ES2908523A1 - Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19 (Machine-translation by Google Translate, not legally binding) - Google Patents

Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19 (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2908523A1
ES2908523A1 ES202031084A ES202031084A ES2908523A1 ES 2908523 A1 ES2908523 A1 ES 2908523A1 ES 202031084 A ES202031084 A ES 202031084A ES 202031084 A ES202031084 A ES 202031084A ES 2908523 A1 ES2908523 A1 ES 2908523A1
Authority
ES
Spain
Prior art keywords
covid
andrographolide
treatment
sars
cov
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
ES202031084A
Other languages
Spanish (es)
Inventor
Buceta Eva María Rivero
Asunción Pablo Botella
Agut Carla Vidaurre
Baviera José María Benlloch
García Beatriz Novoa
Huerta Antonio Figueras
Aseguinolaza Gloria González
Picazo Cristian Smerdou
Lucena Antonio A Pineda
Cardoso Felipe Luis Prósper
Ballbé Josepmaría Argemí
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Politecnica de Valencia
Universidad de Navarra
Fundacion para la Investigacion Medica Aplicada
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Universidad Politecnica de Valencia
Universidad de Navarra
Fundacion para la Investigacion Medica Aplicada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC, Universidad Politecnica de Valencia, Universidad de Navarra, Fundacion para la Investigacion Medica Aplicada filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES202031084A priority Critical patent/ES2908523A1/en
Priority to PCT/ES2021/070770 priority patent/WO2022090597A1/en
Publication of ES2908523A1 publication Critical patent/ES2908523A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/19Acanthaceae (Acanthus family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19. Andrographic derivatives for use as an antiviral for the treatment of COVID-19 disease or pulmonary fibrosis associated with COVID-19. (Machine-translation by Google Translate, not legally binding)

Description

DESCRIPCIÓNDESCRIPTION

Derivados de androqrafólido para su uso en el tratamiento de la enfermedad CoV¡D-19 v fibrosis pulmonar asociada a CoV¡D-19Androqrafolide derivatives for use in the treatment of CoV¡D-19 disease and CoV¡D-19 associated pulmonary fibrosis

La presente invención se refiere a un derivado de andrografólido para su uso como antiviral para el tratamiento de la enfermedad CoViD-19 o fibrosis pulmonar asociada a CoViD-19.The present invention relates to an andrographolide derivative for use as an antiviral for the treatment of CoViD-19 disease or CoViD-19 associated pulmonary fibrosis.

ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION

La rápida expansión de la pandemia mundial CoViD-19 ha supuesto una grave amenaza para los sistemas de salud de todos los países debido a su alta tasa de hospitalización y mortalidad. Un porcentaje importante de los enfermos de CoViD-19 fallecen a causa de la tormenta de citoquinas, generada por una respuesta inflamatoria exagerada del organismo humano, frente a una infección sobre la que no posee inmunidad previa. Por otro lado, muchos de los pacientes que sobreviven a la enfermedad después de su estancia de mayor o menor duración en la Unidad de Cuidados Intensivos (UCI), quedan con secuelas pulmonares graves debido a la tormenta de citoquinas.The rapid expansion of the global CoViD-19 pandemic has posed a serious threat to health systems in all countries due to its high hospitalization and mortality rates. A significant percentage of CoViD-19 patients die from the cytokine storm, generated by an exaggerated inflammatory response of the human body, against an infection for which it has no prior immunity. On the other hand, many of the patients who survive the disease after their stay of greater or lesser duration in the Intensive Care Unit (ICU), are left with serious pulmonary sequelae due to the cytokine storm.

La industria farmacéutica ha desarrollado varios anticuerpos monoclonales dirigidos a inhibir citoquinas inflamatorias. Así, Tocilizumab (Roche), Sarilumab (Sanofi), Siltuximab (Eusa Pharma) son inhibidores de lnterleucina-6 (IL-6); Anakinra (Amgen) es un inhibidor de lnterleucina-1 (IL-1) y Canakinumab (Novartis) es un inhibidor de IL-ip. La IL-1beta IL-ip controla el inflamasoma y, por lo tanto, su inhibición resulta importante en el manejo de la inflamación.The pharmaceutical industry has developed several monoclonal antibodies directed at inhibiting inflammatory cytokines. Thus, Tocilizumab (Roche), Sarilumab (Sanofi), Siltuximab (Eusa Pharma) are interleukin-6 (IL-6) inhibitors; Anakinra (Amgen) is an interleukin-1 (IL-1) inhibitor and Canakinumab (Novartis) is an IL-ip inhibitor. IL-1beta IL-ip controls the inflammasome and therefore its inhibition is important in the management of inflammation.

Por otro lado, la industria farmacéutica ha desarrollado además fármacos capaces de inhibir vías moleculares intracelulares que tienen también un efecto en el control de la inflamación. Así, por ejemplo, Baricitinib (Olumiant) es un inhibidor de la vía JAK1/JAK2.On the other hand, the pharmaceutical industry has also developed drugs capable of inhibiting intracellular molecular pathways that also have an effect on the control of inflammation. Thus, for example, Baricitinib (Olumiant) is an inhibitor of the JAK1/JAK2 pathway.

Muchos de los compuestos anteriores se han utilizado en ensayos clínicos durante la pandemia CoViD-19 para intentar reducir la respuesta inflamatoria frente al virus SARS-CoV-2. Many of the above compounds have been used in clinical trials during the CoViD-19 pandemic to try to reduce the inflammatory response against the SARS-CoV-2 virus.

Sin embargo, dichos fármacos adolecen de varias limitaciones en la práctica: muchas veces los anticuerpos monoclonales presentan una toxicidad elevada que se refleja en la aparición de efectos secundarios importantes; inhiben solamente un componente de la inflamación sin abordar la tormenta de citoquinas en conjunto; se dirigen exclusivamente a inhibir la respuesta inflamatoria en lugar de modularla.However, these drugs suffer from several limitations in practice: monoclonal antibodies often have a high toxicity that is reflected in the appearance of significant side effects; they inhibit only one component of inflammation without addressing the cytokine storm altogether; they are aimed exclusively at inhibiting the inflammatory response instead of modulating it.

Desde hace siglos en el Ayurveda (medicina tradicional de la India) se utiliza el principio activo andrografólido, presente en la planta de origen en India Andrographis paniculata, para el tratamiento de enfermedades respiratorias agudas.For centuries in Ayurveda (traditional Indian medicine) the active principle andrographolide, present in the plant of Indian origin Andrographis paniculata, has been used for the treatment of acute respiratory diseases.

La industria farmacéutica china ha desarrollado en el pasado un fármaco inyectable denominado Xiyanping. Aunque en el artículo D. Zhang et al., The clinical benefits of Chinese patent medicines against CoViD-19 based on current evidence, Pharm. Res. The Chinese pharmaceutical industry has in the past developed an injectable drug called Xiyanping. Although in the article D. Zhang et al., The clinical benefits of Chinese patent medicines against CoViD-19 based on current evidence, Pharm. Beef.

157 (2020) 104882, se menciona que dicho fármaco consiste principalmente en sulfonato de andrografólido, aunque en realidad se trata de un preparado semisintético que contiene una mezcla de dos derivados de andrografólido, 9-dehidro-17-hidroandrografólido, y 9-dehidro-17-hidro- andrografólido -19-il sulfato, derivados estructurales del andrografólido diferentes a los presentados en esta invención.157 (2020) 104882, it is mentioned that said drug consists mainly of andrographolide sulfonate, although in reality it is a semi-synthetic preparation that contains a mixture of two derivatives of andrographolide, 9-dehydro-17-hydroandrographolide, and 9-dehydro- 17-hydro-andrographolide-19-yl sulfate, structural derivatives of andrographolide different from those presented in this invention.

El Xiyanping también se ha utilizado como alternativa eficaz a los antibióticos en la práctica clínica (Q. Li, et al., Xiyanping plus azithromycin chemotherapy in pediatric patients with mycoplasma pneumoniae pneumonia: a systematic review and metaanalysis of efficacy and safety, Evid.-Based Compl. Alt. 2019 (2019) 2346583).Xiyanping has also been used as an effective alternative to antibiotics in clinical practice (Q. Li, et al., Xiyanping plus azithromycin chemotherapy in pediatric patients with mycoplasma pneumoniae pneumonia : a systematic review and metaanalysis of efficacy and safety, Evid.- Based Compl Alt 2019 (2019) 2346583).

El Xiyanping también resulta eficaz como antipirético y antiinflamatorio (Q.W. Yang, et al., Crystal structure and anti-inflammatory and anaphylactic effects of andrographlide sulphonate E in Xiyanping, a traditional Chinese medicine injection, J. Pharm. Pharmacol. 71 (2) (2019) 251-259).Xiyanping is also effective as an antipyretic and anti-inflammatory (QW Yang, et al., Crystal structure and anti-inflammatory and anaphylactic effects of andrographlide sulphonate E in Xiyanping, a traditional Chinese medicine injection, J. Pharm. Pharmacol. 71 (2) ( 2019) 251-259).

Igualmente, el Xiyanping mejora los síntomas respiratorios, inhibe las infecciones bacterianas oportunistas, y regula la función inmune, con menor riesgo clínico, especialmente mediante cierta protección hepática, sugiriendo que puede aliviar el daño producido en el hígado por ciertos fármacos durante el tratamiento del CoViD-19 en casos agudos (N. Cai, et al., Theoretical basis and effect characteristics of andrographolide against CoViD-19, Chin. Tradit. Herb. Drugs 51 (5) (2020) 1159-1166). Likewise, Xiyanping improves respiratory symptoms, inhibits opportunistic bacterial infections, and regulates immune function, with less clinical risk, especially through some liver protection, suggesting that it can alleviate the damage caused to the liver by certain drugs during CoViD treatment. -19 in acute cases (N. Cai, et al., Theoretical basis and effect characteristics of andrographolide against CoViD-19, Chin. Tradit. Herb. Drugs 51 (5) (2020) 1159-1166).

Además, se ha reportado la actividad del Xiyanping sobre la mejora en casos de sepsis en ratones mediante la supresión de las vías de señalización MAPK, STAT3 and NF-kB, que juegan un papel importante en las enfermedades pulmonares (W. Guo, et al., Watersoluble andrographolide sulfonate exerts anti-sepsis action in mice through downregulating p38 MAPK, STAT3 and NF-kB pathways, Int. Immunopharmacol. 14 (4) (2012) 613-619).In addition, Xiyanping activity has been reported to improve sepsis in mice by suppressing MAPK, STAT3 and NF- k B signaling pathways, which play an important role in lung diseases (W. Guo, et al . al., Watersoluble andrographolide sulfonate exerts anti-sepsis action in mice through downregulating p38 MAPK, STAT3 and NF-kB pathways, Int. Immunopharmacol. 14 (4) (2012) 613-619).

Por otro lado, se ha estudiado la posibilidad de utilizar el andrografólido y otros compuestos fitoquímicos naturalmente presentes en Andrographis paniculata como antivirales mediante métodos computacionales. Así, muy recientemente se ha explorado la interacción del andrografólido mediante modelización computacional del acoplamiento molecular (docking) con componentes específicos del SARS-CoV-2 para el tratamiento del síndrome respiratorio agudo asociado a la CoViD-19. En este contexto, S. Alagu Lakshmi et al., Ethnomedicines of Indian origin for combating CoViD-19 infection by hampering the viral replication: using structure-based drug discovery approach. J. Biomol. Struct. Dyn. (2020), doi: 10.1080/07391102.2020.1778537) indican la afinidad del bis-andrografólido por la proteasa principal 3CLpro del SARS-CoV-2, lo que potencialmente le permitiría inhibir esta enzima.On the other hand, the possibility of using andrographolide and other phytochemical compounds naturally present in Andrographis paniculata as antivirals has been studied using computational methods. Thus, very recently the interaction of andrographolide has been explored by computational modeling of molecular docking with specific components of SARS-CoV-2 for the treatment of acute respiratory syndrome associated with CoViD-19. In this context, S. Alagu Lakshmi et al., Ethnomedicines of Indian origin for combating CoViD-19 infection by hampering the viral replication: using structure-based drug discovery approach. J. Biomol. Struct. Dyn. (2020), doi: 10.1080/07391102.2020.1778537) indicate the affinity of bis-andrographolide for the main protease 3CLpro of SARS-CoV-2, which would potentially allow it to inhibit this enzyme.

La afinidad andrografólido-proteasa principal 3CLpro del SARS-CoV-2 es igualmente descrita por S.K. Enmozhi et al., Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach, J. Biomol. Struct. Dyn. (2020), doi: 10.1080/07391102.2020.1760136).The andrographolide-3CLpro main protease affinity of SARS-CoV-2 is also described by SK Enmozhi et al., Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach, J. Biomol. Struct. Dyn. (2020), doi: 10.1080/07391102.2020.1760136).

Asimismo, Shi et al han demostrado que tanto el andrografólido como su derivado fluorescente, el andrografólido conjugado con nitrobenzoxadiazol (Andro-NBD), inhiben la actividad de la proteasa principal de SARS-CoV-2 in vitro\ Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem Biophys Res Commun. 2020 Aug 25; doi: 10.1016/j.bbrc.2020.08.086.Likewise, Shi et al have shown that both andrographolide and its fluorescent derivative, andrographolide conjugated with nitrobenzoxadiazole (Andro-NBD), inhibit the activity of the main protease of SARS-CoV-2 in vitro\ Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem Biophys Res Commun. 2020 Aug 25; doi: 10.1016/j.bbrc.2020.08.086.

Por su parte, D. Sivaraman and P.S. Pradeep, Scope of phytotherapeutics in targeting ACE2 mediated host-viral interface of SARS-CoV2 that causes CoViD-19, doi: 10.26434/chemrxiv.12089730.v1) describen el bloqueo del receptor celular ACE2 por andrografólido.For their part, D. Sivaraman and PS Pradeep, Scope of phytotherapeutics in targeting ACE2 mediated host-viral interface of SARS-CoV2 that causes CoViD-19, doi: 10.26434/chemrxiv.12089730.v1) describe the blockade of the ACE2 cell receptor by andrographolide.

Asimismo, usando métodos computacionales de docking y de dinámica molecular, se ha valorado la utilización del andrografólido y tres derivados estructurales (14-deoxi-11,12-didehidro andrografólido, neoandrografólido y 14-deoxi andrografólido) frente a cuatro dianas del virus SARS-CoV-2, incluyendo tres proteínas no estructurales (proteasa principal 3CLpro, PLpro y polimerasa RNA dirigida a RNA RdRp) y una proteína estructural (spike protein (S)), que son responsables de la replicación, transcripción e internalización celular del virus, seleccionando al neoandrogafólido como el mejor inhibidor (N.A. Murugan et al., Computational investigation on Andrographis paniculata phytochemicals to evalúate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug triáis, J. Biomol. Struct. Dyn. (2020), doi: 10.1080/07391102.2020.1777901).Likewise, using computational docking and molecular dynamics methods, the use of andrographolide and three structural derivatives (14-deoxy-11,12-didehydro andrographolide, neoandrographolide and 14-deoxy andrographolide) against four targets of the SARS- CoV-2, including three nonstructural proteins (major protease 3CLpro, PLpro, and RNA-directed RNA polymerase RdRp) and one structural protein ( spike protein (S)), which are responsible for virus replication, transcription, and cellular internalization, selecting neoandrogafolide as the best inhibitor (NA Murugan et al., Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials, J. Biomol. Struct. Dyn. (2020) , doi: 10.1080/07391102.2020.1777901).

Finalmente, en un estudio por docking sobre 27 metabolitos de origen vegetal, analizando el acoplamiento de los mismos con diversas dianas del virus (proteasa principal, proteína Nsp9, dominio del receptor spike, ectodominio del receptor spike y dominio HR2), no se seleccionó al andrografólido como significativo frente al SARS-CoV-2 comparado con otros compuestos (K.F. Azim et al., Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach, Informatics in Medicine Unlocked 20 (2020) 100367).Finally, in a docking study on 27 metabolites of plant origin, analyzing their coupling with various virus targets (major protease, Nsp9 protein, spike receptor domain , spike receptor ectodomain and HR2 domain), the andrographolide as significant against SARS-CoV-2 compared to other compounds (KF Azim et al., Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach, Informatics in Medicine Unlocked 20 (2020) 100367 ).

Además, se ha testado el andrografólido como antiviral en un dispositivo microarray que contenían algunos de las proteínas principales del virus SARS-CoV-2, obteniendo resultados positivos (P. Chen et al., Establishment and validation of a drug-target microarray for SARS-CoV-2, doi: 10.1080/07391102.2020.1777901).In addition, andrographolide has been tested as an antiviral in a microarray device containing some of the main proteins of the SARS-CoV-2 virus, obtaining positive results (P. Chen et al., Establishment and validation of a drug-target microarray for SARS -CoV-2, doi: 10.1080/07391102.2020.1777901).

Por otro lado, se ha sugerido la utilización del andrografólido en combinación con melatonina como tratamiento potencialmente eficaz contra CoViD-19. (A. Banerjee et al., Crosstalk between endoplasmic reticulum stress and anti-viral activities: A novel therapeutic target for CoViD-19, Life Sciences 255 (2020) 117842)On the other hand, the use of andrographolide in combination with melatonin has been suggested as a potentially effective treatment against CoViD-19. (A. Banerjee et al., Crosstalk between endoplasmic reticulum stress and anti-viral activities: A novel therapeutic target for CoViD-19, Life Sciences 255 (2020) 117842)

Por todo ello, resulta crítico desarrollar nuevos fármacos antivirales, que presenten una baja toxicidad y que además tenga una alta biodisponibilidad en el tracto respiratorio. For all these reasons, it is critical to develop new antiviral drugs that have low toxicity and also have high bioavailability in the respiratory tract.

DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION

En un primer aspecto, la presente invención se refiere a un compuesto seleccionado de:In a first aspect, the present invention relates to a compound selected from:

Figure imgf000006_0001
Figure imgf000006_0001

para su uso como antiviral en el tratamiento de CoViD-19 o de fibrosis pulmonar asociada a CoViD-19.for use as an antiviral in the treatment of CoViD-19 or pulmonary fibrosis associated with CoViD-19.

En otra realización, la invención se refiere al compuesto para el uso definido anteriormente, donde el compuesto se selecciona de AG3 o AG5.In another embodiment, the invention relates to the compound for the use defined above, where the compound is selected from AG3 or AG5.

En otra realización la invención se refiere al compuesto para el uso definido anteriormente, caracterizado porque se puede administrar por vía parenteral o por vía oral.In another embodiment, the invention refers to the compound for the use defined above, characterized in that it can be administered parenterally or orally.

En otra realización la invención se refiere al compuesto para el uso definido anteriormente, donde el compuesto se administra a una concentración de entre 0,0001 mg/(kg h) y 10 mg/(kg h) durante un tiempo de entre 1 h a 2000 h, y preferiblemente a una concentración de entre 0,01 mg/(Kg h) y 0,25 mg/(Kg h) durante un tiempo de entre 24 h y 480 h.In another embodiment, the invention refers to the compound for the use defined above, where the compound is administered at a concentration of between 0.0001 mg/(kg h) and 10 mg/(kg h) for a time between 1 h to 2000 h, and preferably at a concentration between 0.01 mg/(Kg h) and 0.25 mg/(Kg h) for a time between 24 h and 480 h.

A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.Throughout the description and claims the word "comprise" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For Other objects, advantages and features of the invention will be apparent to those skilled in the art in part from the description and in part from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention.

BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES

FIG. 1 muestra un esquema de la evaluación del efecto antiviral de fármacos. Se muestra el esquema experimental llevado a cabo para evaluar el efecto antiviral de diferentes fármacos en células Vero E6. d0, día de la infección con SARS-CoV-2. FIG. 1 shows a scheme of the evaluation of the antiviral effect of drugs. The experimental scheme carried out to evaluate the antiviral effect of different drugs in Vero E6 cells is shown. d0, day of infection with SARS-CoV-2.

FIG. 2 muestra la evaluación del efecto antiviral de andrografólido, cloroquina e ivermectina. Se plaquearon 2 x 104 células Vero E6 (paneles superiores) y se infectaron con SARS-CoV-2 a MOI 0,05 según se muestra en la Figura 2 en ausencia (sin fármaco) o presencia de los fármacos indicados, que se añadieron 24 h antes del virus (Pre-Tr) o con el virus (sin Pre-tr). Se recogió el sobrenadante a las 48h de la infección y se cuantificaron los genomas virales mediante RT-qPCR con oligonucleótidos específicos para el gen N viral, utilizando como curva patrón un stock de SARS-CoV-2 (aislado NAVARRA-2473) que había sido titulado previemente mediante un ensayo de formación de placas de lisis. Los números sobre las barras indican el porcentaje de inhibición de la producción de SARS-CoV-2 en cada condición respecto a las células infectadas sin fármacos, indicando también la comparación estadísica entre estas muestras, que se realizó mediante un T test no pareado. *, p < 0,05; **, p < 0,01; ns, no significativo. Para todos los datos se muestra la media ± error estándar de la media. Androg, andrografólido; Clor, cloroquina; Iver, ivermectina. FIG. 2 shows the evaluation of the antiviral effect of andrographolide, chloroquine and ivermectin. 2 x 104 Vero E6 cells (upper panels) were plated and infected with SARS-CoV-2 at MOI 0.05 as shown in Figure 2 in the absence (no drug) or presence of the indicated drugs, which were added 24 h before the virus (Pre-Tr) or with the virus (without Pre-tr). The supernatant was collected 48h after infection and the viral genomes were quantified by RT-qPCR with oligonucleotides specific for the viral N gene, using a stock of SARS-CoV-2 (isolate NAVARRA-2473) that had been previously titrated by a lysis plaque formation assay. The numbers on the bars indicate the percentage of inhibition of SARS-CoV-2 production in each condition with respect to cells infected without drugs, also indicating the statistical comparison between these samples, which was performed using an unpaired T test. *, p < 0.05; **, p < 0.01; ns, not significant. For all data, the mean ± standard error of the mean is shown. Androg, andrographolide; Chlor, chloroquine; Iver, ivermectin.

FIG. 3 muestra el análisis del efecto antiviral del andrografólido y su derivado AG3 en células Vero E6. Se realizó un experimento similar al descrito en la Figura 3 en el que se probaron las concentraciones de andrografólido (AG1) y AG3 indicadas poniendo los fármacos 24h antes de la infección con SARS-CoV2 o sin fármacos como control negativo. Se recogió el sobrenadante a las 48h tras la infección y se cuantificaron los genomas virales como se describió en la figura anterior. En el eje Y izquierdo se representa el porcentaje de inhibición de la producción viral para cada concentración de cada fármaco (círculos). En un experimento paralelo se incubaron las células sólo con los fármacos durante 96h y se analizó la toxicidad mediante un kit comercial (CelITiterGloassay, Promega). En el eje Y derecho se representa la toxicidad como porcentaje de células muertas para cada concentración de fármaco (cuadrados). Para todos los datos se muestra la media ± error estándar de la media. FIG. 3 shows the analysis of the antiviral effect of andrographolide and its derivative AG3 in Vero E6 cells. An experiment similar to the one described in Figure 3 was performed, in which the indicated concentrations of andrographolide (AG1) and AG3 were tested by putting the drugs 24h before infection with SARS-CoV2 or without drugs as a negative control. The supernatant was collected 48 hours after infection and the viral genomes were quantified as described in the previous figure. The left Y-axis shows the percentage of inhibition of viral production for each concentration of each drug (circles). In a parallel experiment, the cells were incubated only with the drugs for 96h and toxicity was analyzed using a commercial kit. (CelITiterGloassay, Promega). On the right Y axis, toxicity is represented as a percentage of dead cells for each drug concentration (squares). For all data, the mean ± standard error of the mean is shown.

FIG. 4 muestra la actividad antiviral del andrografólido (AG1), el extracto original de Andrographis paniculata (EAp) y sus derivados estructurales (tratamiento en baño) medida en función de la expresión génica de la proteína viral N en larvas de Danio rerio tras la infección por microinyección de SVCV, respecto de un grupo control que no recibió tratamiento. **, p < 0,01.FIG. 4 shows the antiviral activity of andrographolide (AG1), the original extract of Andrographis paniculata (EAp) and its structural derivatives (bath treatment) measured as a function of the gene expression of the viral protein N in Danio rerio larvae after infection by SVCV microinjection, compared to a control group that received no treatment. **, p < 0.01.

FIG. 5 muestra la actividad antiviral del andrografólido (AG1), el extracto original de Andrographis paniculata (EAp) y sus derivados estructurales (tratamiento en baño) medida en función de la protección a la infección en baño por SVCV en larvas de Danio rerio. dpi = días post-infección.FIG. 5 shows the antiviral activity of andrographolide (AG1), the original extract of Andrographis paniculata (EAp) and its structural derivatives (bath treatment) measured as a function of protection against SVCV infection in baths in Danio rerio larvae. dpi = days post-infection.

FIG. 6 muestra la actividad antiviral del andrografólido (AG1), el extracto original de Andrographis paniculata (EAp) y sus derivados estructurales (tratamiento en baño) medida en función de la expresión génica de la proteína viral N en larvas de Danio rerio tras la infección por microinyección de SVCV, respecto de un grupo control que no recibió tratamiento. *, p < 0,05.FIG. 6 shows the antiviral activity of andrographolide (AG1), the original extract of Andrographis paniculata (EAp) and its structural derivatives (bath treatment) measured as a function of the gene expression of the viral protein N in Danio rerio larvae after infection by SVCV microinjection, compared to a control group that received no treatment. *, p < 0.05.

EJEMPLOSEXAMPLES

A continuación, se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención.Next, the invention will be illustrated by tests carried out by the inventors, which reveal the effectiveness of the product of the invention.

EJEMPLO 1: Obtención de andrografólido (3-[2-[decahidro-6-hidroxi-5-(hidroxi-metil)-5,8a-dimetil-2-metileno- 1-naftalenil]etilideno]dihidro-4-hidroxi-2(3H)-furanona) a partir del extracto de Andrographis paniculata EXAMPLE 1: Obtaining andrographolide ( 3-[2-[decahydro-6-hydroxy-5- ( hydroxy-methyl)-5,8a-dimethyl-2-methylene-1-naphthalenyl]ethylidene]dihydro-4-hydroxy-2 ( 3H)-furanone) from Andrographis paniculata extract

Se suspende 5 g del extracto crudo de A. paniculata en 50 mi de agua Milli-Q® en un embudo de separación. Se añade 500 mi de hexano, se agita la mezcla vigorosamente y se deja decantar durante 1 hora. Se separa la fase orgánica y se repite el proceso dos veces, descartando las fracciones de n-hexano. A continuación, se añade 500 mi de cloroformo. La mezcla se agita vigorosamente y se deja decantar durante 1 hora. Se separa la fase orgánica cuidadosamente y se repite el proceso dos veces, juntando todas las fracciones de cloroformo. El disolvente se elimina bajo presión reducida y el aceite obtenido se diluye con 200 mi de metanol. Esta disolución se calienta hasta ebullición, se filtra y se introduce en baño de hielo durante 1 h. A continuación, la disolución fría se guarda en nevera a 4 0C hasta evaporación casi completa del disolvente. Los cristales incoloros de andrografólido se lavan con metanol frió y se secan a temperatura ambiente. Se obtiene un rendimiento del 3% en andrografólido (compuesto AG1) de pureza superior al 99%.5 g of the crude extract of A. paniculata is suspended in 50 ml of Milli-Q® water in a separatory funnel. 500 ml of hexane is added, the mixture is shaken vigorously and allowed to decant for 1 hour. The organic phase is separated and the process is repeated twice, discarding the n-hexane fractions. Next, 500 ml of chloroform is added. The mixture is vigorously stirred and allowed to decant for 1 hour. The organic phase is carefully separated and the process is repeated twice, joining all chloroform fractions. The solvent is removed under reduced pressure and the oil obtained is diluted with 200 ml of methanol. This solution is heated to boiling, filtered and placed in an ice bath for 1 h. Next, the cold solution is stored in a refrigerator at 4 0C until almost complete evaporation of the solvent. Colorless andrographolide crystals are washed with cold methanol and dried at room temperature. A 3% yield of andrographolide (compound AG1) of purity greater than 99% is obtained.

1H NMR (400 MHz, DMSO) 6,62 (t, J = 6,4 Hz, 1H); 5,67 (d, J = 5,7 Hz, 1H); 5,01 (s, 1H);4,91 (s, 1H), 4,81 (s, 1H);4,62 (s, 1H);4,39 (dd, J = 8,7, 6,4 Hz, 1H);4,11 (d, J=6,5 Hz, 1H); 4,03 (d, J= 9,9 Hz, 1H); 3,85 (d, J =10,6 Hz, 1H); 3 ,28-3 ,14 (m, 2H); 2,45 (s, 1H);2,32 (d, J =12,6 Hz, 1H); 2 ,03-1 ,82 (m, 2H); 1,70 (dd, J=29,9, 14,3 Hz, 4H); 1,35 (dd, J = 23,1, 12,7 Hz, 1H); 1,20 (d, J= 118 Hz, 2H), 1,09 (s, 3H); 0,66 (s, 3H).1H NMR (400 MHz, DMSO) 6.62 (t, J= 6.4 Hz, 1H); 5.67 (d, J =5.7Hz, 1H); 5.01 (s, 1H); 4.91 (s, 1H), 4.81 (s, 1H); 4.62 (s, 1H); 4.39 (dd, J = 8.7, 6, 4Hz, 1H);4.11 (d, J=6.5Hz, 1H); 4.03 (d, J= 9.9Hz, 1H); 3.85 (d, J =10.6Hz, 1H); 3.28-3.14 (m, 2H); 2.45 (s, 1H); 2.32 (d, J =12.6 Hz, 1H); 2.03-1.82 (m, 2H); 1.70 (dd, J=29.9, 14.3Hz, 4H); 1.35 (dd, J=23.1, 12.7 Hz, 1H); 1.20 (d, J= 118 Hz, 2H), 1.09 (s, 3H); 0.66 (s, 3H).

13C NMR (75 MHz, DMSO) 5 169,89; 147,57; 146,22; 128,95; 108,18; 78,43; 74,27; 64,50; 62,61; 55,47; 54,37; 42,26; 38,56; 37,48; 36,50; 27,87; 23,93; 23,03; 14,71. HR-MS (ESI, m/z) [M+H]+ calculada para C20H29O5351,4628; encontrada 351,4633.13C NMR (75MHz, DMSO) 5,169.89; 147.57; 146.22; 128.95; 108.18; 78.43; 74.27; 64.50; 62.61; 55.47; 54.37; 42.26; 38.56; 37.48; 36.50; 27.87; 23.93; 23.03; 14.71. HR-MS (ESI, m/z) [M+H]+ Calcd for C20H29O5351.4628; found 351.4633.

EJEMPLO 2: EXAMPLE 2: Síntesis de 3,14,19-triacetilandrografólidoSynthesis of 3,14,19-triacetyndrographolide

Una disolución de andrografólido (AG1, 7,2 mg; 0,0205 mmol) en anhídrido acético (0,5 mi) se calienta a reflujo y se mantiene en agitación durante 1 h. Transcurrido este tiempo, se diluye con acetato de etilo (20 mi) y se quenchea con disolución saturada de bicarbonato sódico (NaHCOs). Seguidamente se lava con agua y se extrae con acetato de etilo (3 x 20 mi). Se combinan las fases orgánicas y se lavan con disolución de cloruro sódico (10 mi), se secan con sulfato de sodio anhidro y se evapora el disolvente bajo presión reducida. El residuo se purifica mediante cromatografía Flash en un equipo Biotage® Selekt utilizando una mezcla hexano:acetato de etilo (80:20 v/v) como eluyente. En la fracción que contiene el producto se evapora el disolvente a presión reducida y se obtiene 9,2 mg de un sólido blanco (3,14,19-triacetilandrografólido, compuesto AG3, 94 %).A solution of andrographolide (AG1, 7.2 mg, 0.0205 mmol) in acetic anhydride (0.5 mL) is heated to reflux and stirred for 1 h. After this time, it is diluted with ethyl acetate (20 ml) and quenched with saturated sodium bicarbonate solution (NaHCOs). It is then washed with water and extracted with ethyl acetate (3 x 20 ml). The organic phases are combined and washed with sodium chloride solution (10 ml), dried over anhydrous sodium sulfate, and the solvent is evaporated under reduced pressure. The residue is purified by Flash chromatography in a Biotage® Selekt equipment using a hexane:ethyl acetate mixture (80:20 v/v) as eluant. In the fraction containing the product, the solvent is evaporated under reduced pressure and 9.2 mg of a white solid are obtained (3,14,19-triacetylandrographolide, compound AG3, 94%).

1H-RMN (400 MHz, CDCI3) 7,00 (td, J= 7,0, 1,5 Hz, 1H, H12); 5,92 (dt, J = 6,0, 1,0 Hz, 1H, H-14); 4,90 (sa, 1H, H-17b); 4,60 (dd, J= 12,0, 4,0 Hz, 1H, H-3); 4,54 (dd, J= 11,0, 6,0 Hz, 1H, H-15b); 4,52 (sa, 1H, H-17a); 4,35 (d, J= 11,5 Hz, 1H, H-19b); 4,24 (dd, J = 11,0, 2,0 Hz, 1H, H-15a); 4,12 (d, J= 11,5 Hz, 1H, H-19a); 2,47 (ddd, J= 16,0, 6,5, 3,0 Hz, 1H, H-9); 2,44-2,33 (m, 2H, H-11); 2,12 (s, 3H, COCH3); 2,04 (s, 6H, 2 x COCH3); 2,01-1,45 (m, 5H); 1,39-1,29 (m, 4H); 1,02 (s, 3H, H-18); 0,75 (s, 3H, H-20).1H-NMR (400 MHz, CDCI3) 7.00 (td, J=7.0, 1.5 Hz, 1H, 12H); 5.92 (sd, J=6.0, 1.0 Hz, 1H, H-14); 4.90 (brs, 1H, H-17b); 4.60 (dd, J=12.0, 4.0 Hz, 1H, H-3); 4.54 (dd, J=11.0, 6.0 Hz, 1H, H-15b); 4.52 (brs, 1H, H-17a); 4.35 (d, J=11.5 Hz, 1H, H-19b); 4.24 (dd, J = 11.0, 2.0Hz, 1H, H-15a); 4.12 (d, J= 11.5 Hz, 1H, H-19a); 2.47 (ddd, J= 16.0, 6.5, 3.0 Hz, 1H, H-9); 2.44-2.33 (m, 2H, H-11); 2.12 (s, 3H, COCH3); 2.04 (s, 6H, 2 x COCH3); 2.01-1.45 (m, 5H); 1.39-1.29 (m, 4H); 1.02 (s, 3H, H-18); 0.75 (s, 3H, H-20).

13C-RMN (100 MHz, CDCI3) 170,9 (COCH3); 170,5 (COCH3); 170,4 (COCH3), 169,0 (C-16); 150,1 (C-12); 146,5 (C-8); 124,0 (C-13); 108,9 (C-17); 79,7 (C-3); 71,6 (C-15); 67,8 (C-19); 64,7 (C-14); 55,9 (C-9); 55,3 (C-5); 41,3 (C-18); 38,9 (C-10); 37,9 (C-7); 37,0 (C-1); 25,2 (C2); 24,6 (C-6); 24,2 (C-11); 22,7 (C-18); 21,2 (COCH3); 21,1 (COCH3); 20,7 (COCH3); 14,5 (C-20).13 C-NMR (100 MHz, CDCI3) 170.9 (COCH3); 170.5 (COCH3); 170.4 (COCH3), 169.0 (C-16); 150.1 (C-12); 146.5 (C-8); 124.0 (C-13); 108.9 (C-17); 79.7 (C-3); 71.6 (C-15); 67.8 (C-19); 64.7 (C-14); 55.9 (C-9); 55.3 (C-5); 41.3 (C-18); 38.9 (C-10); 37.9 (C-7); 37.0 (C-1); 25.2 (C2); 24.6 (C-6); 24.2 (C-11); 22.7 (C-18); 21.2 (COCH3); 21.1 (COCH3); 20.7 (COCH3); 14.5 (C-20).

HR-MS (ESI, m/z) [M+Na]+ calculada para C26H3603Na 499,2308; encontrada 499,2311.HR-MS (ESI, m/z) [M+Na]+ calcd for C26H3603Na 499.2308; found 499.2311.

Figure imgf000010_0001
Figure imgf000010_0001

EJEMPLO 3: Síntesis de 14-deoxi-11,12-didehidroandrografólido EXAMPLE 3: Synthesis of 14-deoxy-11,12-didehydroandrographolide

3,0 g de andrografólido (AG1, 8,6 mmol) se disuelven en piridina anhidra (8 mi). A continuación, se añaden 600 mg de óxido de aluminio (Al203) a la disolución anterior. La mezcla de reacción se mantiene en agitación a 1150C durante 12 horas. Una vez completada la reacción, se filtra y se evapora el disolvente a sequedad. El crudo se redisuelve en diclorometano (DCM) y se lava con disolución acuosa de cloruro sódico. La fase orgánica se seca con sulfato de sodio anhidro y se evapora el disolvente a sequedad. El residuo se purifica mediante cromatografía Flash en un equipo Biotage® Selekt utilizando una mezcla hexano:acetato de etilo (60:40 v/v) como eluyente. En la fracción que contiene el producto se evapora el disolvente a presión reducida, y se obtiene el compuesto AG4 como un sólido blanco (93 %).3.0 g of andrographolide (AG1, 8.6 mmol) are dissolved in anhydrous pyridine (8 mL). Next, 600 mg of aluminum oxide (Al203) are added to the previous solution. The reaction mixture is kept stirring at 1150C for 12 hours. After the reaction is complete, it is filtered and the solvent is evaporated to dryness. The crude is redissolved in dichloromethane (DCM) and washed with aqueous sodium chloride solution. The organic phase is dried over anhydrous sodium sulfate and the solvent is evaporated to dryness. The residue is purified by Flash chromatography in a Biotage® Selekt equipment using a hexane:ethyl acetate mixture (60:40 v/v) as eluant. In the fraction containing the product, the solvent is evaporated under reduced pressure, and obtain compound AG4 as a white solid (93%).

1H RMN (600MHz, DMSO-d6) 7,64 (s, 1H, 14-H), 6,72 (dd, J= 15,8, 10,1 Hz, 1H, 11-H), 6,10(d, J=15,8Hz, 1H, 12-H), 4,87 (s, 2H, 15-H), 4,71 (s, 1H, 17a-H), 4,40 (s, 1H, 17 b-H),4,12(d, J=10,7Hz, 1H, 19a-H), 3,83 (d, J=10,9Hz, 1H, 19b-H), 3,23-3,17 (m, 1H, 3-H), 2,35 (dd, J=9,5, 4,3 Hz, 1H, 9-H), 2,00-1,91 (m, 1H, 7-H), 1,76-1,66 (m, 2H, 2-H), 1,59-1,31 (m,3H, 1-H, 6a-H), 1,21-1,14 (m, 1H.5-H), 1,11 (dd, J=13,4, 4,4 Hz, 1H, 6b-H), 1,07 (s, 3H, 18-CH3), 0,74 (s, 3H, 20-CH3).1H NMR (600MHz, DMSO-d6) 7.64 (s, 1H, 14-H), 6.72 (dd, J= 15.8, 10.1 Hz, 1H, 11-H), 6.10( d, J=15.8Hz, 1H, 12-H), 4.87 (s, 2H, 15-H), 4.71 (s, 1H, 17a-H), 4.40 (s, 1H, 17 bH),4.12(d, J=10.7Hz, 1H, 19a-H), 3.83 (d, J=10.9Hz, 1H, 19b-H), 3.23-3.17 (m , 1H, 3-H), 2.35 (dd, J=9.5, 4.3 Hz, 1H, 9-H), 2.00-1.91 (m, 1H, 7-H), 1 0.76-1.66 (m, 2H, 2-H), 1.59-1.31 (m,3H, 1-H, 6a-H), 1.21-1.14 (m, 1H.5 -H), 1.11 (dd, J=13.4, 4.4 Hz, 1H, 6b-H), 1.07 (s, 3H, 18-CH3), 0.74 (s, 3H, 20 -CH3).

HR-MS (ESI, m/z) [M+H]+ calculada para C20H29O4, 333,2060; encontrada 333,2062.HR-MS (ESI, m/z) [M+H]+ Calcd for C20H29O4, 333.2060; found 333,2062.

Figure imgf000011_0001
Figure imgf000011_0001

EJEMPLO 4: Síntesis de 14-deoxi-12(R)-sulfo-andrografólido EXAMPLE 4: Synthesis of 14-deoxy-12 ( R)-sulfo-andrographolide

1,0 g de andrografólido (AG1, 2,9 mmol) se disuelven en 15 mi de etanol al 95%, calentando dicha disolución a 500C (disolución 1). A 4 mi de disolución de Na2S031M, se añaden 4,8 mi de H2SO4 al 2% (M/M) y 8 mi de agua (disolución 2). La disolución 1 se añade sobre la disolución 2 y la mezcla de reacción se mantiene en agitación a reflujo durante 30 minutos. Una vez completada la reacción, se ajusta el pH de la reacción a pH 6 ~7 añadiendo disolución de ácido sulfúrico (H2SO4) al 2% y se evapora el disolvente a sequedad. El residuo se disuelve en agua (20 mi) y se extrae con cloroformo (20 mi x 3). Se evapora el disolvente de la fase orgánica bajo presión reducida. El residuo de la fase acuosa se disuelve en metanol (10 mi) y se filtra. En la fracción que contiene el producto se evapora el disolvente a presión reducida y se obtienen 0,6 g del compuesto AG5 (51 %). 1.0 g of andrographolide (AG1, 2.9 mmol) are dissolved in 15 ml of 95% ethanol, heating said solution to 500C (solution 1). To 4 ml of Na2S031M solution, 4.8 ml of 2% H2SO4 (M/M) and 8 ml of water (solution 2) are added. Solution 1 is added to solution 2 and the reaction mixture is kept stirring at reflux for 30 minutes. After the completion of the reaction, the pH of the reaction is adjusted to pH 6~7 by adding 2% sulfuric acid (H2SO4) solution, and the solvent is evaporated to dryness. The residue is dissolved in water (20 ml) and extracted with chloroform (20 ml x 3). The solvent of the organic phase is evaporated under reduced pressure. The aqueous phase residue is dissolved in methanol (10 mL) and filtered. In the fraction containing the product, the solvent is evaporated under reduced pressure and 0.6 g of compound AG5 (51%) are obtained.

1H-RMN (600 MHz, CD3OD) 7,65 ppm (t, J= 1,8 Hz, 1H); 4,95 (o, 2H); 4,87 (o, 2H); 4,66 (sa, 1H); 4,16 (dd,J =10,2 y 6,1 Hz, 1H); 4,05 (d, J =11,4 Hz, 1H); 3,92 (dd, J = 12 , 2 y 1,8 Hz, 1H); 3,30 (t, J =9,8 Hz, 1H); 3,27 (d, J = 11,4 Hz, 1H); 2,36 (m, H); 2,31 (dd, J =12,6 y 11,4 Hz, 1H); 2,08 (t, J = 12,6 Hz, 1H); 1,86 (m, H); 1,83 (m, H); 1,80 (m, H); 1,71 (m, 2H); 1,38 (da, J = 11,8 Hz, 1H); 1,28 (qd, J =12,6 y 4,2 Hz, 1H); 1,12 (s, 3H); 1,10 (dd, J =12,6 y 2,4 Hz, 1H); 1,02 (m, H); 0,68 (s, 3H);1H-NMR (600 MHz, CD3OD) 7.65 ppm (t, J= 1.8 Hz, 1H); 4.95 (or, 2H); 4.87 (or, 2H); 4.66 (brs, 1H); 4.16 (dd,J=10.2 and 6.1 Hz, 1H); 4.05 (d, J =11.4Hz, 1H); 3.92 (dd, J = 12.2 and 1.8 Hz, 1H); 3.30 (t, J =9.8Hz, 1H); 3.27 (d, J =11.4 Hz, 1H); 2.36 (m, H); 2.31 (dd, J =12.6 and 11.4 Hz, 1H); 2.08 (t, J =12.6 Hz, 1H); 1.86 (m, H); 1.83 (m, H); 1.80 (m, H); 1.71 (m, 2H); 1.38 (brd, J =11.8 Hz, 1H); 1.28 (qd, J =12.6 and 4.2 Hz, 1H); 1.12 (s, 3H); 1.10 (dd, J =12.6 and 2.4 Hz, 1H); 1.02 (m, H); 0.68 (s, 3H);

13C-RMN (150 MHz, CD3OD) 177,2; 152,1; 149,1; 132,5; 109,2; 81,7; 73,3; 65,8; 57,2; 56,8; 55,3; 44,5; 40,8; 40,1; 38,9; 29,8; 28,0; 26,1; 24,2; 16,4.13C-NMR (150 MHz, CD3OD) 177.2; 152.1; 149.1; 132.5; 109.2; 81.7; 73.3; 65.8; 57.2; 56.8; 55.3; 44.5; 40.8; 40.1; 38.9; 29.8; 28.0; 26.1; 24.2; 16.4.

HR-MS (ESI, m/z) [M-H]" calculada para C20H29O7S, 413,1639; encontrada 413,1634.HR-MS (ESI, m/z) [M-H]" calcd for C20H29O7S, 413.1639; found 413.1634.

Figure imgf000012_0001
Figure imgf000012_0001

EJEMPLO 5: Eficacia antiviral (SARS-CoV-2) del andrografólido y sus derivados estructurales en cultivos celulares EXAMPLE 5: Antiviral ( SARS-CoV-2) efficacy of andrographolide and its structural derivatives in cell cultures

La actividad antiviral del andrografólido y sus derivados estructurales se estableció en función de su capacidad de inhibir la producción de SARS-CoV-2 en la línea celular Vero E6 tras la infección con un aislado de este coronavirus. En el Cima Universidad de Navarra se dispone de un aislado de SARS-CoV-2 obtenido a partir de la muestra nasal de un paciente de CoViD-19 ingresado en la Clínica Universidad de Navarra (aislado NAVARRA-2473). Con esta muestra se infectaron células Vero-E6, observándose un fuerte efecto citopático a 72 h. Los sobrenadantes que contenían el virus se titularon mediante placas de lisis en células Vero-E6 obteniéndose un título de 4,3x107 PFU (unidades formadoras de placas)/ml. La identidad del virus se confirmó mediante titulación de genomas virales por RT-qPCR usando un kit comercial de diagnóstico para CoViD-19 (BGI, China). Posteriormente, se puso a punto un ensayo de neutralización del virus, para el cual se utilizaron 2x104 células Vero E6 en placas de 96 pocilios que fueron infectadas con SARS-CoV-2 a una multiplicidad de infección (MOI = número de PFUs/ célula) de 0,05. Para la infección las células fueron incubadas con 50 pl de medio de infección (MEM con BSA 0,2%, glutamina 2 mM y Hepes 20 mM) que contenía la cantidad de virus indicada (y el fármaco a testar) durante 1 h a 37°C/5% CO2 y con agitación cada 15 minutos. Posteriormente se eliminó el inoculo, se lavaron los pocilios con 200 pl de PBS Ca++Mg++ (Invitrogene) y se incubaron a 37°C/5%C02 con 200 pl de medio de cultivo normal (MEM 5% suero fetal bovino) que también contenía el fármaco. El medio de cultivo, con o sin el fármaco, se cambió cada 24 h durante el experimento. Posteriormente se recogieron los sobrenadantes a diferentes tiempos, se procedió a la extracción del RNA viral utilizando esferas magnéticas de unión a ácidos nucleicos y se tituló el virus producido mediante RT-qPCR con oligonucleótidos específicos para el gen N de SARS-CoV2 (Fw N1-2019-nCov2: 5'- GACCCCAAAATCAGCGAAAT-3' (SEQ ID NO: 1) y Rv-N1-2019-nCov2: 5'-TCTGGTTACTGCCAGTT-GAATCTG-3' (SEQ ID NO: 2)). Estos ensayos se realizaron usando dos pautas de tratamiento: en un caso el tratamiento con la droga a testar se inició 24 h antes de la infección del virus y se mantuvo durante 48 h post infección (p.i.), tiempo en el que se recogieron los sobrenadantes para determinar la carga viral. En el segundo caso la droga se administró al mismo tiempo que el virus y los sobrenadantes se recogieron a las 48h p.i. En la Figura 1 se muestra esquemáticamente el proceso seguido para la infección y tratamiento de los cultivos.The antiviral activity of andrographolide and its structural derivatives was established based on their ability to inhibit the production of SARS-CoV-2 in the Vero E6 cell line after infection with an isolate of this coronavirus. At the Cima Universidad de Navarra there is an isolate of SARS-CoV-2 obtained from the nasal sample of a CoViD-19 patient admitted to the Clínica Universidad de Navarra (isolate NAVARRA-2473). Vero-E6 cells were infected with this sample, observing a strong cytopathic effect at 72 h. Virus-containing supernatants were titrated by lysis plaques on Vero-E6 cells yielding a titer of 4.3x107 PFU (plaque-forming units)/ml. The identity of the virus was confirmed by titration of viral genomes by RT-qPCR using a commercial diagnostic kit for CoViD-19 (BGI, China). Subsequently, a virus neutralization assay was set up, for which 2x104 Vero E6 cells were used in 96-well plates that were infected with SARS-CoV-2 at a multiplicity of infection (MOI = number of PFUs/cell). of 0.05. For infection, the cells were incubated with 50 µl of infection medium (MEM with 0.2% BSA, 2 mM glutamine and 20 mM Hepes) containing the indicated amount of virus (and the drug to be tested) for 1 h at 37° C/5% CO2 and with agitation every 15 minutes. Subsequently, the inoculum was removed, the wells were washed with 200 μl of PBS Ca++Mg++ (Invitrogene) and incubated at 37°C/5%C02 with 200 μl of normal culture medium (MEM 5% bovine fetal serum) containing also contained the drug. The culture medium, with or without the drug, was changed every 24 h during the experiment. Subsequently, the supernatants were collected at different times, the viral RNA was extracted using nucleic acid binding magnetic spheres and the virus produced was titrated by RT-qPCR with specific oligonucleotides for the N gene of SARS-CoV2 (Fw N1- 2019-nCov2: 5'- GACCCCAAAATCAGCGAAAT-3' (SEQ ID NO: 1) and Rv-N1-2019-nCov2: 5'-TCTGGTTACTGCCAGTT-GAATCTG-3' (SEQ ID NO: 2)). These trials were carried out using two treatment regimens: in one case, treatment with the drug to be tested began 24 h before virus infection and was maintained for 48 h post-infection (pi), at which time the supernatants were collected. to determine viral load. In the second case, the drug was administered at the same time as the virus and the supernatants were collected at 48h pi. Figure 1 schematically shows the process followed for the infection and treatment of the cultures.

En un primer ensayo antiviral se testó sólo el andrografólido a una concentración de 5 pM (Tabla 1), utilizando como controles positivos la cloroquina (10 pM) y la ivermectina (5 p M) . En la Figura 2 se muestran los resultados de inhibición sobre la replicación del virus obtenidos con estos compuestos cuando el tratamiento se inició 24 h antes de la infección (Pre-tr) o cuando se inició en el momento de la infección (sin-Pre-Tr). Asimismo, en la Tabla 2 se describen los principales parámetros de este estudio y se resumen los resultados. Se observa que el andrografólido presentó una potente actividad antiviral frente al SARS-CoV-2 en células Vero E6, similar a la de la ivermectina. In a first antiviral assay, only andrographolide was tested at a concentration of 5 pM (Table 1), using chloroquine (10 pM) and ivermectin (5 pM) as positive controls. Figure 2 shows the inhibition results on virus replication obtained with these compounds when treatment was started 24 h before infection (Pre-tr) or when it was started at the time of infection (without-Pre- tr). Likewise, Table 2 describes the main parameters of this study and summarizes the results. It is observed that andrographolide presented a potent antiviral activity against SARS-CoV-2 in Vero E6 cells, similar to that of ivermectin.

Tabla 1. Condiciones experimentales en los ensayos in vitro con andrografólido y otros agentes antivirales sobre SARS-CoV-2.Table 1. Experimental conditions in in vitro assays with andrographolide and other antiviral agents on SARS-CoV-2.

Compuesto11 * Concentración (pM) Tiempo recogida (p.i.) Tiempo analizado (p.i.) Compound 11 * Concentration (pM) Collection time (p.i.) Analyzed time (p.i.)

Andrografólido 5 Vero E6: 48 h Vero E6: 48 h Cloroquina 10 Vero E6: 48 h Vero E6: 48 h Andrographolide 5 Vero E6: 48 h Vero E6: 48 h Chloroquine 10 Vero E6: 48 h Vero E6: 48 h

Ivermectina 5 Vero E6: 48 h Vero E6: 48 hIvermectin 5 Vero E6: 48 h Vero E6: 48 h

Tabla 2. Reducción de la carga viral de SARS-CoV-2 en células Vero E6 con andrografólido y otros agentes antivirales.Table 2. Reduction of SARS-CoV-2 viral load in Vero E6 cells with andrographolide and other antiviral agents.

Compuesto Reducción carga viral Pre-tr Reducción carga viral sin Pre-tr (%) (%) Andrografólido 93,5 94,0 Compound Viral load reduction Pre-tr Viral load reduction without Pre-tr (%) (%) Andrographolide 93.5 94.0

(5 ijM)(5 iM)

CloroquinaChloroquine

(10 uM) 100 100 (10 uM) 100 100

IvermectinaIvermectin

97,7 96,297.7 96.2

(5 ijM)(5 iM)

Seguidamente se comparó la actividad del andrografólido y del compuesto AG3 para inhibir la replicación del virus SARS-CoV-2 en células Vero E6. Este estudio se llevó a cabo con un rango de concentraciones de los fármacos 1-20 p,M haciendo en todos los casos un pretratamiento de 24h como se muestra en la Figura I . E n l a Figura 3, se muestran los resultados obtenidos. Se observa que tanto el andrografólido (AG1) como el derivado AG3 presentan una fuerte inhibición de la replicación del virus a concentración 5 p,M (98% el AG1,93% el AG3). A concentraciones mayores (10 ^M) se produce un bloqueo casi completo (>99%) de la replicación del virus con ambos fármacos, pero aumenta la toxicidad de los mismos. Para evaluar este último parámetro las mismas cantidades de células fueron incubadas con los fármacos a las mismas concentraciones y tiempos indicados en la figura 3. La medida de la toxicidad se realizó mediante un ensayo luminiscente para determinar el número de células viables en cultivo basado en la cuantificación de ATP, que es un indicador de células metabólicamente activas. Para ello se usó un kit comercial (CelITiter-Gloassay, Promega).Next, the activity of andrographolide and compound AG3 to inhibit the replication of the SARS-CoV-2 virus in Vero E6 cells was compared. This study was carried out with a range of drug concentrations from 1-20 p,M, in all cases with a 24h pretreatment as shown in Figure I. In Figure 3, the results obtained are shown. It is observed that both andrographolide (AG1) and the AG3 derivative show a strong inhibition of virus replication at a concentration of 5 p.M (98% AG1, 93% AG3). At higher concentrations (10 ^M), almost complete (>99%) blockade of virus replication occurs with both drugs, but their toxicity is increased. To evaluate this last parameter, the same amounts of cells were incubated with the drugs at the same concentrations and times indicated in figure 3. The measurement of toxicity was carried out by means of a luminescent assay to determine the number of viable cells in culture based on the quantification of ATP, which is an indicator of metabolically active cells. For this, a commercial kit (CelITiter-Gloassay, Promega) was used.

EJEMPLO 6: Validación de la actividad antiviral del andrografólido y sus derivados en larvas de pez cebra (Danio rerio) EXAMPLE 6: Validation of the antiviral activity of andrographolide and its derivatives in zebrafish larvae ( Danio rerio)

La actividad antiviral de los compuestos se evaluó in vivo mediante la infección con el Rhabdovirus de la viremia primaveral de la carpa (SVCV), tanto mediante microinyecciones en el conducto de Cuvier (2 ni de la solución de patógeno usando una microaguja de vidrio en un micro-manipulador), como mediante infecciones por baño administrando el patógeno viral en el agua. Los peces se trataron con los distintos compuestos y se infectaron para realizar un seguimiento de las mortalidades y evaluar la carga viral mediante RT-qPCR de la expresión de la proteína N del virus.The antiviral activity of the compounds was evaluated in vivo by infection with the Spring viremia of carp rhabdovirus ( SVCV ), both by microinjections into Cuvier's duct (2 ni of the pathogen solution using a glass microneedle in a micro-manipulator), and by bath infections by administering the viral pathogen into Water. Fish were treated with the different compounds and infected to monitor mortalities and assess viral load by RT-qPCR of virus N protein expression.

En un primer ensayo se determinó la actividad antiviral de los compuestos AG1 (28 p,M), AG3 (10 p,M) y EAp (10 p,g/ml) mediante infección por micro-inyección (solución 1 % etanol en PBS). Los tratamientos se realizaron en baño durante 24 h en peces de 1 día post fertilización (5 peces/pocillo). El experimento se llevó a cabo por triplicado (n = 3). Al segundo día post fertilización se inyectó a cada pez (2 ni en ducto de Cuvier) 5x104 TCID50/ml de SVCV. A las 24 h post infección se determinó la expresión de la proteína viral en los peces supervivientes. Los resultados obtenidos se muestras en la Figura 4, donde se observa que los compuestos AG1 y AG3 reducen la expresión de la proteína N respecto de un grupo control que no recibió tratamiento.In a first assay, the antiviral activity of compounds AG1 (28 p.M), AG3 (10 p.M ) and EAp (10 p.g/ml) was determined by micro-injection infection (1% ethanol solution in PBS ). The treatments were carried out in a bath for 24 h in fish 1 day after fertilization (5 fish/well). The experiment was carried out in triplicate (n = 3). On the second day after fertilization, each fish (2 ni in Cuvier's duct) was injected with 5x104 TCID50/ml of SVCV. At 24 h post-infection, the expression of the viral protein in the surviving fish was determined. The results obtained are shown in Figure 4, where it is observed that compounds AG1 and AG3 reduce the expression of protein N compared to a control group that did not receive treatment.

En un segundo ensayo se midió la actividad antiviral de los compuestos AG1, AG4, AG5 y EAp a diferentes concentraciones (10, 20 y 50 p,M para los compuestos puros, 10, 20 y 50 |j,g/ml para el extracto) mediante infección por baño y seguimiento de mortalidades. Los tratamientos se realizaron en baño durante 24 h sobre peces de 2 días post fertilización (10 peces/pocillo). A los 4 días post tratamiento se llevó a cabo la infección por baño (7x104 TCID50/ml de SVCV), y se observó la supervivencia de los peces durante 5 días. Los resultados obtenidos se muestran en la Figura 5, donde se observa que los compuestos AG4 y AG5 inhiben de forma drástica la infección por SVCV en las larvas y presentan muy baja o nula toxicidad en un rango de concentraciones muy amplio (hasta 50 p,M).In a second assay, the antiviral activity of compounds AG1, AG4, AG5 and EAp was measured at different concentrations (10, 20 and 50 p,M for the pure compounds, 10, 20 and 50 p,g/ml for the extract). ) by bath infection and mortality monitoring. The treatments were carried out in a bath for 24 h on fish 2 days after fertilization (10 fish/well). At 4 days post-treatment, dip infection (7x104 TCID50/ml of SVCV) was carried out, and survival of the fish was observed for 5 days. The results obtained are shown in Figure 5, where it is observed that compounds AG4 and AG5 drastically inhibit SVCV infection in larvae and present very low or no toxicity in a very wide range of concentrations (up to 50 p,M ).

En un tercer ensayo, se analizó la actividad antiviral de los compuestos AG1 (5 jo,M), AG3 (5 jaM), AG4 (10 p,M) y AG5 (10 p,M), frente a SVCV. Los tratamientos se realizaron en baño durante 24 h sobre peces de 1 día post fertilización (10 peces/pocillo). El experimento se llevó a cabo por cuadruplicado (n = 4). Al segundo día post fertilización se inyectó a cada pez (2 ni en ducto de Cuvier) 5x104 TCID50/ml de SVCV. A las 24 h se realizó la extracción de RNA de los peces para determinar la expresión de la proteína viral N mediante PCR cuantitativa. Aunque todos los tratamientos redujeron la carga viral, AG1, AG4 y AG5 lo hicieron de forma significativa (Figura 6).In a third assay, the antiviral activity of compounds AG1 (5 jo,M), AG3 (5 jM), AG4 (10 p,M) and AG5 (10 p,M), against SVCV, was analyzed. The treatments were carried out in a bath for 24 h on fish 1 day after fertilization (10 fish/well). The experiment was carried out in quadruplicate (n = 4). On the second day after fertilization, each fish (2 ni in Cuvier's duct) was injected with 5x104 TCID50/ml of SVCV. At 24 h, RNA was extracted from the fish to determine the expression of the viral protein N by means of quantitative PCR. Although all treatments reduced the burden viral, AG1, AG4 and AG5 did so significantly (Figure 6).

Ċ Ċ

Claims (4)

REIVINDICACIONES 1. Un compuesto seleccionado de:1. A compound selected from:
Figure imgf000017_0001
Figure imgf000017_0001
para su uso como antiviral en el tratamiento de CoViD-19 o de fibrosis pulmonar asociada a CoViD-19.for use as an antiviral in the treatment of CoViD-19 or pulmonary fibrosis associated with CoViD-19.
2. El compuesto para el uso según la reivindicación 2, donde el compuesto se selecciona de AG3 o AG5.2. The compound for use according to claim 2, wherein the compound is selected from AG3 or AG5. 3. El compuesto para el uso según cualquiera de las reivindicaciones 1 o 2, caracterizado porque se puede administrar por vía parenteral o por vía oral.3. The compound for use according to any of claims 1 or 2, characterized in that it can be administered parenterally or orally. 4. El compuesto para el uso según cualquiera de las reivindicaciones 1 a 3, donde el compuesto se administra a una concentración de entre 0,0001 mg/(kg h) y 10 mg/(kg h) durante un tiempo de entre 1 h a 2000 h. 4. The compound for use according to any of claims 1 to 3, wherein the compound is administered at a concentration between 0.0001 mg/(kg h) and 10 mg/(kg h) for a time between 1 h to 2000hrs
ES202031084A 2020-10-29 2020-10-29 Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19 (Machine-translation by Google Translate, not legally binding) Withdrawn ES2908523A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES202031084A ES2908523A1 (en) 2020-10-29 2020-10-29 Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19 (Machine-translation by Google Translate, not legally binding)
PCT/ES2021/070770 WO2022090597A1 (en) 2020-10-29 2021-10-22 Andrographolide derivatives for use in the treatment of covid-19 disease and pulmonary fibrosis associated with covid-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES202031084A ES2908523A1 (en) 2020-10-29 2020-10-29 Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19 (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
ES2908523A1 true ES2908523A1 (en) 2022-04-29

Family

ID=81306041

Family Applications (1)

Application Number Title Priority Date Filing Date
ES202031084A Withdrawn ES2908523A1 (en) 2020-10-29 2020-10-29 Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19 (Machine-translation by Google Translate, not legally binding)

Country Status (2)

Country Link
ES (1) ES2908523A1 (en)
WO (1) WO2022090597A1 (en)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HIREMATH SHRIDHAR ET AL. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech JAN 11 2021, 05/08/2020, Vol. 11, Páginas Article No.: 44 ISSN 2190-572X(print) ISSN 2190-5738(electronic), (DOI: doi:10.1007/s13205-020-02578-7) todo el documento, en especial página 16, tabla 1; páginas 17 y 18, tabla 2 y página 21, tabla 3.<br />Publicado online el 05.08.2020 *
MURUGAN NATARAJAN ARUL ET AL. Computational investigation on Andrographis paniculataphytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials.. Journal of biomolecular structure & dynamics, 16/06/2020, Vol. 39, Páginas 4415 - 4426 ISSN 1538-0254 (Electronic), (DOI: doi:10.1080/07391102.2020.1777901 pubmed:32543978) Todo el documento, en especial página 9, tabla 2 *
RAJAGOPAL KALIRAJAN; VARAKUMAR POTLAPATI; BALIWADA APARMA; BYRAN GOWRAMMA. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach.. Future journal of pharmaceutical sciences, 16/10/2020, Vol. 6, Páginas 1-10 (DOI: doi:10.1186/s43094-020-00126-x) *
SHI TZU-HAU ET AL. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochemical and Biophysical Research Communications, 25/08/2020, Vol. 533, Páginas 467-473 ISSN 0006-291X(print) ISSN 1090-2104(electronic), (DOI: doi:10.1016/j.bbrc.2020.08.086) Todo el documento<br />publicado online el 25. Agosto 2020 *
VIMAL K. MAURYA, Y COL. . Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virus Disease, 24/05/2020, Vol. 31, Páginas pages 179-193 ISSN 2347-3584(print), , (DOI: doi.org/10.1007/s13337-020-00598-8) Todo el documento. *

Also Published As

Publication number Publication date
WO2022090597A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
ES2910136T3 (en) Flu treatment methods
ES2657687T3 (en) Pyrrolopyrimidine derivatives for use in the treatment of viral infections
ES2857549T3 (en) Opioid receptor ligands and methods of using and obtaining them
JP5969471B2 (en) Methods and compounds for treating Paramyxoviridae viral infections
JP2013541519A (en) 2&#39;-Fluoro-substituted carbnucleoside analogues for antiviral therapy
US11059817B2 (en) Potent antiviral pyrazolopyridine compounds
CN101611046A (en) Antiviral nucleoside analogs
EA201070929A1 (en) FURO-THYENO [3,2-c] Pyridine
CN102775458B (en) The preparation of β-D-(2 &#39; R)-2 &#39;-deoxidation-2 &#39;-fluoro-2&#39;CmeC derivative and purposes
RU2642784C2 (en) Forzicyaside sulfate and its derivatives, method for its production and its application
CA3176025A1 (en) Nicotinamide mononucleotide and nicotinamide riboside derivatives and use thereof in the treatment of viral infections and respiratory complications, in particular caused by influenzavirus or coronavirus
ES2597803T3 (en) Naphthyridinone derivatives and their use in the treatment, improvement or prevention of a viral disease
ES2908523A1 (en) Andrographic derivatives for use in the treatment of COVID-19 disease and pulmonary fibrosis associated with COVID-19 (Machine-translation by Google Translate, not legally binding)
CN1325502C (en) Purple bergenia element pentaacetylate and its uses
CN101058594A (en) Sarcandra glabra effective constituent, preparation method thereof, medicament composition and use of the same
ES2908500B2 (en) ANDROGRAFOLIDE DERIVATIVE FOR USE IN THE TREATMENT OF INFLAMMATORY DISEASES ASSOCIATED WITH A CYTOKINE STORM
CN103156840A (en) Once preparation method of composite of 17-hydrogen-9-dehydro-andrographolidume-3-sodium (or potassium) disulfate and 17-hydrogen-9-dehydro-andrographolidume-3, 19-sodium (or potassium) disulfate, and purposes of prepared medicine
KR20230004716A (en) nucleotide prodrug compounds
Falodun et al. Isolation of Diterpenoids from Jatropha podagrica against Hepatitis C virus
CN110669028B (en) Butenolide compounds of actinomycetes from elephant intestinal tract and application thereof
RU2774758C2 (en) Heterocyclic lipid synthesis modulators
CN105796539A (en) Application of siegesbeckic acid to preparation of medicine for treating malaria
ES2383858B1 (en) ANTAGONIST MARINE COMPOUNDS OF CALCIUM CHANNELS FOR THE TREATMENT OF CARDIOVASCULAR DISEASES.
CN105646493B (en) It is a kind of to be used to prevent and treat compound of organ damage and its production and use
CN101474172B (en) Pharmacy use of ethyoxyl substituted silybin for inhibiting herpes simplex virus

Legal Events

Date Code Title Description
BA2A Patent application published

Ref document number: 2908523

Country of ref document: ES

Kind code of ref document: A1

Effective date: 20220429

FA2A Application withdrawn

Effective date: 20220822