and treatment facility to line or line component coating
CN106222404B (en) The recovery system of valuable metal
CN207641071U (en) A kind of filter press return-flow system of Purification of zinc sulfate solution
JP2019214010A (en) Clogging prevention method of transfer piping system of nickel oxide ore slurry
CN206715458U (en) A kind of cumyl peroxide filter
JP7459517B2 (en) Autoclaves and methods for operating autoclaves
CN209636028U (en) A kind of sizing Mead-Bauer recovery system
WO2020113264A1 (en) Method and apparatus for mineral processing
JP6790632B2 (en) Receiver, crystallization equipment, and operation method of crystallization equipment
JP7047502B2 (en) High-pressure steam supply cutoff system and high-pressure acid leaching equipment equipped with this system
CN105803230A (en) Eluting transition tower
JP6597969B2 (en) Gas blowing device
RU2771973C1 (en) Sparger for high-pressure vessel
CN216987599U (en) Chemical reactor
CN216320531U (en) Circulating water purification treatment device for converter steel slag hot braising
CN212403636U (en) 360-degree dead-angle-free water distribution device
JP7230699B2 (en) Seal water supply device for shaft sealing of stirrer of high-temperature and high-pressure vessel
CN212187946U (en) Pulsed prevents pipe blockage device
CN215781891U (en) Backwashing device
CN213266393U (en) Atmospheric tower desalination process system
CN218669699U (en) Water diversion device for automatic water feeding of circulating water pump
CN220118413U (en) Simple and easy vacuum pump scale removal belt cleaning device

Legal Events

Date Code Title Description
PC Transfer of assignment of patent

Owner name: OUTOTEC (FINLAND) OY

FG Patent granted

Ref document number: 124739

Country of ref document: FI

Kind code of ref document: B