ES2935742B2 - HYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS - Google Patents

HYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS Download PDF

Info

Publication number
ES2935742B2
ES2935742B2 ES202130841A ES202130841A ES2935742B2 ES 2935742 B2 ES2935742 B2 ES 2935742B2 ES 202130841 A ES202130841 A ES 202130841A ES 202130841 A ES202130841 A ES 202130841A ES 2935742 B2 ES2935742 B2 ES 2935742B2
Authority
ES
Spain
Prior art keywords
adhesive
sol
hybrid
application
doi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES202130841A
Other languages
Spanish (es)
Other versions
ES2935742A1 (en
Inventor
Pino Miguel Suffo
De Los Ríos Manuel Piñero
Peracaula Mercedes Salido
La Rosa Fox Nicolás De
Peces María Virtudes Reyes
Pérez José Ignacio Vilches
Montesinos Rafael Fernández
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Cadiz
Servicio Andaluz de Salud
Original Assignee
Universidad de Cadiz
Servicio Andaluz de Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Cadiz, Servicio Andaluz de Salud filed Critical Universidad de Cadiz
Priority to ES202130841A priority Critical patent/ES2935742B2/en
Priority to PCT/ES2022/070560 priority patent/WO2023037026A1/en
Publication of ES2935742A1 publication Critical patent/ES2935742A1/en
Application granted granted Critical
Publication of ES2935742B2 publication Critical patent/ES2935742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses

Description

DESCRIPCIÓNDESCRIPTION

RECUBRIMIENTO HÍBRIDO BASADO EN UNA MEZCLA DE MATERIAL COMPUESTO ADHESIVO, PARA APLICACIÓN EN SUPERFICIES DE ELEMENTOS IMPLANTABLESHYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS

SECTOR DE LA TÉCNICATECHNIQUE SECTOR

La presente invención pertenece al campo de la tecnología de los adhesivos, de la ingeniería tisular y la biomecánica.The present invention belongs to the field of adhesive technology, tissue engineering and biomechanics.

El objeto técnico consiste en un material compuesto formado por una mezcla de un adhesivo tipo epoxi y un determinado material sol-gel, que se aplica como recubrimiento en elementos implantables de la industria biomédica, traumatológica, ortopedia y bucodental.The technical object consists of a composite material made up of a mixture of an epoxy-type adhesive and a specific sol-gel material, which is applied as a coating on implantable elements in the biomedical, trauma, orthopedics, and oral industries.

ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION

Cualquier cuerpo extraño en el organismo favorece el desarrollo de infecciones y, por consiguiente, un rechazo del mismo (Wood et al., 2015). Particularmente, este fenómeno es frecuente en los implantes dentales, que se recubren por la saliva cuyas glucoproteínas favorecen la colonización por microorganismos (sobre todo, estreptococos), los cuales proliferan en la cavidad oral (Siqueira, Custodio, & McDonald, 2012); (Subramani, Jung, Molenberg, & Hammerle, 2009).Any foreign body in the body favors the development of infections and, consequently, its rejection (Wood et al., 2015). In particular, this phenomenon is frequent in dental implants, which are covered by saliva whose glycoproteins favor colonization by microorganisms (especially streptococci), which proliferate in the oral cavity (Siqueira, Custodio, & McDonald, 2012); (Subramani, Jung, Molenberg, & Hammerle, 2009).

De manera similar ocurre con las prótesis en traumatología (por ejemplo: en la artroplastia total de rodilla ATR, o cadera ATC), cuyos materiales usados han sido a base de aceros inoxidables, aleaciones de titanio, aleaciones de Cr-C0-Ni y otros metales peligrosos para el ser humano (Keegan, Learmonth, & Case, 2007). En este caso, el problema surge por falta de biocompatibidad demostrada a medio o largo plazo. En estas piezas se busca un aumento de su vida útil, facilitar su integración en el hueso mediante la incorporación de un material cementado a las superficies implantables, que sirva de barrera osteoinductiva real y proteja de infecciones. A pesar de conseguir un alto índice de éxito en estas intervenciones aún existe un 19% de pacientes que muestran disconformidades con las intervenciones a las que se han visto sometidas y han provocado una revisión (Bourne et al., 2010). In a similar way, it occurs with prostheses in traumatology (for example: in ATR total knee arthroplasty, or ATC hip), whose materials used have been based on stainless steels, titanium alloys, Cr-C 0- Ni alloys and other dangerous metals for humans (Keegan, Learmonth, & Case, 2007). In this case, the problem arises from a lack of proven biocompatibility in the medium or long term. In these pieces, an increase in their useful life is sought, facilitating their integration into the bone by incorporating a cemented material to the implantable surfaces, which serves as a real osteoinductive barrier and protects against infections. Despite achieving a high success rate in these interventions, there are still 19% of patients who disagree with the interventions they have undergone and have led to a review (Bourne et al., 2010).

La literatura ha descrito métodos de recubrimiento basado en la aplicación de nanopartículas de Zirconio o Aluminio para mejorar la osteointegración de los implantes (Salou, Hoornaert, Louarn, & Layrolle, 2015), incluso con nanopartículas antimicrobianas de Chlorhexidine-hexametaphosphate (CHX-HMP). Dichas nanopartículas favorecen una buena fijación biológica en los implantes y favorecen el efecto anti-bacteriano en el hueso (Wood et al., 2015). De hecho, la mayoría de las fallas en este tipo de implantes es por una mala estabilidad de la pieza provocadas por una pérdida ósea que la hace desestabilizarse. Es posible encontrar referencias que usan nanopartículas de vidrio bioactivo mediante precursores de calcio usando técnicas Sol-Gel (Firzok et al., 2019). Además, se han descrito procesos de tratamiento abrasivo sobre las superficies metálicas de los implantes para hacerlas más rugosas (1-2 μm) y, de este modo, más osteointegrables pero, los resultados son discutibles y estos abrasivos dejan partículas depositadas en los implantes que resultan comportarse como contaminantes (Schupbach, Glauser, & Bauer, 2019).The literature has described coating methods based on the application of Zirconium or Aluminum nanoparticles to improve the osseointegration of implants (Salou, Hoornaert, Louarn, & Layrolle, 2015), even with antimicrobial Chlorhexidine-hexametaphosphate (CHX-HMP) nanoparticles. . Said nanoparticles favor a good biological fixation in the implants and favor the antibacterial effect in the bone (Wood et al., 2015). In fact, most of the failures in this type of implants are due to poor stability of the piece caused by bone loss that makes it destabilize. It is possible to find references that use bioactive glass nanoparticles through calcium precursors using Sol-Gel techniques (Firzok et al., 2019). In addition, abrasive treatment processes have been described on the metallic surfaces of the implants to make them rougher (1-2 μm) and, in this way, more osseointegrable, but the results are debatable and these abrasives leave particles deposited on the implants that they turn out to behave as pollutants (Schupbach, Glauser, & Bauer, 2019).

Por otra parte, se han usado adhesivos para la mejora de las uniones roscadas tornilloimplante y tornillo-pilar(interfase) (Bosqué, C.;Azevedo, A.D.; Arenas, V.A.; Ávila-Campos, 2019) (Suffo, Vilches-Pérez, & Salido-Peracaula, 2020). De manera que, por un lado, se mejore el apriete roscado en la zona de los filetes de rosca donde pueden quedar sin contacto y, en la parte superior donde asienta la cabeza del tornillo con el pilar protésico, de esta forma el adhesivo actúa como un retenedor de la unión roscada. Por otro lado, se pretende evitar la entrada de bacterias que inducen patologías (Caldas et al., 2019).On the other hand, adhesives have been used to improve screw-implant and screw-abutment (interface) threaded joints (Bosqué, C.; Azevedo, A.D.; Arenas, V.A.; Ávila-Campos, 2019) (Suffo, Vilches-Pérez, & Salido-Peracaula, 2020). So that, on the one hand, the threaded tightening is improved in the area of the threads where they can remain without contact and, in the upper part where the head of the screw sits with the prosthetic abutment, in this way the adhesive acts as a a threaded joint retainer. On the other hand, it is intended to prevent the entry of bacteria that induce pathologies (Caldas et al., 2019).

De manera similar a la literatura científica, a lo largo de la historia, se han ido registrando productos adhesivos para uso medicinal a base de cianocrilatos [US2293969A], [US2467927A], [US2768109A]; [US5684042]; [US3483870]; [US5580565];Similar to the scientific literature, throughout history, adhesive products for medicinal use based on cyanoacrylates have been registered [US2293969A], [US2467927A], [US2768109A]; [US5684042]; [US3483870]; [US5580565];

[US4764377]; [US4892736]; [US4940579]; [US5,254,132]; [WO 01/32319 A2], con más o menor plazo de polimerización y, formando compuestos junto a agentes terapéuticos o antibióticos. También existen de la familia de los acrílicos y, finalmente las resinas epoxis [WO2019181721 (A1)]. En (Suffo et al., 2020) se establece una comparativa de la capacidad de adhesión que presentan algunos adhesivos comerciales de uso médico en aplicaciones odontológicas. En dicha referencia, se concluyó que el adhesivo denominado LOCTITE M31CL presentaba las mejores prestaciones en términos de resistencia a la adhesión en biomateriales usado en fabricación aditiva (impresión 3D) como ULTEM1010™. En [US6455064B1], se describe un método de aplicación de un monómero adhesivo polimerizable sobre un medicamento biológicamente activo que realiza la función de iniciador de la polimerización del adhesivo. El resultado es un compuesto adhesivo que se aplica en heridas en sustitución de suturas. Desde los años 60, se usan cementos acrílicos y los basados en mezclas de polimetilmetacrilato (PMMA) que polimerizan rápido y se aplican directamente sobre el propio implante. Desafortunadamente, son habituales los procesos de retirada de hueso en aquellas zonas donde se han implantado prótesis de estos materiales, principalmente, provocados por fenómenos de corrosión.[US4764377]; [US4892736]; [US4940579]; [US5,254,132]; [WO 01/32319 A2], with more or less polymerization time and, forming compounds together with therapeutic agents or antibiotics. There are also acrylic family and, finally, epoxy resins [WO2019181721 (A1)]. In (Suffo et al., 2020) a comparison of the adhesion capacity of some commercial adhesives for medical use in dental applications is established. In said reference, it was concluded that the adhesive called LOCTITE M31CL had the best performance in terms of adhesion resistance in biomaterials used in additive manufacturing (3D printing) such as ULTEM1010™. In [US6455064B1], a method of applying a polymerizable adhesive monomer on a biologically active drug that performs the function of initiating the polymerization of the adhesive. The result is an adhesive compound that is applied to wounds instead of sutures. Since the 1960s, acrylic cements and those based on polymethyl methacrylate (PMMA) mixtures have been used, which polymerize quickly and are applied directly to the implant itself. Unfortunately, bone removal processes are common in those areas where prostheses made of these materials have been implanted, mainly caused by corrosion phenomena.

Se considera la superficie del implante a aquella que va a quedar en contacto directo con los tejidos orales, bien los tejidos blandos (encía y conectivo), bien duros (hueso). La biología de ambos es totalmente distinta por lo que la parte del implante que ha de entrar en contacto con ellos ha ido modificándose para permitir una mayor inter-relación entre ellos. Así pues, la superficie de los implantes se puede clasificar en lisa o tratada. La lisa es aquella que no ha sufrido más procesado que el propio de la fabricación desde el torneado de la barra. Es casi plana, con tan sólo las rugosidades propias del paso de la fresa y tiene una menor incidencia en la formación ósea. Se recurre a ella para que sea la que esté en contacto con los tejidos blandos, a fin de obtener una posible unión con ellos y una zona más fácil de limpiar. La tratada, por contra, es irregular y busca la unión con el tejido óseo. El patrón obtenido va a depender de la forma en la que la superficie lisa es modificada para llegar a él, pudiendo ser con métodos de adición (plasma, recubrimiento de material, anodización, ...), sustracción (granallado, ataque ácido, láser, ...), oxidación o mixtas (combinación de varios). Los implantes obtenidos mediante sinterización dan siempre una terminación rugosa en su superficie y han de ser repasados para alisarla. En el caso de recubrimientos estos suelen ser porosos, a base de hidroxiapatita (HA), realizados por difusión y por pulverización de plasma (Heimann, 2016). Entre otras tecnologías desarrolladas para modificar superficies y recubrir implantes metálicos destacan los tratamientos químicos y electroquímicos, como la deposición por electroforesis (Balamurugan, Balossier, Michel, & Ferreira, 2009), las técnicas de pulverización térmica (Cañas et al., 2016) y el método sol-gel (Sergi, Bellucci, & Cannillo, 2020). Desafortunadamente, algunas de estas tecnologías muestran desventajas, tales como una débil unión entre implantes y recubrimientos, modificación de las propiedades del implante metálico o del recubrimiento y la presencia de impurezas. Así, por ejemplo, la referencia [RU2684617C1], describe un método para aplicar un recubrimiento bioactivo en implantes de titanio, el recubrimiento es un electrolito compuesto por ácido ortofosfórico, hidroxiapatita (HA, Ca 5 (PO 4 ) 3 (OH)), germanio y agua destilada. The surface of the implant is considered to be that which will be in direct contact with the oral tissues, either the soft tissues (gum and connective tissue), or the hard tissues (bone). The biology of both is totally different, so the part of the implant that has to come into contact with them has been modified to allow a greater interrelationship between them. Thus, the surface of the implants can be classified as smooth or treated. The smooth one is one that has not undergone more processing than that of the manufacture since the turning of the bar. It is almost flat, with only the roughness typical of the passage of the drill and has a lower incidence in bone formation. It is used to be the one that is in contact with the soft tissues, in order to obtain a possible union with them and an area that is easier to clean. The treated one, on the other hand, is irregular and seeks union with the bone tissue. The pattern obtained will depend on the way in which the smooth surface is modified to reach it, which may be with addition methods (plasma, material coating, anodization,...), subtraction (shot blasting, acid etching, laser , ...), oxidation or mixed (combination of several). Implants obtained by sintering always give a rough finish on their surface and must be reworked to smooth it. In the case of coatings, these are usually porous, based on hydroxyapatite (HA), made by diffusion and by plasma spraying (Heimann, 2016). Other technologies developed to modify surfaces and coat metallic implants include chemical and electrochemical treatments, such as electrophoresis deposition (Balamurugan, Balossier, Michel, & Ferreira, 2009), thermal spray techniques (Cañas et al., 2016) and the sol-gel method (Sergi, Bellucci, & Cannillo, 2020). Unfortunately, some of these technologies show disadvantages, such as a weak bond between implants and coatings, modification of the properties of the metallic implant or coating, and the presence of impurities. Thus, for example, reference [RU2684617C1], describes a method for applying a bioactive coating on titanium implants, the coating is an electrolyte composed of orthophosphoric acid, hydroxyapatite (HA, Ca 5 (PO 4 ) 3 (OH)), germanium and distilled water.

Por otra parte, la referencia (Jun et al., 2010) hace referencia a un material para recubrimiento híbrido constituido por un xerogel de silicio y de quitosano para recubrir superficies de implantes de titanio.On the other hand, the reference (Jun et al., 2010) refers to a hybrid coating material made up of a silicon xerogel and chitosan to coat surfaces of titanium implants.

También, (Kim, Kim, Kim, & Youn, 2015) divulgan un método para obtener material a base de un aerogel de sílice con una resina epoxi, mientras que, (Guzel Kaya, Yilmaz, & Deveci, 2018) describen la síntesis de un material a base de un xerogel de sílice con una resina epoxi.Also, (Kim, Kim, Kim, & Youn, 2015) disclose a method to obtain material based on a silica aerogel with an epoxy resin, while (Guzel Kaya, Yilmaz, & Deveci, 2018) describe the synthesis of a material based on a silica xerogel with an epoxy resin.

Más recientemente, (Palla-rubio et al., 2019) realizan un recubrimiento sol-gel sobre implantes de titanio a base de sílice-quitosano mediante un proceso de inmersión (dipcoating). No obstante, para conseguir una disolución homogénea se necesitan pequeñas cantidades de quitosano, ya que al aumentar la concentración del biopolímero la disolución resulta demasiado viscosa y difícil de adherir.More recently, (Palla-rubio et al., 2019) perform a sol-gel coating on silica-chitosan-based titanium implants using a dipcoating process. However, to achieve a homogeneous solution, small amounts of chitosan are needed, since as the concentration of the biopolymer increases, the solution becomes too viscous and difficult to adhere.

Por último, (Reyes-Peces et al., 2020), hacen referencia a un material para regeneración del hueso, constituido por un aerogel de TEOS, quitosano (quitosano al 4-20% p/p) y glicidopropoximetiltrietoxisilano (GPTMS), obtenido mediante síntesis sol-gel. Adicionalmente, la referencia (Perez-Moreno et al., 2020) divulga la síntesis y el método de un aerogel híbrido de silicio (TEOS) y quitosano al 8% para su uso en ingeniería tisular.Finally, (Reyes-Peces et al., 2020), refer to a material for bone regeneration, made up of a TEOS airgel, chitosan (4-20% w/w chitosan) and glycidopropoxymethyltriethoxysilane (GPTMS), obtained by sol-gel synthesis. Additionally, the reference (Perez-Moreno et al., 2020) discloses the synthesis and method of a hybrid airgel of silicon (TEOS) and 8% chitosan for use in tissue engineering.

La bibliografía consultada no reporta casos de obtención de un material para recubrimiento híbrido constituido por una mezcla de un adhesivo a base de resina epoxi, con un aerogel o un xerogel de TEOS y quitosano, como la que se describe en esta invención. Este material desempeña potencialmente un papel activo en la biomineralizacion de HA, siendo capaz de inducir la nucleación y crecimiento de la misma sobre la superficie del material.The consulted bibliography does not report cases of obtaining a hybrid coating material made up of a mixture of an epoxy resin-based adhesive with an airgel or a TEOS xerogel and chitosan, such as the one described in this invention. This material potentially plays an active role in the biomineralization of HA, being capable of inducing its nucleation and growth on the surface of the material.

Los biomateriales y biocomposites híbridos adhesivos resultado del procesado descrito en esta Memoria evitan los principales problemas que surgen con los implantes basados en materiales metálicos como el acero inoxidable, aleaciones de titanio o de cromo -cobalto-Niquel, los cuales, no garantizan la formación de hueso y provocan problemas en la proximidad de la cirugía y, sobre todo, los fenómenos de corrosión.The adhesive hybrid biomaterials and biocomposites resulting from the processing described in this Report avoid the main problems that arise with implants based on metallic materials such as stainless steel, titanium or chrome-cobalt-nickel alloys, which do not guarantee the formation of bone and cause problems in the vicinity of surgery and, above all, corrosion phenomena.

Las prótesis actuales usadas en traumatología y odontología, en general, no están diseñadas para recibir un recubrimiento como el descrito en esta memoria. A lo sumo, lo único que usan es cemento óseo como barrera protectora del material metálico. Los ensayos llevados a cabo en superficies metálicas y no metálicas diseñadas para probar la efectividad del recubrimiento mostraron similares resultados.The current prostheses used in traumatology and dentistry, in general, are not designed to receive a coating like the one described in this specification. At most, the only thing they use is bone cement as a protective barrier for the metallic material. Trials carried out on metallic and non-metallic surfaces designed to test the effectiveness of the coating showed similar results.

La invención demuestra la posibilidad de recubrir superficies metálicas no bioactivas y no biodegradables en elementos implantables con estas características, pero con la garantía de no sufrir desprendimientos.The invention demonstrates the possibility of coating non-bioactive and non-biodegradable metal surfaces in implantable elements with these characteristics, but with the guarantee of not suffering detachments.

Referencias bibliográficas empleadasBibliographic references used

Balamurugan, A., Balossier, G., Michel, J., & Ferreira, J. M. F. (2009). Electrochemical and structural evaluation of functionally graded bioglass-apatite composites electrophoretically deposited onto Ti6Al4V alloy. Electrochimica Acta, 54(4), 1192— 1198. https://doi.org/10.1016/j.electacta.2008.08.055Balamurugan, A., Balossier, G., Michel, J., & Ferreira, JMF (2009). Electrochemical and structural evaluation of functionally graded bioglass-apatite composites electrophoretically deposited onto Ti6Al4V alloy. Electrochimica Acta, 54(4), 1192—1198. https://doi.org/10.1016/j.electacta.2008.08.055

Bosqué, C.;Azevedo, A.D.; Arenas, V.A.; Ávila-Campos, M. J. (2019). Efficacy of a Polyglycol Dimethacrylate-Based Adhesive in Sealing the Implant-Abutment Interface. Implant Dentistry, 28(3), 265-271.Bosque, C.;Azevedo, AD; Arenas, VA; Avila-Campos, MJ (2019). Efficacy of a Polyglycol Dimethacrylate-Based Adhesive in Sealing the Implant-Abutment Interface. Implant Dentistry, 28(3), 265-271.

Bourne, R. B., Chesworth, B. M., Davis, A. M., Mahomed, N. N., Charron, K. D. J., & Met, D. (2010). Patient Satisfaction after Total Knee Arthroplasty Who is Satisfied and Who is Not?, 57-63. https://doi.org/10.1007/s11999-009-1119-9Bourne, R.B., Chesworth, B.M., Davis, A.M., Mahomed, N.N., Charron, K.D.J., & Met, D. (2010). Patient Satisfaction after Total Knee Arthroplasty Who is Satisfied and Who is Not?, 57-63. https://doi.org/10.1007/s11999-009-1119-9

Caldas, I. P., Alves, G. G., Barbosa, I. B., Scelza, P., de Noronha, F., & Scelza, M. Z.Caldas, I. P., Alves, G. G., Barbosa, I. B., Scelza, P., de Noronha, F., & Scelza, M. Z.

(2019). In vitro cytotoxicity of dental adhesives: A systematic review. Dental Materials, 35(2), 195-205. https://doi.org/10.1016Zj.dental.2018.11.028 Cañas, E., Vicent, M., Bannier, E., Carpio, P., Orts, M. J., & Sánchez, E. (2016). Effect of particle size on processing of bioactive glass powder for atmospheric plasma spraying. Journal of the European Ceramic Society, 36(3), 837-845. https://doi.org/10.1016/jjeurceramsoc.2015.09.039(2019). In vitro cytotoxicity of dental adhesives: A systematic review. Dental Materials, 35(2), 195-205. https://doi.org/10.1016Zj.dental.2018.11.028 Cañas, E., Vicent, M., Bannier, E., Carpio, P., Orts, MJ, & Sánchez, E. (2016). Effect of particle size on processing of bioactive glass powder for atmospheric plasma spraying. Journal of the European Ceramic Society, 36(3), 837-845. https://doi.org/10.1016/jjeurceramsoc.2015.09.039

Firzok, H., Zahid, S., Asad, S., Manzoor, F., Khan, A. S., & Shah, A. T. (2019). Sol-gel derived fluoridated and non-fluoridated bioactive glass ceramics-based dental adhesives: Compositional effect on re-mineralization around orthodontic brackets. Journal of Non-Crystalline Solids, 521(April). https://doi.org/10.1016/j.jnoncrysol.2019.119469Firzok, H., Zahid, S., Asad, S., Manzoor, F., Khan, AS, & Shah, AT (2019). Sol-gel derived fluoridated and non-fluoridated bioactive glass ceramics-based dental adhesives: Compositional effect on re-mineralization around orthodontic brackets. Journal of Non-Crystalline Solids, 521 (April). https://doi.org/10.1016/j.jnoncrysol.2019.119469

Gotz, W., Tobiasch, E., Witzleben, S., & Schulze, M. (2019). Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics, 11(3), 1-27. https://doi.org/10.3390/pharmaceutics11030117 Guzel Kaya, G., Yilmaz, E., & Deveci, H. (2018). Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance. Composites Part B: Engineering, 150(April), 1-6. https://doi.org/10.1016/j.compositesb.2018.05.039Gotz, W., Tobiasch, E., Witzleben, S., & Schulze, M. (2019). Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics, 11(3), 1-27. https://doi.org/10.3390/pharmaceutics11030117 Guzel Kaya, G., Yilmaz, E., & Deveci, H. (2018). Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance. Composites Part B: Engineering, 150(April), 1-6. https://doi.org/10.1016/j.compositesb.2018.05.039

Heimann, R. B. (2016). Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties. Journal of Thermal Spray Technology, 25(5), 827-850. https://doi.org/10.1007/s11666-016-0421-9Heimann, R.B. (2016). Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties. Journal of Thermal Spray Technology, 25(5), 827-850. https://doi.org/10.1007/s11666-016-0421-9

Jun, S. H., Lee, E. J., Yook, S. W., Kim, H. E., Kim, H. W., & Koh, Y. H. (2010). A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature solgel process. Acta Biomaterialia, 6(1), 302-307. https://doi.org/10.1016Zj.actbio.2009.06.024Jun, SH, Lee, EJ, Yook, SW, Kim, HE, Kim, HW, & Koh, YH (2010). A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature solgel process. Acta Biomaterialia, 6(1), 302-307. https://doi.org/10.1016Zj.actbio.2009.06.024

Keegan, G. M., Learmonth, I. D., & Case, C. P. (2007). Orthopaedic metals and their potential toxicity in the arthroplasty patient. A review of current knowledge and future strategies. Journal of Bone and Joint Surgery - Series B, 89(5), 567-573. https://doi.org/10.1302/0301-620X.89B5.18903Keegan, GM, Learmonth, ID, & Case, CP (2007). Orthopedic metals and their potential toxicity in the arthroplasty patient. A review of current knowledge and future strategies. Journal of Bone and Joint Surgery - Series B, 89(5), 567-573. https://doi.org/10.1302/0301-620X.89B5.18903

Kim, H. M., Kim, H. S., Kim, S. Y., & Youn, J. R. (2015). Silica aerogel/epoxy composites with preserved aerogel pores and low thermal conductivity. E-Polymers, 15(2), 111­ 117. https://doi.org/10.1515/epoly-2014-0165Kim, HM, Kim, HS, Kim, SY, & Youn, JR (2015). Silica airgel/epoxy composites with preserved airgel pore and low thermal conductivity. E-Polymers, 15 ( 2), 111 117. https://doi.org/10.1515/epoly-2014-0165

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

Palla-rubio, B., Araújo-gomes, N., Fernández-gutiérrez, M., Rojo, L., Suay, J., & Gurruchaga, M. (2019). Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydrate Polymers, 203(September 2018), 331-341. https://doi.org/10.1016/j.carbpol.2018.09.064 Perez-Moreno, A., Reyes-Peces, M. de las V., de los Santos, D. M., Pinaglia-Tobaruela, G., de la Orden, E., Vilches-Pérez, J. I., ... de la Rosa-Fox, N. (2020). Hydroxyl groups induce bioactivity in silica/chitosan aerogels designed for bone tissue engineering. In vitro model for the assessment of osteoblasts behavior. Polymers, 12(12), 1-22. https://doi.org/10.3390/polym12122802Palla-rubio, B., Araújo-gomes, N., Fernández-gutiérrez, M., Rojo, L., Suay, J., & Gurruchaga, M. (2019). Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydrate Polymers, 203 (September 2018), 331-341. https://doi.org/10.1016/j.carbpol.2018.09.064 Perez-Moreno, A., Reyes-Peces, M. de las V., de los Santos, DM, Pinaglia-Tobaruela, G., de la Orden, E., Vilches-Pérez, JI, ... de la Rosa-Fox, N. (2020). Hydroxyl groups induce bioactivity in silica/chitosan aerogels designed for bone tissue engineering. In vitro model for the assessment of osteoblast behavior. Polymers, 12(12), 1-22. https://doi.org/10.3390/polym12122802

Preethi Soundarya, S., Haritha Menon, A., Viji Chandran, S., & Selvamurugan, N. (2018).Preethi Soundarya, S., Haritha Menon, A., Viji Chandran, S., & Selvamurugan, N. (2018).

Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International Journal of Biological Macromolecules, 119, 1228-1239. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.08.056Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International Journal of Biological Macromolecules, 119, 1228-1239. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.08.056

Reyes-Peces, M. V., Pérez-Moreno, A., De-los-Santos, D. M., Mesa-Díaz, M. del M., Pinaglia-Tobaruela, G., Vilches-Pérez, J. I., ... Piñero, M. (2020). Chitosan-GPTMS-Silica Hybrid Mesoporous Aerogels for Bone Tissue Engineering. Polymer, 12(11), 2723. https://doi.org/https://doi.org/10.3390/polym12112723 Reyes-Peces, MV, Pérez-Moreno, A., De-los-Santos, DM, Mesa-Díaz, M. del M., Pinaglia-Tobaruela, G., Vilches-Pérez, JI, ... Piñero, M .(2020). Chitosan-GPTMS-Silica Hybrid Mesoporous Aerogels for Bone Tissue Engineering. Polymer, 12(11), 2723. https://doi.org/https://doi.org/10.3390/polym12112723

Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits Acta Biomaterialia Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits, (January 2018). https://doi.org/10.10167j.actbio.2014.10.017Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits Acta Biomaterialia Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits, (January 2018). https://doi.org/10.10167j.actbio.2014.10.017

Schupbach, P., Glauser, R., & Bauer, S. (2019). Al2O3 Particles on Titanium Dental Implant Systems following Sandblasting and Acid-Etching Process. Intemational Journal of Biomaterials, 2019, 9-12. https://doi.org/10.1155/2019/6318429 Sergi, R., Bellucci, D., & Cannillo, V. (2020). A comprehensive review of bioactive glass coatings: State of the art, challenges and future perspectives. Coatings, 10(8). https://doi.org/10.3390/C0ATINGS10080757Schupbach, P., Glauser, R., & Bauer, S. (2019). Al2O 3 Particles on Titanium Dental Implant Systems following Sandblasting and Acid-Etching Process. International Journal of Biomaterials, 2019, 9-12. https://doi.org/10.1155/2019/6318429 Sergi, R., Bellucci, D., & Cannillo, V. (2020). A comprehensive review of bioactive glass coatings: State of the art, challenges and future perspectives. Coatings, 10(8). https://doi.org/10.3390/C0ATINGS10080757

Siqueira, W. L., Custodio, W., & McDonald, E. E. (2012). New insights into the composition and functions of the acquired enamel pellicle. Journal of Dental Research, 91(12), 1110-1118. https://doi.org/10.1177/0022034512462578 Subramani, K., Jung, R. E., Molenberg, A., & Hammerle, C. H. F. (2009). Biofilm on dental implants: a review of the literature. The International Journal of Oral & Maxillofacial Implants, 24(4), 616-626. https://doi.org/10.5167/uzh-26110 Suffo, M., Vilches-Pérez, J. I., & Salido-Peracaula, M. (2020). Comparative Analysis of the Adhesion of Metallic Inserts on Dental Implants-Prosthetic Assembly Generated by Polymeric Materials Used for Additive Manufacturing. In Lecture Notes in Mechanical Engineering (Vol. 1, pp. 245-253). https://doi.org/10.1007/978-3-030-41200-5_27Siqueira, WL, Custodio, W., & McDonald, EE (2012). New insights into the composition and functions of the acquired enamel pellicle. Journal of Dental Research, 91(12), 1110-1118. https://doi.org/10.1177/0022034512462578 Subramani, K., Jung, RE, Molenberg, A., & Hammerle, CHF (2009). Biofilm on dental implants: a review of the literature. The International Journal of Oral & Maxillofacial Implants, 24(4), 616-626. https://doi.org/10.5167/uzh-26110 Suffo, M., Vilches-Pérez, JI, & Salido-Peracaula, M. (2020). Comparative Analysis of the Adhesion of Metallic Inserts on Dental Implants-Prosthetic Assembly Generated by Polymeric Materials Used for Additive Manufacturing. In Lecture Notes in Mechanical Engineering (Vol. 1, pp. 245-253). https://doi.org/10.1007/978-3-030-41200-5_27

Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., ... Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278-314. https://doi.org/10.1016/j.bioactmat.2017.10.001Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., ... Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278-314. https://doi.org/10.1016/j.bioactmat.2017.10.001

Wood, N. J., Jenkinson, H. F., Davis, S. A., Mann, S., O’Sullivan, D. J., & Barbour, M. E.Wood, N. J., Jenkinson, H. F., Davis, S. A., Mann, S., O'Sullivan, D. J., & Barbour, M. E.

(2015). Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants. Journal of Materials Science: Materials in Medicine, 26(6), 1-10. https://doi.org/10.1007/s10856-015-5532-1(2015). Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants. Journal of Materials Science: Materials in Medicine, 26(6), 1-10. https://doi.org/10.1007/s10856-015-5532-1

EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION

La invención desarrolla un método por el que se obtiene un biomaterial híbrido compuesto por un aerogel/xerogel sintetizado a base de tetraetilortosilicato (TEOS) y quitosano, con unión sólida mediado por un adhesivo epoxi. Demostramos la bioactividad introduciendo las muestras en fluido biológico simulado (SBF) y comprobando que tras 7 días crece HA sobre su superficie. También se demuestra la biocompatibilidad de estos materiales usando cultivos de células primarias osteoblásticas humanas, observando que tras 7 días de cultivos in-vitro la presencia del biomaterial estudiado no afecta negativamente a la proliferación celular, ni tiene efecto citotóxico sobre células osteoblásticas primarias humanas (COPH, son células adquiridas en la empresa PROMOCELL como HOB®). Se consigue, por tanto, un recubrimiento que cumple con los tres requisitos básicos para su aplicación biomecánica, estos son: biocompatible, bioactivo y, biodegradable.The invention develops a method for obtaining a hybrid biomaterial composed of a synthesized aerogel/xerogel based on tetraethylorthosilicate (TEOS) and chitosan, with a solid bond mediated by an epoxy adhesive. We demonstrate the bioactivity by introducing the samples in simulated biological fluid (SBF) and verifying that after 7 days HA grows on its surface. It is also shown the biocompatibility of these materials using cultures of primary human osteoblastic cells, observing that after 7 days of in-vitro cultures the presence of the studied biomaterial does not negatively affect cell proliferation, nor does it have a cytotoxic effect on primary human osteoblastic cells (COPH, they are acquired cells in the company PROMOCELL as HOB®). Therefore, a coating is achieved that meets the three basic requirements for its biomechanical application, these are: biocompatible, bioactive and biodegradable.

Así mismo, el biomaterial híbrido adhesivo se puede aplicar a cualquier implante o prótesis metálica o no metálica de cadera, rodilla, hombro, etc.Likewise, the hybrid adhesive biomaterial can be applied to any metallic or non-metallic implant or prosthesis of the hip, knee, shoulder, etc.

El recubrimiento híbrido propuesto es el resultado de la mezcla de un material sol-gel (aerogel o xerogel) y una resina comercial tipo epoxi grado médico, comienza con la fabricación del aerogel o xerogel.The proposed hybrid coating is the result of mixing a sol-gel material (airgel or xerogel) and a commercial medical grade epoxy resin, beginning with the manufacture of airgel or xerogel.

Para la síntesis del material se ha seleccionado la técnica sol-gel, que es bastante versátil ya que permite la obtención de materiales híbridos combinando compuestos orgánicos e inorgánicos hasta conseguir las propiedades físico-químicas y biológicas deseadas. En este caso, los componentes del material serán tetraetilortosilicato (TEOS) y quitosano. El TEOS, mediante la catálisis ácida del ácido clorhídrico (HCl), reaccionará y formará una red de sílice. Se sabe que la sílice es un material bioactivo, es decir, que si se introduce en fluido biológico simulado es capaz de crecer hidroxiapatita (HA) sobre su superficie (Gotz, Tobiasch, Witzleben, & Schulze, 2019). La HA es el componente mineral del hueso, por lo que, si al simular las condiciones fisiológicas del cuerpo humano es capaz de crecer sobre el material, también crecerá una vez introducido en el cuerpo. Por otra parte, el quitosano es un biopolímero que se encuentra en el caparazón de los crustáceos. Este compuesto es biocompatible, biodegradable y favorece la adhesión celular (Preethi Soundarya, Haritha Menon, Viji Chandran, & Selvamurugan, 2018) (Turnbull et al., 2018).For the synthesis of the material, the sol-gel technique has been selected, which is quite versatile since it allows obtaining hybrid materials by combining organic and inorganic compounds until the desired physicochemical and biological properties are achieved. In this case, the components of the material will be tetraethylorthosilicate (TEOS) and chitosan. TEOS, through the acid catalysis of hydrochloric acid (HCl), will react and form a silica network. Silica is known to be a bioactive material, that is, if it is introduced into simulated biological fluid, it is capable of growing hydroxyapatite (HA) on its surface (Gotz, Tobiasch, Witzleben, & Schulze, 2019). HA is the mineral component of bone, so if by simulating the physiological conditions of the human body it is able to grow on the material, it will also grow once it is introduced into the body. On the other hand, chitosan is a biopolymer found in the shell of crustaceans. This compound is biocompatible, biodegradable and favors cell adhesion (Preethi Soundarya, Haritha Menon, Viji Chandran, & Selvamurugan, 2018) (Turnbull et al., 2018).

El adhesivo usado se trata de un epoxi grado médico denominado LOCTITE® M31 CLTM del fabricante HENKEL IBÉRICA, S.A. Fue seleccionado de entre 5 productos a partir de los resultados obtenidos del ensayo de adhesión llevado a cabo en la ya citada referencia (Suffo et al., 2020). Se trata de un adhesivo bicomponente basado en una resina y un endurecedor (ratio 2:1, resina:endurecedor), cuya mezcla resulta de color casi transparente, de viscosidad baja y una gravedad específica de 1,07 kg/cm3 a 25°C. The adhesive used is a medical grade epoxy called LOCTITE® M31 CLTM from the manufacturer HENKEL IBÉRICA, SA. It was selected from among 5 products based on the results obtained from the adhesion test carried out in the aforementioned reference (Suffo et al. , 2020). It is a two-component adhesive based on a resin and a hardener (ratio 2:1, resin:hardener), whose mixture results in an almost transparent color, low viscosity and a specific gravity of 1.07 kg/cm3 at 25°C. .

La síntesis de los aerogeles aparece descrita en (Reyes-Peces et al., 2020). Para los xerogeles se usa el mismo procedimiento, tan solo difiere en el secado, que en el primero se realiza con CO 2 supercrítico, y en el segundo, se dejar evaporar el etanol a 50°C. Según este trabajo, las muestras sintetizadas tienen una composición de quitosano que oscila entre el (4-20%) en peso respecto a la sílice y todas ellas han demostrado ser bioactivas y no producir citotoxidad.The synthesis of aerogels is described in (Reyes-Peces et al., 2020). The same procedure is used for xerogels, it only differs in drying, which in the first is done with supercritical CO 2 , and in the second, the ethanol is allowed to evaporate at 50°C. According to this work, the synthesized samples have a chitosan composition that oscillates between (4-20%) by weight with respect to silica and all of them have been shown to be bioactive and not produce cytotoxicity.

Una vez obtenido el material sol-gel, se procede a la molturación manual en mortero de ágata. A continuación, se procede a mezclar de forma manual el aerogel/xerogel con el adhesivo epoxi biocompatible hasta obtener un material híbrido con textura homogénea. Para comprobar si el adhesivo afecta a las propiedades de los aerogeles y xerogeles, se ha seleccionado una de las composiciones descritas en la referencia dada anteriormente, en este caso, 4% de quitosano, para realizar los distintos ensayos. Los resultados obtenidos se podrán extrapolar al resto de las composiciones al ser todas ellas bioactivas y no citotóxicas. La mezcla con el adhesivo se realizó siguiendo unas proporciones diferentes para aerogel y xerogel, debido a que tienen distintas densidades y superficies específicas, como aparece en la Tabla 1, lo que afecta a su comportamiento. Para simplificar la nomenclatura, se seguirá el siguiente código: AnR y XmR, donde A hace referencia a aerogel y X a xerogel, siendo n y m la proporción en peso aerogel: resina y xerogel resina, respectivamente. Las proporciones preparadas aparecen en la Tabla 2. Estas mezclas curan en 90 minutos a 50°C y han soportado el proceso de esterilización en autoclave sin deformación ni cambios de fase.Once the sol-gel material is obtained, it is manually ground in an agate mortar. Next, the aerogel/xerogel is mixed manually with the biocompatible epoxy adhesive until a hybrid material with a homogeneous texture is obtained. To check if the adhesive affects the properties of aerogels and xerogels, one of the compositions described in the reference given above has been selected, in this case, 4% chitosan, to carry out the different tests. The results obtained can be extrapolated to the rest of the compositions as they are all bioactive and non-cytotoxic. The mixture with the adhesive was carried out following different proportions for aerogel and xerogel, since they have different densities and specific surfaces, as shown in Table 1, which affects their behavior. To simplify the nomenclature, the following code will be followed: AnR and XmR, where A refers to airgel and X to xerogel, where n and m are the ratio by weight of airgel: resin and xerogel resin, respectively. The proportions prepared appear in Table 2. These mixtures cure in 90 minutes at 50°C and have withstood the autoclaving process without deformation or phase changes.

Tabla 1. Resultados de densidad y superficies específicaTable 1. Results of density and specific surfaces

Figure imgf000010_0002
Figure imgf000010_0002

Tabla 2. Proporciones usadas para el material híbridoTable 2. Proportions used for hybrid material

Figure imgf000010_0001
Figure imgf000010_0001

Figure imgf000011_0002
Figure imgf000011_0002

Una vez preparadas los distintos materiales híbridos que aparecen en la Tabla 2, se aplica a modo de recubrimiento, por inmersión o espátula, sobre distintos soportes y se deja secar a temperatura ambiente. Los materiales soporte sobre los que se aplican se indican en la Tabla 3. Posteriormente las muestras se sumergen en SBF, que ha sido sintetizado siguiendo la receta de (Kokubo & Takadama, 2006). Tras 7 días de inmersión se extraen del SBF, se lavan y se dejan secar a 50°C. La Figura 1 muestra las imágenes correspondientes obtenidas por microscopía electrónica de barrido, donde se observa crecimiento de HA sobre su superficie, excepto en el material híbrido A 0 . 12 R. Por lo que se puede afirmar que el material híbrido a base de aerogel es bioactivo entre las proporciones 0.25:1, y 0.40:1 y el material híbrido a base de xerogel es bioactivo en todas las proporciones usadas (0.20:1 y 0.85:1).Once the different hybrid materials that appear in Table 2 have been prepared, it is applied as a coating, by immersion or spatula, on different supports and is allowed to dry at room temperature. The support materials on which they are applied are indicated in Table 3. Subsequently, the samples are immersed in SBF, which has been synthesized following the recipe of (Kokubo & Takadama, 2006). After 7 days of immersion, they are extracted from the SBF, washed and allowed to dry at 50°C. Figure 1 shows the corresponding images obtained by scanning electron microscopy, where HA growth is observed on its surface, except in the hybrid material A 0 . 12 R. Therefore, it can be affirmed that the airgel-based hybrid material is bioactive between the proportions 0.25:1 and 0.40:1 and the xerogel-based hybrid material is bioactive in all the proportions used (0.20:1 and 0.85:1).

Tabla 3. Datos de materiales y fabricantes usados en el ensayo de viabilidad celular.Table 3. Data of materials and manufacturers used in the cell viability assay.

Figure imgf000011_0001
Figure imgf000011_0001

Por último, se realizan cultivos celulares con COPH en presencia de los distintos biomateriales para conocer si el material afecta a la viabilidad celular.Finally, cell cultures with COPH are carried out in the presence of the different biomaterials to determine if the material affects cell viability.

Para dicho estudio de viabilidad celular, COPH se cultivaron en medios osteogénicos y se realizaron ensayos de viabilidad/citotoxicidad a 7 días. En este ensayo, denominado LIVE/DEAD, las células muertas se marcan con EthD-1 y las vivas con Calceína AM. Como control negativo, antes del proceso de marcaje, se incubaron cultivos de COPH con metanol al 70% durante 30 minutos. Como control positivo se usaron cultivos de COPH sin ningún tratamiento. For said cell viability study, COPH were cultured in osteogenic media and viability/cytotoxicity assays were performed at 7 days. In this assay, called LIVE/DEAD, dead cells are labeled with EthD-1 and live cells with Calcein AM. As a negative control, prior to the labeling process, COPH cultures were incubated with 70% methanol for 30 minutes. Cultures of COPH without any treatment were used as a positive control.

En primer lugar, se eliminó el medio de cultivo, posteriormente se lavaron con PBS y finalmente se añadió la solución de marcaje. Después de una incubación de 30 minutos a temperatura ambiente, se observaron bajo microscopía de fluorescencia.First, the culture medium was removed, then they were washed with PBS and finally the labeling solution was added. After a 30 minute incubation at room temperature, they were observed under fluorescence microscopy.

BREVE DESCRIPCIÓN DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS

Figura 1. Resultados obtenidos en el ensayo de bioactividad tras una semana en SBF para los recubrimientos con 4% de quitosano. (a)y (b) X0.25R, (c) y (d) X0.75R, e) y f) X0.85R, g) y h) A0.12R, i) y j) A0.25R, k) y l) A0.40R. Figure 1. Results obtained in the bioactivity test after one week in SBF for the coatings with 4% chitosan. (a) and (b) X0.25R, (c) and (d) X0.75R, e) and f) X0.85R, g) and h) A0.12R, i) and j) A0.25R, k) and l) A0.40R.

Figura 2. Resultados obtenidos en el ensayo de viabilidad celular. Figure 2. Results obtained in the cell viability assay.

REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION

Se sintetiza el material a partir de una solución de quitosano al 2% en peso en ácido acético 0.5M a la que se añade GPTMS en una relación molar GPTMS/quitosano 2:1 y una solución de TEOS hidrolizado bajo el efecto catalizador de ultrasonidos de alta potencia con ácido clorhídrico 0.1M. Posteriormente, se mezclan ambas disoluciones hasta obtener un 4% en peso de quitosano respecto a la sílice. Esta mezcla se deja agitar 30 minutos y después se vierte en botes cilíndricos de plástico y se dejan en estufa durante 10 días a 50°C donde gelificarán. Tras este tiempo, las muestras se introducen en etanol. Después tiene lugar el secado. En este caso, se seca con CO 2 en condiciones supercríticas. De esta forma se obtiene un aerogel con 4% de quitosano respecto a la sílice y una relación molar GPTMS: quitosano 2:1.The material is synthesized from a 2% by weight chitosan solution in 0.5M acetic acid to which GPTMS is added in a 2:1 GPTMS/chitosan molar ratio and a solution of hydrolyzed TEOS under the catalytic effect of ultrasonic high power with 0.1M hydrochloric acid. Subsequently, both solutions are mixed until 4% by weight of chitosan with respect to silica is obtained. This mixture is allowed to stir for 30 minutes and then it is poured into cylindrical plastic cans and left in an oven for 10 days at 50°C where they will gel. After this time, the samples are introduced into ethanol. Then drying takes place. In this case, it is dried with CO 2 under supercritical conditions. In this way, an airgel with 4% chitosan with respect to silica and a 2:1 GPTMS: chitosan molar ratio is obtained.

Este material se moltura manualmente hasta obtener un polvo y se mezcla con el adhesivo en una relación en peso aerogel: adhesivo de 0.25:1. Una vez obtenida una mezcla homogénea se aplica sobre la superficie de una muestra de titanio y se deja secar durante 24h. Posteriormente, se introduce en SBF y se observa que crece tras 7 días inmersas aparece HA sobre su superficie, tal y como se observa por microscopía electrónica de barrido (ver Figura 1 j) k) ), lo que demuestra que el material A 0 . 25 R es bioactivo.This material is hand-ground to a powder and mixed with the adhesive at an airgel:adhesive weight ratio of 0.25:1. Once a homogeneous mixture is obtained, it is applied to the surface of a titanium sample and allowed to dry for 24 hours. Subsequently, it is introduced into SBF and it is observed that it grows after 7 days immersed, HA appears on its surface, as observed by scanning electron microscopy (see Figure 1 j) k) ), which shows that the material A 0 . 25 R is bioactive.

Por último, para analizar si las diferentes muestras metálicos y no metálicos recubiertas con el material afectan a la viabilidad de las células, se realizan cultivos celulares con COPH en presencia de los distintos biomateriales. Lastly, to analyze whether the different metallic and non-metallic samples coated with the material affect the viability of the cells, cell cultures are performed with COPH in the presence of the different biomaterials.

Para dicho estudio de viabilidad celular, COPH se cultivaron en medios osteogénicos y se realizaron ensayos de viabilidad/citotoxicidad a 7 días. En este ensayo, denominado LIVE/DEAD, las células muertas se marcan con EthD-1 y las vivas con Calceína AM. Como control negativo, antes del proceso de marcaje, se incubaron cultivos de COPH con metanol al 70% durante 30 minutos. Como control positivo se usaron cultivos de COPH sin ningún tratamiento.For said cell viability study, COPH were cultured in osteogenic media and viability/cytotoxicity assays were performed at 7 days. In this assay, called LIVE/DEAD, dead cells are labeled with EthD-1 and live cells with Calcein AM. As a negative control, prior to the labeling process, COPH cultures were incubated with 70% methanol for 30 minutes. Cultures of COPH without any treatment were used as a positive control.

En primer lugar, se eliminó el medio de cultivo, posteriormente se lavaron con PBS y finalmente se añadió la solución de marcaje. Después de una incubación de 30 minutos a temperatura ambiente, se observaron bajo microscopía de fluorescencia.First, the culture medium was removed, then they were washed with PBS and finally the labeling solution was added. After a 30 minute incubation at room temperature, they were observed under fluorescence microscopy.

Para el análisis de la intensidad de las distintas fluorescencias se usó el software ImageJ, realizándose para su representación la relación entre ambos marcadores (Figura 2).For the analysis of the intensity of the different fluorescences, the ImageJ software was used, performing the relationship between both markers for its representation (Figure 2).

Según los resultados obtenidos y presentados en la Figura 2, se demuestra que los distintos materiales metálicos y no metálicos recubiertos con el material no afectan a la viabilidad celular de las COPH, observándose una clara diferencia entre los distintos materiales estudiados frente al control negativo. Recordar que este control negativo son COPH tratadas con un citotóxico conocido como el Metanol al 70% durante 30 minutos. Mientras que se obtienen resultados similares entre el control positivo y los COPH tratados con los distintos materiales. En detalle, podemos observar que el material ULTEM tiene un interesante efecto positivo en la viabilidad celular de las COPH cuando comparamos este tratamiento con los controles positivos, aunque hay que indicar que este efecto debe de ser estudiado en más profundidad en futuros ensayos funcionales. Los demás materiales (PEEK Z, PEEK E, PLA-CB y Ti) tienen una compatibilidad celular similar a las COPH en un estado de crecimiento normal (control positivo), y por lo tanto, en estos ensayos podemos descartar que dichos materiales tengan algún efecto citotóxico en células osteoblásticas humanas, como sí observamos en el control negativo (Metanol al 70%).According to the results obtained and presented in Figure 2, it is shown that the different metallic and non-metallic materials coated with the material do not affect the cell viability of the POCH, observing a clear difference between the different materials studied compared to the negative control. Remember that this negative control is COPH treated with a cytotoxic known as 70% Methanol for 30 minutes. While similar results are obtained between the positive control and the COPH treated with the different materials. In detail, we can observe that the ULTEM material has an interesting positive effect on the cell viability of the COPH when we compare this treatment with the positive controls, although it should be noted that this effect must be studied in more depth in future functional assays. The other materials (PEEK Z, PEEK E, PLA-CB and Ti) have a similar cell compatibility to the COPH in a state of normal growth (positive control), and therefore, in these tests we can rule out that these materials have any cytotoxic effect on human osteoblastic cells, as we observed in the negative control (70% Methanol).

Modo en el que la invención es susceptible de aplicación industrialMode in which the invention is capable of industrial application

Los recubrimientos óseos disponibles actualmente, se dispensan independientemente a las prótesis. Los adhesivos epoxi grado médico comercialmente accesible como el LOCTITE M31CL se dispensan mediante botes de doble canaladura para aplicar con pistola. La aplicación origen de la presente invención en el sector biomédico debe dispensarse junto a la propia prótesis, con la dosis adecuada de recubrimiento, o bien, por separado en sobres plastificados y esterilizados, listos para aplicar directamente sobre una superficie implantable o como relleno óseo para aplicarlo sobre la zona admitiendo unas gotas de suero sanguíneo con carácter previo a la aplicación. Currently available bone coatings are dispensed independently of the prostheses. Commercially available medical grade epoxy adhesives such as LOCTITE M31CL is dispensed from double-grooved cans for spray application. The original application of the present invention in the biomedical sector must be dispensed together with the prosthesis itself, with the appropriate coating dose, or else separately in sterilized plasticized sachets, ready to be applied directly to an implantable surface or as bone filler for apply it to the area admitting a few drops of blood serum prior to application.

Claims (7)

REIVINDICACIONES 1. Material para recubrimiento híbrido adhesivo/sol-gel caracterizado por que se compone de un material sol-gel (aerogel o xerogel), constituido por tetraetilortosilicato (TEOS) y quitosano (4-20% en peso), con unión sólida mediada por un adhesivo epoxi comercial grado médico.1. Material for hybrid adhesive/sol-gel coating characterized in that it is made up of a sol-gel material (airgel or xerogel), made up of tetraethylorthosilicate (TEOS) and chitosan (4-20% by weight), with solid binding mediated by a commercial medical grade epoxy adhesive. 2. Material para recubrimiento híbrido adhesivo/sol-gel, según reivindicación 1, caracterizado por que la proporción aerogel: adhesivo epoxi > 0.25:1 y < 0.40:1 (p/p).2. Material for hybrid adhesive/sol-gel coating, according to claim 1, characterized in that the proportion of airgel: epoxy adhesive is > 0.25:1 and < 0.40:1 (w/w). 3. Material para recubrimiento híbrido adhesivo/sol-gel, según reivindicación 1, caracterizado por que la proporción xerogel: adhesivo epoxi > 0.20:1 y < 0.85:1 (p/p).3. Material for hybrid adhesive/sol-gel coating, according to claim 1, characterized in that the xerogel: epoxy adhesive ratio > 0.20:1 and < 0.85:1 (w/w). 4. Uso del material para recubrimiento híbrido adhesivo/sol-gel, según reivindicaciones 1 a 3, para su aplicación en ingeniería tisular y biomecánica.4. Use of the material for hybrid adhesive/sol-gel coating, according to claims 1 to 3, for its application in tissue and biomechanical engineering. 5. Uso del material para recubrimiento híbrido adhesivo/sol-gel, según reivindicaciones 1 a 3, para su aplicación en superficies de elementos implantables.5. Use of the material for hybrid adhesive/sol-gel coating, according to claims 1 to 3, for its application on surfaces of implantable elements. 6. Uso del material para recubrimiento híbrido adhesivo/sol-gel, según reivindicaciones 1 a 3, para su aplicación en prótesis metálicas.6. Use of the material for hybrid adhesive/sol-gel coating, according to claims 1 to 3, for its application in metal prostheses. 7. Uso del material para recubrimiento híbrido adhesivo/sol-gel, según reivindicaciones 1 a 3, para su aplicación en prótesis no metálicas. 7. Use of the material for hybrid adhesive/sol-gel coating, according to claims 1 to 3, for its application in non-metallic prostheses.
ES202130841A 2021-09-09 2021-09-09 HYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS Active ES2935742B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES202130841A ES2935742B2 (en) 2021-09-09 2021-09-09 HYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS
PCT/ES2022/070560 WO2023037026A1 (en) 2021-09-09 2022-09-05 Hybrid coating based on a mixture of adhesive composite material for use on surfaces of implantable elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES202130841A ES2935742B2 (en) 2021-09-09 2021-09-09 HYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS

Publications (2)

Publication Number Publication Date
ES2935742A1 ES2935742A1 (en) 2023-03-09
ES2935742B2 true ES2935742B2 (en) 2023-07-28

Family

ID=85413463

Family Applications (1)

Application Number Title Priority Date Filing Date
ES202130841A Active ES2935742B2 (en) 2021-09-09 2021-09-09 HYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS

Country Status (2)

Country Link
ES (1) ES2935742B2 (en)
WO (1) WO2023037026A1 (en)

Also Published As

Publication number Publication date
WO2023037026A1 (en) 2023-03-16
ES2935742A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
Chopra et al. Advancing dental implants: Bioactive and therapeutic modifications of zirconia
Najeeb et al. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics
Civantos et al. Titanium coatings and surface modifications: toward clinically useful bioactive implants
Ahn et al. Modification of titanium implant and titanium dioxide for bone tissue engineering
Liu et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology
Jiang et al. Design of dental implants at materials level: An overview
Park et al. Osteoblast response and osseointegration of a Ti–6Al–4V alloy implant incorporating strontium
Oshida et al. Dental implant systems
Zan et al. Effect of roughness on in situ biomineralized CaP-collagen coating on the osteogenesis of mesenchymal stem cells
John et al. Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics
Park et al. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry
Ting et al. Classification and effects of implant surface modification on the bone: human cell–based in vitro studies
Bruschi et al. Composition and modifications of dental implant surfaces
Najeeb et al. Dental implants materials and surface treatments
Park et al. Enhanced osteoconductivity of micro‐structured titanium implants (XiVE S CELLplus™) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur
Al-Zubaidi et al. Improvements in clinical durability from functional biomimetic metallic dental implants
Khurshid et al. Titanium, zirconia, and polyetheretherketone (PEEK) as a dental implant material
US20190002282A1 (en) Magnesium phosphate hydrogels
Paul et al. Human gingival fibroblast proliferation on materials used for dental implant abutments: a systematic review.
Jambhulkar et al. A review on surface modification of dental implants among various implant materials
Sun et al. Surface modifications for zirconia dental implants: a review
Souza et al. Nanostructured biomaterials for cranio-maxillofacial and oral applications
ES2935742B2 (en) HYBRID COATING BASED ON A MIXTURE OF ADHESIVE COMPOSITE MATERIAL, FOR APPLICATION ON SURFACES OF IMPLANTABLE ELEMENTS
Park Osseointegration of two different phosphate ion‐containing titanium oxide surfaces in rabbit cancellous bone
He et al. Design of cefotaxime sodium-loaded polydopamine coatings with controlled surface roughness for titanium implants

Legal Events

Date Code Title Description
BA2A Patent application published

Ref document number: 2935742

Country of ref document: ES

Kind code of ref document: A1

Effective date: 20230309

FG2A Definitive protection

Ref document number: 2935742

Country of ref document: ES

Kind code of ref document: B2

Effective date: 20230728