ES2664381T3 - Self-healing polyurethane polymers - Google Patents

Self-healing polyurethane polymers Download PDF

Info

Publication number
ES2664381T3
ES2664381T3 ES15171511.7T ES15171511T ES2664381T3 ES 2664381 T3 ES2664381 T3 ES 2664381T3 ES 15171511 T ES15171511 T ES 15171511T ES 2664381 T3 ES2664381 T3 ES 2664381T3
Authority
ES
Spain
Prior art keywords
cut
self
polyurethane
diol
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES15171511.7T
Other languages
Spanish (es)
Inventor
Manuel Colera Llavata
Victor Ignacio Costa Vayá
José Antonio Jofre Reche
José Miguel Martín Martínez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp Europe SA
Original Assignee
Ube Corp Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53498777&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2664381(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ube Corp Europe SA filed Critical Ube Corp Europe SA
Application granted granted Critical
Publication of ES2664381T3 publication Critical patent/ES2664381T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group

Abstract

Uso de un poliuretano, que se puede obtener haciendo reaccionar una mezcla que comprende un isocianato, y: (a) un policarbonato diol y un poliéster diol, o (b) un copolímero de un policarbonato diol y un poliéster diol; como un polímero autorreparable, donde el policarbonato diol es un diol que contiene grupos carbonato y grupos alquileno acíclicos o cíclicos lineales o ramificados que tienen de 2 a 20 átomos de carbono y donde el polímero autorreparable se define como un material polimérico cuya resistencia en tracción después de ser cortado en dos por la mitad, dando como resultado dos mitades y poniéndose en contacto las dos mitades en los cinco minutos posteriores al corte sin un agente de reparación secuestrado, durante 24 horas a una temperatura de 25 °C, es al menos 45 % de la resistencia en tracción de un material polimérico idéntico que no se ha cortado por la mitad, con la condición de que el material polimérico se corte y se mida de acuerdo con la norma ISO 37 usando probetas de pesa tipo 2.Use of a polyurethane, which can be obtained by reacting a mixture comprising an isocyanate, and: (a) a polycarbonate diol and a polyester diol, or (b) a copolymer of a polycarbonate diol and a polyester diol; as a self-healing polymer, where the polycarbonate diol is a diol containing linear or branched acyclic or cyclic alkylene groups and carbonates having 2 to 20 carbon atoms and where the self-healing polymer is defined as a polymeric material whose tensile strength is then of being cut in two in half, resulting in two halves and contacting the two halves in the five minutes after the cut without a sequestered repair agent, for 24 hours at a temperature of 25 ° C, is at least 45 % of the tensile strength of an identical polymeric material that has not been cut in half, with the proviso that the polymeric material is cut and measured in accordance with ISO 37 using type 2 weight specimens.

Description

imagen1image 1

imagen2image2

imagen3image3

imagen4image4

imagen5image5

imagen6image6

imagen7image7

La curva esfuerzo-deformación (Figura 5) muestra el mismo comportamiento mecánico de los poliuretanos después de la reparación tanto al aire libre como sumergidos en agua; ambas muestras presentan el límite elástico del material virgen, alcanzando el mismo valor de resistencia en tracción en el punto de fluencia. La Tabla 3 muestra los valores de la resistencia en tracción y el porcentaje de eficacia de la reparación, que es casi del 100 %. The stress-strain curve (Figure 5) shows the same mechanical behavior of polyurethanes after repair both outdoors and submerged in water; Both samples have the elastic limit of the virgin material, reaching the same tensile strength value at the creep point. Table 3 shows the tensile strength values and the percentage of repair efficiency, which is almost 100%.

Tabla 3 -Propiedades mecánicas obtenidas a partir de las curvas de esfuerzo-deformación del elastómero de poliuretano preparado de acuerdo con este Ejemplo antes y después de cortar y volver a unir en agua. Table 3 - Mechanical properties obtained from the stress-strain curves of the polyurethane elastomer prepared in accordance with this Example before and after cutting and rejoining in water.

Resistencia en tracción (virgen) = Tensile strength (virgin) =
0,476 MPa 0.476 MPa

Resistencia en tracción (reparado en agua) = Tensile strength (water repaired) =
0,469 MPa 0.469 MPa

Eficiencia de reparación (24 horas, 25 °C) = Repair efficiency (24 hours, 25 ° C) =
98,5 % 98.5%
Ejemplo comparativo 4Comparative Example 4

10 Se obtuvo un elastómero de poliuretano haciendo reaccionar un poliisocianato (Suprasec® 2445 comercial, Huntsman), policaprolactona diol (Pm = 2000 Da) (Sigma Aldrich, Barcelona, España), y 1,4-butanodiol (Sigma Aldrich, Barcelona, España) como un extensor de cadena. Se utilizó una relación NCO/OH de 1,1. 10 A polyurethane elastomer was obtained by reacting a polyisocyanate (Commercial Suprasec® 2445, Huntsman), polycaprolactone diol (Pm = 2000 Da) (Sigma Aldrich, Barcelona, Spain), and 1,4-butanediol (Sigma Aldrich, Barcelona, Spain ) as a chain extender. An NCO / OH ratio of 1.1 was used.

15 Las propiedades mecánicas del poliuretano se midieron mediante una prueba de esfuerzo-deformación en una máquina de ensayo Instron 4411 Universal aplicándola a diferentes muestras de poliuretano troqueladas en forma de campana de descarga tipo 2 de acuerdo con la norma ISO 37. La velocidad de tracción fue de 50 mm/min. 15 The mechanical properties of the polyurethane were measured by a stress-strain test in an Instron 4411 Universal test machine by applying it to different samples of die-cut polyurethane in the form of a type 2 discharge bell according to ISO 37. The traction speed It was 50 mm / min.

La autorreparación del elastómero de poliuretano se probó cortando la muestra de prueba con forma de pesa por la The self-repair of the polyurethane elastomer was tested by cutting the test sample in the form of a weight by

20 mitad y volviendo a unir las dos piezas recién cortadas inmediatamente después del corte, en el sitio del corte, y dejándola a 40 °C durante 24 horas Posteriormente, se repitió la prueba de esfuerzo-deformación y se compararon las propiedades mecánicas. 20 half and re-joining the two freshly cut pieces immediately after cutting, at the cutting site, and leaving it at 40 ° C for 24 hours. Subsequently, the stress-strain test was repeated and the mechanical properties were compared.

La Figura 6 muestra el poliuretano con el corte por la mitad después de volver a unir, antes y después de la prueba Figure 6 shows the polyurethane with the cut in half after reassembly, before and after the test

25 de esfuerzo-deformación. Después de la prueba de esfuerzo-deformación, el poliuretano no se alargó y se rompió en el mismo lugar donde se produjo el corte. Cuando se usa policaprolactona como poliol, no hay autorreparación del material de poliuretano. 25 stress-strain. After the stress-strain test, the polyurethane did not lengthen and broke in the same place where the cut occurred. When polycaprolactone is used as a polyol, there is no self-repair of the polyurethane material.

La Figura 7 compara las curvas de tensión-deformación del material de poliuretano antes y después de que se Figure 7 compares the stress-strain curves of the polyurethane material before and after it is

30 produjo el corte. El límite elástico, la resistencia en tracción y el alargamiento a la rotura del poliuretano antes y después del corte se comparan en la Tabla 4. Después de que se produjo el corte, el poliuretano se rompió justo después del comienzo de la prueba de esfuerzo-deformación. Por lo tanto, no hay autorreparación del poliuretano preparado con policaprolactona como el poliol. 30 produced the cut. The elastic limit, tensile strength and elongation at breakage of the polyurethane before and after the cut are compared in Table 4. After the cut occurred, the polyurethane broke just after the beginning of the stress test. deformation. Therefore, there is no self-repair of polyurethane prepared with polycaprolactone such as polyol.

35 Tabla 4 -Propiedades mecánicas obtenidas de las curvas de esfuerzo-deformación del poliuretano no cortado y cortado preparado de acuerdo con este Ejemplo comparativo. 35 Table 4 - Mechanical properties obtained from stress-strain curves of uncut and cut polyurethane prepared in accordance with this Comparative Example.

Propiedad Property
Antes del corte Después del corte Before cutting After cutting

Límite elástico (MPa) Resistencia en tracción (MPa) Elongación a la rotura (%) Elastic limit (MPa) Tensile strength (MPa) Elongation at break (%)
5,3 15,1 766 0,4 0,5 3 5.3 15.1 766 0.4 0.5 3

Ejemplo comparativo 5 Comparative Example 5

40 Se obtuvo un elastómero de poliuretano por reacción de un poliisocianato (Suprasec® 2445 comercial, Huntsman), poliadipato de 1,4-butanodiol (Pm = 1000 Da) (poliéster comercial HOOPOL F523, Synthesia International, Barcelona, España) y 1,4-butanodiol ( Sigma Aldrich, Barcelona, España) como extensor de cadena. Se utilizó una relación NCO/OH de 1,1. 40 A polyurethane elastomer was obtained by reacting a polyisocyanate (commercial Suprasec® 2445, Huntsman), 1,4-butanediol polyadipate (Pm = 1000 Da) (commercial polyester HOOPOL F523, Synthesia International, Barcelona, Spain) and 1, 4-butanediol (Sigma Aldrich, Barcelona, Spain) as a chain extender. An NCO / OH ratio of 1.1 was used.

45 Las propiedades mecánicas del poliuretano se midieron mediante una prueba de esfuerzo-deformación en una máquina de ensayo Instron 4411 Universal aplicándola a diferentes muestras de poliuretano troqueladas en forma de pesa de tipo 2 de acuerdo con la norma ISO 37. La velocidad de tracción fue de 50 mm/min. 45 The mechanical properties of the polyurethane were measured by a stress-strain test in an Instron 4411 Universal test machine by applying it to different samples of die-cut polyurethane type 2 in accordance with ISO 37. The traction speed was 50 mm / min

La autorreparación del elastómero de poliuretano se probó cortando la muestra de prueba con forma de pesa por la The self-repair of the polyurethane elastomer was tested by cutting the test sample in the form of a weight by

50 mitad y volviendo a unir las dos piezas recién cortadas inmediatamente después del corte, en el sitio del corte, y dejándola a 40 °C durante 24 horas Posteriormente, se repitió la prueba de esfuerzo-deformación y se compararon las propiedades mecánicas. 50 half and joining the two newly cut pieces immediately after cutting, at the cutting site, and leaving it at 40 ° C for 24 hours. Subsequently, the stress-strain test was repeated and the mechanical properties were compared.

La Figura 8 muestra el poliuretano con el corte en el medio después de volver a unir, antes y después de la prueba Figure 8 shows the polyurethane with the cut in the middle after reassembly, before and after the test

55 de esfuerzo-deformación. Después de la prueba de esfuerzo-deformación, el poliuretano no se alargó y se rompió en el mismo lugar donde se produjo el corte. Cuando se usa poliéster como poliol, no hay autorreparación del material de poliuretano. 55 stress-strain. After the stress-strain test, the polyurethane did not lengthen and broke in the same place where the cut occurred. When polyester is used as a polyol, there is no self-repair of the polyurethane material.

9 9

La Figura 9 compara las curvas de esfuerzo-deformación del material de poliuretano antes y después de que se produjo el corte. El límite elástico, la resistencia en tracción y el alargamiento a la rotura del poliuretano antes y después del corte se comparan en la Tabla 5. Después de que se produjo el corte, el poliuretano se rompió justo después del comienzo de la prueba de esfuerzo-deformación. Por lo tanto, no hay autorreparación del poliuretano preparado con poliéster como el poliol. Figure 9 compares the stress-strain curves of the polyurethane material before and after the cut occurred. The elastic limit, tensile strength and elongation at breakage of the polyurethane before and after the cut are compared in Table 5. After the cut occurred, the polyurethane broke just after the beginning of the stress test. deformation. Therefore, there is no self-repair of polyurethane prepared with polyester such as polyol.

Tabla 5 -Propiedades mecánicas obtenidas de las curvas de esfuerzo-deformación del poliuretano no cortado y cortado preparado de acuerdo con este Ejemplo comparativo. Table 5 - Mechanical properties obtained from stress-strain curves of uncut and cut polyurethane prepared in accordance with this Comparative Example.

Propiedad Property
Antes del corte Después del corte Before cutting After cutting

Límite elástico (MPa) Resistencia en tracción (MPa) Elongación a la rotura (%) Elastic limit (MPa) Tensile strength (MPa) Elongation at break (%)
2,9 2,9 30 0,2 0,2 3 2.9 2.9 30 0.2 0.2 3

10 La Tabla 6 compara las propiedades mecánicas de los materiales de poliuretano como un porcentaje de variación. La autorreparación se produce cuando se obtienen valores del 100 %. Los valores en la Tabla 6 muestran autorreparación en todos los poliuretanos preparados con una mezcla que contiene policarbonato diol. Debido a la alta polaridad del grupo carbonato en comparación con los grupos éster o lactona, las interacciones entre el uretano y el carbonato por enlaces de hidrógeno se verán favorecidas y podrían ser responsables del comportamiento de 10 Table 6 compares the mechanical properties of polyurethane materials as a percentage of variation. Self-repair occurs when 100% values are obtained. The values in Table 6 show self-repair in all polyurethanes prepared with a mixture containing polycarbonate diol. Due to the high polarity of the carbonate group compared to the ester or lactone groups, interactions between urethane and hydrogen carbonate will be favored and could be responsible for the behavior of

15 autorreparación. 15 self-repair.

Tabla 6 -Resumen de eficiencias de autorreparación de los Ejemplos. Table 6 - Summary of self-repair efficiencies of the Examples.

Ejemplo Example
Eficiencia de autorreparación (%) Self-repair efficiency (%)

Límite elástico Elastic limit
Resistencia en tracción Elongación a la rotura Tensile strength Elongation at break

1 one
96 84 107 96 84 107

2 2
202 125 118 202 125 118

3 3
99 99

Comp. 4 Comp. 4
8 3 0 8 3 0

Comp. 5 Comp. 5
8 8 9 8 8 9

10 10

Claims (1)

imagen1image 1
ES15171511.7T 2015-06-10 2015-06-10 Self-healing polyurethane polymers Active ES2664381T3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15171511.7A EP3103846B1 (en) 2015-06-10 2015-06-10 Self-healing polyurethane polymers

Publications (1)

Publication Number Publication Date
ES2664381T3 true ES2664381T3 (en) 2018-04-19

Family

ID=53498777

Family Applications (1)

Application Number Title Priority Date Filing Date
ES15171511.7T Active ES2664381T3 (en) 2015-06-10 2015-06-10 Self-healing polyurethane polymers

Country Status (3)

Country Link
EP (1) EP3103846B1 (en)
ES (1) ES2664381T3 (en)
WO (1) WO2016198441A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832140A (en) * 2017-01-19 2017-06-13 中国科学院大学 A kind of preparation method of multiple selfreparing polyurethane comixing material
CN110312756A (en) * 2017-02-07 2019-10-08 雷普索尔有限公司 The purposes of selfreparing poly- (alkylene carbonate)
WO2020136599A1 (en) * 2018-12-28 2020-07-02 Ptt Global Chemical Public Company Limited A chain extender and a process for preparing a self-healing polyurethane and polyurethane thereof
CN112745471B (en) * 2020-12-29 2022-08-09 南京理工大学 Room-temperature intrinsic self-repairing glassy polymer material and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097504A (en) 1965-03-09 1968-01-03 Upjohn Co Elastomeric polyurethanes
DE1694136B2 (en) 1967-02-28 1974-11-21 Bayer Ag, 5090 Leverkusen Process for the production of hydrolysis-resistant polyurethanes
GB1202667A (en) 1968-04-08 1970-08-19 Takeda Chemical Industries Ltd A method for preparing a polyurethane elastomer solution
US4105641A (en) 1975-05-27 1978-08-08 Bayer Aktiengesellschaft Process for the preparation of aliphatic polycarbonates and polyurethanes therefrom
JPS61179733A (en) 1985-02-05 1986-08-12 旭硝子株式会社 Laminate and manufacture thereof
DE69619085T2 (en) * 1995-12-28 2002-06-20 Asahi Glass Co Ltd Cross-linked polyurethane sheet and composite made from it
US7872078B2 (en) * 2007-08-28 2011-01-18 Ppg Industries Ohio, Inc. Curable film-forming compositions demonstrating self-healing properties
US7998529B2 (en) * 2007-10-10 2011-08-16 Ppg Industries Ohio, Inc. Methods for making polymeric substrates comprising a haze-free, self-healing coating and coated substrates made thereby
US8846801B1 (en) * 2010-02-17 2014-09-30 University Of South Florida Self-healing polycarbonate containing polyurethane nanotube composite
CN103958199B (en) 2011-12-21 2016-08-17 东丽株式会社 Stack membrane
US8993066B2 (en) 2012-02-01 2015-03-31 Nanyang Technological University Microencapsulation of reactive diisocyanates and the application to self-healing anticorrosion coatings
US20140037964A1 (en) 2012-08-02 2014-02-06 Haipeng Zheng Optical Article Containing A Self-Healing Coating And Improved Initial Haze
KR101587190B1 (en) 2013-03-15 2016-01-20 주식회사 엘지화학 Plastic film
JP6220600B2 (en) 2013-08-22 2017-10-25 株式会社トクシキ Silicone part-containing urethane (meth) acrylate copolymer, composition and cured product thereof
US10094953B2 (en) * 2013-09-03 2018-10-09 Essilor International (Compagnie Generale D'optique) Self-healing hard coatings

Also Published As

Publication number Publication date
EP3103846B1 (en) 2018-01-31
EP3103846A1 (en) 2016-12-14
WO2016198441A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
ES2664381T3 (en) Self-healing polyurethane polymers
CN104497219B (en) A kind of high resilience selfreparing macromolecule hydrogel and preparation method thereof
ES2879334T3 (en) Rigid polyurethane foam and method for its preparation
CN101565602B (en) Preparation method of water swelling polyurethane elastomer sealing product material
Boubakri et al. Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane
ATE544796T1 (en) IMPACT RESISTANT POLYURETHANES
Yeganeh et al. Synthesis and properties of novel biodegradable poly (ε‐caprolactone)/poly (ethylene glycol)‐based polyurethane elastomers
Prisacariu et al. Influence of the type of chain extender and urethane group content on the mechanical properties of polyurethane elastomers with flexible hard segments
Yang et al. Synthesis and microphase separated structures of polydimethylsiloxane/polycarbonate-based polyurethanes
Ruan et al. Piperazine-based polyurethane-ureas with controllable degradation as potential bone scaffolds
Han et al. Diisocyanate free and melt polycondensation preparation of bio-based unsaturated poly (ester-urethane) s and their properties as UV curable coating materials
KR102574563B1 (en) Polyester
JP5154606B2 (en) Two-component polyurethane resin composition
CA2862545A1 (en) Biodegradable non-woven material for medical purposes
KR101988466B1 (en) Composition for forming eco-friendly polyurethane foam with improved air permeability and antioxidant property and method for preparing the polyurethane foam
Kim et al. Structural, thermal, and mechanical properties of polyurethane foams prepared with starch as the main component of polyols
CN109338504A (en) A kind of degradable spandex high performance polyurethane of biology and preparation method thereof
Ji et al. Regulating the mechanical properties of poly (1, 8-octanediol citrate) bioelastomer via loading of chitin nanocrystals
CN113956486B (en) Long-chain branch polylactic acid-based copolymer and preparation method thereof
Zhou et al. Degradable bioelastomers prepared by a facile melt polycondensation of citric acid and polycaprolactone-diol
JP2008214366A (en) Cast polyurethane resin forming composition for sealing material of membrane module
US20090203809A1 (en) Novel polyurethanes with a high water content, method for the production and application thereof
SE526106C2 (en) Linear block polymer and fiber, film, porous material and implants comprising the polymer
CN103619896B (en) Polyurethane resin composition and its hollow fiber membrane module produced of use
Yuan et al. Hydrolytic degradation behaviors of poly (p-dioxanone) in ambient environments