ES2691938T3 - Thermal spraying of ceramic materials - Google Patents

Thermal spraying of ceramic materials Download PDF

Info

Publication number
ES2691938T3
ES2691938T3 ES13785472.5T ES13785472T ES2691938T3 ES 2691938 T3 ES2691938 T3 ES 2691938T3 ES 13785472 T ES13785472 T ES 13785472T ES 2691938 T3 ES2691938 T3 ES 2691938T3
Authority
ES
Spain
Prior art keywords
particles
metal
coating
coated
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES13785472.5T
Other languages
Spanish (es)
Inventor
Nuria ESPALLARGAS
Fahmi MUBAROK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seram Coatings As
Original Assignee
Seram Coatings As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seram Coatings As filed Critical Seram Coatings As
Application granted granted Critical
Publication of ES2691938T3 publication Critical patent/ES2691938T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Un proceso para pulverizar térmicamente partículas cerámicas recubiertas con óxido metálico sobre un sustrato que comprende: (i) obtener una pluralidad de partículas recubiertas con óxido metálico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro en el que el recubrimiento de óxido metálico forma al menos el 5 % en peso del peso de la partícula recubierta; y (ii) pulverizar térmicamente las partículas de la etapa (I) sobre un sustrato; en el que el óxido metálico es granate de itrio y aluminio y en el que el recubrimiento forma un recubrimiento continuo y completo alrededor de la partícula cerámica.A process for thermally spraying ceramic particles coated with metallic oxide on a substrate comprising: (i) obtaining a plurality of particles coated with metallic oxide of silicon carbide, silicon nitride, boron carbide or boron nitride in which the coating metal oxide forms at least 5% by weight of the weight of the coated particle; and (ii) thermally pulverize the particles of step (I) on a substrate; in which the metal oxide is yttrium and aluminum garnet and in which the coating forms a continuous and complete coating around the ceramic particle.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

DESCRIPCIONDESCRIPTION

Pulverizacion termica de materiales ceramicosThermal pulverization of ceramic materials

La presente invencion se refiere, de acuerdo con la reivindicacion 1, a un proceso para pulverizar termicamente partfculas de carburo de silicio o de boro recubiertas con oxido metalico o partfculas de nitruro de silicio o de boro recubiertas con oxido metalico sobre un sustrato para proporcionar sustratos valiosos recubiertos con estas ceramicas. Los aspectos preferidos de la invencion tambien se refieren a un proceso para fabricar estas ceramicas recubiertas con oxido con recubrimientos suficientemente gruesos, de modo que los recubrimientos sean capaces de proteger el nucleo de partfculas ceramicas durante la operacion de pulverizacion termica.The present invention relates, according to claim 1, to a process for thermally spraying particles of silicon or boron carbide coated with metal oxide or particles of silicon or boron nitride coated with metal oxide on a substrate to provide substrates valuable coated with these ceramics. Preferred aspects of the invention also relate to a process for manufacturing these oxide-coated ceramics with sufficiently thick coatings, so that the coatings are capable of protecting the core of ceramic particles during the thermal spray operation.

AntecedentesBackground

Los materiales a base de nitruro y carburo de silicio y de boro se habfan utilizado ampliamente en muchas industrias debido a su excelente combinacion de propiedades mecanicas, termicas y qmmicas. Estos carburos y nitruros ofrecen muy buenas propiedades tribologicas y resistencia a la corrosion y, por lo tanto, se usan en general en aplicaciones de recubrimiento que requieren resistencia al desgaste y a la abrasion, por ejemplo, en un ambiente corrosivo. Se comparan favorablemente con materiales mas caros como el diamante en terminos de estas propiedades.Materials based on nitride and silicon carbide and boron had been widely used in many industries due to their excellent combination of mechanical, thermal and chemical properties. These carbides and nitrides offer very good tribological properties and resistance to corrosion and, therefore, are generally used in coating applications that require resistance to wear and abrasion, for example, in a corrosive environment. They compare favorably with more expensive materials such as diamond in terms of these properties.

El carburo de silicio, por ejemplo, se usa ampliamente como recubrimiento protector en aplicaciones industriales como componentes moviles aeroespaciales, herramientas para trabajar metales y tubenas petroqmmicas. Esto ha hecho de estas ceramicas un objetivo sintetico atractivo para los qmmicos inorganicos.Silicon carbide, for example, is widely used as a protective coating in industrial applications such as aerospace mobile components, metalworking tools and petrochemical pipes. This has made these ceramics an attractive synthetic target for inorganic chemicals.

La mayona de los recubrimientos de carburo y nitruro de silicio y de boro en general se depositan sobre un sustrato mediante deposicion ffsica en fase vapor (PVD) o deposicion qmmica en fase vapor (CVD). Estos metodos son costosos, consumen mucho tiempo y se limitan a artfculos pequenos que encajan en la camara de deposicion. Los metodos a menudo requieren complejas condiciones de procesamiento.Most of the carbide and silicon nitride and boron coatings are generally deposited on a substrate by physical vapor deposition (PVD) or vapor deposition (CVD). These methods are expensive, time-consuming and limited to small items that fit into the deposition chamber. The methods often require complex processing conditions.

Los procesos de pulverizacion termica y cinetica en general se han aceptado como uno de los metodos mas efectivos y economicos para producir recubrimientos metalicos y ceramicos en componentes de pequena a gran escala. Sin embargo, estos metodos no siempre son adecuados para depositar carburos o nitruros ceramicos debido a la descomposicion o sublimacion de las especies de metales y carburos a las temperaturas necesarias para pulverizarlos termicamente. Esto es cierto para los casos de carburos de silicio y de boro y sus nitruros.The thermal and kinetic spraying processes in general have been accepted as one of the most effective and economical methods to produce metallic and ceramic coatings in small to large scale components. However, these methods are not always suitable for depositing carbides or ceramic nitrides due to the decomposition or sublimation of the metal and carbide species at the temperatures necessary to thermally pulverize them. This is true for cases of silicon and boron carbides and their nitrides.

Sin embargo, hay algunos procesos para el recubrimiento termico con SiC en la bibliograffa. Los polvos del 50-60 % en volumen de SiC + Ni/Co se pueden alear mecanicamente con molienda de alta energfa. Un proceso de oxicombustible de alta velocidad (HVOF) (un tipo de proceso de pulverizacion termica) se puede usar para producir recubrimientos de SiC (ver Wielage, J. et al., International Thermal Spray Conference 2002, E. Lugscheider, ed. Alemania: DVS-ASM International, (2002), pp. 1047-1051). Sin embargo, los componentes de este proceso existen como fases separadas dentro de la mezcla. En este caso no hay proceso de recubrimiento de partfculas.However, there are some processes for thermal coating with SiC in the literature. Powders of 50-60% by volume of SiC + Ni / Co can be alloyed mechanically with high energy grinding. A high-speed oxy-fuel process (HVOF) (a type of thermal spraying process) can be used to produce SiC coatings (see Wielage, J. et al., International Thermal Spray Conference 2002, E. Lugscheider, ed. : DVS-ASM International, (2002), pp. 1047-1051). However, the components of this process exist as separate phases within the mixture. In this case there is no particle coating process.

Alternativamente, se pueden mezclar, aglomerar y sinterizar polvos del 67 % en peso de SiC + el 21,2 % en peso de Al2O3 y el 11,8 % en peso de Y2O3. Esta mezcla se puede pulverizar termicamente utilizando una pistola de detonacion, un pulverizador de plasma atmosferico o un proceso de oxicombustible de alta velocidad (HVOF) para producir recubrimientos de SiC (ver documento WO 03/004718). El proceso implica mezclar estos materiales moliendo y secando por pulverizacion para producir partfculas aglomeradas y a continuacion sinterizando en una atmosfera inerte. Las partfculas formadas entonces pueden ser pulverizadas termicamente. Tengase en cuenta que los oxidos metalicos y el componente ceramico forman fases separadas en este proceso. No hay recubrimiento posible en este proceso.Alternatively, powders of 67% by weight of SiC + 21.2% by weight of Al2O3 and 11.8% by weight of Y2O3 can be mixed, agglomerated and sintered. This mixture can be thermally sprayed using a detonation gun, an atmospheric plasma spray or a high-speed oxy-fuel process (HVOF) to produce SiC coatings (see WO 03/004718). The process involves mixing these materials by grinding and drying by spraying to produce agglomerated particles and then sintering in an inert atmosphere. The formed particles can then be thermally sprayed. Keep in mind that metal oxides and the ceramic component form separate phases in this process. There is no possible coating in this process.

Un proceso mas limitante implica una mezcla de aproximadamente el 60 % en peso de SiC + el 40 % en peso de aglomerante de boruro seleccionado entre boruro de circonio (ZrB2), boruro de titanio (TiB2) o boruro de hafnio (HfB2) producido por secado por pulverizacion (documento US20040258916). Este proceso debe llevarse a cabo en ausencia de oxfgeno, por lo que no es practico a nivel industrial.A more limiting process involves a mixture of about 60% by weight of SiC + 40% by weight of boride binder selected from zirconium boride (ZrB2), titanium boride (TiB2) or hafnium boride (HfB2) produced by spray drying (document US20040258916). This process must be carried out in the absence of oxygen, so it is not practical at the industrial level.

Los principales problemas que deben abordarse al preparar un recubrimiento de SiC son su sublimacion (a alrededor de 2500 °C) y su descomposicion (tambien alrededor de la marca de 2500 °C). Las partfculas se exponen a estas temperaturas durante la pulverizacion termica. Para preparar partfculas adecuadas de SiC y otras ceramicas, tambien es necesario sinterizar las ceramicas y eso tambien plantea problemas. Asegurar una distribucion homogenea del adyuvante de sinterizacion es clave para lograr un buen producto particulado y eso es diflcil.The main problems that must be addressed when preparing a SiC coating are its sublimation (at around 2500 ° C) and its decomposition (also around the 2500 ° C mark). The particles are exposed to these temperatures during thermal spraying. To prepare adequate particles of SiC and other ceramics, it is also necessary to sinter the ceramics and that also poses problems. Ensuring a homogeneous distribution of the sintering adjuvant is key to achieving a good particulate product and that is difficult.

Los presentes inventores buscan evitar los problemas de descomposicion y sublimacion del material ceramico encapsulando la ceramica en un recubrimiento de oxido relativamente grueso.The present inventors seek to avoid the problems of decomposition and sublimation of the ceramic material by encapsulating the ceramic in a relatively coarse oxide coating.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

Posiblemente son conocidas partfculas ceramicas recubiertas con oxido de metal. El documento US5098740 describe un proceso para recubrir partfculas ceramicas tales como SiC o nitruro de silicio con un recubrimiento de hidroxido metalico u oxido metalico. Los recubrimientos previstos en el documento US5098740, sin embargo, sirven puramente para proporcionar una distribucion homogenea de los adyuvantes de sinterizacion. La idea es proporcionar aditivos de sinterizacion a traves de un recubrimiento con el menor contenido de aditivo posible. No se cree que los recubrimientos del documento US5098740 sean lo suficientemente gruesos para proteger la partfcula del nucleo durante la pulverizacion termica.Possibly ceramic particles coated with metal oxide are known. US5098740 describes a process for coating ceramic particles such as SiC or silicon nitride with a coating of metal hydroxide or metal oxide. The coatings provided in US5098740, however, serve purely to provide a homogenous distribution of the sintering aids. The idea is to provide sintering additives through a coating with the lowest additive content possible. It is not believed that the coatings of US5098740 are thick enough to protect the core particle during thermal spraying.

El documento WO 03/004718 A2 describe un proceso de pulverizacion termica de partfculas ceramicas recubiertas con oxido metalico sobre un sustrato que comprende: I) obtener una pluralidad de partfculas recubiertas con YAG de carburo de silicio y pulverizar termicamente las partfculas sobre un sustrato.WO 03/004718 A2 discloses a thermal spraying process of ceramic particles coated with metal oxide on a substrate comprising: I) obtaining a plurality of YAG-coated particles of silicon carbide and thermally spraying the particles on a substrate.

Los presentes inventores se han dado cuenta de que las partfculas ceramicas recubiertas con oxido son clave para permitir la pulverizacion termica. Los inventores han ideado un proceso para la formacion de partfculas ceramicas recubiertas con oxido metalico y han demostrado que estas pueden pulverizarse termicamente sin descomposicion o sublimacion de la partfcula ceramica nuclear. Por lo tanto, el proceso de la invencion abre la puerta a recubrimientos de tipo SiC comparativamente baratos en una amplia variedad de sustratos.The present inventors have realized that oxide-coated ceramic particles are key to allowing thermal spraying. The inventors have devised a process for the formation of ceramic particles coated with metal oxide and have shown that they can be thermally sprayed without decomposition or sublimation of the nuclear ceramic particle. Therefore, the process of the invention opens the door to comparatively cheap SiC type coatings on a wide variety of substrates.

Es un objeto adicional de la presente invencion proporcionar un metodo para formar recubrimientos de carburo o nitruro de silicio y de boro sobre un sustrato utilizando un aparato de pulverizacion termica.It is a further object of the present invention to provide a method for forming carbide or silicon nitride and boron coatings on a substrate using a thermal spraying apparatus.

Un aspecto clave en la formacion de ceramicas recubiertas con oxido metalico es la formacion de una partfcula intermedia no recubierta con oxido cuyo recubrimiento se convierte en un oxido a traves de la calcinacion y la sinterizacion. La presente divulgacion se basa, entre otras cosas, en la formacion de un recubrimiento intermedio basado preferiblemente en un hidroxido metalico o carbonato metalico o en una mezcla de hidroxido metalico y carbonato metalico. Estas especies se generan preferiblemente a partir de otra sal tal como un nitrato.A key aspect in the formation of ceramics coated with metal oxide is the formation of an intermediate particle not coated with oxide whose coating becomes an oxide through calcination and sintering. The present disclosure is based, inter alia, on the formation of an intermediate coating based preferably on a metal hydroxide or metal carbonate or on a mixture of metal hydroxide and metal carbonate. These species are preferably generated from another salt such as a nitrate.

Sumario de la invencionSummary of the invention

De acuerdo con la reivindicacion 1, la invencion proporciona un proceso para pulverizar termicamente partfculas ceramicas recubiertas con oxido metalico sobre un sustrato.According to claim 1, the invention provides a process for thermally spraying ceramic particles coated with metal oxide onto a substrate.

Considerado desde otro aspecto, se proporciona un proceso para pulverizar termicamente partfculas ceramicas recubiertas con oxido metalico sobre un sustrato que comprende:Considered from another aspect, a process for thermally spraying ceramic particles coated with metal oxide onto a substrate comprising:

(I) obtener una pluralidad de partfculas recubiertas con sales metalicas de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro, tales como partfculas recubiertas con hidroxido metalico y/o carbonato metalico(I) obtaining a plurality of particles coated with metal salts of silicon carbide, silicon nitride, boron carbide or boron nitride, such as particles coated with metal hydroxide and / or metal carbonate

(II) calcinar y sinterizar las partfculas de la etapa (I) para formar una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro; y(II) calcining and sintering the particles of step (I) to form a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride; Y

(III) pulverizar termicamente las partfculas de la etapa (II) sobre un sustrato.(III) thermally pulverizing the particles of stage (II) on a substrate.

Considerado desde otro aspecto, se proporciona un proceso para pulverizar termicamente partfculas ceramicas recubiertas con oxido metalico sobre un sustrato que comprende:Considered from another aspect, a process for thermally spraying ceramic particles coated with metal oxide onto a substrate comprising:

(I) obtener una pluralidad de partfculas recubiertas con hidroxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro;(I) obtaining a plurality of particles coated with silicon carbide metal hydroxide, silicon nitride, boron carbide or boron nitride;

(II) calcinar las partfculas de la etapa (I) para formar una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro; y(II) calcining the particles of step (I) to form a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride; Y

(III) pulverizar termicamente las partfculas de la etapa (II) sobre un sustrato.(III) thermally pulverizing the particles of stage (II) on a substrate.

Considerado desde otro aspecto, se proporciona un proceso para pulverizar termicamente partfculas ceramicas recubiertas con oxido metalico sobre un sustrato que comprende:Considered from another aspect, a process for thermally spraying ceramic particles coated with metal oxide onto a substrate comprising:

(I) obtener una pluralidad de partfculas de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro;(I) obtaining a plurality of particles of silicon carbide, silicon nitride, boron carbide or boron nitride;

(II) combinar las partfculas de la etapa (I) con al menos una sal metalica, tal como dos sales metalicas, en presencia de un acido debil o una base debil para formar un recubrimiento de sal metalica sobre dichas partfculas;(II) combining the particles of step (I) with at least one metal salt, such as two metal salts, in the presence of a weak acid or a weak base to form a metallic salt coating on said particles;

(III) secar, tal como secado por pulverizacion, las partfculas de la etapa (II);(III) drying, such as spray drying, the particles of step (II);

(IV) calcinar y sinterizar las partfculas de la etapa (III) para formar una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro; y(IV) calcining and sintering the particles of step (III) to form a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride; Y

(V) pulverizar termicamente las partfculas de la etapa (IV) sobre un sustrato.(V) thermally spraying the particles of stage (IV) onto a substrate.

Considerado desde otro aspecto, se proporciona un proceso para pulverizar termicamente partfculas ceramicas recubiertas con oxido metalico sobre un sustrato que comprende:Considered from another aspect, a process for thermally spraying ceramic particles coated with metal oxide onto a substrate comprising:

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

(I) obtener una pluralidad de partfculas de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro;(I) obtaining a plurality of particles of silicon carbide, silicon nitride, boron carbide or boron nitride;

(II) combinar las partfculas de la etapa (I) con al menos una sal metalica en presencia de una base debil para formar un recubrimiento de hidroxido metalico sobre dichas partfculas;(II) combining the particles of step (I) with at least one metal salt in the presence of a weak base to form a coating of metal hydroxide on said particles;

(III) secar, tal como secado por pulverizacion, las partfculas de la etapa (II);(III) drying, such as spray drying, the particles of step (II);

(IV) calcinar las partfculas de la etapa (III) para formar una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro; y(IV) calcining the particles of step (III) to form a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride; Y

(V) pulverizar termicamente las partfculas de la etapa (IV) sobre un sustrato.(V) thermally spraying the particles of stage (IV) onto a substrate.

Considerado desde otro aspecto, se proporciona un proceso para preparar partfculas ceramicas recubiertas con oxido metalico que comprende:Considered from another aspect, a process is provided to prepare ceramic particles coated with metal oxide comprising:

(I) obtener una pluralidad de partfculas de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro;(I) obtaining a plurality of particles of silicon carbide, silicon nitride, boron carbide or boron nitride;

(II) combinar las partfculas de la etapa (I) con al menos una sal metalica en presencia de un acido debil o una base debil para formar un recubrimiento de sal metalica en dichas partfculas;(II) combining the particles of step (I) with at least one metal salt in the presence of a weak acid or a weak base to form a metallic salt coating on said particles;

(III) secar, tal como secado por pulverizacion, las partfculas de la etapa (II); y(III) drying, such as spray drying, the particles of step (II); Y

(IV) calcinar y sinterizar las partfculas de la etapa (III) para formar una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro.(IV) calcining and sintering the particles of stage (III) to form a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride.

Considerado desde otro aspecto, se proporciona un proceso para preparar partfculas ceramicas recubiertas con oxido metalico que comprende:Considered from another aspect, a process is provided to prepare ceramic particles coated with metal oxide comprising:

(I) obtener una pluralidad de partfculas de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro;(I) obtaining a plurality of particles of silicon carbide, silicon nitride, boron carbide or boron nitride;

(II) combinar las partfculas de la etapa (I) con al menos una sal metalica en presencia de una base debil para formar un recubrimiento de hidroxido metalico sobre dichas partfculas;(II) combining the particles of step (I) with at least one metal salt in the presence of a weak base to form a coating of metal hydroxide on said particles;

(III) secar, tal como secado por pulverizacion, las partfculas de la etapa (II); y(III) drying, such as spray drying, the particles of step (II); Y

(IV) calcinar las partfculas de la etapa (III) para formar una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro.(IV) calcining the particles of step (III) to form a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride.

Considerado desde otro aspecto, se proporciona un artfculo que tiene un recubrimiento aplicado sobre el mediante un proceso de pulverizacion termica como se ha definido anteriormente.Considered from another aspect, an article having a coating applied thereon is provided by a thermal spraying process as defined above.

Considerado desde otro aspecto, se proporciona el uso de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro para pulverizar termicamente sobre un sustrato.Considered from another aspect, the use of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride to thermally spray onto a substrate is provided.

Considerado desde otro aspecto, se proporciona partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro en el que la cantidad de oxido metalico es al menos el 10 % en peso, tal como al menos el 20 % en peso. El lfmite superior del oxido metalico puede ser el 40 % en peso del peso total de las partfculas, tal como hasta el 35 % en peso, especialmente hasta el 30 % en peso, tal como las preparadas por los procesos descritos en el presente documento anteriormente.Considered from another aspect, particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride are provided in which the amount of metal oxide is at least 10% by weight, such as at least 20% by weight. The upper limit of the metal oxide may be 40% by weight of the total weight of the particles, such as up to 35% by weight, especially up to 30% by weight, such as those prepared by the processes described herein above. .

Idealmente, se proporciona un proceso para preparar partfculas ceramicas recubiertas con oxido metalico que comprende:Ideally, a process is provided for preparing ceramic particles coated with metal oxide comprising:

(I) obtener una pluralidad de partfculas de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro;(I) obtaining a plurality of particles of silicon carbide, silicon nitride, boron carbide or boron nitride;

(II) combinar las partfculas de la etapa (I) con al menos dos nitratos metalicos en presencia de un acido debil o una base debil;(II) combining the particles of step (I) with at least two metal nitrates in the presence of a weak acid or a weak base;

(III) secar, tal como secado por pulverizacion, las partfculas de la etapa (II); y(III) drying, such as spray drying, the particles of step (II); Y

(IV) calcinar y sinterizar las partfculas de la etapa (III) para formar una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro.(IV) calcining and sintering the particles of stage (III) to form a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride.

DefinicionesDefinitions

El termino pulverizacion termica se usa en el presente documento para cubrir la pulverizacion utilizando un proceso de pulverizacion termica por combustion, un proceso de pulverizacion termica por detonacion (como la detonacion por pulsos de alta frecuencia), o un proceso de pulverizacion termica electrica/de plasma. Estas tecnicas no son nuevas y son familiares para los trabajadores en este campo.The term thermal spraying is used herein to cover spraying using a thermal spraying process by combustion, a thermal spray by detonation process (such as high frequency pulse detonation), or an electric / thermal spraying process. plasma. These techniques are not new and are familiar to workers in this field.

El termino base debil o acido debil se usa para requerir la presencia de una base o acido qrnmico que no se ioniza completamente en una solucion acuosa. Una sal metalica es un compuesto ionico de al menos un ion metalico y al menos un anion. Ese anion puede ser organico o inorganico, preferiblemente inorganico.The term weak base or weak acid is used to require the presence of a base or chemical acid that is not completely ionized in an aqueous solution. A metal salt is an ionic compound of at least one metal ion and at least one anion. That anion can be organic or inorganic, preferably inorganic.

Un hidroxido metalico de acuerdo con la invencion es un compuesto que contiene un ion metalico y un ion OH-. Tambien puede contener otros aniones. Asf, el compuesto boehmita, AIOOH, se considera un hidroxido en este documento.A metal hydroxide according to the invention is a compound containing a metal ion and an OH- ion. It can also contain other anions. Thus, the boehmite compound, AIOOH, is considered a hydroxide in this document.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

Un carbonato metalico de acuerdo con la invencion es un compuesto que contiene un ion metalico y un ion CO32-. Tambien puede contener otros aniones.A metal carbonate according to the invention is a compound that contains a metal ion and a CO32- ion. It can also contain other anions.

Descripcion detallada de la invencionDetailed description of the invention

Esta invencion se refiere a partfculas de carburo de silicio (SiC), carburo de boro (B4C), nitruro de silicio (Si3N4) y nitruro de boro (BN) recubiertas con un oxido metalico para permitir su aplicacion sobre un sustrato mediante pulverizacion termica sin sublimacion o descomposicion del nucleo ceramico. Aunque la invencion se describira en general en el presente documento con referencia al termino partfculas ceramicas, se entendera que significa SiC, nitruro de silicio, nitruro de boro o carburo de boro. El uso de Si en la ceramica, y mas especialmente el uso de SiC, es la opcion mas preferida.This invention relates to particles of silicon carbide (SiC), boron carbide (B4C), silicon nitride (Si3N4) and boron nitride (BN) coated with a metal oxide to allow its application on a substrate by thermal spraying without sublimation or decomposition of the ceramic core. Although the invention will generally be described herein with reference to the term ceramic particles, it will be understood as meaning SiC, silicon nitride, boron nitride or boron carbide. The use of Si in ceramics, and more especially the use of SiC, is the most preferred option.

El recubrimiento de oxido metalico que aplicamos es lo suficientemente grueso para permitir la pulverizacion termica de las partfculas al proteger el nucleo, pero, naturalmente, el recubrimiento de oxido tambien actuara como aditivo de sinterizacion durante el proceso de sinterizacion. El recubrimiento de oxido metalico proporcionara una fase de matriz y actuara como agente humectante que se funde durante el proceso de pulverizacion. El oxido fundido une las partfculas de SiC entre sf y sobre un sustrato. Tambien proporciona una alta resistencia cohesiva entre las partfculas.The coating of metal oxide that we apply is thick enough to allow the thermal pulverization of the particles when protecting the core, but, naturally, the oxide coating will also act as a sintering additive during the sintering process. The metal oxide coating will provide a matrix phase and will act as a wetting agent that melts during the spraying process. The molten oxide binds the SiC particles together and on a substrate. It also provides a high cohesive resistance between the particles.

El proceso de la invencion comienza con partfculas ceramicas tales como SiC. El tamano de partfcula normalmente es del orden de 50 nm a 5 micrometres (micrones), tal como 200 nm a 5 micrometres (micrones) en este punto, preferiblemente de 400 a 3500 nm. Las partfculas preferiblemente no estan aglomeradas en este momento. Las partfculas preferiblemente fluyen libremente y, por lo tanto, estan en forma de polvo o en forma de suspension estable. Estas partreulas son bien conocidas y se pueden comprar en el mercado qrnmico abierto. Sin embargo, estas partreulas no se pueden pulverizar termicamente de forma directa, ya que se descompondnan y sublimanan a las temperaturas a las que las partreulas estanan expuestas durante el proceso de pulverizado. Incluso el SiC sinterizado en general no se puede pulverizar termicamente.The process of the invention begins with ceramic particles such as SiC. The particle size is usually in the order of 50 nm to 5 micrometres (microns), such as 200 nm to 5 micrometres (microns) at this point, preferably 400 to 3500 nm. The particles are preferably not agglomerated at this time. The particles preferably flow freely and, therefore, are in the form of a powder or in the form of a stable suspension. These particles are well known and can be purchased in the open chemical market. However, these particles can not be thermally sprayed directly, since they decompose and sublimate at the temperatures at which the particles are exposed during the spraying process. Even sintered SiC in general can not be thermally sprayed.

Los inventores se han dado cuenta de que existe una solucion a este problema al proporcionar un recubrimiento de oxido suficientemente grueso sobre las partreulas. Este recubrimiento debe ser capaz de evitar la descomposicion o sublimacion de la partreula ceramica durante la pulverizacion termica. Por lo tanto, el recubrimiento no solo esta presente como adyuvante de sinterizacion homogeneo, aunque tambien realiza esta funcion, evitando asf la necesidad de que haya mas adyuvantes de sinterizacion presentes.The inventors have realized that there is a solution to this problem by providing a sufficiently thick oxide coating on the particles. This coating must be able to avoid the decomposition or sublimation of the ceramic particle during thermal spraying. Therefore, the coating is not only present as a homogeneous sintering aid, although it also performs this function, thus avoiding the need for more present sintering aids.

En general, se cree que, para garantizar que haya un recubrimiento suficientemente grueso sobre las partreulas ceramicas, debe haber al menos el 5 % en peso del recubrimiento presente, preferiblemente al menos el 10 % en peso, especialmente al menos el 20 % en peso, especialmente al menos especialmente al menos 30 % en peso sobre una partreula recubierta. Se contemplan valores en el intervalo del 5 al 40 % en peso, tales como del 7,5 al 35 % en peso, especialmente del 10 al 30 % en peso. Naturalmente, el espesor del recubrimiento necesario puede depender de las condiciones de pulverizacion termica utilizadas.In general, it is believed that, to ensure that there is a sufficiently thick coating on the ceramic particles, there must be at least 5% by weight of the coating present, preferably at least 10% by weight, especially at least 20% by weight , especially at least especially at least 30% by weight on a coated partridge. Values in the range of 5 to 40% by weight are contemplated, such as from 7.5 to 35% by weight, especially from 10 to 30% by weight. Naturally, the thickness of the coating required may depend on the thermal spray conditions used.

Con el fin de introducir un recubrimiento de oxido sobre las partreulas ceramicas, los presentes inventores se han dado cuenta de que esto puede lograrse mediante la calcinacion y la sinterizacion de un recubrimiento precursor. Idealmente, el recubrimiento precursor se forma mediante la precipitacion de al menos una sal metalica sobre el sustrato de partreulas ceramicas, mediante la precipitacion de al menos un sol de sal metalica sobre las partreulas ceramicas o mediante secado por pulverizacion de una mezcla de al menos una sal metalica y partreulas ceramicas. Idealmente, siempre habra dos o mas sales metalicas, sin embargo, es posible que se use una sal.In order to introduce an oxide coating on the ceramic particles, the present inventors have realized that this can be achieved by the calcination and sintering of a precursor coating. Ideally, the precursor coating is formed by the precipitation of at least one metal salt on the substrate of ceramic particles, by the precipitation of at least one metal salt on the ceramic particles or by spray drying a mixture of at least one metallic salt and ceramic particles. Ideally, there will always be two or more metallic salts, however, it is possible that a salt is used.

Por lo tanto, para introducir un recubrimiento de oxido en las partreulas ceramicas, los presentes inventores se han dado cuenta de que esto puede efectuarse durante la calcinacion de un recubrimiento sin oxido. La sal metalica utilizada, por tanto, preferiblemente no es un oxido. En particular, los inventores intentaron incluir un recubrimiento precursor de hidroxido o carbonato (o idealmente una mezcla de hidroxido/carbonato) sobre las partreulas. Cuando el recubrimiento precursor se calcina en presencia de oxfgeno, esto se convierte en un recubrimiento de oxido.Therefore, in order to introduce an oxide coating into the ceramic particles, the present inventors have realized that this can be effected during the calcination of a coating without oxide. The metal salt used, therefore, preferably is not an oxide. In particular, the inventors tried to include a hydroxide or carbonate precursor coating (or ideally a mixture of hydroxide / carbonate) on the particles. When the precursor coating is calcined in the presence of oxygen, this becomes an oxide coating.

Los inventores tambien se han dado cuenta de que hay varias formas de proporcionar un recubrimiento de hidroxido y/o carbonato metalicos u otro recubrimiento a base de sal sobre las partreulas ceramicas. Esto se puede lograr mediante la coprecipitacion del precursor de la sal metalica sobre las partreulas o mediante la precipitacion del sol de sal metalica sobre las partreulas ceramicas o mediante el secado por pulverizacion de una mezcla apropiada.The inventors have also realized that there are several ways to provide a coating of metal hydroxide and / or carbonate or other salt-based coating on the ceramic particles. This can be achieved by co-precipitating the precursor of the metal salt on the particles or by precipitating the metal salt on the ceramic particles or by spray drying an appropriate mixture.

Por lo tanto, se prefiere que las partreulas ceramicas se pongan en contacto con el 5 al 50 % en peso, preferiblemente el 7,5 al 40 % en peso, como el 10 al 35 % en peso, especialmente el 11 al 30 % en peso de una sal o sales metalicas o sol de sal metalica. En algunas realizaciones, debe haber mas del 10 % en peso de sal o sales metalicas o sol de sal metalica presente. Por lo tanto, si hay 1 g de partreulas ceramicas (solidas en cualquier medio portador), el 40 % en peso de sales metalicas representa 400 mg. Los metales en la sal o sales utilizadas en la invencion son Al e Y. El contraion preferiblemente no es un oxido, pero es un contraion que preferiblemente puede convertirse en hidroxido o carbonato (si es necesario) y a continuacion en un oxido durante el proceso de invencion.Therefore, it is preferred that the ceramic particles are contacted with 5 to 50% by weight, preferably 7.5 to 40% by weight, such as 10 to 35% by weight, especially 11 to 30% by weight. weight of a salt or metal salts or metal salt sol. In some embodiments, there must be more than 10% by weight of the salt or metal salts or metal salt sol present. Therefore, if there is 1 g of ceramic particles (solid in any carrier medium), 40% by weight of metal salts represents 400 mg. The metals in the salt or salts used in the invention are Al and Y. The counterion is preferably not an oxide, but is a counterion that can preferably be converted to hydroxide or carbonate (if necessary) and then into an oxide during the process of invention.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

Los contraiones preferidos son, por lo tanto, nitratos, haluros, sulfatos, sulfuros y nitritos. Tambien se puede utilizar directamente un hidroxido o carbonato. El uso de nitratos es especialmente preferido.The preferred counterions are, therefore, nitrates, halides, sulfates, sulfides and nitrites. A hydroxide or carbonate can also be used directly. The use of nitrates is especially preferred.

Con el fin de garantizar una operacion de recubrimiento exitosa, la sal preferiblemente es una que se deposita sobre las partfculas ceramicas como un hidroxido o carbonato durante el proceso de recubrimiento o al menos se convierte en dicho hidroxido o carbonato durante el proceso de recubrimiento. La presencia de un recubrimiento precursor de hidroxido o carbonato es la clave para la posterior formacion de un recubrimiento de oxido.In order to ensure a successful coating operation, the salt is preferably one that is deposited on the ceramic particles such as a hydroxide or carbonate during the coating process or at least converted to said hydroxide or carbonate during the coating process. The presence of a hydroxide or carbonate precursor coating is the key to the subsequent formation of an oxide coating.

En una realizacion adicional mas preferida, se prefiere si se usa una mezcla de sales metalicas como un precursor de recubrimiento de oxido. En particular, se prefiere el uso de dos sales diferentes. Cuando se usan dos sales, se prefiere que los iones metalicos sean diferentes. Tambien es preferible que los dos contraiones sean iguales. Por lo tanto, el uso de dos nitratos metalicos diferentes es especialmente preferido.In a further preferred embodiment, it is preferred if a mixture of metal salts is used as an oxide coating precursor. In particular, the use of two different salts is preferred. When two salts are used, it is preferred that the metal ions be different. It is also preferable that the two counterions are equal. Therefore, the use of two different metal nitrates is especially preferred.

Las sales metalicas de interes preferiblemente son solubles en el disolvente utilizado durante el proceso, especialmente solubles en agua.The metal salts of interest are preferably soluble in the solvent used during the process, especially soluble in water.

Las sales metalicas altamente preferidas de uso en la invencion son Al(NO3)3, (da AhO3), Y((NO3)3 (da Y2O3), en particular, las sales pueden ser hidratos. Sales preferidas son Al(NO3)3 ■ nH2O; Y(NO3)3 ■ nH2O; AlCh ■ nH2O; YCb ■ nH2O; Y2(CO3)3 ■ nH2O.The highly preferred metal salts of use in the invention are Al (NO3) 3, (gives AhO3), Y ((NO3) 3 (from Y2O3), in particular, the salts can be hydrates, Preferred salts are Al (NO3) 3 ■ nH2O, Y (NO3) 3 ■ nH2O, AlCh ■ nH2O, YCb ■ nH2O, Y2 (CO3) 3 ■ nH2O.

Idealmente, cuando estan presentes dos sales metalicas, la combinacion de las sales metalicas forma un eutectico de oxidos metalicos despues de la calcinacion. Por lo tanto, la cantidad de sales metalicas anadidas a la ceramica se mide cuidadosamente de manera que se forme un sistema eutectico. Un sistema eutectico es una mezcla de compuestos o elementos qmmicos que tiene una composicion qmmica unica que se solidifica a una temperatura mas baja que cualquier otra composicion compuesta de los mismos ingredientes. En este campo, el experto en la materia es consciente de ciertas combinaciones de sales metalicas que forman eutecticos. Por ejemplo, el uso de ciertas proporciones de nitrato de aluminio y nitrato de itrio forma un eutectico de granate de itrio y aluminio despues de la calcinacion (YAG, Y3Al5O12).Ideally, when two metal salts are present, the combination of the metal salts forms a eutectic of metal oxides after calcination. Therefore, the amount of metal salts added to the ceramic is carefully measured so that a eutectic system is formed. A eutectic system is a mixture of compounds or chemical elements that has a unique chemical composition that solidifies at a lower temperature than any other composition composed of the same ingredients. In this field, the person skilled in the art is aware of certain combinations of metal salts that form eutectics. For example, the use of certain proportions of aluminum nitrate and yttrium nitrate forms a yttrium-aluminum garnet eutectic after calcination (YAG, Y3Al5O12).

En una primera realizacion, los precursores de oxido de metal se introducen en las partfculas ceramicas mediante coprecipitacion. La coprecipitacion del precursor de la sal o sales metalicas se puede realizar mezclando las partfculas ceramicas con el compuesto o compuestos precipitadores en una suspension acuosa, tal como una que contiene del 3 al 10 % en peso de contenido solido, de forma preferible aproximadamente el 5 % en peso. La suspension se puede agitar para descomponer cualquier aglomerado y para homogeneizar y dispersar las partfculas ceramicas.In a first embodiment, the metal oxide precursors are introduced into the ceramic particles by coprecipitation. The coprecipitation of the salt precursor or metal salts can be carried out by mixing the ceramic particles with the precipitating compound or compounds in an aqueous suspension, such as one containing from 3 to 10% by weight of solid content, preferably about 5% by weight. % in weigh. The suspension can be stirred to decompose any agglomerate and to homogenize and disperse the ceramic particles.

La suspension mixta se puede calentar entonces de 50 °C a 100 °C, preferiblemente alrededor de 90 °C para ayudar al proceso de precipitacion. La solucion de sal o sales de metal eutecticas se puede suministrar en la suspension mixta en cualquier orden. Sin embargo, se prefiere un metodo de titulacion inversa en el que las sales eutecticas se anadan en un orden controlado. Se prefiere el uso de un compuesto precipitador para asegurar la activacion de una precipitacion de hidroxido o carbonato que idealmente forma un recubrimiento sobre partfculas de carburo de silicio durante el proceso.The mixed suspension can then be heated from 50 ° C to 100 ° C, preferably around 90 ° C to assist the precipitation process. The solution of salt or eutectic metal salts can be supplied in the mixed suspension in any order. However, an inverse titration method is preferred in which the eutectic salts are added in a controlled order. The use of a precipitating compound is preferred to ensure the activation of a hydroxide or carbonate precipitation which ideally forms a coating on silicon carbide particles during the process.

Alternativamente, las sales metalicas, el precipitador y las partfculas pueden combinarse y secarse por pulverizacion para introducir un recubrimiento sobre las partfculas, en particular cuando se utiliza un acido debil como precipitador. El secado por pulverizacion puede proporcionar mas partfculas esfericas y, por lo tanto, permitir una mejor fluidez.Alternatively, the metal salts, the precipitator and the particles can be combined and spray dried to introduce a coating on the particles, in particular when a weak acid is used as a precipitator. Spray drying can provide more spherical particles and, therefore, allow better fluidity.

Por lo tanto, la clave para una operacion de recubrimiento exitosa es la presencia de un compuesto "precipitador" que permita la precipitacion de las sales metalicas sobre las partfculas ceramicas. Este compuesto es un acido debil o una base debil. El compuesto precipitador puede estar presente en una cantidad molar de alrededor de 1 a 30 veces, preferiblemente de 3 a 30 veces, tal como de 5 a 30 veces la cantidad molar de sal o sales metalicas presentes, preferiblemente de 6 a 20 veces, especialmente de 5 a 10 veces, tal como de 8 a 10 veces.Therefore, the key to a successful coating operation is the presence of a "precipitator" compound that allows the precipitation of the metal salts on the ceramic particles. This compound is a weak acid or a weak base. The precipitating compound may be present in a molar amount of about 1 to 30 times, preferably 3 to 30 times, such as 5 to 30 times the molar amount of salt or metal salts present, preferably 6 to 20 times, especially 5 to 10 times, such as 8 to 10 times.

Cuando se usa un acido debil, la relacion molar de precipitador a cation metalico total es preferiblemente de 1 a 3. Cuando se usa una base debil, una relacion molar ideal de precipitador a cation metalico total es de 6 a 8.When a weak acid is used, the molar ratio of precipitator to total metal cation is preferably 1 to 3. When a weak base is used, an ideal molar ratio of precipitator to total metal cation is 6 to 8.

En algunas realizaciones, se prefiere que la cantidad de compuesto precipitador presente sea tal que el pH de la mezcla sea basico, por ejemplo, pH 9-11. Idealmente, durante el proceso de recubrimiento, el pH de la suspension es de 9 o mas cuando se emplea una base debil como precipitador. Cuando se usa un acido debil, se pueden emplear valores de pH tan altos como 1 a 2.In some embodiments, it is preferred that the amount of precipitant compound present be such that the pH of the mixture is basic, for example, pH 9-11. Ideally, during the coating process, the pH of the suspension is 9 or more when a weak base is used as a precipitator. When a weak acid is used, pH values as high as 1 to 2 can be used.

Los compuestos precipitadores de interes son acidos debiles tales como acidos alcanoicos (acido etanoico, acido metanoico), HF, acido formico y acidos organicos tales como acido dtrico. El uso de acido dtrico es especialmente preferido. Alternativamente, los compuestos preferidos son bases debiles tales como hidroxido de amonio, alquilaminas, pero en particular urea, solucion de amomaco y carbonatos de hidrogeno tales como hidrogenocarbonato de amonio. Idealmente, el compuesto precipitador es soluble en agua. Se prefiere especialmente el uso de urea o hidrogenocarbonato de amonio.The precipitating compounds of interest are weak acids such as alkanoic acids (ethanoic acid, methanoic acid), HF, formic acid and organic acids such as dicaric acid. The use of dehydric acid is especially preferred. Alternatively, the preferred compounds are weak bases such as ammonium hydroxide, alkylamines, but in particular urea, ammonia solution and hydrogen carbonates such as ammonium hydrogencarbonate. Ideally, the precipitator compound is soluble in water. The use of urea or ammonium hydrogencarbonate is especially preferred.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

Cuando las partfculas se secan por pulverizacion, se prefiere que el compuesto precipitador sea un acido debil, tal como el acido cftrico, ya que esto da los mejores polvos de SiC aglomerados finales en comparacion con cuando se usa una base debil.When the particles are spray dried, it is preferred that the precipitator compound be a weak acid, such as citric acid, since this gives the best final agglomerated SiC powders as compared to when a weak base is used.

En otra realizacion, el recubrimiento de oxido metalico se produce mediante la precipitacion de un sol de sal metalica tal como un sol de hidroxido. Las partfculas ceramicas se mezclan con el sol de sal metalica para formar una suspension mixta, como una que contiene una carga solida total del 3 al 20 % en peso, como del 3 al 10 % en peso de las partfculas ceramicas, tal como de aproximadamente el 5 % en peso o el 10 % en peso de partfculas ceramicas. El disolvente es preferentemente agua. Se puede volver a utilizar la agitacion para homogeneizar la suspension. El compuesto precipitador se anade luego en un orden controlado, preferiblemente usando titulacion para ayudar a la precipitacion de la capa de sol de sal metalica sobre las partfculas ceramicas. El calentamiento de la suspension mixta y el control del pH son parte del proceso que define la precipitacion exitosa con sol de sal metalica. Se prefiere calentar la suspension entre 50 °C y 100 °C, preferiblemente alrededor de 90 °C para ayudar al proceso. El pH puede mantenerse a niveles inferiores a 2 si se usa un acido debil o a 9 o mas, tal como de 9 a 11 si se usa una base debil.In another embodiment, the metal oxide coating is produced by the precipitation of a metal salt sol such as a hydroxide sol. The ceramic particles are mixed with the metallic salt sol to form a mixed suspension, such as one containing a total solid charge of 3 to 20% by weight, such as 3 to 10% by weight of the ceramic particles, such as approximately 5% by weight or 10% by weight of ceramic particles. The solvent is preferably water. The agitation can be reused to homogenize the suspension. The precipitator compound is then added in a controlled order, preferably using titration to assist the precipitation of the metal salt sol layer onto the ceramic particles. The heating of the mixed suspension and the control of the pH are part of the process that defines the successful precipitation with metal salt sol. It is preferred to heat the suspension between 50 ° C and 100 ° C, preferably around 90 ° C to aid the process. The pH can be maintained at levels below 2 if a weak acid is used or at 9 or more, such as from 9 to 11 if a weak base is used.

Los precursores de sol metalico preferidos son sales metalicas inorganicas o compuestos organicos metalicos tales como alcoxidos metalicos, boehmita [AlO(OH)] o carbonato de itrio basico [Y(OH)CO3].Preferred metal sol precursors are inorganic metal salts or metal organic compounds such as metal alkoxides, boehmite [AlO (OH)] or basic yttrium carbonate [Y (OH) CO3].

La cantidad de deposicion es una funcion de la cantidad de sales metalicas o sol de sal metalica agregada segun el calculo de la relacion molar al porcentaje en peso. Mas sal(es) en el sistema da(n) una capa mas gruesa.The amount of deposition is a function of the amount of metallic salts or metal salt sol added according to the calculation of the molar ratio to the percentage by weight. More salt (es) in the system gives (n) a thicker layer.

Este proceso puede tener lugar a temperatura ambiente. Sin embargo, la temperatura de activacion del precipitador preferiblemente es de 50 °C a 100 °C. Para el hidrogenocarbonato de amonio, se prefiere una temperatura de aproximadamente 50 °C. Para la urea y el acido cftrico, una temperatura preferida es de aproximadamente 90 °C. Ademas, la presion puede ser ambiental.This process can take place at room temperature. However, the temperature of activation of the precipitator is preferably 50 ° C to 100 ° C. For ammonium hydrogencarbonate, a temperature of about 50 ° C is preferred. For urea and citric acid, a preferred temperature is about 90 ° C. In addition, the pressure can be environmental.

Sin embargo, puede ser necesario usar un dispersante en la suspension mixta para dispersar las partfculas ceramicas y evitar la aglomeracion en presencia del precipitador y durante la adicion de la sal o sales metalicas. Se pueden usar dispersantes convencionales como los que se venden con los nombres comerciales Dolapix A-88 o Dolapix CE-64. El dispersante es, por tanto, un material de tipo tensioactivo no reactivo.However, it may be necessary to use a dispersant in the mixed suspension to disperse the ceramic particles and avoid agglomeration in the presence of the precipitator and during the addition of the salt or metal salts. Conventional dispersants such as those sold under the trade names Dolapix A-88 or Dolapix CE-64 can be used. The dispersant is, therefore, a non-reactive surfactant type material.

Sin querer limitarse por la teona, los inventores preven que el compuesto precipitador provoca que las sales metalicas de partida, tales como un nitrato, experimenten una reaccion, por ejemplo, a las correspondientes sales de hidroxido y carbonato. Estas sales pueden ser las que se depositan sobre la superficie de las partfculas ceramicas y se convierten en el oxido durante la calcinacion.Without wishing to be bound by the theory, the inventors provide that the precipitating compound causes the starting metal salts, such as a nitrate, to undergo a reaction, for example, to the corresponding hydroxide and carbonate salts. These salts can be those that are deposited on the surface of the ceramic particles and become the oxide during the calcination.

Por lo tanto, este proceso permite la formacion de un recubrimiento tal como un recubrimiento de hidroxido o carbonato sobre las partfculas ceramicas. Como las sales metalicas preferiblemente son solubles en agua, se cree que no habra partfculas de sal metalica libres formadas en la suspension. Ademas, tambien se prefiere si el compuesto precipitador es soluble en agua. Por lo tanto, no debe haber partfculas formadas a partir de sal metalica o compuesto precipitador.Therefore, this process allows the formation of a coating such as a hydroxide or carbonate coating on the ceramic particles. Since the metal salts are preferably soluble in water, it is believed that there will be no free metal salt particles formed in the suspension. In addition, it is also preferred if the precipitator compound is soluble in water. Therefore, there should be no particles formed from metal salt or precipitant compound.

En una realizacion, se usa un sol metalico como boehmita [AlO(OH)] en los metodos de precipitacion, o se genera durante el proceso de precipitacion. En consecuencia, partfculas tales como partfculas de carburo de silicio se mezclan con precursor del sol metalico. El compuesto precipitado se anade entonces con titulacion, idealmente hasta que el pH de la suspension este entre 9 y 11.In one embodiment, a metal sol is used as boehmite [AlO (OH)] in the precipitation methods, or it is generated during the precipitation process. Consequently, particles such as silicon carbide particles are mixed with the metal sol precursor. The precipitated compound is then added with titration, ideally until the pH of the suspension is between 9 and 11.

En una realizacion mas preferida, se utiliza una mezcla de Al(NO3)3 + Y(NO3)3 en el metodo de la invencion. La relacion molar de estas sales metalicas puede ser de 5:3, ya que forma un eutectico y produce granate de itrio y aluminio (YAG) tras la calcinacion y la sinterizacion.In a more preferred embodiment, a mixture of Al (NO3) 3 + Y (NO3) 3 is used in the method of the invention. The molar ratio of these metal salts can be 5: 3, since it forms a eutectic and produces yttrium and aluminum garnet (YAG) after calcination and sintering.

Una vez que se ha producido el recubrimiento, las partfculas se pueden filtrar del resto de la suspension y las partfculas se secan, preferiblemente se secan por pulverizacion utilizando procesos de liofilizacion convencionales. Las partfculas recubiertas que se forman en esta etapa del procedimiento tienden a aglomerarse y pueden tener tamanos de partfcula de 10 micrometros o mas, como 15 micrometros o mas, como 20 a 50 micrometros.Once the coating has been produced, the particles can be filtered from the remainder of the suspension and the particles dried, preferably spray-dried using conventional lyophilization processes. The coated particles formed in this stage of the process tend to agglomerate and may have particle sizes of 10 micrometers or more, such as 15 micrometers or more, such as 20 to 50 micrometers.

Cuando se usa un precipitador de carbonato de hidrogeno, se prefiere que las partfculas se sequen por pulverizacion, aunque tambien es posible el secado convencional en horno. Sin embargo, cuando se usa un precipitador de urea, las partfculas recubiertas se secan al horno preferiblemente antes del tratamiento adicional (como calcinacion, sinterizacion, tamizado, etc.).When a hydrogen carbonate precipitator is used, it is preferred that the particles are spray dried, although conventional oven drying is also possible. However, when a urea precipitator is used, the coated particles are preferably baked before further processing (such as calcination, sintering, sieving, etc.).

El proceso de coprecipitacion con AHC se puede secar por pulverizacion directamente despues del proceso de titulacion sin filtrar. Sin embargo, cuando se usa un precipitador de urea, se prefiere si se produce la filtracion y el filtrado se combina con agua destilada fresca (y con la adicion opcional de PVA y PEG). El contenido de solidos se puede aumentar hasta el 20 al 40 % en peso para reducir el coste del secado.The process of coprecipitation with AHC can be spray dried directly after the unfiltered titration process. However, when a urea precipitator is used, it is preferred if the filtration occurs and the filtrate is combined with fresh distilled water (and with the optional addition of PVA and PEG). The solids content can be increased to 20 to 40% by weight to reduce the cost of drying.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

Las partroulas recubiertas se calcinan. La calcinacion puede ocurrir a temperaturas convencionales y utilizando tecnicas convencionales. Se prefiere una temperatura de 400 a 800 °C, tal como 500-600 °C. Tambien es posible una temperatura de 800 a 1200 °C, como de 900 a 1000 °C, pero es menos preferida. El proceso se realiza en presencia de aire para asegurar la oxidacion del hidroxido a un recubrimiento de oxido.The coated particles are calcined. Calcination can occur at conventional temperatures and using conventional techniques. A temperature of 400 to 800 ° C, such as 500-600 ° C is preferred. A temperature of 800 to 1200 ° C, such as 900 to 1000 ° C, is also possible, but is less preferred. The process is carried out in the presence of air to ensure the oxidation of the hydroxide to an oxide coating.

Despues de la calcinacion, las partfculas se pueden sinterizar. La sinterizacion de partroulas de SiC recubiertas con oxido tiene lugar preferiblemente en un horno atmosferico de argon con una temperatura de hasta 2000 °C, tal como hasta 1750 °C. Lo ideal es que la sinterizacion se realice a una temperatura de 1000 °C a 2000 °C, tal como de 1300 a 1800 °C.After calcination, the particles can be sintered. The sintering of SiC particles coated with oxide preferably takes place in an argon atmospheric furnace with a temperature of up to 2000 ° C, such as up to 1750 ° C. Ideally, the sintering should be carried out at a temperature of 1000 ° C to 2000 ° C, such as 1300 to 1800 ° C.

Los tamanos de las partroulas de nuevo son alrededor de 20 a 100 micrometros al final del proceso de calcinacion y sinterizacion.The sizes of the particles are again around 20 to 100 micrometers at the end of the calcination and sintering process.

Debido a que la cantidad de sal o sales metalicas anadidas para formar el recubrimiento es relativamente alta, esto significa que el grosor del recubrimiento y por lo tanto tambien el recubrimiento de oxido es mas grueso que el recubrimiento que podna darse si, por ejemplo, se introduce un recubrimiento simplemente como adyuvante de sinterizacion. La presencia de un recubrimiento grueso significa que el recubrimiento de oxido es capaz de prevenir la degradacion de la partroula ceramica durante la pulverizacion termica. En lugar de descomponerse o sublimarse, la partroula ceramica se puede pulverizar termicamente con exito.Because the amount of salt or metal salts added to form the coating is relatively high, this means that the thickness of the coating and therefore also the oxide coating is thicker than the coating that could be given if, for example, introduces a coating simply as a sintering aid. The presence of a thick coating means that the oxide coating is able to prevent the degradation of the ceramic part during the thermal spraying. Instead of decomposing or sublimating, the ceramic partroula can be thermally sprayed successfully.

Por lo tanto, se prove que las partroulas ceramicas recubiertas con oxido metalico de la invencion comprenderan al menos el 5 % en peso, tal como al menos el 10 % en peso, preferiblemente al menos el 20 % en peso del recubrimiento de oxido. El recubrimiento de oxido forma idealmente del 11 al 40 % en peso de las partroulas ceramicas recubiertas en su totalidad o del 10 al 30 % en peso. El % en peso de recubrimiento de las partroulas de SiC se puede calcular cuantitativamente en funcion del patron de DRX utilizando el metodo de Rietveld.Therefore, it is provided that the ceramic particles coated with metal oxide of the invention comprise at least 5% by weight, such as at least 10% by weight, preferably at least 20% by weight of the oxide coating. The oxide coating ideally forms from 11 to 40% by weight of the ceramic particles coated in their entirety or from 10 to 30% by weight. The% by weight coating of the SiC particles can be calculated quantitatively according to the XRD pattern using the Rietveld method.

El espesor del recubrimiento de oxido particulado en las partroulas ceramicas puede estar preferiblemente en el intervalo de 50 a 200 nm. Naturalmente, en general se observa que los recubrimientos mas gruesos estan presentes en partroulas mas grandes.The thickness of the particulate oxide coating in the ceramic particles may preferably be in the range of 50 to 200 nm. Naturally, it is generally observed that the thicker coatings are present in larger particles.

Los inventores proven que el recubrimiento formara un recubrimiento completo alrededor de la partroula ceramica. Cualquier rotura en el recubrimiento podna ofrecer la posibilidad de su descomposicion. Nuestro recubrimiento, por tanto, puede considerarse continuo. Dicho esto, incluso si existe la posibilidad de que el recubrimiento de oxido se rompa, quizas durante el proceso de fabricacion o el proceso de pulverizacion termica, aun se puede lograr el resultado deseado. Durante el proceso de pulverizacion termica, el recubrimiento de oxido se funde. Por lo tanto, el recubrimiento de oxido puede cubrir cualquier rotura en el recubrimiento mientras une las capas del material de recubrimiento por pulverizacion.The inventors provide that the coating will form a complete coating around the ceramic partroula. Any break in the coating could offer the possibility of its decomposition. Our coating, therefore, can be considered continuous. That said, even if there is a possibility that the oxide coating will break, perhaps during the manufacturing process or the thermal spraying process, the desired result can still be achieved. During the thermal spraying process, the oxide coating melts. Therefore, the oxide coating can cover any break in the coating while bonding the layers of the spray coating material.

Se apreciara que antes del secado por pulverizacion o antes de la calcinacion y sinterizacion, podnan anadirse algunos aglutinantes (aditivos) como se conoce en la tecnica para asegurar procesos de secado exitosos. Se puede anadir alcohol polivirnlico (PVA) para ayudar a la aglomeracion para crear un polvo de forma redonda. Se puede anadir PEG para aumentar la capacidad de flujo de la suspension, lo que evita la obstruccion de la boquilla de secado por pulverizacion y permite una facil transferencia del polvo secado por pulverizacion, etc.It will be appreciated that prior to spray drying or prior to calcination and sintering, some binders (additives) could be added as is known in the art to ensure successful drying processes. Polyvinyl alcohol (PVA) can be added to aid in agglomeration to create a round-shaped powder. PEG can be added to increase the flowability of the suspension, which prevents clogging of the spray-drying nozzle and allows easy transfer of the spray-dried powder, etc.

El proceso de la invencion da lugar a la formacion de polvos ceramicos aglomerados y sinterizados que contienen, entre otros, granate de itrio y aluminio recubierto sobre cada partroula ceramica.The process of the invention results in the formation of agglomerated and sintered ceramic powders containing, among others, yttrium garnet and aluminum coated on each ceramic partroula.

Despues del tamizado (y antes de la pulverizacion termica), preferiblemente se puede usar polvo con un tamano de 20-45 micrometros como materia prima para la detonacion de pulsos de alta frecuencia o las tecnicas de pulverizacion termico de oxicombustible a alta velocidad. Los polvos mas grandes que tienen un tamano de 45-90 micrometros se pueden usar para la pulverizacion de plasma atmosferico.After sieving (and prior to thermal spraying), preferably 20-45 micron-sized powder may be used as a raw material for high-frequency pulse detonation or high-speed oxy-fuel thermal spraying techniques. Larger powders that have a size of 45-90 micrometers can be used for the spraying of atmospheric plasma.

Pulverizacion termicaThermal spraying

Las partroulas formadas despues de la calcinacion se pueden pulverizar termicamente sobre un sustrato. Se podnan usar varias tecnicas de pulverizacion termica, tales como las basadas en la combustion (por ejemplo, pulverizado por llama o HVOF), detonacion (pistola de detonacion o pistola de detonacion de alta frecuencia) o pulverizacion electrica/de plasma (pulverizacion de plasma atmosferico, pulverizacion de arco de alambre, pulverizacion de plasma de baja presion o pulverizacion de plasma al vacro). Las tecnicas de pulverizacion preferidas incluyen una pistola de detonacion de alta frecuencia, una tecnica HVOF o una pulverizacion de plasma atmosferico. Como se ha senalado anteriormente, estas tecnicas son bien conocidas y no se requiere un resumen completo de ellas en el presente documento.The particles formed after calcination can be thermally sprayed onto a substrate. Various thermal spraying techniques could be used, such as those based on combustion (eg, flame spraying or HVOF), detonation (detonation gun or high frequency detonation gun) or electric / plasma spraying (plasma spraying). atmospheric, wire arc spraying, low pressure plasma spraying or vacuum plasma spraying). Preferred spray techniques include a high frequency detonation gun, an HVOF technique or an atmospheric plasma spray. As noted above, these techniques are well known and a complete summary of them is not required in this document.

Se prefiere el uso de una pistola de detonacion y se explica en detalle en el documento US6745951. Una pistola de detonacion para pulverizacion termica esta formada por una camara de combustion y un canon, con entradas paraThe use of a detonation gun is preferred and is explained in detail in US6745951. A detonation pistol for thermal spraying is formed by a combustion chamber and a canon, with inputs for

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

combustible y para oxidante. Tambien esta provista de una o mas bufas para detonar la mezcla de combustible- oxidante y uno o mas inyectores para la introduccion del producto en el canon.fuel and for oxidant. It is also provided with one or more bumps to detonate the fuel-oxidant mixture and one or more injectors for the introduction of the product into the canon.

La pulverizacion de oxicombustible a alta velocidad implica una mezcla de combustible gaseoso o lfquido y oxfgeno que se alimenta a una camara de combustion, donde se encienden y se queman continuamente. El gas caliente resultante a una presion cercana a 1 MPa emana a traves de una boquilla convergente-divergente y viaja a traves de una seccion recta. La velocidad del chorro a la salida del canon (> 1000 m/s) excede la velocidad del sonido. El material de alimentacion se inyecta en la corriente de gas, que acelera el polvo hasta 800 m/s. La corriente de gas caliente y polvo se dirige hacia la superficie a recubrir. El polvo se funde parcialmente en la corriente y se deposita sobre el sustrato.High-speed oxy-fuel spraying involves a mixture of gaseous or liquid fuel and oxygen that is fed into a combustion chamber, where they ignite and burn continuously. The resulting hot gas at a pressure close to 1 MPa emanates through a converging-diverging nozzle and travels through a straight section. The speed of the jet at the exit of the canon (> 1000 m / s) exceeds the speed of sound. The feed material is injected into the gas stream, which accelerates the powder up to 800 m / s. The stream of hot gas and dust is directed towards the surface to be coated. The powder partially melts in the stream and deposits on the substrate.

En los procesos de pulverizacion de plasma, el material a depositar se introduce en el chorro de plasma, que emana de un soplete de plasma. En el chorro, donde la temperatura es del orden de 10.000 K, el material se funde y se propulsa hacia un sustrato. Allf, las gotitas fundidas se aplanan, se solidifican rapidamente y forman un deposito.In plasma spraying processes, the material to be deposited is introduced into the plasma jet, which emanates from a plasma torch. In the jet, where the temperature is of the order of 10,000 K, the material melts and propels towards a substrate. There, the molten droplets flatten, solidify quickly and form a deposit.

El sustrato sobre el que se pulverizan termicamente las partfculas recubiertas no esta limitado y, por lo tanto, puede ser cualquier sustrato de interes para el experto. Los presentes inventores tienen un interes particular en pulverizar las partfculas sobre las partes mecanicas de trabajo de grandes equipos industriales, tales como turbinas eolicas.The substrate on which the coated particles are thermally sprayed is not limited and, therefore, can be any substrate of interest to the skilled artisan. The present inventors have a particular interest in spraying the particles on the mechanical working parts of large industrial equipment, such as wind turbines.

Por lo tanto, el sustrato preferiblemente es un sustrato metalico tal como el acero y su aleacion, el aluminio y su aleacion y otro metal o un sustrato de polfmero.Therefore, the substrate is preferably a metal substrate such as steel and its alloy, aluminum and its alloy and other metal or a polymer substrate.

El espesor del recubrimiento en el sustrato puede variar dependiendo de los parametros de pulverizacion termica. Son posibles espesores de 10 a 500 micrometros (micrones), preferiblemente de 100 a 200 micrometres (micrones).The thickness of the coating on the substrate may vary depending on the thermal spray parameters. Thicknesses of 10 to 500 micrometers (microns) are possible, preferably 100 to 200 micrometers (microns).

Los recubrimientos formados sobre el sustrato tienen excelentes propiedades de resistencia al desgaste y a la corrosion. En general, los recubrimientos son asperos (Ra = 4,2 micrometros (micrones)) como pulverizado. Para mejorar el rendimiento en aplicaciones de desgaste, puede ser necesario pulir la superficie pulverizada hasta que la superficie sea muy suave (Ra = 0,1 micrometros)). Para poder maximizar la eficiencia del proceso de pulverizacion termica, puede ser necesario preparar la superficie del sustrato para el recubrimiento. La superficie del sustrato debe estar limpia. Tambien se puede limpiar con grano o similar para crear una superficie rugosa que ayuda a la adhesion del recubrimiento durante la pulverizacion termica.The coatings formed on the substrate have excellent properties of resistance to wear and corrosion. In general, the coatings are rough (Ra = 4.2 micrometers (microns)) as pulverized. To improve performance in wear applications, it may be necessary to polish the sprayed surface until the surface is very smooth (Ra = 0.1 micrometers)). In order to maximize the efficiency of the thermal spraying process, it may be necessary to prepare the substrate surface for coating. The surface of the substrate must be clean. It can also be cleaned with grain or similar to create a rough surface that helps the adhesion of the coating during thermal spraying.

La invencion se describira ahora con mas detalle con referencia a los siguientes ejemplos y figuras no limitantes.The invention will now be described in more detail with reference to the following non-limiting examples and figures.

La Figura 1 muestra una partfcula de la invencion con carburo de silicio recubierto con oxido metalico con el 30 % en peso de composicion YAG.Figure 1 shows a particle of the invention with silicon carbide coated with metal oxide with 30% by weight of YAG composition.

La Figura 2 muestra los espectros de XRD de polvos despues del proceso de precalcinacion a 500 °C y el proceso de sinterizacion a 1750 °C con respecto al contenido de la fase YAG del 30 % en peso.Figure 2 shows the XRD spectra of powders after the precalcining process at 500 ° C and the sintering process at 1750 ° C with respect to the content of the YAG phase of 30% by weight.

La Figura 3 muestra la micrograffa electronica de barrido de la seccion transversal del recubrimiento de los polvos pulverizados de la invencion para mostrar la naturaleza del recubrimiento. Tengase en cuenta que la capa superior de estas micrograffas electronicas es simplemente una capa epoxi anadida para permitir la generacion de imagenes.Figure 3 shows the scanning electron micrograph of the cross section of the coating of the powdered powders of the invention to show the nature of the coating. Keep in mind that the top layer of these electronic micrographs is simply an epoxy layer added to allow the generation of images.

La Figura 4 es una vista ampliada de los polvos pulverizados de la invencion para mostrar la naturaleza del recubrimiento.Figure 4 is an enlarged view of the powdered powders of the invention to show the nature of the coating.

La Figura 5 muestra polvos de SiC sinterizados y aglomerados adecuados para HFPD (24-45 micrometros). Ejemplo 1 - (Carburo de silicio recubierto con oxido a partir de sal metalica)Figure 5 shows sintered and agglomerated SiC powders suitable for HFPD (24-45 micrometers). Example 1 - (Silicon carbide coated with oxide from metal salt)

Este ejemplo se basa en las siguientes reacciones supuestas con carbonato de hidrogeno y amonio (AHC):This example is based on the following alleged reactions with hydrogen carbonate and ammonium (AHC):

1. Hidrolisis inicial de AHC en agua destilada:1. Initial hydrolysis of AHC in distilled water:

NH4HCO3 + H2O ^ NH4OH + H2CO3 NH4OH ^ NH4 + + OH- H2CO3 ^ H + + HCO3-NH4HCO3 + H2O ^ NH4OH + H2CO3 NH4OH ^ NH4 + + OH- H2CO3 ^ H + + HCO3-

HCO3- ^ H + + CO32HCO3- ^ H + + CO32

2. Reaccion de nitrato de aluminio2. Reaction of aluminum nitrate

Al(NO3)3 ■ 9H2O + 3NH4HCO3 = AlOOH + 3(NH4)NO3 + 3CO2 + 10H2O (boehmita o hidroxido de aluminio)Al (NO3) 3 ■ 9H2O + 3NH4HCO3 = AlOOH + 3 (NH4) NO3 + 3CO2 + 10H2O (boehmite or aluminum hydroxide)

55

1010

15fifteen

20twenty

2525

3030

3535

Si la suspension se envejece varias horas a temperature ambiente, el hidroxido podna reaccionar y formar dawsonita amonicaIf the suspension is aged several hours at room temperature, the hydroxide could react and form ammonic dawsonite

Al(NOa)a ■ 9H2O + 4NH4HCO3 = NH4Al(OH)2CO3 + 3(NH)4)NO3 + 3CO2 + IOH2O (dawsonita amonica)To (NOa) to ■ 9H2O + 4NH4HCO3 = NH4Al (OH) 2CO3 + 3 (NH) 4) NO3 + 3CO2 + IOH2O (ammonic dawsonite)

AlOOH + NH4HCO3 = NH4Al(OH)2CO3AlOOH + NH4HCO3 = NH4Al (OH) 2CO3

3. Reaccion de nitrato de itrio3. Reaction of yttrium nitrate

2Y(NO3)3 ■ 6H2O + 6NH4HCO3 = Y2(CO3)3 ■ 6H2O + 6NH4NO3 + 3CO2 + 9H2O (hidrato de carbonato normal) o2Y (NO3) 3 ■ 6H2O + 6NH4HCO3 = Y2 (CO3) 3 ■ 6H2O + 6NH4NO3 + 3CO2 + 9H2O (normal carbonate hydrate) or

Y(NO3)3 ■ 6H2O + 3NH4HCO3 = Y(OH)CO3 + 3(NH4)NO3 + 2CO2 + 7H2O (carbonato basico) El siguiente diagrama de flujo explica el proceso:Y (NO3) 3 ■ 6H2O + 3NH4HCO3 = Y (OH) CO3 + 3 (NH4) NO3 + 2CO2 + 7H2O (basic carbonate) The following flow chart explains the process:

imagen1image 1

Se preparo un polvo aglomerado de carburo de silicio recubierto con oxido metalico para el material de alimentacion de pulverizado termico que contema el 30 % en peso de YAG mediante un metodo de co-precipitacion de un precursor de sal metalica sobre una partfcula de carburo de silicio. Las partfculas de carburo de silicio utilizadas teman una granulometna media de 0,6 micrometros (micrones). El oxido de metal recubierto fue confirmado por la micrograffa en la Fig. 1 y la Fig. 2 que muestran la fase YAG de carburo de silicio recubierto y un cristalograma de rayos X del polvo de carburo de silicio recubierto, respectivamente.An agglomerated powder of silicon carbide coated with metal oxide was prepared for the thermal spray feed material containing 30% by weight of YAG by a co-precipitation method of a metal salt precursor on a silicon carbide particle. . The silicon carbide particles used have an average granulometry of 0.6 micrometers (microns). The coated metal oxide was confirmed by the micrograph in Fig. 1 and Fig. 2 showing the YAG phase of coated silicon carbide and an X-ray crystallogram of the coated silicon carbide powder, respectively.

Las fases YAG que recubren la superficie de carburo de silicio son una fase eutectica de A^O3 e Y2O3 que resultan de la calcinacion de una co-precipitacion de hidroxido metalico recubierto con una solucion mixta de Al(NO3)3 ■ 9H2O y Y(NO3)3 ■ 6H2O segun la relacion molar Y:Al = 5:3. La composicion de estequiometna disenada da lugar a un 30 % en peso de fases YAG.The YAG phases that cover the surface of silicon carbide are a eutectic phase of A ^ O3 and Y2O3 that result from the calcination of a co-precipitation of metal hydroxide coated with a mixed solution of Al (NO3) 3 ■ 9H2O and Y ( NO3) 3 ■ 6H2O according to the molar ratio Y: Al = 5: 3. The designed stoichiometric composition gives rise to 30% by weight of YAG phases.

La coprecipitacion de la fase YAG se inicio dispersando 100 gramos de partfculas de carburo de silicio en agua destilada. Se anade aproximadamente el 0,4 % en peso de dispersante para estabilizar la suspension de carburo de silicio. El dispersante era un dispersante Dolapix A-88 de Zschimmer & Schwarz GmbH & Co KG. Se utilizo agitacion magnetica para homogeneizar la suspension. Se anadieron 721,96 ml de 6,4 M de agente precipitador de hidrogenocarbonato de amonio a la suspension de SiC. La suspension se calento a 50 °C antes de que la sal metalica mixta (formada por 721,96 ml de Al(NO3)3 ■ 9H2O 0,5 M y 721,96 ml de Y(NO3)3 ■ 6H2O 0,3 M) se titulase en la mezcla de suspension. La suspension que ahora contema partfculas de carburo de silicio recubiertas con hidroxido/carbonato metalico entonces se filtro y se lavo con agua destilada.Coprecipitation of the YAG phase was initiated by dispersing 100 grams of silicon carbide particles in distilled water. About 0.4% by weight of dispersant is added to stabilize the silicon carbide suspension. The dispersant was a Dolapix A-88 dispersant from Zschimmer & Schwarz GmbH & Co KG. Magnetic stirring was used to homogenize the suspension. 721.96 ml of 6.4 M ammonium hydrogencarbonate precipitating agent was added to the SiC suspension. The suspension was heated to 50 ° C before the mixed metal salt (formed by 721.96 ml of Al (NO3) 3 ■ 9H2O 0.5 M and 721.96 ml of Y (NO3) 3 ■ 6H2O 0.3 M) was titrated in the suspension mixture. The suspension that now contains particles of silicon carbide coated with hydroxide / metal carbonate is then filtered and washed with distilled water.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

El polvo tratado se seco en el horno y se calcino previamente a 500 °C durante 2 horas en un horno de aire. La sinterizacion se empleo para los polvos aglomerados en un entorno de vado o argon a 1750 °C durante 2 h.The treated powder is dried in the oven and preheated at 500 ° C for 2 hours in an air oven. The sintering was used for the agglomerated powders in a forging or argon environment at 1750 ° C for 2 h.

En un segundo experimento, los polvos de SiC tratados se secaron por pulverizacion introduciendo agua destilada para producir un contenido solido del 20-40 % en peso. Se anaden alcohol polivimlico y polietilenglicol para ayudar al proceso de secado por aspersion. Los polvos secados por pulverizacion se calcinan previamente a 500 °C durante 2 horas en un horno de aire antes de realizar la sinterizacion a 1750 °C durante 2 h en un entorno de vado o argon.In a second experiment, the treated SiC powders were spray dried by introducing distilled water to produce a solid content of 20-40% by weight. Polyvinyl alcohol and polyethylene glycol are added to aid in the spray drying process. The spray-dried powders are pre-calcined at 500 ° C for 2 hours in an air oven before sintering at 1750 ° C for 2 h in a forging or argon environment.

En ambos procedimientos, los polvos aglomerados y sinterizados deben tamizarse para asegurar una distribucion exacta del tamano del polvo en funcion del tipo de metodos de pulverizacion termica. Despues del secado por pulverizacion podemos obtener el tamano de partfculas deseado. Sin embargo, durante la sinterizacion, se produce la contraccion y la aglomeracion causando que el tamano de las partfculas se desvfe. De este modo se emplea el tamizado para hacer la clasificacion de los polvos aglomerados. La Figura 5 muestra la materia prima para HFPD.In both processes, the agglomerated and sintered powders must be sieved to ensure an exact distribution of the powder size according to the type of thermal spraying methods. After spray drying we can obtain the desired particle size. However, during sintering, shrinkage and agglomeration occurs causing the size of the particles to deviate. In this way sieving is used to classify the agglomerated powders. Figure 5 shows the raw material for HFPD.

Ejemplo 2 - Recubrimiento de sustratoExample 2 - Substrate coating

El polvo del ejemplo 1 (secado en horno) con polvos de 20-45 pm se pulverizo sobre un sustrato de acero al carbono con una pistola de detonacion de pulsos de alta frecuencia de acuerdo con los siguientes parametrosThe powder of example 1 (oven-dried) with powders of 20-45 pm was sprayed onto a carbon steel substrate with a high frequency pulse detonation gun according to the following parameters

Flujo de gas: 48 SLPM de propileno mas 170 SLPM de oxfgeno (SLPM = litros estandar por minuto)Gas flow: 48 SLPM of propylene plus 170 SLPM of oxygen (SLPM = standard liters per minute)

Frecuencia: 60 Hertz.Frequency: 60 Hertz.

Distancia de la antorcha al sustrato: 40 mm.Distance from the torch to the substrate: 40 mm.

Los polvos que se alimentan con Thermico CPF-2 emplean gas portador de nitrogeno 20 SLPM y disco de alimentacion a 10 rpm de rotacion.Powders that are fed with Thermico CPF-2 employ 20 SLPM nitrogen carrier gas and feed disk at 10 rpm of rotation.

Numero de barridos de la antorcha sobre el sustrato: 4 x 6 segundos.Number of sweeps of the torch on the substrate: 4 x 6 seconds.

Al final de la deposicion, las muestras de recubrimiento se caracterizaron con cristalograffa de rayos X. La Fig. 2 muestra el cristalograma de la deposicion de polvo que contiene SiC + 30 % en peso de YAG. El cristalograma de rayos X del polvo antes de la deposicion y el recubrimiento son practicamente identicos. Esto significa que no se ha producido ninguna descomposicion en el proceso de pulverizacion termica. En la Fig. 2, las posiciones maximas de los dos compuestos estan marcadas.At the end of the deposition, the coating samples were characterized with X-ray crystallography. Fig. 2 shows the crystallogram of the deposition of powder containing SiC + 30% by weight of YAG. The X-ray crystallogram of the powder before deposition and coating are practically identical. This means that no decomposition has occurred in the thermal spraying process. In Fig. 2, the maximum positions of the two compounds are marked.

Se realiza una micrograffa electronica de barrido de la seccion transversal del recubrimiento, lo que resulta en la estructura como se muestra en la Fig. 3. La estructura tfpica en la que las fases YAG (mostradas como area mas brillante) rodean carburo de silicio (mostradas como area mas oscura) como se espera de la deposicion de recubrimiento producida con estas materias primas en polvo.An electronic scanning micrograph is made of the cross section of the coating, which results in the structure as shown in Fig. 3. The typical structure in which the YAG phases (shown as the brighter area) surround silicon carbide ( shown as a darker area) as expected from the coating deposition produced with these powdered raw materials.

Las partfculas aglomeradas tienen un tamano de alrededor de 45 micrometros (micrones). Cuando viajan en la llama durante la pulverizacion termica, se deforman a medida que el oxido se derrite y se aplanan al entrar en contacto con el sustrato. A medida que mas partfculas entran en contacto con el sustrato, comienza a formarse una capa de recubrimiento (con cada capa de solo 5-10 micrometros (micrones) de espesor). Por lo tanto, se puede lograr facilmente un recubrimiento de mas de 100 micrometros (micrones) sobre un sustrato como se muestra en la Fig. 3.The agglomerated particles have a size of about 45 micrometers (microns). When they travel in the flame during thermal spraying, they deform as the oxide melts and flatten upon contact with the substrate. As more particles come into contact with the substrate, a coating layer begins to form (with each layer only 5-10 micrometers (microns) thick). Therefore, a coating of more than 100 micrometers (microns) can easily be achieved on a substrate as shown in Fig. 3.

El estudio cuidadoso del aumento del recubrimiento muestra que se compone de pequenas partfculas de SiC unidas por la fase de oxido (Figura 4).Careful study of the coating increase shows that it is composed of small SiC particles joined by the oxide phase (Figure 4).

Ejemplo 3Example 3

El proceso del ejemplo 1 se repitio, pero esta vez con partroulas de carburo de silicio de 3 micrometros (micrones).The process of example 1 was repeated, but this time with 3 micrometer silicon carbide particles (microns).

Ejemplo 4 - (Carburo de silicio recubierto con oxido de un precursor de sal metalica con precipitador de urea)Example 4 - (Silicon carbide coated with oxide of a metal salt precursor with urea precipitator)

El oxido encapsulado protegera las partroulas de SiC de la interaccion directa con el plasma, inhibiendo asf la descomposicion.The encapsulated oxide will protect the SiC particles from the direct interaction with the plasma, thus inhibiting the decomposition.

Ingredientes:Ingredients:

a. Partroulas de a-SiC con d50 = 0,6 pm suministradas por Washington Mills AS, Orkanger, Noruegato. Partroulas of a-SiC with d50 = 0.6 pm supplied by Washington Mills AS, Orkanger, Norway

b. Al(NOa)a ■ 9H2O (Merck KGaA, Alemania)b. Al (NOa) to ■ 9H2O (Merck KGaA, Germany)

c. Y2O3 de H.C. Starck Grade C (disuelto en solucion de HNO3 para producir 2Y(NO3)3 ■ 3H2O despues de la reaccion de Y2O3 + 6HNO3 + 9H2O ^ 2Y(NO3)3 ■ 6H2O.c. Y2O3 from H.C. Starck Grade C (dissolved in HNO3 solution to produce 2Y (NO3) 3 ■ 3H2O after the reaction of Y2O3 + 6HNO3 + 9H2O ^ 2Y (NO3) 3 ■ 6H2O.

d. Precipitador base debil: Uread. Weak base precipitator: Urea

e. Dispersante: Dolapix A88 (Zschimmer & Schwarz GmbH & Co. KG., Alemania)and. Dispersant: Dolapix A88 (Zschimmer & Schwarz GmbH & Co. KG., Germany)

55

1010

15fifteen

20twenty

2525

3030

3535

El siguiente diagrama de flujo explica el proceso:The following flow diagram explains the process:

imagen2image2

Procedimientos:Procedures:

La carga solida total despues del proceso de coprecipitacion es aproximadamente el 5 % en peso de la relacion molar de urea/(Al3+ + Y3+) = 7,5The total solid charge after the coprecipitation process is approximately 5% by weight of the molar ratio of urea / (Al3 + + Y3 +) = 7.5

Se dispersaron 100 g de partfculas de a-SiC en 721,96 ml de urea 6 M y se agito a 600 rpm durante 30 minutos. Se anadio Dolapix A88 al 0,4 % en peso para estabilizar la suspension de SiC que contema urea agitada durante 15 minutos. La mezcla se calento a 90 °C. Por separado, una solucion de sal metalica de precursor de sal YAG (relacion de Al3+:Y3+ = 5: 3) se preparo combinando 721,96 ml de 0,5 M de Al(NO3)3 ■ 9H2O y 721,96 ml de 0,3 M de Y(NO3)3 ■ 6H2O. Esto dara un contenido de granate de itrio y aluminio (Y3AbO12) del 30 % en peso al sinterizar. La solucion de precursor de sal metalica se titulo inversamente en la suspension de SiC con un caudal de 3 ml/min. El pH de la suspension se mantuvo a 9 o mas con la adicion de NH4OH.100 g of a-SiC particles were dispersed in 721.96 ml of 6 M urea and stirred at 600 rpm for 30 minutes. Dolapix A88 at 0.4% by weight was added to stabilize the SiC suspension containing stirred urea for 15 minutes. The mixture was heated to 90 ° C. Separately, a salt metal precursor YAG solution (ratio of Al3 +: Y3 + = 5: 3) was prepared by combining 721.96 ml of 0.5 M Al (NO3) 3 ■ 9H2O and 721.96 ml of 0.3 M of Y (NO3) 3 ■ 6H2O. This will give a yttrium and aluminum garnet content (Y3AbO12) of 30% by weight when sintering. The metal salt precursor solution was reverse-titrated in the SiC suspension at a flow rate of 3 ml / min. The pH of the suspension was maintained at 9 or more with the addition of NH 4 OH.

Una vez finalizado el proceso de titulacion, la suspension se envejecio durante 1 hora (envejecimiento = agitacion a 600 rpm con la temperatura mantenida a 90 °C durante una hora). La suspension envejecida se filtro para eliminar el exceso de ion NO32-. El sobrenadante de SiC se seco entonces en el horno a 100 °C durante 24 horas.Once the titration process was finished, the suspension was aged for 1 hour (aging = agitation at 600 rpm with the temperature maintained at 90 ° C for one hour). The aged suspension is filtered to remove the excess NO32- ion. The SiC supernatant is then dried in the oven at 100 ° C for 24 hours.

El SiC seco se calcino previamente a 500 °C durante 2 horas para eliminar las especies de hidroxido y carbonato que forman el recubrimiento en esta etapa del proceso. Se realizo una sinterizacion adicional a 1750 °C en un horno atmosferico de argon para cristalizar y sinterizar los polvos de SiC aglomerados.The dry SiC is previously calcined at 500 ° C for 2 hours to eliminate the hydroxide and carbonate species that form the coating at this stage of the process. An additional sintering was performed at 1750 ° C in an argon atmospheric furnace to crystallize and sinter the agglomerated SiC powders.

Los polvos aglomerados y sinterizados se clasifican con una maquina de tamizado para producir polvos de 25-45 pm y 45-90 pm. Los polvos aglomerados de 25-45 pm se usan principalmente para la pistola de detonacion de pulso de alta frecuencia (HFPD), mientras que los polvos de SiC modificados de 45-90 pm se usan principalmente para el sistema de pulverizacion de plasma atmosferico (APS).The agglomerated and sintered powders are classified with a sieving machine to produce powders of 25-45 pm and 45-90 pm. The agglomerated powders of 25-45 pM are mainly used for the high frequency pulse detonation gun (HFPD), while the modified SiC powders of 45-90 pM are mainly used for the atmospheric plasma spraying system (APS) ).

Pueden tener lugar las siguientes reacciones teoricas:The following theoretical reactions can take place:

Reacciones con la urea:Reactions with urea:

1. Hidrolisis inicial de urea en agua destilada1. Initial hydrolysis of urea in distilled water

CO(NH2)2 ^ NH4+ + OCN- (hidrolisis inicial)CO (NH2) 2 ^ NH4 + + OCN- (initial hydrolysis)

OCN- + 2H+ + H2O ^ CO2 + NH4+ (en medio acido)OCN- + 2H + + H2O ^ CO2 + NH4 + (in acid medium)

OCN- + OH- + H2O ^ NH3 + CO32" (en solucion neutra o basica)OCN- + OH- + H2O ^ NH3 + CO32 "(in neutral or basic solution)

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

6565

2. Reaccion de nitrato de aluminio2. Reaction of aluminum nitrate

2Al(NOa)a ■ 9H2O + 3CO(NH2)2 ^ 2AIOOH + 6(NH4)NO3 + 3CO2 + IIH2O (boehmita o hidroxido de aluminio)2Al (NOa) to ■ 9H2O + 3CO (NH2) 2 ^ 2AIOOH + 6 (NH4) NO3 + 3CO2 + IIH2O (boehmite or aluminum hydroxide)

oor

Al(NO3)3 ■ 9H2O + 2CO(NH2)2 ^ NH4Al(OH)2CO3 + 3(NH4)NO3 + CO2 + 4H2O (dawsonita de amonio)Al (NO3) 3 ■ 9H2O + 2CO (NH2) 2 ^ NH4Al (OH) 2CO3 + 3 (NH4) NO3 + CO2 + 4H2O (ammonium dawsonite)

3. Reaccion de nitrato de itrio3. Reaction of yttrium nitrate

2Y(NO3)3 ■ 6H2O + 3CO(NH2)2 ^ Y2(CO3)3 ■ 6H2O + 6(NH4)NO3 + CO2 + 5H2O (carbonato normal)2Y (NO3) 3 ■ 6H2O + 3CO (NH2) 2 ^ Y2 (CO3) 3 ■ 6H2O + 6 (NH4) NO3 + CO2 + 5H2O (normal carbonate)

Y3+ + H2O = (Y(OH))2+ + H+(Y(OH))2+ + CO2 + 2H2O = Y(OH)CO3 ■ H2O + 2H+ (carbonato basico)Y3 + + H2O = (Y (OH)) 2 + + H + (Y (OH)) 2+ + CO2 + 2H2O = Y (OH) CO3 ■ H2O + 2H + (basic carbonate)

Los polvos formados por secado en horno o por pulverizacion en los ejemplos 1, 3 y 4 pueden pulverizarse termicamente mediante HFPD, HVOF o APS.Powders formed by oven drying or spray drying in Examples 1, 3 and 4 can be thermally sprayed by HFPD, HVOF or APS.

Ejemplo 5 Proceso de pulverizacion termicaExample 5 Thermal spraying process

Proceso de pulverizacion de plasma atmosferico.Spraying process of atmospheric plasma.

El polvo del ejemplo 1 (secado en horno) con polvos de 45-90 pm se pulverizo sobre un sustrato de acero al carbono con una pistola de pulverizacion de plasma atmosferico F4-MB pistola de plasma con un diametro de anodo de 6 mm instalada en un sistema de pulverizacion de plasma A3000S (Sulzer Metco, Wolhen, Suiza) de acuerdo a los siguientes parametros:The powder of Example 1 (oven-dried) with powders of 45-90 μm was sprayed onto a carbon steel substrate with an atmospheric plasma spray gun F4-MB plasma gun with a 6 mm anode diameter installed in an A3000S plasma spraying system (Sulzer Metco, Wolhen, Switzerland) according to the following parameters:

Flujo de gas: 45 SLPM de Argon mas 12 SLPM de Hidrogeno (SLPM = litros estandar por minuto)Gas flow: 45 SLG of Argon plus 12 SLPM of Hydrogen (SLPM = standard liters per minute)

Corriente: 700 amperios Tension: 47 voltios Diametro del inyector = 1,8 mmCurrent: 700 amps Voltage: 47 volts Injector diameter = 1.8 mm

Distancia de la antorcha de plasma del sustrato: 100 mm.Distance of the plasma torch from the substrate: 100 mm.

Rotacion de alimentacion de polvo digital: 20 rpm con gas portador Ar a 2,8 SLPM Movimiento del robot 0,2 m/s.Rotation of digital powder feed: 20 rpm with carrier gas Ar at 2.8 SLPM Robot movement 0.2 m / s.

Numero de barridos de la antorcha sobre el sustrato: 4 x 6 segundos.Number of sweeps of the torch on the substrate: 4 x 6 seconds.

Al final de la deposicion, las muestras de recubrimiento se caracterizaron con cristalograffa de rayos X. La Fig. 2 muestra el cristalograma del material de alimentacion en polvo que contiene el 30 % en peso de YAG y el recubrimiento de material compuesto de SiC producido usando HFPD y APS. El cristalograma de rayos X de la fase de SiC antes de la deposicion y en el recubrimiento son practicamente identicos. Esto significa que no se ha producido descomposicion de SiC en el proceso de pulverizacion termica.At the end of the deposition, the coating samples were characterized with X-ray crystallography. Fig. 2 shows the crystallogram of the powder feed material containing 30% by weight of YAG and the SiC composite coating produced using HFPD and APS. The X-ray crystallogram of the SiC phase before deposition and in the coating are practically identical. This means that SiC decomposition has not occurred in the thermal spraying process.

Cuando los polvos aglomerados viajan en la llama durante la pulverizacion termica, se deforman a medida que el oxido se derrite y se aplanan al entrar en contacto con el sustrato. A medida que mas partfculas entran en contacto con el sustrato, comienza a formarse una capa de recubrimiento (con cada capa de solo 5-10 micrometros (micrones) de espesor). Por lo tanto, se puede alcanzar facilmente un recubrimiento de mas de 100 micrometros (micrones) sobre un sustrato.When the agglomerated powders travel in the flame during thermal spraying, they deform as the oxide melts and flatten upon contact with the substrate. As more particles come into contact with the substrate, a coating layer begins to form (with each layer only 5-10 micrometers (microns) thick). Therefore, a coating of more than 100 micrometers (microns) on a substrate can be easily reached.

El estudio cuidadoso del aumento del recubrimiento muestra que se compone de pequenas partfculas de SiC unidas por la fase de oxido.Careful study of the coating increase shows that it is composed of small SiC particles joined by the oxide phase.

Ejemplo 6 - (Carburo de silicio recubierto con oxido del proceso de secado por pulverizacion)Example 6 - (Silicon carbide coated with oxide from the spray drying process)

El precursor de la sal metalica secada por pulverizacion mezclado con partfculas de SiC producira partfculas de SiC encapsuladas del precursor metalico de hidroxido o carbonato. Como este proceso crea polvos de SiC aglomerados con nanoprecipitado de precursor metalico, el proceso de sinterizacion crea polvos de SiC recubiertos con YAG.The precursor of the metal salt spray dried mixed with SiC particles will produce encapsulated SiC particles of the hydroxide or carbonate metal precursor. As this process creates agglomerated SiC powders with nanoprecipitate of metal precursor, the sintering process creates SiC powders coated with YAG.

Ingredientes:Ingredients:

a. Partfculas a-SiC con d50 = 1 pm suministradas por Saint Gobain Ceramic Materials AS Lillesand, Noruegato. Particles a-SiC with d50 = 1 pm supplied by Saint Gobain Ceramic Materials AS Lillesand, Norway

b. Al(NO3)3 ■ 9H2O (Merck KGaA, Alemania)b. Al (NO3) 3 ■ 9H2O (Merck KGaA, Germany)

c. Y2O3 de HC Starck Grade C (disuelto en solucion de HNO3 para producir Y(NO3)3 ■ 6H2O despues de la reaccion de Y2O3 + 6HNO3 + 9H2O ^ 2Y(NO3)3 ■ 6H2O.c. Y2O3 of HC Starck Grade C (dissolved in HNO3 solution to produce Y (NO3) 3 ■ 6H2O after the reaction of Y2O3 + 6HNO3 + 9H2O ^ 2Y (NO3) 3 ■ 6H2O.

d. Precipitador acido debil: Acido cttricod. Acid weak precipitator: Cttric acid

e. Dispersante: Dolapix A88 (Zschimmer & Schwarz GmbH & Co. KG., Alemania)and. Dispersant: Dolapix A88 (Zschimmer & Schwarz GmbH & Co. KG., Germany)

55

1010

15fifteen

20twenty

2525

3030

El siguiente diagrama de flujo explica el proceso:The following flow diagram explains the process:

imagen3image3

Procedimientos:Procedures:

La carga solida total despues del proceso de co-precipitacion es aproximadamente el 10 % en peso de la relacion molar de acido dtrico/(Al3+ + Y3+) = 3The total solid charge after the co-precipitation process is approximately 10% by weight of the molar ratio of the acid / / (Al3 + + Y3 +) = 3

Se dispersaron 100 g de partfculas de a-SiC en 360,98 ml de acido dtrico 4,8 M y se agito a 600 rpm durante 30 minutos. Se anadio Dolapix A88 al 0,4 % en peso para estabilizar la suspension de SiC que contiene acido dtrico y se agito durante 15 minutos. La suspension se calento a 80 °C.100 g of a-SiC particles were dispersed in 360.98 ml of 4.8 M duric acid and stirred at 600 rpm for 30 minutes. Dolapix A88 at 0.4% by weight was added to stabilize the suspension of SiC containing dicaric acid and stirred for 15 minutes. The suspension was heated to 80 ° C.

Por separado, se preparo una solucion de sal metalica de precursor de sal YAG (relacion de Al3+:Y3+ = 5:3) mezclando 360,98 ml de Al(NO3)3 ■ 9H2O 1 M y 360,98 ml de Y(NO3)3 ■ 6H2O 0,6 M. Esto proporcionara un contenido de granate de itrio y aluminio (YsAkO^) del 30 % en peso al sinterizar. La solucion de sal metalica se vertio por etapas en una suspension de SiC y se agito durante 1 hora.Separately, a salt solution of YAG salt precursor metal (ratio of Al3 +: Y3 + = 5: 3) was prepared by mixing 360.98 ml of Al (NO3) 3 ■ 9H2O 1 M and 360.98 ml of Y (NO3) ) 3 ■ 6H2O 0.6 M. This will provide a yttrium aluminum content (YsAkO ^) of 30% by weight upon sintering. The metal salt solution was poured stepwise into a suspension of SiC and stirred for 1 hour.

Se calento un secador por pulverizacion hasta que la temperatura de entrada alcanzo 210 °C y la temperatura de salida fue estable entre 90 y 110 °C. La mezcla de solucion de SiC/sal metalica se seco por pulverizacion, ajustando la alimentacion de la suspension y el aspirador para producir SiC aglomerado esferico con el tamano de partfculas deseado entre 25 y 90 micrometres (micrones). Estas partreulas se calcinaron a 500 °C durante 2 horas en el horno atmosferico para eliminar las especies de hidroxido y carbonato que se forman durante el secado por pulverizacion. La sinterizacion adicional a 1750 °C se realiza en un horno atmosferico de argon para cristalizar y sinterizar los polvos de SiC aglomerados. Los polvos aglomerados y sinterizados se clasifican con una maquina de tamizado para producir polvos de 25-45 pm y 45-90 pm. Los polvos aglomerados de 25-45 pm se usan principalmente para la pistola de detonacion de pulso de alta frecuencia (HFPD), mientras que los polvos de SiC modificados de 45-90 pm se usan principalmente para el sistema de pulverizacion de plasma atmosferico (APS).A spray dryer was heated until the inlet temperature reached 210 ° C and the outlet temperature was stable between 90 and 110 ° C. The SiC / metal salt solution mixture is spray dried, adjusting the feed of the suspension and the aspirator to produce spherical agglomerated SiC with the desired particle size between 25 and 90 micrometres (microns). These particles were calcined at 500 ° C for 2 hours in the atmospheric furnace to eliminate the hydroxide and carbonate species formed during spray drying. The additional sintering at 1750 ° C is carried out in an argon atmospheric furnace to crystallize and sinter the agglomerated SiC powders. The agglomerated and sintered powders are classified with a sieving machine to produce powders of 25-45 pm and 45-90 pm. The agglomerated powders of 25-45 pM are mainly used for the high frequency pulse detonation gun (HFPD), while the modified SiC powders of 45-90 pM are mainly used for the atmospheric plasma spraying system (APS) ).

Claims (13)

55 1010 15fifteen 20twenty 2525 3030 3535 4040 45Four. Five 50fifty REIVINDICACIONES 1. Un proceso para pulverizar termicamente partfculas ceramicas recubiertas con oxido metalico sobre un sustrato que comprende:1. A process for thermally spraying ceramic particles coated with metal oxide on a substrate comprising: (i) obtener una pluralidad de partfculas recubiertas con oxido metalico de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro en el que el recubrimiento de oxido metalico forma al menos el 5 % en peso del peso de la partfcula recubierta; y(i) obtaining a plurality of particles coated with metal oxide of silicon carbide, silicon nitride, boron carbide or boron nitride in which the metal oxide coating forms at least 5% by weight of the weight of the coated particle ; Y (ii) pulverizar termicamente las partfculas de la etapa (I) sobre un sustrato;(ii) thermally spraying the particles of step (I) onto a substrate; en el que el oxido metalico es granate de itrio y aluminio y en el que el recubrimiento forma un recubrimiento continuo y completo alrededor de la partfcula ceramica.wherein the metal oxide is yttrium and aluminum garnet and in which the coating forms a continuous and complete coating around the ceramic particle. 2. Un proceso segun la reivindicacion 1, en el que dicha pluralidad de partfculas recubiertas con oxido metalico se obtiene calcinando y sinterizando una pluralidad de partfculas recubiertas con sal metalica de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro, tales como partfculas recubiertas con hidroxido metalico y/o carbonato metalico.2. A process according to claim 1, wherein said plurality of particles coated with metal oxide is obtained by calcining and sintering a plurality of particles coated with metal salt of silicon carbide, silicon nitride, boron carbide or boron nitride, such as particles coated with metal hydroxide and / or metal carbonate. 3. Un proceso segun la reivindicacion 2, en el que dicha pluralidad de partfculas recubiertas con sal metalica se obtiene combinando una pluralidad de partfculas de carburo de silicio, nitruro de silicio, carburo de boro o nitruro de boro con al menos una sal metalica, tal como dos sales metalicas, en presencia de un acido debil o una base debil para formar un recubrimiento de sal metalica sobre dichas partfculas; y secar, tal como mediante secado por pulverizacion, las partfculas resultantes.3. A process according to claim 2, wherein said plurality of particles coated with metal salt is obtained by combining a plurality of particles of silicon carbide, silicon nitride, boron carbide or boron nitride with at least one metal salt, such as two metal salts, in the presence of a weak acid or a weak base to form a metallic salt coating on said particles; and drying, as by spray drying, the resulting particles. 4. Un proceso segun cualquier reivindicacion anterior en el que las partfculas son partfculas de carburo de silicio.4. A process according to any preceding claim in which the particles are particles of silicon carbide. 5. Un proceso segun las reivindicaciones 3 o 4, en el que la sal metalica es una mezcla de nitrato de itrio y aluminio.5. A process according to claim 3 or 4, wherein the metal salt is a mixture of yttrium nitrate and aluminum. 6. Un proceso segun las reivindicaciones 3 a 5, en el que hay de 1 a 30 veces la relacion molar de base debil o acido debil a sal o sales metalicas, preferiblemente de 1 a 3 equivalentes molares cuando se usa un acido debil y de 6 a 8 equivalentes molares cuando se usa una base debil.6. A process according to claims 3 to 5, wherein there is from 1 to 30 times the molar ratio of weak base or weak acid to salt or metal salts, preferably from 1 to 3 molar equivalents when a weak acid is used and 6 to 8 molar equivalents when a weak base is used. 7. Un proceso segun las reivindicaciones 3 a 6, en el que la sal o sales metalicas se titulan en una solucion de la base debil o acido debil con partfculas o en el que la base o el acido debil se titulan en una solucion de la sal o sales metalicas y las partfculas.7. A process according to claims 3 to 6, wherein the salt or metal salts are titrated in a solution of the weak base or weak acid with particles or in which the base or the weak acid is titrated in a solution of the salt or metallic salts and the particles. 8. Un proceso segun las reivindicaciones 3 a 7, en el que la sal o sales metalicas, la base debil o el acido debil y las partfculas se combinan y se secan por pulverizacion para recubrir las partfculas con el recubrimiento de sal metalica.8. A process according to claims 3 to 7, wherein the salt or metal salts, the weak base or the weak acid and the particles are combined and spray dried to coat the particles with the metal salt coating. 9. Un proceso segun cualquier reivindicacion anterior en el que la pulverizacion termica se efectua usando una pistola de detonacion.9. A process according to any preceding claim wherein the thermal spraying is effected using a detonation gun. 10. Un proceso segun las reivindicaciones 3 a 9, en el que la base debil es urea, amoniaco o un carbonato de hidrogeno, especialmente hidrogenocarbonato de amonio y el acido debil es acido cftrico.10. A process according to claims 3 to 9, wherein the weak base is urea, ammonia or a hydrogen carbonate, especially ammonium hydrogencarbonate and the weak acid is citric acid. 11. Un proceso segun cualquier reivindicacion anterior en el que el sustrato es metalico.11. A process according to any preceding claim wherein the substrate is metal. 12. Un proceso segun cualquier reivindicacion anterior, en el que el recubrimiento de oxido metalico forma al menos el 10 % en peso del peso de la partfcula recubierta antes del proceso de pulverizacion termica.12. A process according to any preceding claim, wherein the metal oxide coating forms at least 10% by weight of the weight of the coated particle before the thermal spraying process. 13. Un proceso segun las reivindicaciones 2 a 12, en el que las partfculas se recubren con un hidroxido y/o carbonato antes de la calcinacion.13. A process according to claims 2 to 12, wherein the particles are coated with a hydroxide and / or carbonate prior to calcination.
ES13785472.5T 2012-11-01 2013-11-01 Thermal spraying of ceramic materials Active ES2691938T3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB201219642 2012-11-01
GBGB1219642.4A GB201219642D0 (en) 2012-11-01 2012-11-01 Thermal spraying of ceramic materials
PCT/EP2013/072861 WO2014068082A2 (en) 2012-11-01 2013-11-01 Thermal spraying of ceramic materials

Publications (1)

Publication Number Publication Date
ES2691938T3 true ES2691938T3 (en) 2018-11-29

Family

ID=47358993

Family Applications (2)

Application Number Title Priority Date Filing Date
ES18179170T Active ES2871126T3 (en) 2012-11-01 2013-11-01 Metal oxide coated particles
ES13785472.5T Active ES2691938T3 (en) 2012-11-01 2013-11-01 Thermal spraying of ceramic materials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES18179170T Active ES2871126T3 (en) 2012-11-01 2013-11-01 Metal oxide coated particles

Country Status (16)

Country Link
US (1) US20150307980A1 (en)
EP (2) EP2914760B1 (en)
JP (1) JP6401173B2 (en)
KR (2) KR102254982B1 (en)
CN (2) CN109279896A (en)
AU (2) AU2013340802B2 (en)
BR (2) BR112015009810B1 (en)
CA (2) CA2889623C (en)
EA (2) EA038602B1 (en)
ES (2) ES2871126T3 (en)
GB (1) GB201219642D0 (en)
MX (2) MX366872B (en)
MY (1) MY187391A (en)
PL (2) PL2914760T3 (en)
TR (1) TR201815425T4 (en)
WO (1) WO2014068082A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201409693D0 (en) * 2014-05-31 2014-07-16 Element Six Gmbh Thermal spray assembly and method for using it
KR102447682B1 (en) * 2015-05-29 2022-09-27 삼성전자주식회사 Methods of forming coating layer, plasma treatment apparatus and methods of forming patterns
DE102016103174B4 (en) * 2016-02-23 2019-10-31 Reinhold Riemensperger Method for producing a layer structure on a surface region of a component
CN106077663A (en) * 2016-07-29 2016-11-09 安庆市德奥特汽车零部件制造有限公司 A kind of preparation method of nanometer yttrium aluminum garnet fiber composite coating piston ring for combustion engines
GB201614008D0 (en) 2016-08-16 2016-09-28 Seram Coatings As Thermal spraying of ceramic materials
CN106544621A (en) * 2016-11-18 2017-03-29 无锡明盛纺织机械有限公司 A kind of preparation method of composite anti-wear coating
CA3002295A1 (en) * 2017-06-21 2018-12-21 Rolls-Royce Corporation Impurity barrier layer for ceramic matrix composite substrate
US11976013B2 (en) 2017-09-27 2024-05-07 Rolls-Royce Corporation Composite coating layer for ceramic matrix composite substrate
JP6971110B2 (en) * 2017-09-28 2021-11-24 株式会社フジミインコーポレーテッド A method for producing a coated particle powder, and a method for producing a dispersion containing the coated particle powder and a dispersion medium.
WO2020088748A1 (en) 2018-10-30 2020-05-07 Hyperion Materials & Technologies (Sweden) Ab Method of boronizing sintered bodies and tools for cold forming operations and hollow wear parts with boronized sintered bodies
KR102091969B1 (en) * 2019-03-29 2020-03-23 오현철 Conductive paint composition
TWI685072B (en) * 2019-04-11 2020-02-11 宏進金屬科技股份有限公司 Composite structure with insulating heat dissipation coating, its preparation method and use
CN110922188A (en) * 2019-12-02 2020-03-27 昊石新材料科技南通有限公司 High-wear-resistance ablation-resistant deposited silicon carbide coating and preparation process thereof
CN111254379B (en) * 2020-03-15 2022-02-08 河北工业大学 Preparation method of high-entropy ceramic coating
FR3112143A1 (en) * 2020-07-02 2022-01-07 Safran Ceramics Manufacturing process of an environmental barrier
CN112410719B (en) * 2020-10-20 2023-01-20 安徽华飞机械铸锻有限公司 Wear-resistant heat-resistant steel
CN112408991A (en) * 2020-11-27 2021-02-26 安徽盈锐优材科技有限公司 Preparation method of novel thermal spraying silicon nitride powder
CN112645711A (en) * 2020-12-24 2021-04-13 江苏集芯半导体硅材料研究院有限公司 SiC-ZrC-BN composite coating of heater for monocrystalline silicon furnace and preparation method
US20240109813A1 (en) * 2021-02-05 2024-04-04 Oerlikon Metco (Us) Inc. Oxidation barrier materials and process for ceramic matrix composites

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761664A (en) * 1980-09-29 1982-04-14 Nat Res Inst Metals Ceramic-base composite powder and manufacture
US4619817A (en) * 1985-03-27 1986-10-28 Battelle Memorial Institute Hydrothermal method for producing stabilized zirconia
JPS61243164A (en) * 1985-04-19 1986-10-29 Toshiba Corp Formation of heat resistant coating
US4814128A (en) * 1985-08-01 1989-03-21 Gte Laboratories Incorporated Process for making a homogeneous doped silicon nitride article
JPH0645862B2 (en) * 1986-12-29 1994-06-15 トヨタ自動車株式会社 Method for forming ceramic sprayed layer
JPH028358A (en) * 1988-06-25 1990-01-11 Idemitsu Kosan Co Ltd Composite thermal spraying material, manufacture of same, thermal spraying body using same, and infrared-ray radiator consisting of same
US5098740A (en) * 1989-12-13 1992-03-24 Norton Company Uniformly-coated ceramic particles
JP3139149B2 (en) * 1992-07-27 2001-02-26 株式会社村田製作所 Piezoelectric resonator
US6015630A (en) * 1997-04-10 2000-01-18 The University Of Connecticut Ceramic materials for thermal barrier coatings
JPH11286768A (en) * 1998-04-02 1999-10-19 Ishikawajima Harima Heavy Ind Co Ltd Wear resistant coating material and wear resistant-coating method
US7976941B2 (en) * 1999-08-31 2011-07-12 Momentive Performance Materials Inc. Boron nitride particles of spherical geometry and process for making thereof
US20060121068A1 (en) * 1999-08-31 2006-06-08 General Electric Company Boron nitride particles of spherical geometry and process for making thereof
US6503442B1 (en) * 2001-03-19 2003-01-07 Praxair S.T. Technology, Inc. Metal-zirconia composite coating with resistance to molten metals and high temperature corrosive gases
DE10133209C5 (en) * 2001-07-02 2006-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Non-oxide ceramic coating powder and layers made therefrom
DE10142635A1 (en) * 2001-08-31 2003-03-20 Basf Ag Process for the preparation of isophoronediamine (IPDA, 3-aminomethyl-3,5,5, -trimethylcyclohexylamine)
JP2004137482A (en) * 2002-09-27 2004-05-13 Fuji Photo Film Co Ltd Method for coating particle surface
US20040183135A1 (en) * 2003-03-19 2004-09-23 Oh-Hun Kwon ESD dissipative structural components
DE10332938B4 (en) * 2003-07-19 2016-12-29 General Electric Technology Gmbh Thermally loaded component of a gas turbine
WO2006032982A1 (en) * 2004-09-23 2006-03-30 Element Six (Pty) Ltd Coated abrasive materials and method of manufacture
DE102005002659A1 (en) * 2005-01-19 2006-07-27 Merck Patent Gmbh Process for the preparation of mixed oxides by spray pyrolysis
US7799111B2 (en) * 2005-03-28 2010-09-21 Sulzer Metco Venture Llc Thermal spray feedstock composition
CA2504831C (en) * 2005-04-21 2010-10-19 Standard Aero Limited Wear resistant ceramic composite coatings and process for production thereof
CN100448800C (en) * 2007-04-17 2009-01-07 陕西科技大学 Method of preparing ceramic coating by flame heat spray painting thermit packaged silicon carbide particles
JP2011178643A (en) * 2010-03-03 2011-09-15 Yamagata Univ Method for producing surface-modified ceramic powder
JP5305056B1 (en) * 2012-05-16 2013-10-02 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered body
JP6045862B2 (en) * 2012-09-07 2016-12-14 有限会社若松屋 Production method for fishery products

Also Published As

Publication number Publication date
CN109279896A (en) 2019-01-29
EA030816B1 (en) 2018-10-31
PL2914760T3 (en) 2019-04-30
MX2019008509A (en) 2019-09-18
WO2014068082A3 (en) 2014-12-31
BR112015009810A2 (en) 2017-07-11
EP2914760B1 (en) 2018-07-25
AU2018204753A1 (en) 2018-07-19
KR20150092138A (en) 2015-08-12
MX366872B (en) 2019-07-29
AU2013340802B2 (en) 2018-03-29
EP3401417B1 (en) 2021-03-03
JP2016501983A (en) 2016-01-21
CA2889623A1 (en) 2014-05-08
CA3087556C (en) 2022-08-09
ES2871126T3 (en) 2021-10-28
EA201890835A1 (en) 2019-01-31
EP3401417A1 (en) 2018-11-14
BR122020000551B1 (en) 2021-11-30
CN104903486B (en) 2018-11-16
EA201590852A1 (en) 2016-01-29
AU2013340802A1 (en) 2015-05-21
KR102254982B1 (en) 2021-05-24
WO2014068082A2 (en) 2014-05-08
US20150307980A1 (en) 2015-10-29
EP2914760A2 (en) 2015-09-09
KR20210059802A (en) 2021-05-25
GB201219642D0 (en) 2012-12-12
AU2018204753B2 (en) 2020-05-07
MX2015005485A (en) 2015-11-30
JP6401173B2 (en) 2018-10-03
MY187391A (en) 2021-09-22
CN104903486A (en) 2015-09-09
PL3401417T3 (en) 2021-11-08
KR102332812B1 (en) 2021-12-01
CA3087556A1 (en) 2014-05-08
CA2889623C (en) 2021-05-18
EA038602B1 (en) 2021-09-21
BR112015009810B1 (en) 2020-11-10
TR201815425T4 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
ES2691938T3 (en) Thermal spraying of ceramic materials
Sokołowski et al. The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings
AU2017314133B2 (en) Thermal spraying of ceramic materials
US8679246B2 (en) Preparation of amorphous mixed metal oxides and their use as feedstocks in thermal spray coating
CN106435446A (en) CYSZ thermal barrier coating prepared through plasma thermal spraying method and preparing method
Mubarok et al. Suspension plasma spraying of sub-micron silicon carbide composite coatings
McDonald et al. Synthesis of Thermal Spray Grade Silicon Carbide Feedstock Powder for Plasma Spray Deposition
Wang et al. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt% TiO2 feedstock for plasma spraying
Vasiliev et al. Microstructural Study of Metastable ZrO2-Al2O3 and ZrO2-Y2O3-Al2O3 Coatings Deposited Using Solution-Precursor Plasma Spray (SPPS) Process
EA043995B1 (en) THERMAL SPRAYING OF CERAMIC MATERIALS