FI123771B - Transformer control - Google Patents

Transformer control Download PDF

Info

Publication number
FI123771B
FI123771B FI20125224A FI20125224A FI123771B FI 123771 B FI123771 B FI 123771B FI 20125224 A FI20125224 A FI 20125224A FI 20125224 A FI20125224 A FI 20125224A FI 123771 B FI123771 B FI 123771B
Authority
FI
Finland
Prior art keywords
transformer
winding
power
cells
current
Prior art date
Application number
FI20125224A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20125224A (en
Inventor
Jan Stefan Strandberg
Juhamatti Korhonen
Arto Sankala
Original Assignee
Vacon Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacon Oyj filed Critical Vacon Oyj
Priority to FI20125224A priority Critical patent/FI123771B/en
Publication of FI20125224A publication Critical patent/FI20125224A/en
Application granted granted Critical
Publication of FI123771B publication Critical patent/FI123771B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers

Description

TRANSFORMER CONTROL
FIELD OF TECHNOLOGY
5 This invention relates to power conversion equipments where a multi-winding transformer is used for galvanic isolation between primary and secondary circuits. The invention particularly relates to a method and apparatus for preventing saturation of a multi-winding transformer of a power conversion apparatus provided with power cells on the primary and secondary 10 sides.
PRIOR ART
US Patent Application 12/825,619 discloses a power converter for 15 converting electric power between e.g. a medium-voltage grid and an AC motor. The converter comprises a multi-winding transformer and low-voltage power cells connected in cascade on both the primary and secondary sides of the transformer.
20 Multi-winding transformers are substantial parts of such power converters where they are applied together with the power electronic components, e.g. for galvanic isolation between primary and secondary circuits. The term multi-winding in this context stands for a transformer with more than one primary winding, which primary windings transfer active power through the 25 transformer to the secondary windings.
Phenomena such as unmatched turn-on/turn-off times, ° semiconductor forward voltage drops, gate driving signal delays or pulsating g load, may cause differences in the positive and negative volt-seconds applied to cvj 30 the transformer. This results in a DC-voltage component at the transformer x terminals, which causes an undesired DC magnetic flux density component in
CL
the transformer iron core. A DC component in the flux means asymmetric c\j magnetization, which may lead to core saturation, high current spikes in the g winding current and even destruction of power components.
O 35
C\J
Several methods have been published for preventing the saturation of multi-winding transformers in power converters.
2 E.g. in R.Patel: ’’Detecting Impending Core Saturation in Switched-Mode Power Converters,” in Proc. of the 7th POWERCON conference, voi. B3, March 1980, is presented a method where an external air-gapped core leg is used for indicating when the un-gapped main magnetic flux path has been 5 saturated.
In G.Stumberger et al: ’’Prevention of Iron Core Saturation in Multi-Winding Transformers for DC-DC-converters”, IEEE Transactions on Magnetics, voi 46, No 2, February 2010, is presented a method where the magnetic flux of the core is measured and the measuring result used for power ίο switch control in order to prevent saturation.
In G. Ortiz et al: “’’Magnetic Ear-Based Balancing of Magnetic Flux in High Power Medium Frequency Dual Active Bridge Converter Transformer Cores”, 8th International Conference on Power Electronics - ECCE Asia May 30-June 3, 2011, is presented a method where an auxiliary core is attached to 15 the main core so that they share a part of the magnetic path. By this way the flux of the main core can be sensed via an auxiliary winding around the auxiliary core, making it possible to prevent the incipient saturation in an early phase.
The drawback of the known methods is that they need additional 20 sensors and/or magnetic core pieces with attached electronics, which increase the complexity and costs of the system.
SUMMARY OF THE INVENTION
25 The object of the present invention is to provide a novel method and apparatus to prevent the saturation of a multi-winding transformer of a power conversion apparatus, preferably without any additional magnetic core t? parts or flux sensors. The above mentioned disadvantages will be avoided and ^ a symmetric flux operation ensured, with quick recovery e.g. from external
LO
o 30 asymmetry-causing impulses. The objective is achieved by a method and cm apparatus according to the invention, characterized by what is stated in the g independent claims. Other preferred embodiments of the invention are
CL
disclosed in the dependent claims.
C\l
CM
m ™ 35 In the present invention the saturation of a multi-winding ° transformer in a power conversion apparatus is prevented by controlling the power switches of those power cells supplying active power to the transformer.
3
The magnetizing balance is ensured by adjusting to the duty cycle of all input H-bridges supplying power to the transformer.
In a preferred embodiment of the present invention, two parallel controllers are used, working at different time levels.
5 The task of the first controller, working at faster time level, is to maintain the magnetizing balance in the iron core. The feedback information from the core magnetization state for this anti-saturation controller can be arranged in several ways: - e.g. by integrating the voltage of one winding, preferably the 10 voltage of an additional winding as shown in FIG. 4B.
- measuring the sum current of all windings using a common transformer or separate winding-specific transformers - naturally also a flux sensor can be used
The controller output affects simultaneously the duty cycle of every power cell 15 supplying power to the common multi-winding transformer. This change of the duty cycle is able to correct the saturation unbalance, but it may cause differences and unbalance to the winding current values. The operating frequency of this magnetic balance controller is preferably the same as the switching frequency of the power cells connected to the transformer.
20 The task of the second controller according to the invention is to correct the unbalance of those winding currents which are supplying power to the common multi-winding transformer. This controller works at a slower time level, and the input value for it is calculated by averaging the winding current during at least one external load cycle time (grid cycle time on primary side and 25 motor/generator cycle time on secondary side). Each winding has its own controller which affects the duty cycle of the power cell supplying current to that winding. The operating frequency of this current balance controller is preferably £ at least ten times slower than the operating frequency of the magnetic balance ™ controller.
LO
9 30 oj Exemplary controller time levels, i.e. frequencies at which the £ controller functions are performed in the system program, may be e.g. 12 kHz
CL
for the faster balance controller and 1.2 kHz for the average controller, when the c\j switching frequency of the power cells supplying power to the multi-winding m ™ 35 transformer is 12 kHz. According to the simulated operation at these exemplary ^ conditions, an abrupt magnetic flux unbalance step, which may be caused e.g.
by a step-like error in the pulse width instruction affecting on the switching moment of each power cell switch, will be corrected into a balance in less than 4 20 ms time. The correction of the unbalance of winding currents takes a longer time, but in less than 50 ms also the currents are balanced.
The asymmetry problem of a transformer is usually caused by 5 differences in power switch conduction voltage-drops or switching times. By using the invention the negative effects of this kind of component value dispersions can be minimized and thus components with larger characteristic value tolerances can be used, which improves the reliability and lower the costs of the power electronics system.
10
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing, and additional objects, features and advantages of the present invention will be more clearly understood from the following detailed 15 description of preferred embodiments of the present invention, taken in conjunction with accompanying drawings, in which: FIG. 1 presents a power converter with a 6-winding transformer, FIG. 2A and 2B present power cells in a power converter, FIG. 3 presents the block diagram of the controller according to the 20 invention, FIG. 4A and 4B present alternatives for measuring the magnetizing current, and FIG. 5 presents the operation of the controller.
25 DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 presents the known topology of a power converter which can ^ convert electric power between a medium-voltage grid and an AC motor, S1 described e.g. in US Patent Application 12/825,619 and which can be applied in
LO
9 30 the present invention. It comprises low-voltage power cells connected in a SI cascade on both the medium-voltage network MV (frequency 50 / 60 Hz, phases L1, L2, L3) and the medium-voltage electric machine M/G (frequency
CL
adjustable, phases U, V, W) sides, and high-frequency transformers connect
>J
SI the power cells. The converter includes several serial-connected groups
LO
™ 35 Gi...Gn, which all include a six-winding transformer Ti...TN and six (6) power S cells (e.g. C11...C16 in group Gi), each power cell connected either to one primary winding WPi or to one secondary winding Wsi- The serial-connected groups Gi...Gn form a multistep output voltage waveform to both external 5 connections (primary grid Up connection L1, L2, L3 and secondary grid, e.g. motor M connection U, V, W). A control unit CU, connected e.g. by a serial data link to the cell internal control units (not shown in FIG. 1), takes care of the appropriate upper level control of the converter.
5
Fig. 2A presents a basic circuit of a power cell in the converter according to FIG. 1. The power cell Cn includes two similar so-called H-bridges, i.e. power switch connections which comprise of four (4) controllable switches, e.g. IGBTs V1 - V4, correspondingly V5 - V8 and four (4) free- io wheeling diodes D1 - D4, correspondingly D5 - D8. The H-bridges are connected via a common DC-voltage link DCn having a capacitor C. The input bridge Hm connects the DC-link voltage via the single-phase input connection IN11 to the transformer primary winding WPn, by changing the polarity normally at 50% duty cycle. Correspondingly, the output bridge Hon can connect the 15 DC-link voltage to the output connection OUTn for forming a part of the converter output voltage.
Because the input bridge works at 50% duty cycle it is possible to replace half of the switches in bridge Hm with two capacitors C1, C2 as in bridge Hm2i according to FIG. 2B, as is well-known for a person skilled in the 20 art.
Fig. 3 presents the block diagram of an anti-saturation controller according to the invention. The controller of Fig. 3 refers to group Gi in Fig. 1, but every group has its own similar controller. The controller affects those 25 power cells supplying active power to the transformer, in this exemplary case to the cells in the grid side (Cu, C12, C13). In power flow direction change the cells under the anti-saturation control will be changed accordingly “on the fly”.
The controller according to the invention actually includes two ™ separate controllers, working at different time levels.
LO
9 30 The first controller, CONmi, is the faster anti-saturation controller, c\j aiming to maintain the magnetizing balance in the transformer. It works on the basis of the average of the measured transformer magnetizing current, imag, ave,
CL
which is compared to the reference value 0 in the summing unit ΣΜι. The sum vj £] value is the input to the Pl-regulator PImag-i, the output of which is an input to ™ 35 the summing units Em... Im. The preferred calculating interval for this ° controller is the same as the switching frequency of the H-bridges connected to the transformer.
6
The other controllers, CON011...CON013, are slower phase-current averaging controllers, aiming to keep the power cell output current average values iouth, ave···Ιουτΐ3, ave at 0. Every cell supplying active power to the transformer has its own controller, in this exemplary case they are cells 5 C11...C13 in Fig. 1. In the controllers, the average values of the output currents (iouTu, ave··· 10UT13, ave) are first compared to the reference value 0 in the summing units Σ011...Σ013· The summing unit outputs are then led via the Pl-regulators ΡΙηοιι···ΡΙηοι3 to the duty cycle summing units Σ111...Σ113. The reference value of these summing units is 50%, which is thus also the final duty 10 cycle reference DHih...Dhii3 for the modulators ΜΗιιι...ΜΗιΐ3 of the input H-bridges Hm... H113 in case of either the transformer anti-saturation controller CONmi or any of the cell output current averaging controllers C0Non --C0NOi3 do not disturb the balance. The preferred calculating intervals for the averaging controllers are longer, e.g. 10 times the calculating interval of the anti-saturation 15 controller.
The basic operation principle of all the regulators CONmi and CON011...CON013 is thus to change the duty cycle of the input bridges so that the average value of the transformer magnetizing current and the cell output currents stay at value 0.
20
Fig. 4A and 4B present two examples of possibilities for measuring the magnetizing balance of a multi-winding transformer.
In Fig. 4A another wire of all input H-bridges H111...H113 are led through a common current transformer core Tc. The sum current, measured by 25 a coil around the core (not shown in Fig. 4A), is thus the same as the magnetizing current. As a person skilled in the art knows, the waveform of the magnetizing current in this kind of a converter is triangular, and the average t? value of it (needed for the anti-saturation controller in Fig. 3) can be calculated ™ e g. as the sum of the positive and negative peak values. A more complete 9 30 method for the average value calculation, which method gives a correct result c\] also in case of core saturation, is to integrate the current area during one operation cycle.
In Fig. 4B there is an additional winding W1 in the multi-winding c\] transformer Ti as presented in Fig. 1. As a person skilled in the art well knows,
LO
^ 35 the waveform of the winding voltage uwi in this kind of a converter is ° rectangular, and the average value of it (needed for the anti-saturation controller in Fig. 3) can be calculated e.g. by integrating the voltage area during one operation cycle.
7
Fig. 5 presents an example, in the topology of a converter presented in Fig. 1, of how the regulator according to the invention works. In the figure, the duty cycle references DHih - - - DHm3 of all input Fl-bridges Hm... Hm3 5 are shown, as well as the average values of the output currents ioirm, AVE··· loUT13, AVE-
At time instant ti (5.0 ms) an external impulse pushes the duty cycle of Hu from the balance value 50% to about 50.6%. This causes the antisaturation controller to wake up and give a counter-push backwards to all three ίο duty cycle signals Dhih...Dhm3 at time instant t2. This in turn causes the average values of output currents to start drifting out of the balance. Within about 3 ms time (by time instant 8 ms), the faster anti-saturation controller restores a new magnetic balance, where the duty cycles of all phases are pushed away from 50% value. The slower controller notices change in the 15 phase current average values at about 10 ms time instant and begins to push the duty cycles back to 50% balance value. At time instant 20ms the duty cycles are back in 50%, but the average values of phase currents still differ from zero. The slow controller continues to control the duty cycles as long as the average value differs from zero, and finally at about 50 ms time instant the 20 average values are 0 in this exemplary case.
While the invention has been described with reference to the previous embodiment, it should be recognized that the invention is not limited to this embodiment, and many modifications and variations will become apparent 25 to persons skilled in the art without departing from the scope and spirit of the invention, as defined in the appended claims. As described above the invention can be applied in converters transmitting power between a polyphase electric 2 machine (motor or generator) and a power transmission network, which can be ^ either a polyphase alternating-current (AC) network or a direct-current (DC) 9 30 network. The invention can also be applied to power transmission between
SI different electric systems, such as e.g. from a DC network to a polyphase AC
network, or between AC networks (grids) of different voltages and different
CL
frequencies. Especially the invention can be applied in a medium-voltage SI environment, in which both the electric machine and the power transmission
LO
£! 35 network (grid) or networks (grids) are medium-voltage, o
Cvl

Claims (17)

1. Menetelmä estää monikäämistä muuntajaa kyllästymästä tehomuuttajalaitteistossa, 5 joka laitteisto koostuu monikäämimuuntajasta (T-ι) ja tehosoluista (Cu - Ci6, Cni - Cn6), jotka on liitetty mainitun muuntajan ensiö- ja toisiopuolille, jotka tehosolut koostuvat kahdesta H-sillasta (Hm H1121, Hon), joista kummassakin on ohjattavat kytkimet (V1 - V8) ja sillat on liitetty toisiinsa tasajännitelinkin avulla, 10 jotka solut on liitetty niiden omiin erillisiin muuntajakäämeihin sisääntulevan H-sillan kautta, joka toimii normaalisti tietyllä pulssisuhteella, esim. 50% pulssisuhteella, ja jotka solut on liitetty ulkoiseen sähköjärjestelmään ulostulevan H-sillan kautta, tunnettu siitä, että menetelmä käsittää seuraavat vaiheet: 15. mitataan muuntajasydämen magnetoinnin tila ja käämivirrat niissä käämeissä, jotka syöttävät sähkötehoa muuntajaan, - asetellaan magnetointitilan mittauksen perusteella muuntajaan sähkötehoa syöttävien sisääntulosiltojen pulssisuhteita magnetointitasapainon ylläpitämiseksi muuntajassa, ja 20. asetellaan käämivirtojen mittauksen perusteella muuntajaan sähkötehoa syöttävien sisääntulosiltojen pulssisuhteita käämivirtojen epätasapainon korjaamiseksi.1. The method prevents a multi-winding transformer from being saturated in a power converter apparatus 5 consisting of a multi-winding transformer (T-ι) and power cells (Cu-C16, Cni-Cn6) connected to the primary and secondary sides of said transformer consisting of H1121, Hon), each with controllable switches (V1 to V8) and bridges connected to each other by a DC link, which cells are connected to their separate transformer windings via an incoming H-bridge, which normally operates at a certain pulse rate, e.g. 50% pulse rate, and which cells are connected to the external electrical system via an outgoing H-bridge, characterized in that the method comprises the steps of: 15. measuring the magnetization state of the transformer core and winding currents in the windings supplying electric power to the transformer; pulse ratios of the bridges to maintain the magnetization equilibrium in the transformer; 2. Patenttivaatimuksen 1 mukainen menetelmä, jossa 25 sisääntulosiltojen pulssisuhdetta asetellaan siten, että muuntajan magnetointivirran ja solujen ulostulovirtojen keskiarvo on 0. S?The method of claim 1, wherein the pulse ratio of the input bridges is set such that the average of the transformer excitation current and the cell output currents is 0. S? 3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, jossa ™ magnetoinnin asettelussa pulssisuhdetta asetellaan samanaikaisesti jokaisessa LO 9 30 tehoa yhteiseen monikäämiseen muuntajaan syöttävässä tehosolussa. CVJ CVJThe method of claim 1 or 2, wherein in the? Magnetization setup, the pulse rate is simultaneously adjusted in each power cell supplying a LO 9 30 power to a common multi-winding transformer. CVJ CVJ 4. Patenttivaatimuksen 1, 2 tai 3 mukainen menetelmä, jossa CL magnetointitilan asettelu toimii ensimmäisellä aikatasolla ja käämivirran asettelu £] toisella, hitaammalla aikatasolla. LO ^ 35The method of claim 1, 2 or 3, wherein the setting of the CL excitation mode operates at the first time level and the winding current setting £ 1 at the second, slower time level. LO ^ 35 5. Minkä tahansa edeltävistä patenttivaatimuksista 1 - 4 mukainen menetelmä, jossa mittaustieto sydämen magnetisointitilasta lasketaan integroimalla yhden käämin jännitettä, edullisesti lisäkäämin jännitettä. 12The method according to any one of claims 1 to 4, wherein the measurement data of the magnetization state of the core is calculated by integrating the voltage of one winding, preferably the voltage of the auxiliary winding. 12 6. Minkä tahansa edeltävistä patenttivaatimuksista 1 - 4 mukainen menetelmä, jossa mittaustieto sydämen magnetisointitilasta on järjestetty mittaamalla kaikkien käämien summavirtaa. 5The method according to any one of claims 1 to 4, wherein the measurement data of the magnetization state of the core is arranged by measuring the total current of all windings. 5 7. Minkä tahansa edeltävistä patenttivaatimuksista 1 - 4 mukainen menetelmä, jossa mittaustieto sydämen magnetisointitilasta on järjestetty käyttämällä vuoanturia. ίοThe method of any one of claims 1 to 4, wherein the measurement of the cardiac magnetization state is provided using a flow sensor. ίο 8. Minkä tahansa edeltävistä patenttivaatimuksista 1 - 4 mukainen menetelmä, jossa käämivirtoja asetellaan erikseen kullekin käämille.A method according to any one of the preceding claims 1 to 4, wherein the winding currents are set separately for each winding. 9. Järjestelmä estämään monikäämistä muuntajaa kyllästymästä tehomuuttajalaitteistossa, jossa on ohjausvälineet (CU), 15 joka laitteisto koostuu monikäämimuuntajasta (T-ι) ja tehosoluista (Cu - Ci6, Cni - Cnö), jotka on liitetty mainitun muuntajan ensiö- ja toisiopuolille, jotka tehosolut koostuvat kahdesta H-sillasta (Hm H1121, Hon), joista kummassakin on ohjattavat kytkimet (V1 - V8) ja sillat on liitetty toisiinsa tasajännitelinkin avulla, 20 jotka solut on liitetty niiden omiin erillisiin muuntajakäämeihin sisääntulevan H-sillan kautta, joka toimii normaalisti tietyllä pulssisuhteella, esim. 50% pulssisuhteella, ja jotka solut on liitetty ulkoiseen sähköjärjestelmään ulostulevan H-sillan kautta, tunnettu siitä, että järjestelmä käsittää: 25. välineet mittaaman muuntajasydämen magnetoinnin tilaa ja käämivirtoje niissä käämeissä, jotka syöttävät sähkötehoa muuntajaan, ja - ohjausvälineet, jotka on sovitettu t? asettelemaan magnetointitilan mittauksen perusteella muuntajaan ^ sähkötehoa syöttävien sisääntulosiltojen pulssisuhteita magnetointitasapainon LO 9 30 ylläpitämiseksi muuntajassa, ja c\J asettelemaan käämivirtojen mittauksen perusteella muuntajaan £ sähkötehoa syöttävien sisääntulosiltojen pulssisuhteita käämivirtojen CL epätasapainon korjaamiseksi. C\1 C\1 LO ™ 359. A system to prevent saturation of a multi-winding transformer in a power converter apparatus having control means (CU) 15 consisting of a multi-winding transformer (T-ι) and power cells (Cu-C16, Cni-Cnö) connected to the primary and secondary halves of said transformer consisting of two H-bridges (Hm H1121, Hon), each with controllable switches (V1-V8) and bridged by a DC link, which cells are connected to their separate transformer windings via an incoming H-bridge, which normally operates at a certain pulse rate , e.g., at 50% pulse rate, which cells are connected to the external electrical system via an outgoing H-bridge, characterized in that the system comprises: 25. means for measuring the magnetization state and winding current of the transformer core in the coils supplying electrical power to the transformer; matched t? to determine the pulse ratios of the power supply input bridges to the transformer based on the measurement of the magnetization state to maintain the magnetization equilibrium LO 9 30 in the transformer, and c \ J to adjust the pulse ratios of the electric power supply input bridges C \ 1 C \ 1 LO ™ 35 10. Patenttivaatimuksen 9 mukainen järjestelmä, jossa c\j ohjausvälineet on sovitettu asettelemaan sisääntulosiltojen pulssisuhdetta siten, että muuntajan magnetointivirran ja solujen ulostulovirtojen keskiarvo on 0. 13The system of claim 9, wherein the control means is adapted to adjust the pulse ratio of the input bridges such that the transformer excitation current and the cell output currents have an average of 0. 13 11. Patenttivaatimuksen 9 tai 10 mukainen järjestelmä, jossa ohjausvälineet käsittävät magnetoinnin tilan asetteluohjaimen asettelemaan pulssisuhdetta samanaikaisesti jokaisessa tehoa yhteiseen monikäämiseen muuntajaan syöttävässä tehosolussa. 5The system of claim 9 or 10, wherein the control means comprises an excitation state setting controller for setting a pulse ratio simultaneously in each of the power cells supplying the power to the common multi-winding transformer. 5 12. Patenttivaatimuksen 9, 10 tai 11 mukainen järjestelmä, jossa ohjausvälineet käsittävät magnetoinnin tilan asetteluohjaimen, joka on yhteinen kaikille muuntajaan aktiivista tehoa syöttäville soluille, ja käämivirran asetteluohjaimen kullekin solulle, joka syöttää aktiivista tehoa muuntajaan, ίο jossa magnetoinnin tilan asetteluohjain toimii ensimmäisellä aikatasolla ja käämivirtojen asetteluohjaimet toimivat toisella, hitaammalla aikatasolla.The system of claim 9, 10 or 11, wherein the control means comprises an excitation state setting controller common to all transformer active power supply cells, and a winding current setting controller for each cell supplying active power to the transformer, wherein the magnetization state setting controller operates at the layout controls operate at another, slower time level. 13. Minkä tahansa edeltävistä patenttivaatimuksista 9-12 mukainen järjestelmä, jossa muuntaja on varustettu lisäkäämillä, niin että 15 mittausinformaatio sydämen magnetoinnin tilasta voidaan laskea integroimalla lisäkäämin jännitettä.A system according to any one of the preceding claims 9-12, wherein the transformer is provided with additional windings so that measurement information of the cardiac magnetization state can be calculated by integrating the voltage of the additional winding. 14. Minkä tahansa edeltävistä patenttivaatimuksista 9 - 12 mukainen järjestelmä, jossa mittaustieto sydämen magnetisointitilasta on 20 järjestetty mittaamalla kaikkien käämien summavirtaa.A system according to any one of the preceding claims 9 to 12, wherein the measurement data of the core magnetization state is arranged by measuring the sum current of all windings. 15. Minkä tahansa edeltävistä patenttivaatimuksista 9 - 12 mukainen järjestelmä, jossa mittaustieto sydämen magnetisointitilasta on järjestetty käyttämällä vuoanturia. 25A system according to any one of the preceding claims 9 to 12, wherein the measurement data of the cardiac magnetization state is provided using a flow sensor. 25 16. Minkä tahansa edeltävistä patenttivaatimuksista 9-15 mukainen järjestelmä, jossa magneettisen tasapainon ohjaimen toimintataajuus ” on sama kuin muuntajaan liitettyjen tehosolujen kytkentätaajuus. C\J i LO 9 30A system according to any one of the preceding claims 9 to 15, wherein the operating frequency of the magnetic balance controller 'is the same as the switching frequency of the power cells connected to the transformer. C \ J i LO 9 30 17. Minkä tahansa edeltävistä patenttivaatimuksista 9 - 16 c\j mukainen järjestelmä, jossa virtojen tasapainon ohjaimen toimintataajuus on g vähintään kymmenen kertaa hitaampi kuin magneettisen tasapainon ohjaimen CL toimintataajuus. CVJ CVJ m CVJ δ 35 CVJA system according to any one of the preceding claims 9 to 16c, wherein the operating frequency of the current balance controller is at least ten times slower than the operating frequency of the magnetic balance controller CL. CVJ CVJ m CVJ δ 35 CVJ
FI20125224A 2012-02-29 2012-02-29 Transformer control FI123771B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FI20125224A FI123771B (en) 2012-02-29 2012-02-29 Transformer control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20125224A FI123771B (en) 2012-02-29 2012-02-29 Transformer control
FI20125224 2012-02-29

Publications (2)

Publication Number Publication Date
FI20125224A FI20125224A (en) 2013-08-30
FI123771B true FI123771B (en) 2013-10-31

Family

ID=49118084

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20125224A FI123771B (en) 2012-02-29 2012-02-29 Transformer control

Country Status (1)

Country Link
FI (1) FI123771B (en)

Also Published As

Publication number Publication date
FI20125224A (en) 2013-08-30

Similar Documents

Publication Publication Date Title
US11356015B2 (en) Modular medium voltage fast chargers
US8023234B2 (en) Method for detecting earth-fault conditions in a motor controller
EP2495863B1 (en) CMV reduction under BUS transient condition
CN102647097B (en) Power-supply device
Hu et al. Generic dynamic phase-shift control for bidirectional dual-active bridge converters
JP2010512134A (en) Current converter
US11496044B2 (en) DC/DC converter and neutral-point voltage balance control method thereof
JP7086054B2 (en) Hybrid clock method for transformerless single-phase network inverter
Naseem et al. Triple-active-bridge converter with automatic voltage balancing for bipolar DC distribution
JP6572150B2 (en) Power converter
US11909305B2 (en) AC-to-DC power converter which removed a common mode component form the output current
US20170133949A1 (en) Converter For Outputting Reactive Power, And Method For Controlling Said Converter
US20140043870A1 (en) Three phase boost converter to achieve unity power factor and low input current harmonics for use with ac to dc rectifiers
JP2009177935A (en) Dc power supply
US20220224224A1 (en) Multiphase interleaved forward power converters including clamping circuits
KR20160013176A (en) Converter assembly having multi-step converters connected in parallel and method for controlling said multi-step converters
KR101465973B1 (en) Power converter for fuel cell system using multilevel inverter and method for reducing unbalance of neutral point potential
Jang et al. Input-voltage balancing of series-connected converters
FI123771B (en) Transformer control
WO2022068222A1 (en) Cascaded power electronic transformer and control method therefor
Cougo et al. Impact of PWM methods and load configuration in the design of intercell transformers used in parallel three-phase inverters
Fischer et al. Investigation on Carrier Signals to Minimize the Overall Current Ripple of an Interleaved-Switched Inverter
CN113839551A (en) Pulse width compensation method, pulse width compensation device, storage medium and electronic device
Sankala et al. Modular double-cascade converter
RU2570894C2 (en) Converter control method

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 123771

Country of ref document: FI

Kind code of ref document: B

PC Transfer of assignment of patent

Owner name: VACON OY