ES2691990A1 - Tangential flow non-positive displacement motor (Machine-translation by Google Translate, not legally binding) - Google Patents
Tangential flow non-positive displacement motor (Machine-translation by Google Translate, not legally binding) Download PDFInfo
- Publication number
- ES2691990A1 ES2691990A1 ES201730261A ES201730261A ES2691990A1 ES 2691990 A1 ES2691990 A1 ES 2691990A1 ES 201730261 A ES201730261 A ES 201730261A ES 201730261 A ES201730261 A ES 201730261A ES 2691990 A1 ES2691990 A1 ES 2691990A1
- Authority
- ES
- Spain
- Prior art keywords
- displacement motor
- tangential flow
- positive
- nozzle
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 35
- 239000000446 fuel Substances 0.000 claims abstract description 92
- 239000007800 oxidant agent Substances 0.000 claims abstract description 58
- 230000001590 oxidative effect Effects 0.000 claims abstract description 44
- 238000002485 combustion reaction Methods 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims description 57
- 230000000712 assembly Effects 0.000 claims description 38
- 238000000429 assembly Methods 0.000 claims description 38
- 230000006835 compression Effects 0.000 claims description 18
- 238000007906 compression Methods 0.000 claims description 18
- 239000013598 vector Substances 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 239000007858 starting material Substances 0.000 claims description 7
- 230000033001 locomotion Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000032258 transport Effects 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000009849 deactivation Effects 0.000 claims 1
- 230000007246 mechanism Effects 0.000 claims 1
- 230000007659 motor function Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 15
- 239000007924 injection Substances 0.000 abstract description 15
- 230000010354 integration Effects 0.000 description 20
- 239000012530 fluid Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 16
- 238000003801 milling Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- WFPZPJSADLPSON-UHFFFAOYSA-N dinitrogen tetraoxide Chemical compound [O-][N+](=O)[N+]([O-])=O WFPZPJSADLPSON-UHFFFAOYSA-N 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008846 dynamic interplay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010892 electric spark Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 210000001577 neostriatum Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/14—Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
- F02C3/16—Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant
- F02C3/165—Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant the combustion chamber contributes to the driving force by creating reactive thrust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/32—Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
- F02C3/045—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/14—Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
- F02C3/16—Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K3/00—Plants including a gas turbine driving a compressor or a ducted fan
- F02K3/08—Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
- F02K3/10—Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof by after-burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K7/00—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
- F02K7/005—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the engine comprising a rotor rotating under the actions of jets issuing from this rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/42—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
- F02K9/60—Constructional parts; Details not otherwise provided for
- F02K9/62—Combustion or thrust chambers
- F02K9/66—Combustion or thrust chambers of the rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/76—Application in combination with an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/30—Arrangement of components
- F05D2250/37—Arrangement of components circumferential
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/30—Arrangement of components
- F05D2250/38—Arrangement of components angled, e.g. sweep angle
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
55
1010
15fifteen
20twenty
2525
3030
D E S C R I P C I O ND E S C R I P C I O N
MOTOR DE DESPLAZAMIENTO NO POSITIVO DE FLUJO TANGENCIALMOTOR OF NON POSITIVE DISPLACEMENT OF TANGENTIAL FLOW
SECTOR DE LA TECNICATECHNICAL SECTOR
La presente invencion se encuadra principalmente dentro de la industria de los dispositivos turbomotores, turbopropulsores y motores de combustion interna aplicables en la industria aeroespacial, asi como parte de procesos de conversion de combustibles en energia termica- mecanica aplicables en multitud de industrias, generacion de energia electrica, propulsion de vehteulos terrestres y maquinaria de combustion interna.The present invention is mainly framed within the industry of turbomotor devices, turboprop engines and internal combustion engines applicable in the aerospace industry, as well as part of processes of conversion of fuels into thermal-mechanical energy applicable in many industries, power generation electric, propulsion of land vehicles and internal combustion machinery.
ANTECEDENTES DE LA INVENCIONBACKGROUND OF THE INVENTION
El estado de la tecnica previa comprende una amplia gama de turbomaquinas, mayoritariamente implantadas en la industria aeronautica. Dividiendolos en grandes grupos, la tecnica actual comprende turbomotores, turborreactores y turbopropulsores. Todos ellos se basan en el aprovechamiento mecanico de un fluido que sufre un cambio de temperatura, definido termodinamicamente por el ciclo de Brayton y donde su rendimiento termodinamico de Carnot establece que, = 1 - —, siendo 7\,temperatura inicial del fluido y T2 la temperatura final del mismo.The state of the prior art comprises a wide range of turbomachines, mostly implemented in the aeronautical industry. By dividing them into large groups, the current technique includes turbomotors, turbo-reactors and turboprops. All of them are based on the mechanical use of a fluid that undergoes a change in temperature, defined thermodynamically by the Brayton cycle and where its thermodynamic performance of Carnot establishes that, = 1 - -, being 7 \, initial temperature of the fluid and T2 the final temperature of it.
Turbomotores, turborreactores y turbopropulsores, son maquinas muy similares entre ellas, cuya diferencia principal radica en como usan su rendimiento mecanico. Todas ellas constan de lo que se conoce como bloque generador de gas, que consiste en captar un oxidante de la atmosfera (oxigeno), comprimirlo junto con el nitrogeno del aire, mezclarlo con un combustible, realizar la combustion, elevar la temperatura/volumen del fluido y extraer un rendimiento mecanico en una o varias turbinas de alabes que al menos cubran la energia invertida en el proceso, definiendose la turbina de alabes como aquel dispositivo que es capaz de convertir la energia cinetica de un fluido en energia mecanica rotativa. Una vez cubiertas las deficiencias energeticas en el bloque generador de gas, el exceso energetico es utilizado segun los tipos mencionados, los turbomotores usan mas etapas de turbina para transmitir dicha energia mecanica a un dispositivo, los turbopropulsores del mismo modo a un propulsor tipo helice o fan, y los turborreactores para acelerar el fluido en una tobera con la energia cinetica remanente con objeto de producir un empuje.Turbomotors, turbo-reactors and turboprops, are very similar machines between them, whose main difference lies in how they use their mechanical performance. All of them consist of what is known as the gas generator block, which consists of capturing an oxidizer from the atmosphere (oxygen), compressing it together with the nitrogen in the air, mixing it with a fuel, combustion, raising the temperature / volume of the fluid and extract a mechanical performance in one or several blade turbines that at least cover the energy invested in the process, the blade turbine being defined as that device that is capable of converting the kinetic energy of a fluid into rotating mechanical energy. Once the energy deficiencies in the gas generator block are covered, the energy excess is used according to the mentioned types, the turbomotors use more turbine stages to transmit said mechanical energy to a device, the turboprops in the same way to a propeller type helix or fan, and turboreactors to accelerate the fluid in a nozzle with the remaining kinetic energy in order to produce a thrust.
55
1010
15fifteen
20twenty
2525
3030
3535
En esta definition se nombra como deficit energetico a todos aquellos procesos en los que su balance energetico es negativo, es dedr, requieren energia para su desarrollo, hecho que es de vital importancia para comprender el rendimiento de un turbomotor y de la ventaja de esta invention. En un turbomotor actual, diversos son los elementos de balance energetico negativo, pero principalmente la fase compresion, que consume aproximadamente dos tercios de la energia mecanica generada en la turbina de gas, cifra que no concuerda con la energia necesaria para comprimir necesidades masicas de aire a niveles estequiometricos del combustible, y que tiene su explication en que las turbomaquinas en la tecnica presente, comprimen en torno a un 40% mas de aire que el necesario para la completa combustion del combustible, la razon reside en que los alabes de turbina de gas no soportarian las temperaturas de combustion a volumenes exclusivamente estequiometricos, por lo que este exceso de aire se utiliza entre otras para rebajar a valores aceptables las temperaturas de los alabes, tanto por medio del descenso de la temperatura del flujo primario de combustion, como flujo secundario para refrigerar los alabes directamente, lo que al final resulta en una serie de perdidas tanto mecanicas como termodinamicas, o lo que es lo mismo, una reduction notable de la eficiencia, ademas de un conjunto constructivo de volumen y peso mayor.In this definition, all those processes in which their energy balance is negative, that is, require energy for their development, are named as energy deficit, which is of vital importance to understand the performance of a turbomotor and the advantage of this invention. . In a current turbomotor, the negative energy balance elements are diverse, but mainly the compression phase, which consumes approximately two thirds of the mechanical energy generated in the gas turbine, a figure that does not match the energy needed to compress mass air needs at stoichiometric levels of the fuel, and which has its explanation that the turbomachines in the present technique compress around 40% more air than is necessary for the complete combustion of the fuel, the reason is that the turbine blades of gas would not withstand combustion temperatures at exclusively stoichiometric volumes, so this excess air is used among others to lower the temperatures of the blades to acceptable values, both by lowering the temperature of the primary combustion flow, as flow secondary to cool the blades directly, which in the end results in a series of losses both mechanic as well as thermodynamics, or what is the same, a notable reduction in efficiency, in addition to a constructive set of volume and greater weight.
Por otra parte existen los motores cohete, si bien son maquinas de combustion interna muy diferentes a los mencionados anteriormente, como maquina termica poseen las mismas fases, comprimen un oxidante y un combustible o usan un monopropelente solido o liquido, que al ser reaccionados en una camara de combustion, se extrae energia mecanica procedente de esa variation temperatura. Si bien, no se utilizan en este caso turbinas para su extraction de energia mecanica, sino unos dispositivos llamados toberas convergentes-divergentes separados por un punto estrecho denominado garganta, los cuales son capaces de convertir la expansion termodinamica del fluido resultante de la combustion en una aceleracion mecanica en forma de trabajo util de propulsion. Si bien, estos dispositivos bajo velocidades de flujo en regimen supersonico-hipersonico son unas de las mas maquinas termodinamicas mas eficientes y que mas se acercan al rendimiento maximo Carnot, la tecnica previa a la invencion no ha resuelto como usar estas en campos ajenos a la propulsion aeroespacial.On the other hand there are rocket engines, although they are very different internal combustion machines than those mentioned above, as a thermal machine they have the same phases, compress an oxidant and a fuel or use a solid or liquid monopropellant, which when reacted in a combustion chamber, mechanical energy from that temperature variation is extracted. Although, in this case, turbines are not used for their extraction of mechanical energy, but devices called convergent-divergent nozzles separated by a narrow point called the throat, which are capable of converting the thermodynamic expansion of the fluid resulting from combustion into a mechanical acceleration in the form of useful propulsion work. Although, these devices under flow rates in supersonico-hipersonico regime are some of the most efficient thermodynamic machines and that are closer to the maximum Carnot performance, the prior art of the invention has not solved how to use these in fields outside the aerospace propulsion.
EXPLICACION DE LA INVENCIONEXPLANATION OF THE INVENTION
Es objeto de la presente invencion es un disco rotor como turbina de gas de flujo tangencial y su aplicacion en conjunto como motor o turbomaquina, que supera los inconvenientesThe object of the present invention is a rotor disk as a tangential flow gas turbine and its application as a motor or turbomachine, which overcomes the drawbacks.
55
1010
15fifteen
20twenty
2525
3030
3535
apuntados, desarrollando lo que a continuation se describe y queda recogido en su esencialidad en la revindication primera.targeted, developing what is described below and is reflected in its essentiality in the first revindication.
La invention se describe esencialmente como un disco rotor, que desarrolla y transmite un trabajo que se obtiene de la propulsion generada por la aceleracion de los gases de una combustion sostenida en su interior, por tanto, en base a lo anterior cabe calificar este dispositivo, como una turbina, en base a la direccionalidad del vector del flujo propulsor que lo hace girar, de flujo tangencial y en base a su conjunto funcional, un motor de desplazamiento no positivo, del tipo turbomaquina de combustion interna.The invention is essentially described as a rotor disk, which develops and transmits a work that is obtained from the propulsion generated by the acceleration of the gases of a combustion sustained inside, therefore, based on the foregoing, this device can be qualified, as a turbine, based on the directionality of the propellant flow vector that rotates it, tangential flow and based on its functional set, a non-positive displacement motor, of the internal combustion turbomachine type.
En comparacion con la tecnica actual de turbomotores, turborreactores y turbopropulsores, la principal ventaja de la invencion es su mayor simplicidad constructiva, reducido tamano y peso, donde la tecnica actual basada en varias etapas de compresor y varias etapas de turbina resulta mas compleja de integrar, de mayor tamano en relacion a la potencia suministrada, y de poca viabilidad economica en aplicaciones ajenas proyectos aeroespaciales espedficos, que hacen que la industria se decante por otro tipo de motorizaciones; principalmente motores de embolo, donde la invencion sigue teniendo una ventaja tecnica, con un peso menor, precisa de menos elementos rotativos sujetos a desgaste, mantenimiento y lubrication; tiene menos elementos sujetos a altas temperaturas y basa su funcionamiento en un sistema termodinamicamente mas eficiente, innovando con el uso de toberas multiples rotatorias que hasta ahora la tecnica no contempla.Compared with the current turbomotor, turbojet and turboprop technology, the main advantage of the invention is its greater constructive simplicity, reduced size and weight, where the current technique based on several compressor stages and several turbine stages is more complex to integrate. , of greater size in relation to the power supplied, and of little economic viability in applications outside specific aerospace projects, which cause the industry to opt for other types of engines; mainly plunger motors, where the invention still has a technical advantage, with a lower weight, requires less rotating elements subject to wear, maintenance and lubrication; It has fewer elements subject to high temperatures and bases its operation on a thermodynamically more efficient system, innovating with the use of multiple rotating nozzles that the technique does not contemplate so far.
Se ha de tener en cuenta que el objeto de esta explication es la de describir el funcionamiento de la invencion, por lo que se obvian elementos tales como sistema de lubricacion, estanqueidad de los ejes, sistema de arranque, controles y electronica aplicada a turbomaquinas que la tecnica actual contempla ampliamente sin que resulten de especial importancia para el entendimiento, ni parte de la presente invencion, por lo que se daran por aplicadas en esta description el estado de la tecnica previa. Cabe destacar, que de la invencion se desprenden multiples variantes recogidas en esta descripcion, que aunque conservan el mismo principio de funcionamiento, la adaptan a diferentes entornos de funcionamiento, asi como diferentes tipos de combustibles/oxidantes y diferentes estados del oxidante. Asimismo, como sucede en cualquier otra turbina, la invencion no se puede entender, o poner en practica como elemento aislado y depende de otros elementos que la hacen funcionar en conjunto como turbomaquina, por tanto, por un lado se describe la invencion aislada como turbina de gas de flujo tangencial, y por otro la integration de la misma con otros componentes como turbomaquina y sus variantes.It should be borne in mind that the purpose of this explanation is to describe the operation of the invention, so that elements such as lubrication system, shaft seal, starting system, controls and electronics applied to turbomachines are obviated. The current technique is broadly contemplated without being of particular importance to the understanding, nor part of the present invention, so that the prior art status will be considered applied in this description. It should be noted that multiple variants contained in this description are derived from the invention, which although they retain the same operating principle, adapt it to different operating environments, as well as different types of fuels / oxidants and different oxidant states. Likewise, as in any other turbine, the invention cannot be understood, or put into practice as an isolated element and depends on other elements that make it work together as a turbomaquine, therefore, on the one hand the isolated invention is described as a turbine of tangential flow gas, and on the other the integration of the same with other components such as turbomachinery and its variants.
55
1010
15fifteen
20twenty
2525
3030
3535
La turbina de gas de flujo tangencial, en adelante, disco rotor (1) se muestra en las figuras 1, 2, 3, 12 y 13, estas muestran la invention para ser puesta en funcionamiento con combustibles Kquidos tales como queroseno, gasolina, etanol, metanol y propano presurizado, as^ como un oxidante gaseoso, como aire atmosferico comprimido (21% oxigeno) u oxigeno gaseoso procedente de la evaporation de una fuente de oxigeno liquido mediante cualquiera de los metodos que la tecnica presente comprende ampliamente. Se compone de un disco metalico de aleacion u otros materiales aptos a los requerimientos de funcionamiento termo-mecanicos particulares; el eje de rotation esta mecanizado formando el orificio eje de rotation (2), de tal manera que se puede integrar en el un eje que conecta hidraulicamente a los conductos radiales (5); donde estos a su vez conectan hidraulicamente con los conjuntos tobera (3) teniendo como funcion canalizar el combustible que proviene del orificio eje de rotacion hasta las entradas de combustible (6); a su vez estan practicados en el disco rotor los fresados de conexion oxidante a conjunto tobera (4), que son comunicados de este modo con la cara del disco rotor expuesta al oxidante a presion, si bien estos fresados admiten multitud de formas, posiciones y disenos fluidodinamicos tal y como se observa en las figuras 3 y 13.The tangential flow gas turbine, hereinafter, rotor disk (1) is shown in figures 1, 2, 3, 12 and 13, these show the invention to be put into operation with liquid fuels such as kerosene, gasoline, ethanol , methanol and pressurized propane, as well as a gaseous oxidant, such as compressed atmospheric air (21% oxygen) or gaseous oxygen from the evaporation of a source of liquid oxygen by any of the methods that the present technique broadly comprises. It consists of a metal alloy disk or other materials suitable for the particular thermo-mechanical operating requirements; the rotation axis is machined forming the rotation axis hole (2), so that it can be integrated into the axis that hydraulically connects to the radial ducts (5); where these in turn hydraulically connect with the nozzle assemblies (3) having the function of channeling the fuel that comes from the rotation shaft hole to the fuel inlets (6); at the same time, the milling of the oxidant connection to the nozzle assembly (4), which are communicated in this way with the face of the rotor disk exposed to the pressurized oxidant, are practiced in the rotor disk, although these millings admit a multitude of shapes, positions and fluid dynamic designs as seen in figures 3 and 13.
El componente clave de la turbina de gas de flujo tangencial son los conjuntos tobera (3), se muestran en las figuras n° 4, 5, 6 y 7, su funcion es la de crear y mantener una mezcla combustible-oxidante apropiada, sostener una combustion y acelerar los gases producto de combustion para producir un empuje que es transferido al disco rotor (1). Su angulo de integration es definido por el eje coincidente con el vector de empuje de la tobera (12) y este a su vez, corresponde con el eje de simetria de la tobera, siendo fijados en el disco rotor por interferencia o cualquier otro metodo de fijacion mecanica.The key component of the tangential flow gas turbine is the nozzle assemblies (3), shown in Figures 4, 5, 6 and 7, its function is to create and maintain an appropriate fuel-oxidant mixture, sustain a combustion and accelerate the combustion product gases to produce a thrust that is transferred to the rotor disk (1). Its integration angle is defined by the axis coinciding with the thrust vector of the nozzle (12) and this in turn, corresponds to the axis of symmetry of the nozzle, being fixed on the rotor disk by interference or any other method of mechanical fixation
Segun el angulo de integracion y vector de fuerza que se quiera obtener de los conjuntos tobera (3), se denominan de angulo de integracion tangencial aquellos en los que su angulo de integracion son paralelos a la tangente del disco rotor (1) en el punto de integracion con mmimas desviaciones radiales y/o axiales, asimismo se denominan de angulo de integracion tangencial-axial aquellos que su angulo de integracion es paralelo a la tangente del punto de integracion del disco rotor con desviaciones radiales mmimas, y un angular axial comprendido entre ± 90° al respecto de la tangente. Cada conjunto tobera que se integra en el disco rotor tiene alineada la entrada de combustible (6) a y los conductos radiales (5), a su vez los orificios de entrada de oxidante (10) se comunican con los fresados de conexion oxidante a conjunto tobera (4) del disco rotor, si bien en su variante para oxidante liquido, este proviene por conductos radiales.According to the angle of integration and force vector that you want to obtain from the nozzle assemblies (3), those in which their angle of integration are parallel to the tangent of the rotor disk (1) at the point of tangential integration are called of integration with mmimal radial and / or axial deviations, also those whose angle of integration is parallel to the tangent of the integration point of the rotor disk with mmimal radial deviations, and an axial angle between ± 90 ° with respect to the tangent. Each nozzle assembly that is integrated in the rotor disk has aligned the fuel inlet (6) a and the radial ducts (5), in turn the oxidant inlet holes (10) communicate with the milling of oxidative connection to nozzle assembly (4) of the rotor disk, although in its variant for liquid oxidant, this comes from radial ducts.
55
1010
15fifteen
20twenty
2525
3030
3535
Los conjuntos tobera (3) constan opcionalmente de un sistema de regulation de inyeccion de combustible por la action de la fuerza centrifuga impKcita al giro del disco rotor, que se compone de un muelle (8) y una valvula (7), como se aprecia en la figura 5 y 6, la valvula posee unos orificios a una determinada altura que en base a la fuerza centrifuga producida por el giro de rotor, el peso de la valvula y la fuerza contrarrestada por el muelle (8), suponiendo el aumento de una velocidad de giro del disco rotor, hacen desplazar la valvula por el orificio de entrada de combustible (6) abriendo y cerrando el paso de combustible que fluye hacia los orificios de inyeccion de combustible (9) como se muestra en la figura 5, en position de maximo caudal de inyeccion, antes de empezar a cerrar el flujo en caso de aumento de velocidad de giro del rotor; de la misma manera, la figura 6 muestra la posicion de la valvula con el disco rotor parado.The nozzle assemblies (3) optionally consist of a fuel injection regulation system by the action of the centrifugal force implicit in the rotation of the rotor disk, which consists of a spring (8) and a valve (7), as can be seen in figures 5 and 6, the valve has holes at a certain height based on the centrifugal force produced by the rotor rotation, the weight of the valve and the force countered by the spring (8), assuming the increase in a rotational speed of the rotor disk, they move the valve through the fuel inlet port (6) by opening and closing the passage of fuel that flows into the fuel injection holes (9) as shown in figure 5, in position of maximum injection flow, before starting to close the flow in case of increasing rotor rotation speed; in the same way, figure 6 shows the position of the valve with the rotor disk stopped.
Considerando un aporte constante de combustible a presion disponible en la entrada de combustible (6) e inyectado este en la camara de combustion mediante varios orificios de inyeccion de combustible (9) y un aporte constante de oxidante a presion entrando por los orificios de entrada de oxidante (10); el funcionamiento de los conjuntos tobera (3) se describe como sigue: Tras una ignition inicial generada por cualquier metodo de la tecnica presente, como una antorcha de ignicion para motores de turbina, que inflama una pequena cantidad de combustible inyectada en el difusor de salida de compresor (19), esta es conducida a traves de los fresados de conexion oxidante a conjunto tobera (4) a los conjuntos tobera, donde una vez finalizada fase de ignicion estos sostienen una combustion en la camara de combustion (11). Fruto de la combustion y expansion termica de los gases en los conjuntos tobera, estos son acelerados y expulsados por la tobera (12), que puede describir multitud de formas convergentes o bien convergentes-divergentes dependiendo de cada aplicacion y tipos de combustibles-oxidantes, dichas toberas (12) en base a la aceleracion de los gases dentro de ellas, generan una fuerza de reaction opuesta a esta aceleracion o empuje con vector alineado al eje de la tobera (12), empuje que es transferido por el conjunto tobera al disco rotor (1) con el vector que la tobera haya sido integrada, donde al menos existe una componente tangencial, que impulsa una fuerza de giro en el disco rotor.Considering a constant supply of pressurized fuel available in the fuel inlet (6) and injected this into the combustion chamber through several fuel injection holes (9) and a constant supply of pressurized oxidant entering through the inlet holes of oxidizer (10); The operation of the nozzle assemblies (3) is described as follows: After an initial ignition generated by any method of the present technique, such as an ignition torch for turbine engines, which ignites a small amount of fuel injected into the outlet diffuser of compressor (19), this is conducted through the milling of oxidative connection to nozzle assembly (4) to the nozzle assemblies, where once the ignition phase is finished they sustain a combustion in the combustion chamber (11). As a result of the combustion and thermal expansion of the gases in the nozzle assemblies, these are accelerated and expelled by the nozzle (12), which can describe a multitude of convergent or convergent-divergent forms depending on each application and types of oxidant-fuels, said nozzles (12) based on the acceleration of the gases within them, generate a reaction force opposite to this acceleration or thrust with vector aligned to the axis of the nozzle (12), thrust that is transferred by the nozzle assembly to the disk rotor (1) with the vector that the nozzle has been integrated, where there is at least one tangential component, which drives a rotational force in the rotor disk.
La opcionalidad del sistema regulador de combustible integrado en los conjuntos tobera (3) se plantea por la posibilidad de la configuration final de la turbomaquina como "continuamente a maxima potencia", pudiendo prescindirse del muelle (8) y la valvula (7), tarando el diametro de los orificios de inyeccion de combustible (9) y los orificios de entrada de oxidante gaseoso (10). Por otra parte, las figuras 5 y 6 muestran la section longitudinal de un conjunto tobera donde su unica diferencia radica en la forma de su tobera (12) y la posicion del regulador deThe optionality of the fuel regulator system integrated in the nozzle assemblies (3) is raised by the possibility of the final configuration of the turbomachine as "continuously at maximum power", being able to dispense with the spring (8) and the valve (7), tare the diameter of the fuel injection holes (9) and the gaseous oxidizer inlet holes (10). On the other hand, Figures 5 and 6 show the longitudinal section of a nozzle assembly where its only difference lies in the shape of its nozzle (12) and the position of the regulator of
55
1010
15fifteen
20twenty
2525
3030
3535
combustible, esto quiere representar la amplia variedad de formas que puede y debe ser disenada cada tobera impKcita en el conjunto tobera, que responde a las caracteristicas precisas de cada integration; por otra parte tambien se muestra por diferencia entre ambas el movimiento del sistema regulador del combustible expuesto .fuel, this wants to represent the wide variety of shapes that each impKcita nozzle can and should be designed in the nozzle assembly, which responds to the precise characteristics of each integration; on the other hand, the movement of the exposed fuel regulator system is also shown by difference.
El calculo de las fuerzas aplicables en cada tobera, esta determinado considerando estas con velocidad inicial nula independientemente a la velocidad del rotor, como un motor cohete, ya que todos los vectores velocidad a la entrada del flujo en la tobera son perpendiculares al vector aceleracion, donde se cumple Fuerza = dp/dt del fluido, donde "dp" representa la derivada del momento lineal y "dt" la derivada del tiempo; asimismo el momento lineal queda definido por la expresion, p = ymv siendo el producto de la masa, velocidad y el factor de Lorentz "7", que representa en este sistema la variation de la masa del caudal propulsor en cada tobera correspondiente a la velocidad relativa del sistema al respecto de la velocidad de la luz, definida por la expresion , \ o donde "c" representa la velocidad de la luz y "v" laThe calculation of the forces applicable in each nozzle, is determined considering these with zero initial velocity independently of the rotor speed, like a rocket motor, since all the velocity vectors at the entrance of the flow in the nozzle are perpendicular to the acceleration vector, where Force = dp / dt of the fluid is fulfilled, where "dp" represents the derivative of the linear momentum and "dt" the derivative of time; also the linear momentum is defined by the expression, p = ymv being the product of the mass, velocity and the Lorentz factor "7", which represents in this system the variation of the mass of the propellant flow in each nozzle corresponding to the velocity relative of the system with respect to the speed of light, defined by the expression, \ or where "c" represents the speed of light and "v" the
yl- v2/c2yl- v2 / c2
velocidad relativa de los conjuntos tobera (3). Si bien el factor de Lorentz es descartado en otro tipo de propulsores, dado que estos se ven afectados de igual manera en todo el conjunto propulsado, en el caso de la invention esto no ocurre, ya que un sistema de referencia, la carcasa-bastidor (14) por ejemplo, puede tener velocidad nula y sin embargo, las toberas estar en movimiento curvilmeo de miles de metros por segundo, considerando esto y cumpliendose que el valor de velocidad inicial para los fluidos a la entrada de la tobera es nulo, la fuerza desarrollada por los conjuntos tobera sera tanto mayor como mayor sea la velocidad lineal equivalente de los mismos en proportion al factor de Lorentz, aunque esta se presente a bajas velocidades en proporciones infinitesimales, es procedente determinar la fuerza de empuje de cada conjunto tobera con la formula F =y m Ve + (pe - p0)Ae ,donde "m" representa el caudal masico del gas de escape, " Ve" la velocidad eficaz de escape, "pe" la presion estatica en el plano de salida de cada tobera, "p0" la presion del sistema (presion a la salida o presion ambiente) y "Ae" area de flujo en el plano de salida de la tobera.relative speed of the nozzle assemblies (3). Although the Lorentz factor is discarded in other types of thrusters, since these are affected in the same way in the whole propelled assembly, in the case of the invention this does not occur, since a reference system, the housing-frame (14) for example, it may have zero velocity and, however, the nozzles will be in curved motion of thousands of meters per second, considering this and fulfilling that the initial velocity value for the fluids at the entrance of the nozzle is zero, the force developed by the nozzle assemblies will be both greater and greater the equivalent linear velocity thereof in proportion to the Lorentz factor, although this occurs at low speeds in infinitesimal proportions, it is appropriate to determine the thrust force of each nozzle assembly with the formula F = ym Ve + (pe - p0) Ae, where "m" represents the mass flow of the exhaust gas, "See" the effective exhaust velocity, "pe" the static pressure in the outlet plane of each to bera, "p0" system pressure (outlet pressure or ambient pressure) and "Ae" flow area in the nozzle outlet plane.
La turbina de gas de flujo tangencial objeto de la invencion integrada como turbomaquina mas esencial se muestra en la figura n° 10; la figura n° 8 muestra la integracion fija entre eje central (16) y disco rotor (1), estas dos figuras muestran el ejemplo de como el combustible ingresa en la turbina de gas de flujo tangencial, y como se aumenta la presion del oxidante. Para ello, la turbina de gas de flujo tangencial es fijada al eje central por interferencia mecanica o cualquier otro metodo, dicho eje comunica hidraulicamente la entrada de combustible (15) con el orificio eje de rotation (2); ademas transfiere la potencia mecanica generada por el disco rotor al compresor centrifugo (18) y a los posibles elementos instalados en su estriado final, siendoThe tangential flow gas turbine object of the integrated invention as the most essential turbomachine is shown in Figure 10; Figure 8 shows the fixed integration between central axis (16) and rotor disk (1), these two figures show the example of how the fuel enters the tangential flow gas turbine, and how the oxidant pressure is increased . For this, the tangential flow gas turbine is fixed to the central axis by mechanical interference or any other method, said axis hydraulically communicates the fuel inlet (15) with the rotation shaft orifice (2); also transfers the mechanical power generated by the rotor disk to the centrifugal compressor (18) and to the possible elements installed in its final striatum, being
55
1010
15fifteen
20twenty
2525
3030
3535
todo lo anterior soportado como se muestra por una parte fija carcasa-bastidor (14), que proporciona soporte mecanico a los dispositivos giratorios, proporciona un punto fijo de entrada de combustible (15) y canaliza el del oxidante en su recorrido hacia el disco rotor, integrando en este caso el difusor de admision (17), difusor salida compresor (19) y un difusor de salida de gases (20). Considerando la turbomaquina en funcionamiento como se detalla en la description de la realization preferente de la invention (girando y con combustion en los conjuntos tobera); el turbomotor que representa la figura 10, usando como combustible queroseno y como oxidante aire atmosferico, su funcionamiento se explica como sigue:all of the above supported as shown by a fixed housing-frame part (14), which provides mechanical support to the rotating devices, provides a fixed point of fuel input (15) and channels the oxidant in its path towards the rotor disk , integrating in this case the intake diffuser (17), compressor outlet diffuser (19) and a gas outlet diffuser (20). Considering the turbomachine in operation as detailed in the description of the preferred embodiment of the invention (rotating and with combustion in the nozzle assemblies); The turbomotor shown in Figure 10, using as a kerosene fuel and as an atmospheric air oxidizer, its operation is explained as follows:
■ El oxidante ingresa por el difusor de admision (17) que es absorbido por el compresor centrifugo (18); por efecto de la velocidad de rotation del compresor es comprimido a su llegada al difusor salida compresor (19), donde fluye a traves de los fresados de conexion oxidante a conjunto tobera (4) y de ah hasta los conjuntos tobera (3).■ The oxidant enters through the intake diffuser (17) which is absorbed by the centrifugal compressor (18); Due to the speed of rotation of the compressor, it is compressed upon arrival at the compressor outlet diffuser (19), where it flows through the milling of oxidant connection to nozzle assembly (4) and from there to nozzle assemblies (3).
■ El combustible ingresa por la entrada de combustible (15) a presion ambiente o baja presion, siendo absorbido por un conducto que lo comunica con la acanaladura con perforaciones en el eje central (16) viaja por el eje hasta llegar al orificio eje de rotacion (2) del disco rotor (1), donde por efecto de la rotacion y la fuerza de centrifuga correspondiente es elevada su presion durante su flujo por los conductos radiales (5) hasta llegar a los conjuntos tobera (3).■ The fuel enters through the fuel inlet (15) at ambient pressure or low pressure, being absorbed by a conduit that communicates it with the groove with perforations in the central axis (16) travels through the axis until it reaches the hole rotation axis (2) of the rotor disk (1), where, due to rotation and the corresponding centrifugal force, its pressure is increased during its flow through the radial ducts (5) until reaching the nozzle assemblies (3).
■ Una vez el combustible y el oxidante se encuentran presurizados y a disposition de los conjuntos tobera, la explication corresponde a la realizada anteriormente sobre el funcionamiento de los mismos.■ Once the fuel and the oxidant are pressurized and available to the nozzle assemblies, the explanation corresponds to the one previously made on the operation of the same.
■ Una vez la combustion ha sido realizada en los conjuntos tobera, se obtiene un trabajo mecanico en el disco rotor, que es transferido al estriado del extremo del eje central, dicho trabajo mecanico a disposicion en el citado estriado, puede ser utilizado para multitud de fines, como la conexion mecanica a un generador para producir electricidad (como turbomotor), para el accionamiento de helices (como turbopropulsor), o el accionamiento de cualquier otro dispositivo mecanico, si bien los gases que son evacuados al exterior en este caso por una salida de gases (20), pueden ser aprovechados para producir un empuje del conjunto turbomaquina, (como turborreactor) aplicando a la figura 10 los elementos compatibles igualmente que se muestran en la figura 11, camara de postcombustion (26) y tobera circunferencial (31), en lugar de una salida de gases (20).■ Once the combustion has been carried out in the nozzle assemblies, a mechanical work is obtained on the rotor disk, which is transferred to the spline of the end of the central axis, said mechanical work available in said spline, can be used for a multitude of purposes, such as the mechanical connection to a generator to produce electricity (as a turbomotor), for the drive of propellers (as a turboprop), or the drive of any other mechanical device, although the gases that are evacuated abroad in this case by a gas outlet (20), can be used to produce a thrust of the turbomachine assembly, (as a turbojet) by applying to figure 10 the compatible elements also shown in figure 11, postcombustion chamber (26) and circumferential nozzle (31 ), instead of a gas outlet (20).
Una de las principales ventajas sobre la tecnica actual en esta invencion radica en los conjuntos tobera (3), este diseno permite que las fuerzas mecanicas a las que se exponen integradas en el interior del disco rotor sean bajas, y que por tanto las habilite, por ejemplo,One of the main advantages over the current technique in this invention lies in the nozzle assemblies (3), this design allows the mechanical forces to which they are exposed integrated inside the rotor disk to be low, and therefore enable them, for example,
55
1010
15fifteen
20twenty
2525
3030
3535
para ser realizadas en diversos materiales, entre ellos, los materiales ceramicos de alta resistencia termica pero baja tenacidad, materiales que hasta ahora las turbinas de alabes no pueden asumir por las altas exigencias mecanicas. Los conjuntos tobera y por tanto la turbina de gas de flujo tangencial objeto de invention como turbomaquina, tienen la capacidad de funcionar bajo volumenes de la mezcla de combustible-oxidante exclusivamente estequiometricos, sin excesos de aire, por tanto a mayor temperatura que las turbinas de alabes de la tecnica presente, que usan parte del trabajo mecanico obtenido de la turbina para ser cedido a la fase de compresion no solo para abastecer estequiometricamente el oxidante para la combustion, sino por diferentes metodos, para mantener los alabes a temperaturas estables, lo que se traduce en una bajada del rendimiento de la turbomaquina, mayor complejidad, asi como mayor peso y tamano debido entre otros factores al sobredimensionamiento de los compresores en comparacion a la invencion.to be made in various materials, among them, ceramic materials of high thermal resistance but low toughness, materials that until now the blade turbines cannot assume due to the high mechanical requirements. The nozzle assemblies and therefore the tangential flow gas turbine object of the invention as a turbomaquine, have the capacity to operate under volumes of the exclusively stoichiometric fuel-oxidant mixture, without excess air, therefore at a higher temperature than the turbines of blades of the present technique, which use part of the mechanical work obtained from the turbine to be transferred to the compression phase not only to stoichiometrically supply the oxidant for combustion, but by different methods, to keep the blades at stable temperatures, which It translates into a decrease in turbomachinery performance, greater complexity, as well as greater weight and size due, among other factors, to the oversizing of compressors compared to the invention.
Las figuras n° 5 y 6 representan la section longitudinal del conjunto tobera (3), se muestran en su aplicacion en la turbina tangencial como toberas convergente o convergente-divergente, dicha option ha de plantearse en cada particular diseno de conjunto tobera, ya que tanto una como otra son aplicables al modelo de turbina de flujo tangencial, si bien la tobera convergente es mas facil de integrar y operar, la tobera convergente-divergente es el modelo mas eficiente, pudiendo entregar hasta un 30% mas de empuje con el mismo caudal masico respecto a una tobera convergente, debido a la suma de sus aceleraciones del fluido tanto en su garganta, tanto a las aceleraciones en regimen supersonico de la seccion de tobera divergente, y por tanto, con un vector de expansion y aceleracion util, si bien, para alcanzar y mantener la aceleracion de un flujo supersonico constante entre la garganta y final de tobera se precisan altas temperaturas y velocidades de combustion, debidas a la necesidad de mantener una expansion y aceleracion del gas supersonicamente, en el mejor de los casos, idealmente adiabatico durante todo su trayecto, condiciones no faciles de obtener exitosamente usando aire como oxidante, pues la mera presencia del nitrogeno como gas inerte al 78% reduce las temperaturas y velocidades de combustion notablemente. A pesar de ser relativamente facil obtener un flujo sonico en la garganta de la tobera, no lo es mantener la aceleracion tras esta en valores supersonicos hasta su salida durante todo su regimen de funcionamiento, ya que exponiendo la seccion de tobera divergente a un flujo supersonico inicial incapaz de alcanzar la salida de tobera bajo regimen supersonico el fluido perderia velocidad y por tanto desaceleracion entre otros efectos devastadores energeticamente hablando, no obstante este planteamiento pretende exponer que la invencion no se limita solamente al aire como oxidante, ni limita su uso en regimenes de velocidad en tobera de flujo subsonico o transonico, sino que se plantea su uso tambien con otros propergoles y velocidades de flujo supersonico eFigures 5 and 6 represent the longitudinal section of the nozzle assembly (3), are shown in its application in the tangential turbine as convergent or convergent-divergent nozzles, said option must be considered in each particular nozzle assembly design, since both are applicable to the tangential flow turbine model, although the convergent nozzle is easier to integrate and operate, the convergent-divergent nozzle is the most efficient model, being able to deliver up to 30% more thrust with it mass flow rate with respect to a convergent nozzle, due to the sum of its fluid accelerations both in its throat, both to the sub-system accelerations of the divergent nozzle section, and therefore, with a useful expansion and acceleration vector, if well, to achieve and maintain the acceleration of a constant fluid flow between the throat and the end of the nozzle, high temperatures and combustion speeds are required, due to the need for and maintain an expansion and acceleration of the gas supersonically, in the best case, ideally adiabatic throughout its journey, conditions not easily obtained using air as an oxidant, since the mere presence of nitrogen as an inert gas at 78% reduces temperatures and combustion speeds remarkably. Although it is relatively easy to obtain a sonic flow in the throat of the nozzle, it is not to maintain the acceleration after it is in the supersonic values until its exit during its entire operating regime, since exposing the divergent nozzle section to a supersonic flow Initially unable to reach the nozzle outlet under its regime the fluid would lose speed and therefore deceleration among other devastating effects energetically speaking, however this approach intends to expose that the invention is not only limited to air as an oxidant, nor limits its use in regimes of speed in nozzle of subsonic or transonic flow, but its use is also considered with other propergoles and supersonico flow rates and
55
1010
15fifteen
20twenty
2525
3030
3535
hipersonico. En la figura 7 se muestra un conjunto tobera ajustada para bipropelentes Kquidos, esta figura esta orientada a mostrar las diferencias con respecto al conjunto tobera con oxidante gaseoso, que radican en la practica de la acanaladura de entrada de combustible (27), la acanaladura de entrada de oxidante (28) y la reduction del diametro de los orificios entrada de oxidante (10), siendo su section longitudinal con los mismos componentes a los mostrados en las figuras n° 5 y 6, y corresponde su funcionamiento igualmente a lo anterior expuesto al respecto de los conjuntos tobera.hypersonic. Figure 7 shows a nozzle assembly adjusted for bipropellants Kquidos, this figure is oriented to show the differences with respect to the nozzle assembly with gaseous oxidant, which lie in the practice of the fuel inlet groove (27), the groove of oxidant inlet (28) and reduction of the diameter of the holes inlet of oxidant (10), its longitudinal section being with the same components to those shown in figures 5 and 6, and its operation corresponds equally to the above Regarding the nozzle assemblies.
La variante turborreactor de esta invention como turbomaquina se muestra en la figura 11, obviando por ahora otros aspectos de esta figura y centrandonos en los elementos camara de postcombustion (26) y la tobera circunferencial (31). Estos elementos tienen caracter opcional de la figura 11, y son sustituibles por una salida de gases (20) que se muestra en la figura 10 y viceversa. Estos elementos pretenden mostrar la aplicacion del la turbina de gas de flujo tangencial, como turbomaquina para la propulsion a reaction por tobera circunferencial. Entrando en detalle en el funcionamiento de la turbomaquina que integra la turbina de gas de flujo tangencial para la propulsion a reaccion mediante tobera circunferencial, dando por hecho que la turbomaquina esta en funcionamiento como se explica en la descripcion anterior y de la realization preferente de la invencion, partiendo del punto en que los gases son expulsados por los conjuntos tobera (3) en regimen subsonico, por tanto con forma de tobera convergente, con un diseno de garganta sobredimensionada de tal manera que no se extrae totalmente la energia de la combustion para producir un trabajo mecanico de giro del disco rotor (1), sino que los gases tras la salida de tobera se disponen aun energia en forma de presion y temperatura, vertiendose a una envuelta cerrada como camara de postcombustion (26) para ser acelerados finalmente en la tobera circunferencial (31) y de ah al exterior, produciendo en este proceso un empuje con vector axial del conjunto turbomaquina como turborreactor.The turbojet variant of this invention as a turbomachinery is shown in Figure 11, for now avoiding other aspects of this figure and focusing on the postcombustion chamber elements (26) and the circumferential nozzle (31). These elements have optional character of figure 11, and are replaceable by a gas outlet (20) shown in figure 10 and vice versa. These elements are intended to show the application of the tangential flow gas turbine, such as a turbomachine for jet propulsion by circumferential nozzle. Going into detail in the operation of the turbomachine that integrates the tangential flow gas turbine for the jet propulsion by means of a circumferential nozzle, assuming that the turbomachine is in operation as explained in the previous description and of the preferred realization of the invention, starting from the point at which the gases are expelled by the nozzle assemblies (3) in a subsonic regime, therefore with a convergent nozzle shape, with an oversized throat design such that the energy of combustion is not completely extracted for produce a mechanical work of rotation of the rotor disk (1), but the gases after the nozzle outlet are still disposed of energy in the form of pressure and temperature, pouring into a closed envelope as a postcombustion chamber (26) to be accelerated finally in the circumferential nozzle (31) and from there to the outside, producing in this process an axial vector thrust of the turbomachine assembly as turbojet ctor.
La variante como equipo generador de calor, para ser utilizado por ejemplo en calderas, se basa en la aplicacion del conjunto turbomaquina de la figura n°. 10, conceptuandolo, como generador de gas, su funcionamiento es como el descrito anteriormente para esta figura como turbomaquina, con la particularidad que la salida de gases (20) es conectada al hogar de la caldera en sustitucion del quemador, como los gases que abandonan el turbomotor estan aun muy calientes, se pueden utilizar en dichas calderas u otros elementos que precisen un fluido caliente para funcionar, siendo la principal ventaja de sustituir el quemador de la caldera por la invencion, que el quemador es un dispositivo dependiente de electricidad y que consume una gran cantidad de la misma, y la invencion, una vez en marcha puede funcionar autonomamente sin otro aporte de energia mas que el combustible, e incluso producir energia electrica duranteThe variant as a heat generating equipment, to be used for example in boilers, is based on the application of the turbomachine assembly of figure no. 10, conceptualizing it, as a gas generator, its operation is as described above for this figure as a turbomachine machine, with the particularity that the gas outlet (20) is connected to the boiler's home in replacement of the burner, such as the gases that leave the turbomotor is still very hot, can be used in said boilers or other elements that require a hot fluid to operate, the main advantage of replacing the boiler burner with the invention, that the burner is an electricity dependent device and that consumes a large amount of it, and the invention, once underway, can function autonomously without any other contribution of energy other than fuel, and even produce electrical energy during
55
1010
15fifteen
20twenty
2525
3030
3535
el uso de la caldera, conectando un generador al estriado del eje central (16).the use of the boiler, connecting a generator to the spline of the central shaft (16).
El funcionamiento en sistemas bipropelentes Kquidos se muestra en la figura 11, la variante del transporte del combustible por su eje central (16) segun figura 9, la variante del conjunto tobera externamente por la figura 7, e internamente por las figuras 5 y 6, tanto el oxidante como el combustible para este diseno son compuestos en estado liquido a presion y temperatura ambiente, compuestos oxidantes tales como el tetroxido de dinitrogeno, peroxido de hidrogeno, y combustibles como queroseno, metanol y la dimetilhidrazina entre otros. En esta variante, la invention carece logicamente de los elementos relacionados con los compresores de gas, siendo como elemento de aumento de presion del combustible y oxidante, como se detallo anteriormente para el combustible en disco rotor (1), la fuerza centrifuga al que se someten ambos fluidos durante el giro del disco rotor, asimismo, la carcasa-bastidor (14) para bipropelentes liquidos soporta mecanicamente el conjunto giratorio, y aporta los puntos fijos de entrada de combustible y oxidante. El funcionamiento de esta variante se explica de manera mas simple con oxidante tetroxido de dinitrogeno y combustible la dimetilhidrazina asimetrica, pues la mezcla de ambos es hipergolica y se inflama a si misma cuando ambos elementos entran en contacto, si bien fueren otros no hipergolicos, solo cabe anadir la ignition como se menciona en la realization preferente pero a la salida de los conjunto tobera (3) y un giro inicial. La regulation del combustible centrifuga no se aplica en la subsiguiente description del funcionamiento, por considerar este sistema propicio para funcionar en propulsion aeronautica, aeroespacial y submarina de elementos que funcionan a maxima potencia durante todo el funcionamiento, se opta por la regulacion de la mezcla de combustible/oxidante mediante los orificios de entrada de oxidante (10) y los orificios de inyeccion de combustible (9) realizandose con unos diametros calibrados que garantizan la mezcla correcta de ambos elementos y el funcionamiento estable en variables fijas conocidas a maxima potencia, que se describe como sigue:The operation in bipropellant systems Kquidos is shown in figure 11, the variant of the transport of the fuel along its central axis (16) according to figure 9, the variant of the nozzle assembly externally by figure 7, and internally by figures 5 and 6, Both the oxidant and the fuel for this design are compounds in a liquid state at room temperature and pressure, oxidizing compounds such as dinitrogen tetroxide, hydrogen peroxide, and fuels such as kerosene, methanol and dimethylhydrazine among others. In this variant, the invention logically lacks the elements related to gas compressors, being as an element of pressure increase of the fuel and oxidant, as detailed above for the rotor disk fuel (1), the centrifugal force at which both fluids are subjected during the rotation of the rotor disk, likewise, the housing-frame (14) for liquid bipropellants mechanically supports the rotating assembly, and provides the fixed points of fuel and oxidant entry. The operation of this variant is explained in a simpler way with oxidizing dinitrogen tetroxide and fuel asymmetric dimethylhydrazine, since the mixture of both is hypergolic and inflames itself when both elements come into contact, although they are non-hypergolic, only The ignition can be added as mentioned in the preferred embodiment but at the exit of the nozzle assembly (3) and an initial turn. The regulation of centrifugal fuel is not applied in the subsequent description of the operation, since this system is suitable for operating in aeronautical, aerospace and underwater propulsion of elements that operate at maximum power during the entire operation, it is decided to regulate the mixture of fuel / oxidant through the oxidizer inlet holes (10) and the fuel injection holes (9) with calibrated diameters that guarantee the correct mixing of both elements and stable operation in known fixed variables at maximum power, which can be describe as follows:
■ Con el sistema turbomaquina segun figura 11, completamente parado, el oxidante (tetroxido de dinitrogeno) ingresa en el sistema a una presion previa de 200kPa. a traves de la entrada de oxidante liquido (24), bajo las mismas condiciones de presion, el combustible (dimetilhidrazina asimetrica) ingresa en el sistema mediante la entrada de combustible liquido (25), desde las respectivas entradas ambos fluyen separados coaxialmente como se muestra en la figura 9, a traves del las acanaladuras y orificios del eje central (16), hasta llegar al disco rotor (1) mediante el orificio eje de rotation (2), donde ambos fluyen por los conductos radiales (5) hasta llegar a los conjuntos tobera (3), donde el combustible ingresa por la acanaladura de entrada de combustible (27),■ With the turbomachine system according to figure 11, completely stopped, the oxidant (dinitrogen tetroxide) enters the system at a previous pressure of 200kPa. through the liquid oxidizer inlet (24), under the same pressure conditions, the fuel (asymmetric dimethylhydrazine) enters the system through the liquid fuel inlet (25), from the respective inputs both flow coaxially separated as shown in figure 9, through the grooves and holes of the central shaft (16), until reaching the rotor disk (1) through the rotation shaft hole (2), where both flow through the radial ducts (5) until reaching the nozzle assemblies (3), where the fuel enters through the fuel inlet groove (27),
55
1010
15fifteen
20twenty
2525
3030
3535
pasa al orificio de entrada de combustible (6) y de ah a los orificios de inyeccion de combustible (9), donde es inyectado en la camara de combustion (11); al mismo tiempo, el oxidante a traves de los conductos radiales (5) fluye a la acanaladura de entrada de oxidante (28), de ah a los orificios de entrada de oxidante (10) para ser inyectado en la camara de combustion (11), donde es mezclado con el combustible, que inmediatamente reacciona, se produce una combustion y fruto de la misma una aceleracion de los gases que, de la misma manera descrita anteriormente para los conjuntos tobera, propulsan y hacen girar el disco rotor, que unido al giro, por fuerza centrifuga, hace aumentar asimismo la presion de inyeccion de oxidante y combustible, que eleva la cantidad de inyeccion de los mismos hasta alcanzar progresivamente el punto de equilibrio de maxima potencia donde la resistencia al paso de ambos fluidos por los inyectores no es compensada con el aumento de la presion de inyeccion debida al giro del rotor, una vez en este punto, aunque la figura muestra la funcionalidad turborreactor existen dos opciones basicas para el uso de la invencion o ambas a las vez, la de transmitir trabajo mecanico a traves del estriado del eje central (16) para mover por ejemplo un generador electrico o una helice, y/o utilizar parte de los gases fruto de la combustion en los conjuntos tobera (3) con fines de propulsion aeronautica/aeroespacial mediante el uso de una camara de postcombustion (26) y una tobera circunferencial (31) u otro tipo de tobera, o a traves del un angular de integration de los conjuntos tobera con componente tangencial-axial, cuya componente axial es la que desarrolla el empuje. No obstante lo anterior, el citado sistema turbomotor/ turborreactor, es apto para admitir la regulation del combustible/oxidante por reguladores ajenos a esta invention que la tecnica actual comprende ampliamente y son integrables en la entrada de oxidante liquido (24) y entrada de combustible liquido (25).passes to the fuel inlet port (6) and from there to the fuel injection holes (9), where it is injected into the combustion chamber (11); at the same time, the oxidant through the radial ducts (5) flows to the oxidant inlet groove (28), from there to the oxidant inlet holes (10) to be injected into the combustion chamber (11) , where it is mixed with the fuel, which immediately reacts, a combustion takes place and, as a result, an acceleration of the gases that, in the same way described above for the nozzle assemblies, propel and rotate the rotor disk, which together with the spin, by centrifugal force, also increases the injection pressure of oxidant and fuel, which raises the injection amount thereof until progressively reaching the maximum power equilibrium point where the resistance to the passage of both fluids through the injectors is not compensated with the increase of the injection pressure due to the rotation of the rotor, once at this point, although the figure shows the turbojet functionality there are two basic options for the use of the invention on or both at the same time, that of transmitting mechanical work through the stria of the central axis (16) to move for example an electric generator or a propeller, and / or use part of the gases resulting from combustion in the nozzle assemblies ( 3) for the purpose of aeronautical / aerospace propulsion through the use of a postcombustion chamber (26) and a circumferential nozzle (31) or other type of nozzle, or through an angle of integration of the nozzle assemblies with tangential-axial component, whose axial component is the one that develops the thrust. Notwithstanding the foregoing, the aforementioned turbomotor / turbojet system is capable of admitting the regulation of the fuel / oxidant by regulators outside this invention, which the current technique comprises extensively and can be integrated into the liquid oxidant inlet (24) and fuel inlet liquid (25).
Las figuras 14 y 15, muestran la asociacion solidaria o mecanizacion en una misma pieza en el disco rotor (1) de alabes con disposition axial y flujo radial solidario a disco rotor (33), con objeto de utilizar los mismos en las fases descritas anteriormente en la fase de compresion, o bien, en cualquier modo que la tecnica actual comprende ampliamente para los alabes de turbina, siendo movidos por los gases de combustion de los conjuntos tobera (3), por otra parte, como se observa en la figura 15, los alabes en disposicion radial y flujo axial solidario a disco rotor (32), pueden ser utilizados entre otros usos, para la obtencion de propulsion mediante la formation de un fan, con la ventaja anadida de la ausencia de un par de torsion derivado desde el fan al conjunto turbomotor, ya que la fuerza que impulsa el fan, forma parte del mismo. La asociacion solidaria de los mismos, o integracion mecanica comprende la tecnicaFigures 14 and 15 show the solidarity or mechanization association in a single piece in the rotor disk (1) of blades with axial arrangement and radial flow integral to rotor disk (33), in order to use them in the phases described above. in the compression phase, or, in any way that the current technique widely comprises for the turbine blades, being moved by the combustion gases of the nozzle assemblies (3), on the other hand, as seen in Figure 15 , the blades in radial arrangement and axial flow integral to the rotor disk (32), can be used among other uses, to obtain propulsion by forming a fan, with the added advantage of the absence of a torque derived from the fan to the turbomotor assembly, since the force that drives the fan is part of it. The solidarity association of the same, or mechanical integration includes the technique
55
1010
15fifteen
20twenty
2525
3030
3535
presente al respecto de integration de alabes y perfiles aerodinamicos en dispositivos rotores.In this regard, integration of blades and aerodynamic profiles in rotary devices.
La figura 15 muestra la invention, cuyas variaciones son originadas por la modification del vector de empuje de los conjuntos tobera (3) integrandolos con componente angular tangencial-axial en el disco rotor (1) con la modificacion congruente del fresado de conexion de oxidante al conjunto tobera (4) como se muestra en las figuras 12 y 13, asi como tambien se muestra la integracion de alabes disposition radial y flujo axial solidario a disco rotor (32). El resultado de esta variation en el funcionamiento anteriormente descrito para la turbomaquina segun figura 10 es similar y valida con las modificaciones congruentes a la description anterior, con la exception que en esta variante se obtiene un vector tangencial que hace mover el disco rotor (1) y un vector de empuje del conjunto turbomaquina, que puede ser usado en propulsion aeronautica, que proviene de la componente axial de cada conjunto tobera y de la interaction dinamica del fan con el fluido circundante. Expuesto de otra manera, en esta variante existe menos potencia a disposicion de desempenar un trabajo mecanico mediante el estriado del eje central (16) con objeto de poder desempenar un trabajo de propulsion directamente mediante los conjuntos tobera y el disco rotor, sin mas elementos. Asimismo, en concordancia a lo anterior expuesto, resulta evidente que la integracion de conjuntos tobera con un angulo tangencial-axial resulta de la misma manera aplicable en sistemas bipropelentes. Igualmente en la figura 15 se anade en el conjunto turbomaquina un compresor axial (35), un difusor compresor axial (36) y una carcasa-bastidor (14) adaptada a lo anterior, que aportan a la invencion mayores ratios de compresion de oxidante, y por tanto, la posibilidad de desarrollar mayor potencia por unidad de conjunto tobera (3).Figure 15 shows the invention, whose variations are caused by the modification of the thrust vector of the nozzle assemblies (3) integrating them with tangential-axial angular component in the rotor disk (1) with the congruent modification of the oxidant connection milling to the nozzle assembly (4) as shown in figures 12 and 13, as well as the integration of radial arrangement vanes and axial flow integral with rotor disc (32). The result of this variation in the operation described above for the turbomachine according to figure 10 is similar and valid with the modifications congruent to the previous description, with the exception that in this variant a tangential vector is obtained that makes the rotor disk move (1) and a thrust vector of the turbomachine assembly, which can be used in aeronautical propulsion, which comes from the axial component of each nozzle assembly and from the dynamic interaction of the fan with the surrounding fluid. Put another way, in this variant there is less power available to perform a mechanical work by means of the center shaft (16) in order to be able to perform a propulsion work directly by means of the nozzle assemblies and the rotor disk, without more elements. Likewise, in accordance with the foregoing, it is evident that the integration of nozzle assemblies with a tangential-axial angle is in the same way applicable in bipropellant systems. Likewise, in figure 15, an axial compressor (35), an axial compressor diffuser (36) and a frame-housing (14) adapted to the above are added to the turbomaquine assembly, which provide greater oxidation compression rates to the invention, and therefore, the possibility of developing greater power per unit of nozzle assembly (3).
De esta descripcion se desprenden las siguientes caracteristicas ventajosas principales de la invencion en su conjunto como turbomaquina:From this description, the following main advantageous features of the invention as a whole are disclosed as a turbomachine:
• Simplification constructiva.• Constructive simplification.
• Relaciones potencia/peso-volumen muy altas.• Very high power / weight-volume ratios.
• Diversa aplicabilidad, como turbomotor, turborreactor, turbopropulsor y conjunto generador de gas en la industria aeroespacial y energetica, asi como parte de procesos de conversion de combustibles en energia termica-mecanica aplicables a multitud de industrias.• Different applicability, such as turbomotor, turbojet, turboprop and gas generator set in the aerospace and energy industry, as well as part of processes for converting fuels into thermal-mechanical energy applicable to many industries.
• La presurizacion del combustible es realizada por el disco rotor, no se necesitan bombas de combustible de alta presion.• Fuel pressurization is done by the rotor disk, no high pressure fuel pumps are needed.
• Pocos elementos expuestos a altas temperaturas.• Few elements exposed to high temperatures.
• Posibilidad de integrar sistemas bipropelentes liquidos sin necesidad de turbobombas• Possibility of integrating liquid bipropellant systems without the need for turbo pumps
55
1010
15fifteen
20twenty
2525
3030
3535
de combustible y oxidante.of fuel and oxidant.
BREVE DESCRIPCION DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS
Para complementar la description que se esta realizando y con objeto de ayudar a una mejor comprension de las caracteristicas de la invention, se acompana como parte integrante de dicha descripcion, un juego de dibujos en donde con caracter ilustrativo y no limitativo, se ha representado lo siguiente:To complement the description that is being carried out and in order to help a better understanding of the characteristics of the invention, it is accompanied as an integral part of said description, a set of drawings in which with an illustrative and non-limiting character, what has been represented next:
• Figura 1.- Muestra la vista isometrica de la turbina de gas de flujo tangencial.• Figure 1.- Shows the isometric view of the tangential flow gas turbine.
• Figura 2.- Muestra la vista superior junto a semicorte de la turbina de gas de flujo tangencial.• Figure 2.- It shows the top view next to the half of the gas turbine with tangential flow.
• Figura 3.- Muestra la vista de la section A-A de la figura 2.• Figure 3.- Shows the view of section A-A of figure 2.
• Figura 4.- Muestra la vista lateral de un conjunto tobera.• Figure 4.- Shows the side view of a nozzle assembly.
• Figura 5.- Muestra la vista seccion longitudinal de un conjunto tobera con forma del tipo convergente-divergente, con regulador de combustible en su punto de maximo caudal (rotor girando a par maximo).• Figure 5.- Shows the longitudinal sectional view of a nozzle assembly with a convergent divergent type, with fuel regulator at its maximum flow point (rotor turning at maximum torque).
• Figura 6.- Muestra la vista seccion longitudinal de un conjunto tobera con forma del tipo convergente, con regulador de combustible en position rotor parado.• Figure 6.- Shows the longitudinal sectional view of a nozzle assembly with a convergent type shape, with fuel regulator in stationary rotor position.
• Figura 7.- Muestra la vista lateral de un conjunto tobera para bipropelentes liquidos, cuyas diferencias radican en la practica de acanaladuras y la reduction del diametro de los orificios de entrada de oxidante.• Figure 7.- Shows the side view of a nozzle assembly for liquid bipropellants, whose differences lie in the practice of grooves and the reduction of the diameter of the oxidizer inlet holes.
• Figura 8.- Muestra la vista lateral junto a semicorte, de la turbina de gas de flujo tangencial integrada en un eje central.• Figure 8.- It shows the side view next to the half, of the tangential flow gas turbine integrated in a central axis.
• Figura 9.- Muestra la vista lateral junto a semicorte, de la turbina de gas de flujo tangencial, como variante para bipropelentes liquidos integrada en un eje central.• Figure 9.- It shows the side view next to the half, of the tangential flow gas turbine, as a variant for liquid bipropellants integrated in a central axis.
• Figura 10.- Muestra la vista isometrica de la turbina de gas de flujo tangencial y resto de componentes de integration como turbomotor o bloque generador de gas cuya carcasa- bastidor esta abierta a la mitad.• Figure 10.- Shows the isometric view of the tangential flow gas turbine and other integration components such as turbomotor or gas generator block whose housing-frame is open in half.
• Figura 11.- Muestra la vista lateral de la turbina de gas de flujo tangencial, variante para bipropelentes liquidos y resto de componentes de integracion como turborreactor y turbomotor asi como la seccion de la carcasa-bastidor para bipropelentes liquidos.• Figure 11.- It shows the side view of the tangential flow gas turbine, variant for liquid bipropellants and other integration components such as turbojet and turbomotor as well as the section of the housing-frame for liquid bipropellants.
• Figura 12.- Muestra la vista superior junto a vista semicorte de la turbina de gas de flujo tangencial cuyos conjuntos tobera tienen un angulo de integracion con componente tangencial y axial a 60°.• Figure 12.- Shows the top view next to the semi-view of the tangential flow gas turbine whose nozzle assemblies have an integration angle with a tangential and axial component at 60 °.
55
1010
15fifteen
20twenty
2525
3030
3535
• Figura 13.- Muestra la vista de la seccion A-A de la figura 12.• Figure 13.- Shows the view of section A-A of figure 12.
• Figura 14.- Muestra la vista lateral-inferior que muestra la disposition de alabes• Figure 14.- Shows the side-bottom view showing the blade arrangement
solidarios integrados en la turbina de gas de flujo tangencial.integrated into the tangential flow gas turbine.
• Figura 15.- Muestra la vista lateral de la turbina de gas de flujo tangencial de vector• Figure 15.- Shows the side view of the vector tangential flow gas turbine
tangencial-axial a 60° y resto de componentes de integration como turborreactor-60 ° tangential-axial and other integration components such as turbojet-
turbopropulsor, con perfiles aerodinamicos dispuestos radialmente a la superficie de la turbina de gas de flujo tangencial, formando un fan, asi como la seccion de la carcasa- bastidor con compresor axial.turboprop, with aerodynamic profiles arranged radially to the surface of the tangential flow gas turbine, forming a fan, as well as the section of the frame-frame with axial compressor.
A continuation se proporciona una lista de los distintos elementos representados en las figuras que comprende la invention:Below is a list of the various elements represented in the figures comprising the invention:
1. Disco rotor.1. Rotor disk.
2. Orificio eje de rotation.2. Rotation shaft hole.
3. Conjuntos tobera.3. Nozzle sets.
4. Fresados de conexion oxidante a conjunto tobera.4. Milling of oxidant connection to nozzle assembly.
5. Conductos radiales.5. Radial ducts.
6. Entrada de combustible.6. Fuel inlet.
7. Valvula.7. Valve.
8. Muelle.8. Pier.
9. Orificios de inyeccion de combustible.9. Fuel injection holes.
10. Orificios de entrada de oxidante.10. Oxidizer inlet holes.
11. Camara de combustion.11. Combustion chamber.
12. Tobera.12. Nozzle
14. Carcasa-bastidor.14. Housing-frame.
15. Entrada de combustible.15. Fuel inlet.
16. Eje central.16. Central axis.
17. Difusor de admision.17. Admission diffuser.
18. Compresor centrifugo.18. Centrifugal compressor.
19. Difusor salida compresor.19. Compressor outlet diffuser.
20. Salida de gases.20. Gas outlet.
24. Entrada de oxidante liquido.24. Liquid oxidizer inlet.
25. Entrada de combustible liquido.25. Liquid fuel inlet.
26. Camara postcombustion.26. Postcombustion camera.
27. Acanaladura de entrada de combustible.27. Fuel inlet groove.
55
1010
15fifteen
20twenty
2525
3030
3535
28. Acanaladura de entrada de oxidante.28. Oxidizer inlet groove.
31. Tobera circunferencial.31. Circumferential nozzle.
32. Alabe disposicion radial y flujo axial solidario a disco rotor.32. Radial arrangement and axial flow integral with rotor disk.
33. Alabe disposicion axial y flujo radial solidario a disco rotor.33. Axial arrangement and radial flow integral with rotor disk.
35. Compresor axial.35. Axial compressor.
36. Difusor salida compresor axial.36. Axial compressor output diffuser.
REALIZACION PREFERENTE DE LA INVENCIONPREFERRED EMBODIMENT OF THE INVENTION
Si bien existen multitud de entornos aplicables para la invencion, el aeroespacial es el que mejor aprovecha sus cualidades, por lo que se expondra integrada como turbomotor, en un vehiculo aereo no tripulado, en adelante UAV, de tipo helicoptero, con las siguientes caracteristicas de uso de la invencion.Although there are many applicable environments for the invention, aerospace is the one that best takes advantage of its qualities, so it will be integrated as a turbomotor, in an unmanned aerial vehicle, hereinafter UAV, helicopter type, with the following characteristics of use of the invention
Caracteristicas y rendimiento de integration de la invencion, para potencia de 132kW, peso estimado unidad 18Kg, masa maxima al despegue o MTOW del UAV 396kg:Features and performance of integration of the invention, for 132kW power, estimated weight unit 18Kg, maximum takeoff mass or MTOW of UAV 396kg:
• Disco rotor (1) integrado con: 8 conjuntos tobera (3), dispuestas en radio efectivo de 100mm con vector tangencial, revoluciones nominales del generador de gas-rotor a potencia maxima o NCPmax, 32900 rpm; potencia maxima o Pmax, 180 kW; par maximo, 54.4 N/m a 95% Nc Pmax ; velocidad lineal periferica, 344 m/s.• Rotor disk (1) integrated with: 8 nozzle assemblies (3), arranged in effective radius of 100mm with tangential vector, nominal revolutions of the gas generator-rotor at maximum power or NCPmax, 32900 rpm; maximum power or Pmax, 180 kW; maximum torque, 54.4 N / m at 95% Nc Pmax; peripheral linear speed, 344 m / s.
• Conjuntos tobera (3) integrados con: Tobera convergente-divergente; caudal masico unitario, 0.056Kg/s; velocidad eficaz del gas a salida de tobera, 1200m/s; diametro de garganta, 4mm; coeficiente divergente, 1.36; empuje neto, 68N; presion salida, 101kPa.• Nozzle assemblies (3) integrated with: Convergent-divergent nozzle; unit mass flow rate, 0.056Kg / s; effective gas velocity at nozzle outlet, 1200m / s; throat diameter, 4mm; divergent coefficient, 1.36; net thrust, 68N; outlet pressure, 101kPa.
• Combustible y oxidante: Jet-A1 y aire atmosferico que ingresa a la unidad por el difusor de admision (17) mediante un difusor carenado en el UAV, comprimido por una etapa compresor axial (35), ratio compresion, 1.4:1; etapa compresor centrifugo ratio compresion, 5:1; potencia absorbida, 38kW; coeficiente combustible/aire, 0.03; consumo especifico combustible, 48.3kg/h.• Fuel and oxidizer: Jet-A1 and atmospheric air entering the unit through the intake diffuser (17) by means of a fairing diffuser in the UAV, compressed by an axial compressor stage (35), compression ratio, 1.4: 1; centrifugal compressor stage compression ratio, 5: 1; absorbed power, 38kW; fuel / air coefficient, 0.03; specific fuel consumption, 48.3kg / h.
• Sistema de arranque: Electrico, donde el extremo estriado del eje central (16) se integra con una caja de transmision principal provista de una unidad generador-arrancador, que transmite la fuerza necesaria para el arranque de la turbina proveniente de la energia electrica de una bateria, que una vez el motor esta en funcionamiento hace las funciones de generador (10kW potencia absorbida) de energia electrica para abastecer• Starter system: Electric, where the splined end of the central shaft (16) is integrated with a main transmission box provided with a generator-starter unit, which transmits the force necessary for the start of the turbine from the electric energy of a battery, which once the engine is running functions as a generator (10kW absorbed power) of electrical energy to supply
55
1010
15fifteen
20twenty
2525
3030
3535
electricamente el UAV y turbomotor, por otra parte, unas antorchas de encendido se situan en el difusor salida compresor (19).Electrically, the UAV and turbomotor, on the other hand, ignition torches are located in the compressor outlet diffuser (19).
• Regulation del combustible: Centrifuga, siendo las revoluciones del conjunto motor- generador para abastecer helicoptero constantes y siendo la variable la carga aerodinamica en el rotor, el sistema de regulacion por fuerza centrifuga resulta aplicable siendo prefijado en evolventes de vuelo limitadas en altura.• Fuel regulation: Centrifugal, the revolutions of the motor-generator set to supply constant helicopters and the variable being the aerodynamic load on the rotor, the centrifugal force regulation system is applicable being preset in flight limits limited in height.
• Resto de sistemas: Los inherentes al estado de la tecnica.• Other systems: Those inherent in the state of the art.
Teniendo en cuenta lo anterior, la figura 10 a la que se suma un compresor axial (35) segun figura 15, representa graficamente lo que a continuation se describe. Se expone el funcionamiento integrado de la invention como turbomotor, segun sus variables de funcionamiento, puesta en marcha, funcionamiento sin carga, funcionamiento carga maxima y apagado de desde funcionamiento, que se describen como sigue:Taking into account the above, figure 10, to which an axial compressor (35) is added according to figure 15, graphically represents what is described below. The integrated operation of the invention is described as a turbomotor, according to its operating variables, commissioning, operation without load, maximum load operation and shutdown from operation, which are described as follows:
■ Arranque: Una bateria hace mover electricamente el generador-arrancador en la caja de transmision principal del UAV, que la turbina de gas de flujo tangencial recibe a traves del estriado del eje central (16) haciendo girar a su vez el compresor centrifugo (18) y compresor axial (35), activandose a su vez un dispositivo de ignition de chispa electrica y combustible pulverizado situado en el difusor salida compresor (19), cuando las revoluciones alcanzan el 10% de Nc, los ocho conjunto tobera (3) integrados en el disco rotor (1), y cuyas masas de la valvula (7), bajo la fuerza centrifuga del giro del rotor hacen que el muelle (8) se contraiga, esta se abra y permita el flujo de combustible desde la entrada de combustible (15) situada en la carcasa-bastidor (14) pasando por el eje central (16), de ah al orificio eje de rotation (2), pasando por los conductos radiales (5) hasta los conjuntos tobera (3) y su entrada de combustible (6) la valvula (7) hacia los orificios de inyeccion de combustible (9), donde este es inyectado en la camara de combustion (11).■ Start: A battery makes the generator-starter electrically move in the main transmission box of the UAV, which the tangential flow gas turbine receives through the spline of the central shaft (16) by turning the centrifugal compressor (18). ) and axial compressor (35), activating in turn an ignition device of electric spark and pulverized fuel located in the diffuser compressor outlet (19), when the revolutions reach 10% of Nc, the eight integrated nozzle assembly (3) in the rotor disk (1), and whose masses of the valve (7), under the centrifugal force of the rotation of the rotor cause the spring (8) to contract, it opens and allows the flow of fuel from the fuel inlet (15) located in the frame housing (14) passing through the central axis (16), from there to the rotation axis hole (2), passing through the radial ducts (5) to the nozzle assemblies (3) and their inlet of fuel (6) the valve (7) to the injection holes of fuel (9), where it is injected into the combustion chamber (11).
El oxidante (aire atmosferico) ingresa por el difusor de entrada (17) de ah al compresor axial (35), ganando presion tras este, pasa a traves del difusor compresor axial (36) e ingresa al compresor centrifugo (18) ganando mas presion tras este, pasa a traves del difusor salida compresor (19) donde el flujo de aire que se dirige al fresado de conexion a conjunto tobera (4) es inflamado en parte por el combustible y las chispas proporcionadas por las antorchas de ignicion, ingresando por dichos fresados, pequenas llamas ingresan a la camara de combustion (11) de los conjunto tobera (3) a traves de los orificios de entrada de oxidante (10).The oxidant (atmospheric air) enters the inlet diffuser (17) from there to the axial compressor (35), gaining pressure after it, passes through the axial compressor diffuser (36) and enters the centrifugal compressor (18), gaining more pressure after this, it passes through the compressor outlet diffuser (19) where the air flow that is directed to the milling of connection to nozzle assembly (4) is partly inflamed by the fuel and the sparks provided by the ignition torches, entering by said milling, small flames enter the combustion chamber (11) of the nozzle assembly (3) through the oxidant inlet holes (10).
Establecida una llama de ignicion en la camara de combustion (11) se establece en losAn ignition flame established in the combustion chamber (11) is established in the
55
1010
15fifteen
20twenty
2525
3030
3535
conjuntos tobera (3) una combustion continua que va acelerando los gases que discurren por su tobera (12) y por tanto generando un empuje creciente conforme aumenta el numero de revoluciones, y por tanto aumentan con la misma la presion del combustible, que aumenta la cantidad inyectada, y la presion y volumen de aire suministrado que desarrollan los compresores, asi sucesivamente se aumentan las revoluciones del disco rotor (1) hasta que la potencia generada por la turbina de gas de flujo tangencial supera la potencia absorbida por el compresor y accesorios <60% Nc pmax ,donde el motor de arranque y la ignicion se desactivan, continuando el proceso de arranque hasta 110%NC Pmax ,donde la valvula (7) alcanza su punto de estrangulacion superior (figura 5), manteniendo por tanto una velocidad angular en el rotor constante de regimen de ralenti de en tierra.nozzle assemblies (3) a continuous combustion that is accelerating the gases that run through its nozzle (12) and therefore generating an increasing thrust as the number of revolutions increases, and therefore increases with it the fuel pressure, which increases the quantity injected, and the pressure and volume of air supplied by the compressors, thus increasing the revolutions of the rotor disk (1) until the power generated by the tangential flow gas turbine exceeds the power absorbed by the compressor and accessories <60% Nc pmax, where the starter and ignition are deactivated, continuing the starting process up to 110% NC Pmax, where the valve (7) reaches its upper throttle point (figure 5), thus maintaining a speed angular in the constant rotor of ground idle speed.
■ Funcionamiento sin carga: se considera el regimen de ralenti al 110% Nc Pmax■ Operation without load: the idle speed at 110% Nc Pmax is considered
■ Funcionamiento con carga (vuelo): Partiendo de ralenti en tierra, considerando los rotores del UAV a velocidad angular divisor de la velocidad angular del rotor tangencial del conjunto turbomotor, donde los rotores del UAV varian su angulo de paso y producen una sustentacion dependientemente de la potencia mecanica que la invention genera y trasmite a traves del eje central (16), suponiendo MTOW, el vuelo estacionario representa 90% de la potencia maxima del turbomotor o PMax y 100% PMax la ascension del helicoptero. La invencion se comporta de tal manera que estando en tierra en regimen de ralenti (obviando la potencia absorbida por el rotor y accesorios en tierra), al variar el paso de rotor del UAV para producir un vuelo estacionario, este absorbera potencia del conjunto turbomotor, que hara descender las Nc causando la apertura de la valvula (7), que permitira un mayor flujo de combustible hacia los orificios de inyeccion de combustible (9), dicho aporte de combustible elevara la temperatura de los gases de combustion, que aumentara la velocidad de salida de gases Ve, en cada conjunto tobera (3) aumentando por tanto la potencia transmitida al eje central (16) hasta su equilibrio de potencias, alrededor de 102% Nc Pmax, una vez en vuelo, se requiere al rotor la potencia maxima de la invencion, que bajan las revoluciones al 100% Nc Pmax y la valvula (7) por tanto, se desliza y permite mas caudal de combustible, entregandose la potencia maxima, suponiendo un requerimiento de potencia superior, el par maximo se situa al 95% Nc Pmax, coincidiendo con la maxima apertura de la valvula (7) donde se confirma el concepto de estabilidad de potencia y funcionamiento de la invencion.■ Operation with load (flight): Starting from idle on the ground, considering the rotors of the UAV at angular speed dividing the angular speed of the tangential rotor of the turbomotor assembly, where the UAV rotors vary their angle of passage and produce a dependently dependent on The mechanical power that the invention generates and transmits through the central axis (16), assuming MTOW, the hovering represents 90% of the maximum power of the turbomotor or PMax and 100% PMax the rise of the helicopter. The invention behaves in such a way that being on the ground in idle speed (obviating the power absorbed by the rotor and accessories on the ground), by varying the rotor pitch of the UAV to produce a stationary flight, it will absorb power from the turbomotor assembly, which will lower the Nc causing the valve to open (7), which will allow a greater flow of fuel to the fuel injection holes (9), said fuel supply will raise the temperature of the combustion gases, which will increase the speed of gas output See, in each nozzle assembly (3) increasing therefore the power transmitted to the central axis (16) until its balance of powers, around 102% Nc Pmax, once in flight, the maximum power is required to the rotor of the invention, which lower the revolutions to 100% Nc Pmax and the valve (7) therefore, slips and allows more fuel flow, delivering the maximum power, assuming a higher power requirement, the maximum torque is 95% Nc Pmax, coinciding with the maximum opening of the valve (7) where the concept of power stability and operation of the invention is confirmed.
■ Apagado desde funcionamiento: Se corta el suministro de combustible desde (11).■ Shutdown from operation: The fuel supply is cut from (11).
Se comprueba ademas que esta realizacion preferente es igualmente realizable en otros tipos de aeronaves, generadores electricos, apu's de aeronaves, unidades motoras terrestres y calderas regenerativas entre otras.It is further verified that this preferred embodiment is equally achievable in other types of aircraft, electric generators, aircraft apu, land motor units and regenerative boilers among others.
Descrita suficientemente la naturaleza de la presente invention, asi como la manera de ponerla en practica, se hace constar que, dentro de su esencialidad, podra ser llevada a la practica en otras formas de realizacion que difieran en detalle de la indicada a titulo de ejemplo, y a las cuales alcanzara igualmente la protection que se recaba, siempre que no altere, cambie o 10 modifique su principio fundamental.Describing sufficiently the nature of the present invention, as well as the way of putting it into practice, it is stated that, within its essentiality, it may be carried out in other embodiments that differ in detail from that indicated by way of example. , and which will also achieve the protection that is sought, provided that it does not alter, change or modify its fundamental principle.
Claims (27)
11. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 2,
11. Non-positive tangential flow displacement motor according to claim 2,
12. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 1,
12. Non-positive displacement motor of tangential flow according to claim 1,
13. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 1,
13. Tangential flow non-positive displacement motor according to claim 1,
14. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 1,
14. Non-positive tangential flow motor according to claim 1,
15. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 1,
15. Non-positive tangential flow displacement motor according to claim 1,
16. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 15,
16. Non-positive tangential flow displacement motor according to claim 15,
17. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 15,
17. Tangential flow non-positive displacement motor according to claim 15,
18. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 1,
18. Non-positive tangential flow displacement motor according to claim 1,
19. Motor de desplazamiento no positivo de flujo tangencial segun reivindicacion 1,
19. Tangential flow non-positive displacement motor according to claim 1,
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201730261A ES2691990B1 (en) | 2017-02-27 | 2017-02-27 | Non-positive tangential flow displacement motor |
GB1803189.8A GB2563113A (en) | 2017-02-27 | 2018-02-27 | Non-positive displacement tangential flow turbine engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201730261A ES2691990B1 (en) | 2017-02-27 | 2017-02-27 | Non-positive tangential flow displacement motor |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2691990A1 true ES2691990A1 (en) | 2018-11-29 |
ES2691990B1 ES2691990B1 (en) | 2019-09-10 |
Family
ID=61903267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201730261A Expired - Fee Related ES2691990B1 (en) | 2017-02-27 | 2017-02-27 | Non-positive tangential flow displacement motor |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2691990B1 (en) |
GB (1) | GB2563113A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109826721A (en) * | 2019-04-03 | 2019-05-31 | 中南大学 | It is a kind of that the device and its engine of air and fuel-rich combustion gas are provided |
WO2024052725A1 (en) * | 2022-09-09 | 2024-03-14 | Bordeu Schwarze Antonio | Liquid propellant gasifier and pressurizer |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR934755A (en) * | 1946-10-14 | 1948-06-01 | Thermal engine with rotating nozzles | |
US3557551A (en) * | 1968-09-26 | 1971-01-26 | Gordon Keith Colin Campbell | Gas turbine engine with rotating combustion chamber |
US3937009A (en) * | 1974-09-24 | 1976-02-10 | Howard Coleman | Torque-jet engine |
FR2459878A1 (en) * | 1979-06-25 | 1981-01-16 | Mauff Gilbert Le | Rotary internal combustion engine - has radial combustion chambers with radial outlet jets connected to central output gear |
US5185541A (en) * | 1991-12-02 | 1993-02-09 | 21St Century Power & Light Corporation | Gas turbine for converting fuel to electrical and mechanical energy |
US5408824A (en) * | 1993-12-15 | 1995-04-25 | Schlote; Andrew | Rotary heat engine |
WO1997021915A1 (en) * | 1995-12-13 | 1997-06-19 | Klein Hans U | Propulsion engine driven by rotary rockets |
US6295802B1 (en) * | 1996-10-01 | 2001-10-02 | David Lior | Orbiting engine |
WO2012129579A1 (en) * | 2011-03-24 | 2012-09-27 | French Ian Eugene | Engine |
US8776493B1 (en) * | 2011-04-05 | 2014-07-15 | The United States Of America As Represented By The Secretary Of The Navy | Lightweight electric generator using hydrogen as a fuel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727401A (en) * | 1971-03-19 | 1973-04-17 | J Fincher | Rotary turbine engine |
US4024705A (en) * | 1974-01-14 | 1977-05-24 | Hedrick Lewis W | Rotary jet reaction turbine |
AU1682492A (en) * | 1992-03-25 | 1993-10-21 | Anatoly Nikolaevich Gulevsky | Gas-turbine device |
-
2017
- 2017-02-27 ES ES201730261A patent/ES2691990B1/en not_active Expired - Fee Related
-
2018
- 2018-02-27 GB GB1803189.8A patent/GB2563113A/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR934755A (en) * | 1946-10-14 | 1948-06-01 | Thermal engine with rotating nozzles | |
US3557551A (en) * | 1968-09-26 | 1971-01-26 | Gordon Keith Colin Campbell | Gas turbine engine with rotating combustion chamber |
US3937009A (en) * | 1974-09-24 | 1976-02-10 | Howard Coleman | Torque-jet engine |
FR2459878A1 (en) * | 1979-06-25 | 1981-01-16 | Mauff Gilbert Le | Rotary internal combustion engine - has radial combustion chambers with radial outlet jets connected to central output gear |
US5185541A (en) * | 1991-12-02 | 1993-02-09 | 21St Century Power & Light Corporation | Gas turbine for converting fuel to electrical and mechanical energy |
US5408824A (en) * | 1993-12-15 | 1995-04-25 | Schlote; Andrew | Rotary heat engine |
WO1997021915A1 (en) * | 1995-12-13 | 1997-06-19 | Klein Hans U | Propulsion engine driven by rotary rockets |
US6295802B1 (en) * | 1996-10-01 | 2001-10-02 | David Lior | Orbiting engine |
WO2012129579A1 (en) * | 2011-03-24 | 2012-09-27 | French Ian Eugene | Engine |
US8776493B1 (en) * | 2011-04-05 | 2014-07-15 | The United States Of America As Represented By The Secretary Of The Navy | Lightweight electric generator using hydrogen as a fuel |
Also Published As
Publication number | Publication date |
---|---|
GB2563113A (en) | 2018-12-05 |
ES2691990B1 (en) | 2019-09-10 |
GB201803189D0 (en) | 2018-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7621118B2 (en) | Constant volume combustor having a rotating wave rotor | |
US7337606B2 (en) | Rotary ramjet engine | |
US7685824B2 (en) | Rotary ramjet turbo-generator | |
US7934368B2 (en) | Ultra-micro gas turbine | |
CN109028149B (en) | Variable geometry rotary detonation combustor and method of operating same | |
CN109028142B (en) | Propulsion system and method of operating the same | |
US9920689B2 (en) | Hybrid wave rotor propulsion system | |
US7137243B2 (en) | Constant volume combustor | |
JPH02283846A (en) | Combination type driving apparatus | |
US3118277A (en) | Ramjet gas turbine | |
RU2561757C1 (en) | Three-component air-jet engine | |
ES2691990B1 (en) | Non-positive tangential flow displacement motor | |
US10539073B2 (en) | Centrifugal gas compressor | |
US3052096A (en) | Gas turbine power plant having centripetal flow compressors and centrifugal flow turbines | |
CN114810423A (en) | Coaxial full-flow staged combustion circulating liquid rocket engine | |
EP2604822B1 (en) | Jet engine with sliding vane compressor | |
WO1985000199A1 (en) | Process of intensification of the thermoenergetical cycle and air jet propulsion engines | |
WO2022013459A1 (en) | Jet engine for aircraft | |
JP2022520878A (en) | Rotary internal combustion engine | |
US11905914B2 (en) | Liquid hydrogen-liquid oxygen fueled powerplant | |
Makhin et al. | Dynamics of liquid rocket engines | |
US20150211445A1 (en) | Missile having a turbine-compressing means-unit | |
CA2426906C (en) | Rotary ramjet engine | |
CN113513428A (en) | Electromagnetic hypersonic thrust vector jet engine | |
RU2013630C1 (en) | Aircraft engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BA2A | Patent application published |
Ref document number: 2691990 Country of ref document: ES Kind code of ref document: A1 Effective date: 20181129 |
|
FG2A | Definitive protection |
Ref document number: 2691990 Country of ref document: ES Kind code of ref document: B1 Effective date: 20190910 |
|
FD2A | Announcement of lapse in spain |
Effective date: 20240326 |