ES2891699B2 - High-resistance steelmaking self-compacting concrete and its production procedure - Google Patents
High-resistance steelmaking self-compacting concrete and its production procedure Download PDFInfo
- Publication number
- ES2891699B2 ES2891699B2 ES202030750A ES202030750A ES2891699B2 ES 2891699 B2 ES2891699 B2 ES 2891699B2 ES 202030750 A ES202030750 A ES 202030750A ES 202030750 A ES202030750 A ES 202030750A ES 2891699 B2 ES2891699 B2 ES 2891699B2
- Authority
- ES
- Spain
- Prior art keywords
- concrete
- volume
- binder
- fraction
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
- C04B28/082—Steelmaking slags; Converter slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
DESCRIPCIÓNDESCRIPTION
HORMIGÓN AUTOCOMPACTANTE SIDERÚRGICO DE ALTA RESISTENCIA Y SU HIGH RESISTANCE STEEL SELF-COMPACTING CONCRETE AND ITS
PROCEDIMIENTO DE ELABORACIÓNPRODUCTION PROCEDURE
CAMPO TÉCNICO DE LA INVENCIÓNTECHNICAL FIELD OF THE INVENTION
La presente invención se engloba en el campo de los materiales de construcción, en concreto de los hormigones del tipo autocompactante con escoria siderúrgica y de alta resistencia, es decir, adecuados para elementos estructurales sometidos a cargas muy elevadas.The present invention is encompassed in the field of construction materials, specifically self-compacting concrete with steel slag and high resistance, that is, suitable for structural elements subjected to very high loads.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
El hormigón autocompactante es un tipo de hormigón con una alta trabajabilidad en estado fresco, lo cual significa que puede ser puesto en obra sin ningún tipo de vibrado, proporcionando de esta forma una mayor seguridad para el operario y un menor consumo de energía. No obstante, para ello es necesario que la autocompactabilidad del hormigón se conserve de forma óptima a lo largo del tiempo.Self-compacting concrete is a type of concrete with high workability in its fresh state, which means that it can be placed on site without any type of vibration, thus providing greater safety for the operator and lower energy consumption. However, for this it is necessary that the self-compactability of the concrete be optimally preserved over time.
La escoria de horno de arco eléctrico es un residuo procedente del proceso de fabricación del acero en horno eléctrico a partir de la chatarra. Se trata de un residuo con un color negro oscuro, de gran densidad y dureza superficial, una porosidad y una absorción de agua superior a la del árido natural calizo o silíceo. Tras su machaqueo, la escoria de horno eléctrico presenta tamaños de partícula adecuados para su uso. Sus características hacen que sea ideal para elaborar hormigón de alta resistencia, debido a su elevada densidad y resistencia y a su óptima adherencia a la pasta de cemento, y fundamentalmente a su microporosidad, proporcionando un hormigón con gran peso e inercia capaz de resistir cargas muy elevadas. Un correcto diseño de la mezcla permite incluso obtener hormigones más resistentes que los obtenidos mediante el empleo de árido calizo o silíceo extraído de canteras o graveras.Electric arc furnace slag is a residue from the steelmaking process in an electric furnace from scrap. It is a residue with a dark black color, high density and surface hardness, porosity and water absorption higher than that of natural limestone or siliceous aggregate. After crushing, the electric furnace slag has particle sizes suitable for use. Its characteristics make it ideal for making high-resistance concrete, due to its high density and resistance and its optimal adherence to the cement paste, and fundamentally to its microporosity, providing a concrete with great weight and inertia capable of resisting very high loads. . A correct mix design allows even more resistant concrete to be obtained than that obtained through the use of limestone or siliceous aggregate extracted from quarries or gravel pits.
Por otra parte, la escoria siderúrgica granulada molida es un subproducto de la industria siderúrgica obtenido mediante el enfriamiento brusco del residuo de los altos hornos, conocido como escoria, seguido de un machaqueo hasta alcanzar un tamaño de grano del orden de micras. Este material se caracteriza por presentar propiedades puzolánicas y conglomerantes, siendo capaz de endurecer al ser mezclado con agua y proporcionar resistencia. Estos aspectos hacen que sea un producto que puede emplearse como sustituto del clínker de cemento, de modo que se reduzca la elevada emisión de CO 2 a la atmósfera que se produce durante la fabricación del clínker (aproximadamente la fabricación de una tonelada de clínker origina la emisión de 0,9 toneladas de CO 2 a la atmósfera).On the other hand, ground granulated iron and steel slag is a by-product of the steel industry obtained by sudden cooling of the residue of the blast furnaces, known as slag, followed by crushing until reaching a grain size of the order of microns. This material is characterized by presenting pozzolanic and conglomerating properties, being capable of hardening when mixed with water and providing resistance. These aspects make it a product that can be used as a substitute for cement clinker, so as to reduce the high emission of CO 2 into the atmosphere that is produced during the manufacture of clinker (approximately the manufacture of one ton of clinker causes the emission of 0.9 tons of CO 2 into the atmosphere).
La adición de fibras es una técnica desarrollada en los últimos años. La presencia de fibras en el hormigón es beneficiosa porque permite "coser” las fisuras que se originan en el mismo, aumentando la resistencia tanto antes como después de la fisuración. Tanto las fibras metálicas, de acero, como las fibras plásticas, generalmente de polietileno o polipropileno, han mostrado su validez. Su longitud suele ser de hasta 50 mm, presentando un diámetro entre 0,2 mm y 1 mm. Sin embargo, las fibras reducen la trabajabilidad del hormigón, dificultando la obtención de hormigones de alta trabajabilidad (como el hormigón autocompactante) cuando son añadidas.The addition of fibers is a technique developed in recent years. The presence of fibers in the concrete is beneficial because it allows "sewing" the cracks that originate in it, increasing resistance both before and after cracking. Both metal fibers, steel, and plastic fibers, generally polyethylene or polypropylene, have shown their validity. Their length is usually up to 50 mm, with a diameter between 0.2 mm and 1 mm. However, the fibers reduce the workability of the concrete, making it difficult to obtain highly workable concretes (such as self-compacting concrete) when they are added.
En el estado de la técnica existente está descrita la composición y recomendaciones de comportamiento en estado fresco de hormigones autocompactantes elaborados con áridos naturales en todas las fracciones (EFNARC, 2002. Specification Guidelines for Self-compacting Concrete, European Federation of National Associations Representing producers and applicators of specialist building products for Concrete (EFNARC)). Los requisitos que el hormigón autocompactante debe cumplir se encuentran recogidos, entre otras, en la Instrucción Española de Hormigón Estructural EHE-08 (EHE-08, 2010. Instrucción de Hormigón Estructural EHE-08. Ministerio de Fomento, Gobierno de España).The existing state of the art describes the composition and recommendations for behavior in the fresh state of self-compacting concrete made with natural aggregates in all fractions (EFNARC, 2002. Specification Guidelines for Self-compacting Concrete, European Federation of National Associations Representing producers and applicators of specialist building products for Concrete (EFNARC). The requirements that self-compacting concrete must meet are included, among others, in the Spanish Instruction on Structural Concrete EHE-08 (EHE-08, 2010. Instruction on Structural Concrete EHE-08. Ministry of Development, Government of Spain).
En relación con el hormigón autocompactante elaborado con escoria de horno de arco eléctrico, existen escasos estudios en los que se ha elaborado hormigón autocompactante con escoria de horno eléctrico en la fracción gruesa (Sosa, I., Thomas, C., Polanco, J.A., Setién, J., Tamayo, P., 2020. High performance self- compacting concrete with electríc arc fumace slag aggregate and cupola slag powder. Appl. Sci. 10 (3), 773. DOI: 10.3390/app10030773) y son aún más escasos los que lo incorporan en la fracción fina (Manjunath, R., Narasimhan, M.C., Umesh, K.M., Shivam, K., Bala Bharathi, U.K., 2019. Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr. Build. Mater. 198, 133-147. DOI: 10.1016/j.conbuildmat.2018.11.242). El uso simultáneo de escoria de horno eléctrico en las fracciones gruesa y fina sin combinación con ningún tipo de árido natural es altamente novedoso.In relation to self-compacting concrete made with electric arc furnace slag, there are few studies in which self-compacting concrete has been made with electric furnace slag in the coarse fraction (Sosa, I., Thomas, C., Polanco, JA, Setién, J., Tamayo, P., 2020. High performance self- compacting concrete with electric arc fumarate slag aggregate and cupola slag powder. App. Sci. 10 (3), 773. DOI: 10.3390/app10030773) and there are even fewer that include it in the fine fraction (Manjunath, R., Narasimhan, MC, Umesh, KM, Shivam, K., Bala Bharathi, UK, 2019. Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr. Build. Mater. 198, 133-147. DOI: 10.1016/j.conbuildmat.2018.11.242). The simultaneous use of electric furnace slag in the coarse and fine fractions without combination with any type of natural aggregate is highly novel.
La escoria siderúrgica granulada molida se ha utilizado tradicionalmente para la estabilización de suelos (Du, Y.J., Wu, J., Bo, Y.L., Jiang, N.J., 2020. Effects of acid rain on physical, mechanical and chemical properties of GGBS-MgO-solidified/stabilized Pb-contaminated clayey soil. Acta Geotechnica. 15 (4), 923-932. DOI: 10.1007/s11440-019-00793-y; Wu, H.L., Jin, F., Bo, Y.L., Du, Y.J., Zheng, J.X., 2018. Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests. Constr. Build. Mater. 172, 626-634. DOI: 10.1016/j.conbuildmat. 2018.03.164) o la fabricación de bases y subbases de carreteras (Abdollahnejad, Z., Luukkonen, T., Mastali, M., Giosue, C., Favoni, O., Ruello, M.L., Kinnunen, P., Illikainen, M., 2020. Microstructural Analysis and Strength Development of One-Part Alkali-Activated Slag/Ceramic Binders Under Different Curing Regimes. Waste Biomass Valoris. 11 (6), 3081-3096. DOI: 10.1007/s12649-019-00626-9). El empleo de este residuo para la elaboración de hormigones es muy poco habitual (Bondar, D., Basheer, M., Nanukuttan, S., 2019. Suitability of alkali activated slag/fly ash (AA-GGBS/FA) concretes for chloride environments: Characterisation based on mix design and compliance testing. Constr. Build. Mater. Ground granulated steel slag has traditionally been used for soil stabilization (Du, YJ, Wu, J., Bo, YL, Jiang, NJ, 2020. Effects of acid rain on physical, mechanical and chemical properties of GGBS-MgO- solidified/stabilized Pb-contaminated clayey soil Acta Geotechnica 15 (4), 923-932 DOI: 10.1007/s11440-019-00793-y Wu HL Jin F Bo YL Du YJ Zheng, JX, 2018. Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests. Constr. Build. Mater. 172, 626-634. DOI: 10.1016/j.conbuildmat. 2018.03.164) or the manufacture of road bases and sub-bases (Abdollahnejad, Z., Luukkonen, T., Mastali, M., Giosue, C., Favoni, O., Ruello, ML, Kinnunen, P., Illikainen, M., 2020 . Microstructural Analysis and Strength Development of One-Part Alkali-Activated Slag/Ceramic Binders Under Different Curing Regimes. Waste Biomass Valoris. 11 (6), 3081-3096. DOI: 10.1007/s12649-019-00626-9). The use of this residue for the production of concrete is very unusual (Bondar, D., Basheer, M., Nanukuttan, S., 2019. Suitability of alkali activated slag/fly ash ( AA-GGBS/FA) concretes for chloride environments: Characterization based on mix design and compliance testing.Constr.Build.Mater.
216, 612-621. DOI: 10.1016/j.conbuildmat. 2019.05.043; Yang, K.H., Hwang, Y.H., Lee, Y., Mun, J.H., 2019. Feasibility test and evaluation models to develop sustainable insulation concrete using foam and bottom ash aggregates. Constr. Build. Mater. 225, 620-632. DOI: 10.1016/j.conbuildmat.2019.07.130), más aún cuando se trata de un hormigón autocompactante (Reddy, A.S., Kumar, P.R., Raj, P.A., 2020. Development of Sustainable Performance Index (SPI) for Self-Compacting Concretes. J. Build. Eng. 27, 100974. DOI: 10.1016/j.jobe.2019.100974). No se conoce ningún estudio en el cual la escoria de horno eléctrico se haya combinado con la escoria siderúrgica granulada molida para producir hormigón autocompactante. 216, 612-621. DOI: 10.1016/j.conbuildmat. 2019.05.043; Yang, KH, Hwang, YH, Lee, Y., Mun, JH, 2019. Feasibility test and evaluation models to develop sustainable insulation concrete using foam and bottom ash aggregates. build Build. Mother. 225, 620-632. DOI: 10.1016/j.conbuildmat.2019.07.130), even more so when it comes to self-compacting concrete (Reddy, AS, Kumar, PR, Raj, PA, 2020. Development of Sustainable Performance Index ( SPI) for Self-Compacting Concretes J. Build . Eng. 27, 100974. DOI: 10.1016/j.jobe.2019.100974). There is no known study in which electric furnace slag has been combined with ground granulated iron and steel slag to produce self-compacting concrete.
En relación con la adición de fibras al hormigón, existen varios estudios que muestran el comportamiento de hormigones tradicionales vibrados con fibras metálicas y/o plásticas elaborados con árido natural (Akcay, B., Ozsar, D.S., 2019. Do polymer fibres affect the distribution of steel fibres in hybrid fibre reinforced concretes? Constr. Build. Mater. 228, 116732. DOI: 10.1016/j.conbuildmat.2019.116732; Chen, X., Wan, D.W., Jin, L.Z., Qian, K., Fu, F., 2019. Experimental studies and microstructure analysis for ultra high-performance reactive powder concrete. Constr. Build. Mater. In relation to the addition of fibers to concrete, there are several studies that show the behavior of traditional concretes vibrated with metal and/or plastic fibers made with natural aggregate (Akcay, B., Ozsar, DS, 2019. Do polymer fibers affect the distribution of steel fibers in hybrid fiber reinforced concretes? Constr. Build. Mater. 228, 116732. DOI: 10.1016/j.conbuildmat.2019.116732; Chen, X., Wan, DW, Jin, LZ, Qian, K., Fu, F ., 2019. Experimental studies and microstructure analysis for ultra high-performance reactive powder concrete.Constr.Build.Mater.
229, 116924. DOI: 10.1016/j.conbuildmat.2019.116924). Existen estudios de hormigón siderúrgico vibrado fabricado con escoria de horno de arco eléctrico y fibras (Fuente-Alonso, J.A., Ortega-López, V., Skaf, M., Aragón, Á., San-José, J.T., 2017. Performance of fiber-reinforced EAF slag concrete for use in pavements. Constr. Build. Mater. 149, 629-638. DOI: 10.1016/j.conbuildmat.2017.05.174.). Los estudios que abordan el empleo de fibras en hormigones autocompactantes son bastante menos numerosos (Altalabani, D., Bzeni, D.K.H., Linsel, S., 2020. Mechanical properties and load deflection relationship of polypropylene fiber reinforced selfcompacting lightweight concrete. Constr. Build. Mater. 252, 119084. DOI: 10.1016/j.conbuildmat.2020.119084; Ghorbani, S., Sharifi, S., Rokhsarpour, H., Shoja, S., Gholizadeh, M., Rahmatabad, M.A.D., de Brito, J., 2020. Effect of magnetized mixing water on the fresh and hardened state properties of steel fibre reinforced self-compacting concrete. Constr. Build. Mater. 248, 118660. DOI: 10.1016/j.conbuildmat.2020.118660). No se conoce ningún estudio en el que se haya desarrollado un hormigón autocompactante elaborado simultáneamente con escoria de horno eléctrico y fibras metálicas y/o plásticas.229, 116924. DOI: 10.1016/j.conbuildmat.2019.116924). There are studies of vibrated steel concrete made with electric arc furnace slag and fibers (Fuente-Alonso, JA, Ortega-López, V., Skaf, M., Aragón, Á., San-José, JT, 2017. Performance of fiber-reinforced EAF slag concrete for use in pavements. Constr. Build. Mater. 149, 629-638. DOI: 10.1016/j.conbuildmat.2017.05.174.). The studies that address the use of fibers in self-compacting concrete are much less numerous (Altalabani, D., Bzeni, DKH, Linsel, S., 2020. Mechanical properties and load deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete. Constr. Build. Mater 252, 119084. DOI: 10.1016/j.conbuildmat.2020.119084; S. Ghorbani, S. Sharifi, H. Rokhsarpour, S. Shoja, M. Gholizadeh, Rahmatabad, MAD, J. de Brito. , 2020. Effect of magnetized mixing water on the fresh and hardened state properties of steel fiber reinforced self-compacting concrete. Constr. Build. Mater. 248, 118660. DOI: 10.1016/j.conbuildmat.2020.118660). No study is known in which a self-compacting concrete made simultaneously with electric furnace slag and metal and/or plastic fibers has been developed.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La presente invención queda establecida y caracterizada en las reivindicaciones independientes, mientras que las reivindicaciones dependientes describen otras características de la misma.The present invention is set forth and characterized in the independent claims, while the dependent claims describe other features thereof.
El objeto de la invención es un hormigón autocompactante siderúrgico de alta resistencia y su procedimiento de elaboración. El problema técnico a resolver es constituir los componentes del hormigón y establecer las etapas de elaboración de manera que se consiga un hormigón válido para su utilización en elementos estructurales según la normativa de aplicación, con un procedimiento de elaboración que permita su puesta en obra de una manera económica y sostenible, es decir, con un bajo consumo de energía.The object of the invention is a high-resistance self-compacting steelmaking concrete and its production process. The technical problem to be solved is to constitute the components of the concrete and to establish the stages of elaboration of so that a valid concrete is obtained for its use in structural elements according to the applicable regulations, with a manufacturing procedure that allows its implementation in an economic and sustainable way, that is, with low energy consumption.
A la vista de lo anteriormente enunciado, la presente invención se refiere a un hormigón autocompactante siderúrgico de alta resistencia que comprende cemento Portland como primer conglomerante, áridos, agua y aditivos, como es conocido en el estado de la técnica. Caracteriza al hormigón el que comprende fibras metálicas y/o plásticas, escoria siderúrgica granulada molida como segundo conglomerante, los áridos comprenden escoria de horno de arco eléctrico, siendo la totalidad de la fracción gruesa y la totalidad de la fracción fina del hormigón de dicha escoria de horno de arco eléctrico. Es decir, la totalidad de la fracción gruesa y la de fracción fina es de escoria de horno de arco eléctrico, no hay fracción gruesa o fina de otro tipo de árido, es decir, no se incorpora ningún árido natural, ya sea silíceo o calizo, a las fracciones gruesa y fina de árido.In view of the foregoing, the present invention relates to a high-strength self-compacting iron and steel concrete comprising Portland cement as the first binder, aggregates, water and additives, as is known in the state of the art. Concrete is characterized by that which comprises metallic and/or plastic fibers, ground granulated iron and steel slag as the second binder, the aggregates comprise electric arc furnace slag, the entire coarse fraction and the entire fine fraction of the concrete being said slag. electric arc furnace. That is, the entire coarse fraction and the fine fraction is electric arc furnace slag, there is no coarse or fine fraction of another type of aggregate, that is, no natural aggregate is incorporated, be it siliceous or limestone. , to the coarse and fine fractions of aggregate.
Una ventaja del hormigón es que se maximiza la sostenibilidad del hormigón autocompactante tanto en lo referente a los áridos empleados como al conglomerante hidráulico.One advantage of concrete is that the sustainability of self-compacting concrete is maximized both in terms of the aggregates used and the hydraulic binder.
Otras ventajas del hormigón es que se reduce el vertido de residuos, al utilizar una relativamente alta cantidad de árido reciclado en forma de escoria de horno de arco eléctrico, y el consumo de clínker, al añadir escoria siderúrgica granulada molida.Other advantages of concrete are that waste discharge is reduced, by using a relatively high amount of recycled aggregate in the form of electric arc furnace slag, and clinker consumption, by adding ground granulated iron and steel slag.
Otra ventaja del hormigón es su aplicabilidad real en obra gracias a su buena trabajabilidad, pues es fácilmente bombeable, debido a su autocompactabilidad, lo que además permite el hormigonado sencillo en zonas de difícil acceso.Another advantage of concrete is its real applicability on site thanks to its good workability, since it is easily pumpable, due to its self-compactability, which also allows easy concreting in areas of difficult access.
Otra ventaja es que, debido a la inclusión de fibras metálicas y/o plásticas y a su buena interacción con la escoria de horno de arco eléctrico y con la matriz cementicia, la cual incorpora escoria siderúrgica granulada molida, proporciona una elevada resistencia a la fisuración, incluso dicha resistencia con anterioridad y posterioridad a la citada fisuración, lo que permite su aplicación en elementos estructurales (por ejemplo vigas, columnas, forjados o muros) sometidos a cargas muy elevadas, tanto en aplicaciones de hormigón armado como pretensado, tanto in situ como prefabricado, así como una mayor seguridad tras un posible fallo o rotura, pues permite disponer de un mayor tiempo para la evacuación del edificio o estructura.Another advantage is that, due to the inclusion of metallic and/or plastic fibers and its good interaction with the electric arc furnace slag and with the cementitious matrix, which incorporates ground granulated iron and steel slag, it provides a high resistance to cracking, even said resistance before and after the aforementioned cracking, which allows its application in elements structures (for example beams, columns, floors or walls) subjected to very high loads, both in reinforced and prestressed concrete applications, both in situ and prefabricated, as well as greater safety after a possible failure or breakage, as it allows for a increased time for the evacuation of the building or structure.
Asimismo, la invención se refiere a un procedimiento de elaboración del hormigón autocompactante citado, que se caracteriza por que comprende las siguientes etapas en secuencia: adición del 95 % en volumen del agua y la totalidad de áridos, entre los que se encuentran escoria de horno de arco eléctrico, y conglomerantes, siendo cemento Portland un primer conglomerante y escoria siderúrgica granulada molida un segundo conglomerante; mezclado; reposo; adición del 5 % en volumen del agua y los aditivos; mezclado; y reposo.Likewise, the invention refers to a process for preparing the aforementioned self-compacting concrete, characterized in that it comprises the following stages in sequence: addition of 95% by volume of the water and all of the aggregates, including furnace slag electric arc, and binders, Portland cement being a first binder and ground granulated iron and steel slag a second binder; mixed; repose; addition of 5% by volume of the water and additives; mixed; and rest.
Unas ventajas del procedimiento es su puesta en obra con un mínimo consumo de energía y tiempo debido a un proceso con pocas etapas, con lo que es relativamente rápido. Al no haber vibrado se reduce el consumo de combustible y las consiguientes emisiones de CO 2 , con la consiguiente reducción de huella de carbono y preservación del medio natural, haciendo frente al cambio climático y contribuyendo a una economía circular. Esto a su vez permite aumentar en mayor medida la sostenibilidad del hormigón. Supone, además del citado ahorro de energía, una notable ventaja económica y de rendimiento para la empresa, pues permite ahorrar costes y hacer que la puesta en obra sea más rápida.Some advantages of the procedure is its implementation with a minimum consumption of energy and time due to a process with few stages, which is relatively fast. Not having vibrated reduces fuel consumption and the consequent CO 2 emissions, with the consequent reduction of the carbon footprint and preservation of the natural environment, facing climate change and contributing to a circular economy. This in turn makes it possible to further increase the sustainability of the concrete. It supposes, in addition to the aforementioned energy savings, a notable economic and performance advantage for the company, since it allows costs to be saved and the commissioning to be carried out more quickly.
EXPOSICIÓN DETALLADA DE LA INVENCIÓNDETAILED DISCLOSURE OF THE INVENTION
La invención es un hormigón autocompactante siderúrgico de alta resistencia que comprende cemento Portland como primer conglomerante, áridos, agua y aditivos, fibras metálicas (éstas, por ejemplo, de acero) y/o plásticas (éstas, por ejemplo, polietileno o polipropileno), escoria siderúrgica granulada molida como segundo conglomerante, los áridos comprenden escoria de horno de arco eléctrico, siendo la totalidad de la fracción gruesa y la totalidad de la fracción fina del hormigón de dicha escoria de horno de arco eléctrico. The invention is a self-compacting high-strength iron and steel concrete comprising Portland cement as the first binder, aggregates, water and additives, metallic fibers (these, for example, steel) and/or plastic fibers (these, for example, polyethylene or polypropylene), ground granulated iron and steel slag as the second binder, the aggregates comprising electric arc furnace slag, the entire coarse fraction and the entire fine fraction of the concrete being said electric arc furnace slag.
Opcionalmente comprende fracción polvo de escoria de horno de arco eléctrico.Optionally, it includes electric arc furnace slag dust fraction.
Una dosificación que se muestra como ventajosa es que el cemento Portland como primer conglomerante está entre un 60 %-70 % en volumen del total de conglomerantes, la escoria siderúrgica granulada molida como segundo conglomerante está entre un 30 %-40 % en volumen del total de conglomerantes. Es decir, un conglomerante se complementa con el otro para llegar a la totalidad de conglomerantes en el hormigón. La suma de ambos conglomerantes, primero y segundo, puede llegar a suponer entre el 10 % y el 10,5 % del volumen total de hormigón.A dosage that is shown to be advantageous is that Portland cement as the first binder is between 60%-70% by volume of the total binders, ground granulated iron and steel slag as the second binder is between 30%-40% by volume of the total of conglomerates. That is, one binder is complemented by the other to reach all the binders in the concrete. The sum of both conglomerates, first and second, can reach between 10% and 10.5% of the total volume of concrete.
Otra opción ventajosa en la dosificación de las fracciones es que la fracción fina es entre el 20 % y el 25 % del volumen total de hormigón, la fracción gruesa es entre el 15 % y el 20 % del volumen total de hormigón. Además, la fracción polvo, cuando esté presente, es entre el 35 % y el 40 % del volumen total de hormigón.Another advantageous option in the dosage of the fractions is that the fine fraction is between 20% and 25% of the total volume of concrete, the coarse fraction is between 15% and 20% of the total volume of concrete. Furthermore, the dust fraction, when present, is between 35% and 40% of the total volume of concrete.
Otra opción ventajosa es que las fibras metálicas y/o plásticas son entre el 0,25 % y el 1,0 % del volumen total del hormigón.Another advantageous option is that the metallic and/or plastic fibers are between 0.25% and 1.0% of the total volume of the concrete.
Otra opción ventajosa es que el agua es entre el 15 % y el 20 % del volumen total de hormigón, los aditivos comprenden un aditivo plastificante y supone entre el 0,5 % y el 0,8 % del volumen total de hormigón.Another advantageous option is that the water is between 15% and 20% of the total volume of concrete, the additives comprise a plasticizing additive and it accounts for between 0.5% and 0.8% of the total volume of concrete.
Un detalle del hormigón es que la fracción polvo son partículas de tamaño menor o igual que 0,5 mm, la fracción fina son partículas de tamaño mayor que 0,5 mm y menor o igual que 4 mm, la fracción gruesa son partículas de tamaño mayor que 4 mm y menor o igual que 12 mm.A detail of concrete is that the dust fraction is particles of size less than or equal to 0.5 mm, the fine fraction are particles of size greater than 0.5 mm and less than or equal to 4 mm, the coarse fraction are particles of size greater than 4 mm and less than or equal to 12 mm.
Otro detalle del hormigón es que la escoria siderúrgica granulada molida son partículas de tamaño hasta 0,01 mm.Another detail of the concrete is that the ground granulated iron and steel slag are particles of size up to 0.01 mm.
Otro detalle del hormigón es que las fibras metálicas y/o plásticas son partículas de tamaño entre 0,1 mm y 30 mm. Another detail of the concrete is that the metallic and/or plastic fibers are particles of size between 0.1 mm and 30 mm.
La invención es también el procedimiento de elaboración de hormigón autocompactante según se describe en su manera más general, que comprende las siguientes etapas en secuencia:The invention is also the process for making self-compacting concrete as described in its most general manner, comprising the following steps in sequence:
- adición del 95 % en volumen del agua y la totalidad de áridos, entre los que se encuentran escoria de horno de arco eléctrico, y conglomerantes, siendo cemento Portland un primer conglomerante y escoria siderúrgica granulada molida un segundo conglomerante;- addition of 95% by volume of the water and all the aggregates, among which are electric arc furnace slag, and binders, Portland cement being a first binder and ground granulated iron and steel slag a second binder;
- mezclado;- mixed;
- reposo;- rest;
- adición del 5 % en volumen del agua y los aditivos;- addition of 5% by volume of water and additives;
- mezclado;- mixed;
- reposo.- rest.
Una opción ventajosa sobre los tiempos de mezclado y reposo es que cada etapa de mezclado tiene una duración entre 1 minuto y 3 minutos, cada etapa de reposo tiene una duración entre 1 minuto y 2 minutos. En concreto, cada etapa de mezclado tiene una duración de 2 minutos, cada etapa de reposo tiene una duración de 1 minuto.An advantageous option on the mixing and standing times is that each mixing stage has a duration between 1 minute and 3 minutes, each resting stage has a duration between 1 minute and 2 minutes. Specifically, each mixing stage lasts 2 minutes, each resting stage lasts 1 minute.
Siguiendo las proporciones mencionadas según el procedimiento citado se pueden obtener diversas mezclas para el hormigón autocompactante objeto de la invención. Según las especificaciones internacionales para la caracterización del hormigón autocompactante (EN 206 y recomendaciones de la EFNARC), estas mezclas presentaron una clase de escurrimiento SF1 (escurrimiento entre 550 mm y 650 mm) o SF2 (escurrimiento entre 650 mm y 750 mm) después del proceso de amasado, una densidad fresca comprendida entre 2,6 y 2,75 Mg/m3, un contenido de aire ocluido entre 1,9 y 2,2 % y una retracción de secado entre 0,9 y 1,1 mm/m. Respecto a las propiedades en estado endurecido, la resistencia a compresión a 28 días se encontró entre 55 y 80 MPa, el módulo de elasticidad a 90 días entre 30 y 45 GPa, la resistencia a flexión a 90 días entre 5 y 8 MPa, la resistencia a tracción indirecta a 90 días entre 4 y 5,5 MPa, la resistencia directa a tracción a 160 días entre 3,5 y 4,5 MPa, el módulo de elasticidad a tracción a 160 días entre 35 y 40 GPa, la altura media de penetración de agua a 90 días entre 10 y 12 mm y la altura de penetración máxima de agua a 90 días entre 15 y 20 mm. Todas estas propiedades fueron acordes, según la normativa vigente, con un hormigón de alta resistencia antes de la fisuración.Following the proportions mentioned according to the aforementioned procedure, various mixtures for the self-compacting concrete object of the invention can be obtained. According to the international specifications for the characterization of self-compacting concrete (EN 206 and EFNARC recommendations), these mixtures presented a creepage class of SF1 (runoff between 550 mm and 650 mm) or SF2 (runoff between 650 mm and 750 mm) after the kneading process, a fresh density between 2.6 and 2.75 Mg/m3, an occluded air content between 1.9 and 2.2% and a drying shrinkage between 0.9 and 1.1 mm/m . Regarding the properties in the hardened state, the compressive strength at 28 days was between 55 and 80 MPa, the modulus of elasticity at 90 days between 30 and 45 GPa, the flexural strength at 90 days between 5 and 8 MPa, the indirect tensile strength at 90 days between 4 and 5.5 MPa, direct tensile strength at 160 days between 3.5 and 4.5 MPa, tensile modulus of elasticity at 160 days between 35 and 40 GPa, height mean water penetration at 90 days between 10 and 12 mm and maximum water penetration height at 90 days between 15 and 20 mm. All these properties were in accordance, according to current regulations, with a high-resistance concrete before the cracking
Las propiedades de las mezclas post-fisuración a 160 días fueron las siguientes: de acuerdo con el ensayo de flexión en cuatro puntos, la tenacidad a la fractura estuvo comprendida entre 10 y 25 Nm, la resistencia a primera fisura entre 4 y 8 MPa y la energía de fractura entre 0,7 y 1,2 N/mm; de acuerdo con el ensayo de flexión en tres puntos con probeta entallada, el límite de proporcionalidad estuvo comprendido entre 3,5 y 5,5 MPa, la resistencia residual para una apertura de entalla de 3,5 mm entre 1 y 3 MPa, la energía de fractura entre 0,5 y 2,5 N/mm y la energía de fractura según la apertura de la entalla entre 0,7 y 3 N/mm.The properties of the post-cracking mixtures at 160 days were the following: according to the four-point bending test, the fracture toughness was between 10 and 25 Nm, the first crack resistance between 4 and 8 MPa and fracture energy between 0.7 and 1.2 N/mm; according to the three-point bending test with a notched specimen, the proportionality limit was between 3.5 and 5.5 MPa, the residual resistance for a notch opening of 3.5 mm between 1 and 3 MPa, the fracture energy between 0.5 and 2.5 N/mm and the fracture energy depending on the opening of the notch between 0.7 and 3 N/mm.
EjemploExample
Se plantean como ejemplo tres mezclas, denominadas T (fibras metálicas en un 0,25 % del volumen de hormigón), M (fibras metálicas en 0,5 % del volumen de hormigón) y P (fibras plásticas en un contenido del 0,5 % del volumen de hormigón).Three mixtures are presented as an example, called T (metal fibers in 0.25% of the volume of concrete), M (metal fibers in 0.5% of the volume of concrete) and P (plastic fibers in a content of 0.5 % of concrete volume).
La composición química de la escoria siderúrgica granulada molida se muestra en la Tabla 1 (expresado en %):The chemical composition of the ground granulated iron and steel slag is shown in Table 1 (expressed in %):
abla 1.Composición química escoria siderúrgica granulada molidatable 1.Chemical composition of ground granulated iron and steel slag
Las características de las fibras metálicas y plásticas empleadas se recogen en la Tabla 2:The characteristics of the metallic and plastic fibers used are shown in Table 2:
Tabla 2. Características de as fibras empleadasTable 2. Characteristics of the fibers used
La dosificación de las mezclas se muestra en Tabla 3:The dosage of the mixtures is shown in Table 3:
Tabla 3. Dosificación de las mezclas (kg/m3)Table 3. Dosage of the mixtures (kg/m3)
Las propiedades en estado fresco se muestran en la Tabla 4 (entre paréntesis la clase de escurrimiento):The properties in the fresh state are shown in Table 4 (runoff class in parentheses):
Tabla 4. Propiedades en estado frescoTable 4. Properties in fresh state
Las propiedades en estado endurecido que describen el comportamiento prefisuración se describen en la Tabla 5 (entre paréntesis la desviación estándar):The properties in the hardened state that describe the pre-cracking behavior are described in Table 5 (in parentheses the standard deviation):
Tabla 5. Propiedades en estado endurecido pre-1isuraciónTable 5. Properties in pre-cracking hardened state
Las propiedades en estado endurecido de las diferentes mezclas post-fisuración se recogen en la Tabla 6 (entre paréntesis la desviación estándar).The properties in the hardened state of the different post-cracking mixtures are shown in Table 6 (standard deviation in parentheses).
Tabla 6. Propiedades en estado endurecido post-fisuración Table 6. Post-crack hardened state properties
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES202030750A ES2891699B2 (en) | 2020-07-17 | 2020-07-17 | High-resistance steelmaking self-compacting concrete and its production procedure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES202030750A ES2891699B2 (en) | 2020-07-17 | 2020-07-17 | High-resistance steelmaking self-compacting concrete and its production procedure |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2891699A1 ES2891699A1 (en) | 2022-01-28 |
ES2891699B2 true ES2891699B2 (en) | 2022-06-08 |
Family
ID=79909440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES202030750A Active ES2891699B2 (en) | 2020-07-17 | 2020-07-17 | High-resistance steelmaking self-compacting concrete and its production procedure |
Country Status (1)
Country | Link |
---|---|
ES (1) | ES2891699B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2484651B1 (en) * | 2009-10-01 | 2017-12-13 | Korea Railroad Research Institute | Heavy concrete composition using slag by-products |
CN108821692A (en) * | 2018-07-25 | 2018-11-16 | 安徽工业大学 | A kind of sand base water-permeable brick and preparation method thereof of electric arc furnace steel slag preparation |
-
2020
- 2020-07-17 ES ES202030750A patent/ES2891699B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2891699A1 (en) | 2022-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Colangelo et al. | Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy | |
Khan et al. | Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete | |
Perlot et al. | Slurry of metakaolin combined with limestone addition for self-compacted concrete. Application for precast industry | |
Coppola et al. | Electric arc furnace granulated slag as a partial replacement of natural aggregates for concrete production | |
Sharma | Effect of wastes and admixtures on compressive strength of concrete | |
Gawad et al. | Use of thermostone waste aggregates for internal curing of reactive powder concrete | |
Al Adday et al. | Fresh and hardened properties of recycled concrete aggregate modified by iron powder and silica | |
ES2891699B2 (en) | High-resistance steelmaking self-compacting concrete and its production procedure | |
ES2895754B2 (en) | STEEL CONCRETE OF DRY CONSISTENCY AND ITS PRODUCTION PROCEDURE | |
Krivenko et al. | Practical experience of construction of concrete pavement using non-conditional aggregates | |
Sowjanya | Performance of CO2 cured sugar cane bagasse ash concrete in marine environment | |
Arunachalam et al. | Experimental investigation on ultra high strength concrete containing mineral admixtures under different curing conditions | |
Acıkök | Effect of fly ash and ground granulated blast furnace slag on the strength of concrete pavement | |
Johny et al. | Study of properties of sustainable concrete using slag and recycled concrete aggregate | |
ES2895755B2 (en) | SUSTAINABLE DRY CONSISTENCY CONCRETE AND ITS PRODUCTION PROCEDURE | |
ES2891675B2 (en) | Self-compacting concrete with recycled concrete aggregate and low shrinkage and its production procedure | |
ES2891677B2 (en) | Self-compacting concrete with recycled concrete aggregate and its production procedure | |
Askari Dolatabad et al. | Rheological and mechanical properties of light weight self-compacting concrete containing Sirjan iron mine waste | |
Fahmy et al. | Performance of concrete containing crushed waste concrete exposed to different fire temperatures | |
Jebadurai et al. | Experimental investigation of toughness enhancement in cement mortar | |
Singh | High performance concrete using blast furnace slag as coarse aggregate | |
Kattoli et al. | Effect of partial replacement of cement by ground granulated blast furnace slag and sand by iron ore tailings on properties of concrete | |
ES2587443B2 (en) | Procedure for obtaining dry cement and cement mortar and lime for construction, made with slate residues | |
Kiran et al. | Strengthening of concrete by partial replacement of cement with flyash and metakaoline mix | |
Paglia et al. | Ultra-High Performance Concrete: Recycling and Issues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BA2A | Patent application published |
Ref document number: 2891699 Country of ref document: ES Kind code of ref document: A1 Effective date: 20220128 |
|
FG2A | Definitive protection |
Ref document number: 2891699 Country of ref document: ES Kind code of ref document: B2 Effective date: 20220608 |