ES2660516B1 - Electrode device for the detection of ascorbic acid, manufacturing process and use of said device. - Google Patents

Electrode device for the detection of ascorbic acid, manufacturing process and use of said device. Download PDF

Info

Publication number
ES2660516B1
ES2660516B1 ES201631238A ES201631238A ES2660516B1 ES 2660516 B1 ES2660516 B1 ES 2660516B1 ES 201631238 A ES201631238 A ES 201631238A ES 201631238 A ES201631238 A ES 201631238A ES 2660516 B1 ES2660516 B1 ES 2660516B1
Authority
ES
Spain
Prior art keywords
electrode
electrodes
ascorbic acid
active area
screen printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201631238A
Other languages
Spanish (es)
Other versions
ES2660516A1 (en
Inventor
Maria Julia ARCOS MARTÍNEZ
Maria Asunción ALONSO LOMILLO
Olga DOMÍNGUEZ RENEDO
Abraham BOTÍN SALDAÑA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Burgos
Original Assignee
Universidad de Burgos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Burgos filed Critical Universidad de Burgos
Priority to ES201631238A priority Critical patent/ES2660516B1/en
Publication of ES2660516A1 publication Critical patent/ES2660516A1/en
Application granted granted Critical
Publication of ES2660516B1 publication Critical patent/ES2660516B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8835Screen printing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

La presente invención consiste en un dispositivo electródico para la detección de ácido ascórbico, con tres electrodos, obtenidos todos los electrodos por serigrafía, así como su procedimiento de fabricación y su uso en la detección citada.The present invention consists of an electrode device for the detection of ascorbic acid, with three electrodes, all electrodes obtained by screen printing, as well as its manufacturing process and its use in the aforementioned detection.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

DISPOSITIVO ELECTRÓDICO PARA LA DETECCIÓN DE ÁCIDO ASCÓRBICO, PROCEDIMIENTO DE FABRICACIÓN Y USO DE DICHOELECTRICAL DEVICE FOR THE DETECTION OF ASCORBIC ACID, MANUFACTURING PROCEDURE AND USE OF SUCH

DISPOSITIVODEVICE

DESCRIPCIÓNDESCRIPTION

OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION

La presente invención se enmarca en el campo de la electroquímica aplicada al análisis químico.The present invention is framed in the field of electrochemistry applied to chemical analysis.

Así, la presente invención se refiere a un dispositivo constituido por un sistema electródico para la detección de ácido ascórbico, con tres electrodos, obtenidos todos los electrodos por serigrafía, así como su procedimiento de fabricación y condiciones de uso en la detección citada.Thus, the present invention relates to a device consisting of an electrode system for the detection of ascorbic acid, with three electrodes, all electrodes obtained by screen printing, as well as its manufacturing process and conditions of use in the aforementioned detection.

ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION

El desarrollo de dispositivos reproducibles y sensibles para detección electroquímica de ácido ascórbico antioxidante, que ayuda en la desintoxicación y mejora la absorción de hierro en el organismo (P.J. O’Connell, C. Gormally, M. Pravda, G.G. Guilbault, Development of an amperometric L-ascorbic acid (Vitamin C) sensor based on electropolymerised aniline for pharmaceutical and food analysis, Analytica Chimica Acta, 431 (2001) 239), sigueThe development of reproducible and sensitive devices for electrochemical detection of antioxidant ascorbic acid, which helps in detoxification and improves iron absorption in the body (PJ O'Connell, C. Gormally, M. Pravda, GG Guilbault, Development of an amperometric L-ascorbic acid (Vitamin C) sensor based on electropolymerised aniline for pharmaceutical and food analysis, Analytica Chimica Acta, 431 (2001) 239), follow

siendo hoy en día objeto de estudio, como demuestran las más de 10.000 publicaciones científicas que pueden encontrarse en las distintas bases de datos. Se ha demostrado además que la concentración de ácido ascórbi- co en fluidos biológicos se puede utilizar para evaluar el estrés oxidativo en el metabolismo humano, que se ha relacionado a su vez con enfermedades hepáticas, cáncerbeing studied today, as evidenced by the more than 10,000 scientific publications that can be found in the different databases. It has also been shown that the concentration of ascorbic acid in biological fluids can be used to assess oxidative stress in human metabolism, which has in turn been related to liver disease, cancer

55

1010

15fifteen

20twenty

2525

3030

3535

o diabetes (A. Ambrosi, A. Morrin, M.R. Smyth, A.J. Killard, The application of conducting polymer nanopar- ticle electrodes to the sensing of ascorbic acid, Analy- tica Chimica Acta, 609 (2008) 37).or diabetes (A. Ambrosi, A. Morrin, M.R. Smyth, A.J. Killard, The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid, Analytical Chimica Acta, 609 (2008) 37).

Tradicionalmente se han utilizado métodos espectroscópi- cos, cromatográficos y electroquímicos para la detección de ácido ascórbico. Estas últimas técnicas se caracterizan por su sencillez, rapidez y portabilidad, lo que hace posible además la detección in situ del analito de interés (C.A. Fuenmayor, S. Benedetti, A. Pellicano, M.S. Cosio, S. Mannino, Direct In Situ Determination of Ascorbic Acid in Fruits by Screen-Printed Carbon Electrodes Modified with Nylon-6 Nanofibers, Electro- analysis, 26 (2014) 704). Sin embargo, enla detección de ácido ascórbico especialmente en matrices complejas como productos alimentarios o muestras biológicas, se emplean potenciales de trabajo relativamente altos para que se produzca la oxidación electroquímica, lo que se asocia con una pobre selectividad, y desactivación del electrodo de trabajo causado principalmente por la acumulación de productos de reacción en la superficie del electrodo, lo que produce un deterioro progresivo de la sensibilidad del electrodo (P.R. Roy, M.S. Saha, T. Okajima, T. Ohsaka, Electrocatalytic oxidation of ascorbic acid by [Fe(CN)6]3-/4- redox couple electrostatically trapped in cationic N,N-dimethylaniline polymer film electropolyme- rized on diamond electrode, Electrochimica Acta, 51 (2006) 4447) (C.A. Fuenmayor, S. Benedetti, A. Pelli- cano, M.S. Cosio, S. Mannino, Direct In Situ Determination of Ascorbic Acid in Fruits by Screen-Printed Carbon Electrodes Modified with Nylon-6 Nanofibers, Electro- analysis, 26 (2014) 704.Traditionally, spectroscopic, chromatographic and electrochemical methods have been used for the detection of ascorbic acid. The latter techniques are characterized by their simplicity, speed and portability, which also makes possible the detection in situ of the analyte of interest (CA Fuenmayor, S. Benedetti, A. Pellicano, MS Cosio, S. Mannino, Direct In Situ Determination of Ascorbic Acid in Fruits by Screen-Printed Carbon Electrodes Modified with Nylon-6 Nanofibers, Electro- analysis, 26 (2014) 704). However, in the detection of ascorbic acid especially in complex matrices such as food products or biological samples, relatively high working potentials are used for electrochemical oxidation to occur, which is associated with poor selectivity, and deactivation of the working electrode caused mainly due to the accumulation of reaction products on the electrode surface, which causes a progressive deterioration of the electrode sensitivity (PR Roy, MS Saha, T. Okajima, T. Ohsaka, Electrocatalytic oxidation of ascorbic acid by [Fe (CN ) 6] 3- / 4- redox couple electrostatically trapped in cationic N, N-dimethylaniline polymer film electropolymerized on diamond electrode, Electrochimica Acta, 51 (2006) 4447) (CA Fuenmayor, S. Benedetti, A. Pelli- cano , MS Cosio, S. Mannino, Direct In Situ Determination of Ascorbic Acid in Fruits by Screen-Printed Carbon Electrodes Modified with Nylon-6 Nanofibers, Electro- analysis, 26 (2014) 704

Estos inconvenientes se han intentado minimizar mediante la utilización de sencillos dispositivos desecha-These drawbacks have been tried to minimize by using simple disposable devices.

55

1010

15fifteen

20twenty

2525

3030

3535

bles fabricados mediante serigrafia. Las técnicas de serigrafiado han adquirido gran consideración, ya que permiten la fabricación de electrodos desechables a bajo coste (J.P. Hart, A. Crew, E. Crouch, K.C. Honeychurch, R.M. Pemberton, Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses, Analytical Letters, 37 (2004) 789),(O. Domínguez-Renedo, M.A. Alonso-Lomillo, M.J. Arcos-Martínez, Recent developments in the field of screen-printed electrodes and their related applications, Talanta, 73 (2007) 202), (B.C. Janegitz, J. Cancino, V. Zucolotto, Disposable Biosensors for Clinical Diagnosis, Journal of Nanosci- ence and Nanotechnology, 14 (2014) 378) y (S.A. Ozkan, J.-M. Kauffmann, P. Zuman, Electroanalysis in Biomedical and Pharmaceutical Sciences : Voltammetry, Amperometry, Biosensors, Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), con buena reproducibilidad, flexibilidad de diseño y automatización de procesos (J.M. Cooper, A.E.G. Cass, Biosensors: a practical approach, Oxford University Press, Oxford, 2004).bles manufactured by screen printing. Screen printing techniques have acquired great consideration, since they allow the manufacture of disposable electrodes at low cost (JP Hart, A. Crew, E. Crouch, KC Honeychurch, RM Pemberton, Some recent designs and developments of screen-printed carbon electrochemical sensors / biosensors for biomedical, environmental, and industrial analytics, Analytical Letters, 37 (2004) 789), (O. Domínguez-Renedo, MA Alonso-Lomillo, MJ Arcos-Martínez, Recent developments in the field of screen-printed electrodes and their related applications, Talanta, 73 (2007) 202), (BC Janegitz, J. Cancino, V. Zucolotto, Disposable Biosensors for Clinical Diagnosis, Journal of Nanoscience and Nanotechnology, 14 (2014) 378) and (SA Ozkan, J .-M. Kauffmann, P. Zuman, Electroanalysis in Biomedical and Pharmaceutical Sciences: Voltammetry, Amperometry, Biosensors, Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), with good reproducibility, design flexibility and automation n of processes (J.M. Cooper, A.E.G. Cass, Biosensors: a practical approach, Oxford University Press, Oxford, 2004).

La serigrafía es un método de impresión directa, también llamado de impresión por penetración. La deposición de tintas se realiza capa a capa sobre un sustrato. La calidad de los sensores químicos así fabricados depende, en gran medida, de los materiales utilizados.Screen printing is a direct printing method, also called penetration printing. The deposition of inks is done layer by layer on a substrate. The quality of the chemical sensors thus manufactured depends, to a large extent, on the materials used.

Mediante la tecnología de electrodos serigrafia- dos es posible la miniaturización de los sensores ofreciendo la ventaja de ser versátiles, pueden ser fabricados con distintas configuraciones de electrodos y con diferentes tintas, y tener bajo coste pudiendo así prestarse para la producción en masa de electrodos desechables Además pueden ser utilizados para análisisBy means of the technology of screen-printed electrodes, the miniaturization of the sensors is possible, offering the advantage of being versatile, they can be manufactured with different electrode configurations and with different inks, and have a low cost and can thus be used for mass production of disposable electrodes They can also be used for analysis

55

1010

15fifteen

20twenty

2525

3030

in situ.on-site.

La técnica de voltamperometria diferencial de impulsos consiste en la aplicación de un barrido de potencial al sistema electródico, sobre el que superpone, de forma periódica, una serie de impulsos de potencial. La señal que se registra es la diferencia de intensidad después y antes de aplicar el impulso frente al potencial de base. Esta medida diferencial de corriente elimina las intensidades capacitivas y el ruido de fondo, aumentando la sensibilidad del análisis.The differential pulse voltammetry technique consists in the application of a potential sweep to the electrode system, over which it periodically superimposes a series of potential impulses. The signal that is recorded is the difference in intensity after and before applying the pulse against the base potential. This differential current measurement eliminates capacitive intensities and background noise, increasing the sensitivity of the analysis.

En los sistemas electródicos serigrafiados, el electrodo de referencia suele estar constituido por una pasta conductora a base de Ag, por lo que no actúa como una referencia verdadera sino como una pseudoreferencia.In screen-printed electrode systems, the reference electrode is usually made up of a conductive paste based on Ag, so it does not act as a true reference but as a pseudo-reference.

Los métodos electroquimicos indicados anteriormente para la determinación de ácido ascórbico son poco selectivos y no permiten la cuantificación de este compuesto en matrices complejas. La presente invención solventa las desventajas comentadas, y propone un dispositivo que trabaja a un potencial más bajo evitando las interferencias de otros compuestos en muestras complejas. El dispositivo presenta gran simplicidad, bajo coste y corto tiempo de análisis, comparado con el resto de las técnicas habitualmente utilizadas para su determinación, por lo que supone un gran avance en su empleo para esta determinación en distintos tipos de muestras como por ejemplo muestras biológicas.The electrochemical methods indicated above for the determination of ascorbic acid are poorly selective and do not allow quantification of this compound in complex matrices. The present invention solves the aforementioned disadvantages, and proposes a device that works at a lower potential avoiding the interference of other compounds in complex samples. The device has great simplicity, low cost and short analysis time, compared to the rest of the techniques commonly used for its determination, so it is a great advance in its use for this determination in different types of samples such as biological samples .

DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION

El objeto de la invención es un dispositivo electródico, su procedimiento de fabricación y uso delThe object of the invention is an electrode device, its method of manufacturing and using the

55

1010

15fifteen

20twenty

2525

3030

3535

mismo para la detección del ácido ascórbico. El problema a resolver es la determinación selectiva del ácido ascórbico con técnicas más simples, con bajo coste y en relativo corto tiempo de análisis en comparación con técnicas conocidas para la determinación de ácido ascór- bico.same for the detection of ascorbic acid. The problem to be solved is the selective determination of ascorbic acid with simpler techniques, with low cost and in a relatively short analysis time compared to known techniques for the determination of ascorbic acid.

A la vista de lo anteriormente enunciado, en un aspecto, la presente invención se refiere a un dispositivo electródico para la detección de ácido ascórbico en distintos tipos de muestras líquidas, obtenido por serigrafía caracterizado porque comprende tres electrodos, cada electrodo consta de un contacto, un tramo y un área activa, siendo un electrodo de trabajo, uno auxiliar o contraelectrodo, y otro de referencia, constituidos todos los electrodos por serigrafía de una tinta de materiales conductores sobre una lámina plástica de poliéster. Las vías conductoras constituidas por los contactos también llamados bornes (1.3, 2.3, 3.3) y los tramos (1.2, 2.2, 3.2) se han impreso con una tinta a base de Ag, las áreas activas de los electrodos que constituyen el contraelectrodo (3.1) y el electrodo de trabajo (2.1), se han impreso con una tinta conductora de carbono y el de referencia con una tinta de Ag/AgCl en el área activa.In view of the foregoing, in one aspect, the present invention relates to an electrode device for the detection of ascorbic acid in different types of liquid samples, obtained by screen printing characterized in that it comprises three electrodes, each electrode consists of a contact, a section and an active area, being a working electrode, an auxiliary or counter electrode, and a reference electrode, all the electrodes constituted by screen printing of an ink of conductive materials on a plastic polyester sheet. The conductive paths constituted by the contacts also called terminals (1.3, 2.3, 3.3) and the sections (1.2, 2.2, 3.2) have been printed with an Ag-based ink, the active areas of the electrodes that constitute the counter electrode (3.1 ) and the working electrode (2.1), have been printed with a carbon conductive ink and the reference one with an Ag / AgCl ink in the active area.

En otro aspecto, la invención se refiere al procedimiento de fabricación del dispositivo electródi- co descrito anteriormente, cuya disposición espacial permite el rápido análisis "in situ" de la muestra por técnicas electroquímicas.In another aspect, the invention relates to the manufacturing method of the electrode device described above, whose spatial arrangement allows rapid "in situ" analysis of the sample by electrochemical techniques.

El procedimiento de fabricación, serigrafiado del dispositivo se lleva a cabo con la ayuda de una serie de pantallas, también llamados moldes o patronesThe manufacturing process, screen printing of the device is carried out with the help of a series of screens, also called molds or patterns

55

1010

15fifteen

20twenty

2525

3030

3535

de serigrafiado, que permiten definir los distintos electrodos sobre el mismo soporte. El proceso de construcción por serigrafía implica, básicamente, varias etapas consistentes en la deposición secuencial de las diferentes tintas y sus posteriores curados.of screen printing, which allow to define the different electrodes on the same support. The silkscreen construction process basically involves several stages consisting of the sequential deposition of the different inks and their subsequent curing.

Se diseñaron cuatro pantallas diferentes para la fabricación de estos dispositivos, correspondientes a cada nivel de deposición de tintas, como sigue:Four different screens were designed for the manufacture of these devices, corresponding to each level of ink deposition, as follows:

- La primera pantalla define las vías conducto- The first screen defines the conduit tracks

ras, constituidas por los contactos (1.3, 2.3, 3.3) y los tramos (1.2, 2.2, 3.2) impresas con una tinta a base de Ag.flush, consisting of contacts (1.3, 2.3, 3.3) and sections (1.2, 2.2, 3.2) printed with an ink based on Ag.

- La segunda pantalla define la forma y posición- The second screen defines the shape and position

del electrodo de referencia.of the reference electrode.

- La tercera pantalla define el área activa del- The third screen defines the active area of the

contraeletrodo (3.1) y el área activa del electrodo de trabajo(2.1)counter electrode (3.1) and the active area of the working electrode (2.1)

- La cuarta pantalla está diseñada para la depo- The fourth screen is designed for the depo

sición de un material aislante para prevenir el contacto entre la disolución y las vías conductoras, constituidas por los contactos y los tramos.sition of an insulating material to prevent contact between the solution and the conductive pathways, constituted by the contacts and the sections.

El conjunto constituye un sensor miniaturizado cuya geometría es óptima para el análisis de muestras reales líquidas de pequeño tamaño. El dispositivo puede introducirse en una celda electroquímica en la que se encuentra en disolución la muestra.The set constitutes a miniaturized sensor whose geometry is optimal for the analysis of real liquid samples of small size. The device can be introduced into an electrochemical cell in which the sample is in solution.

Para poner en funcionamiento el dispositivo, seTo operate the device, it

55

1010

15fifteen

20twenty

2525

3030

3535

unen los contactos o bornes de cada uno de los tres electrodos (1.3, 2.3, 3.3) con los bornes de salida deconnect the contacts or terminals of each of the three electrodes (1.3, 2.3, 3.3) with the output terminals of

un potenciostato a través de unas conexiones eléctricas.a potentiostat through electrical connections.

La presente invención se refiere en otro aspecto al uso del dispositivo anteriormente mencionado que comprende las siguientes etapas:The present invention relates in another aspect to the use of the aforementioned device comprising the following steps:

- Modificación del electrodo de trabajo con na- nopartículas de oro. La deposición de las na- nopartículas de oro (AuNPs) sobre el electrodo de trabajo se realiza electroquímicamente depositando en el dispositivo electródico una gota de 100 pL de disolución 0.1 mM de HAuCl4 preparada en H2SO4 0.5 M,y aplicando un potencial constante de +0.18 V vs Ag/AgCl SPE durante 50 segundos.- Modification of the working electrode with gold nanoparticles. The deposition of the gold nanoparticles (AuNPs) on the working electrode is performed electrochemically by depositing in the electrode a drop of 100 pL of 0.1 mM solution of HAuCl4 prepared in 0.5 M H2SO4, and applying a constant potential of +0.18 V vs Ag / AgCl SPE for 50 seconds.

- Introducción del dispositivo en la celda electroquímica.- Introduction of the device in the electrochemical cell.

- Adicción de 5 mL de la muestra en presencia de una disolución tampón 100 mM de KH2PO4 y 100 mM de KCl de pH=7.- Adding 5 mL of the sample in the presence of a 100 mM buffer solution of KH2PO4 and 100 mM KCl of pH = 7.

- Aplicación de un potencial de +0.2 V vs Ag/AgClSPE.- Application of a potential of +0.2 V vs Ag / AgClSPE.

- Realización de las medidas amperométricas registrando la intensidad en los distintos dispositivos serigrafiados.- Performing amperometric measurements by recording the intensity in the different screen-printed devices.

DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES

Se complementa la presente memoria descriptiva,This descriptive report is complemented,

55

1010

15fifteen

20twenty

2525

3030

3535

con un juego de figuras, ilustrativas del ejemplo preferente y nunca limitativo de la invención.with a set of figures, illustrative of the preferred and never limiting example of the invention.

La figura 1 muestra un esquema de la reacción electródica.Figure 1 shows a scheme of the electrode reaction.

La figura 2 representa una vista en alzado de los electrodos sin aislante.Figure 2 represents an elevation view of the electrodes without insulation.

La figura electrodos conFigure electrodes with

3 representa una vista aislante.3 represents an insulating view.

en alzadoin elevation

defrom

losthe

La figura 4 muestra un amperograma tipo obtenido en la determinación de ácido ascórbico.Figure 4 shows a type amperogram obtained in the determination of ascorbic acid.

EXPOSICION DETALLADA DE LA INVENCIONDETAILED EXHIBITION OF THE INVENTION

En la realización aquí detallada, la invención se refiere a un dispositivo electródico para la detección de ácido ascórbico, con tres electrodos (1, 2, 3),In the embodiment detailed herein, the invention relates to an electrode device for the detection of ascorbic acid, with three electrodes (1, 2, 3),

obtenidos todos los electrodos por serigrafía, así como su procedimiento de fabricación, y su uso en la detección citada.obtained all the electrodes by screen printing, as well as its manufacturing procedure, and its use in the aforementioned detection.

Como la técnica serigráfica implica el uso de materiales concretos y da lugar a la configuración geométrica concreta del dispositivo, la exposición de dicha técnica de fabricación sirve asimismo de explicación de la configuración del dispositivo, pudiendo ir ligadas ambas, configuración y técnica o procedimiento de fabricación, durante la presente exposición detallada de la invención.As the screen printing technique involves the use of concrete materials and gives rise to the specific geometric configuration of the device, the exposure of said manufacturing technique also serves as an explanation of the configuration of the device, both of which can be linked, configuration and manufacturing technique or procedure , during the present detailed exposition of the invention.

El mecanismo de reacción transcurre de acuerdo con el esquema mostrado en la figura 1. El ácido AscórbicoThe reaction mechanism proceeds according to the scheme shown in Figure 1. Ascorbic acid

55

1010

15fifteen

20twenty

2525

3030

3535

se oxida a ácido dehidroascórbico, siendo los electrones cedidos al electrodo en el que transcurre la reacción.it is oxidized to dehydroascorbic acid, the electrons being transferred to the electrode in which the reaction takes place.

La invención se refiere al dispositivo, procedimiento de fabricación y uso de un dispositivo de tres electrodos (1, 2, 3) desechables, serigrafiados en un soporte de poliéster, en concreto politereftalato de etileno (PET) , cuya disposición espacial permita el rápido análisis "in situ" de pequeños volúmenes de muestra por técnicas electroquímicas.The invention relates to the device, method of manufacture and use of a disposable three electrode device (1, 2, 3), screen printed on a polyester support, in particular ethylene polyterephthalate (PET), whose spatial arrangement allows rapid analysis "in situ" of small sample volumes by electrochemical techniques.

El dispositivo consta de tres electrodos seri- grafiados (1, 2, 3): electrodo de referencia (1), electrodo de trabajo (2) y electrodo auxiliar (3) o contraelectrodo.The device consists of three serialized electrodes (1, 2, 3): reference electrode (1), working electrode (2) and auxiliary electrode (3) or counter electrode.

Los electrodos tienen tres zonas o partes diferenciadas: los contactos (1.3, 2.3, 3.3) o bornes, para su conexión a un potenciostato de los conocidos; las áreas activas (1.1, 2.1, 3.1), en contacto directo con la muestra a analizar y los tramos (1.2, 2.2, 3.2), como unión entre contactos (1.3, 2.3, 3.3) y las áreas activas (1.1, 2.1, 3.1). Siendo el conjunto de los contactos (1.3, 2.3, 3.3) y los tramos (1.2, 2.2, 3.2) las vías conductoras.The electrodes have three distinct zones or parts: the contacts (1.3, 2.3, 3.3) or terminals, for connection to a known potentiostat; the active areas (1.1, 2.1, 3.1), in direct contact with the sample to be analyzed and the sections (1.2, 2.2, 3.2), as a union between contacts (1.3, 2.3, 3.3) and the active areas (1.1, 2.1, 3.1). Being the set of contacts (1.3, 2.3, 3.3) and the sections (1.2, 2.2, 3.2) the conductive routes.

El procedimiento de fabricación, serigrafiado, del dispositivo se lleva a cabo con la ayuda de una serie de pantallas, moldes o patrones de serigrafiado en las que aparece, en una superficie porosa, el esquema del motivo a imprimir que definirá el dispositivo.The process of manufacturing, screen printing, of the device is carried out with the help of a series of screens, molds or screen printing patterns in which, on a porous surface, the scheme of the motif to be printed that will define the device appears.

- La primera pantalla o patrón se utiliza para formar, serigrafiando con pasta comercial conductora de Ag las vías conductoras constituidas por los contactos (1,3), (2,3),(3,3) y los tramos (1,2), (2,2), (3,2) de- The first screen or pattern is used to form, conducting with conductive Ag commercial paste the conductive paths constituted by the contacts (1,3), (2,3), (3,3) and the sections (1,2) , (2,2), (3,2) of

55

1010

15fifteen

20twenty

2525

3030

los electrodos (1, 2, 3). Es decir, se crea la basethe electrodes (1, 2, 3). That is, the base is created

conductora eléctrica del dispositivo. Después de su aplicación esta capa debe curarse durante 30 minutos a 120 °C.electrical conductor of the device. After application this layer should be cured for 30 minutes at 120 ° C.

- La segunda pantalla o patrón está diseñada para la obtención del área activa (1.1) del electrodo de referencia (1). Para su formación se imprime, utilizando esta segunda pantalla, un producto comercial a base de Ag/AgCl sobre la base conductora en la zona del área activa de dicho electrodo, que posteriormente se somete a un proceso de curación en las mismas condiciones, 20 minutos a 120 °C.- The second screen or pattern is designed to obtain the active area (1.1) of the reference electrode (1). For its formation, using this second screen, a commercial product based on Ag / AgCl is printed on the conductive base in the area of the active area of said electrode, which is subsequently subjected to a healing process under the same conditions, 20 minutes at 120 ° C.

- La tercera pantalla o patrón está diseñada para imprimir conjuntamente las áreas activas del contraelectrodo (3.1) y el electrodo de trabajo (2.1) usando tinta de carbono.- The third screen or pattern is designed to print together the active areas of the counter electrode (3.1) and the working electrode (2.1) using carbon ink.

- La cuarta pantalla o patrón, está diseñada para imprimir la capa de aislante que cubre el dispositivo, dejando libre los contactos (1.3, 2.3, 3.3) y áreas activas (1.1, 2.1, 3.1) de los electrodos, utilizando una tinta aislante. La correcta formación de esta capa aislante exige la curación a 80°C durante 30 minutos.- The fourth screen or pattern is designed to print the insulating layer that covers the device, leaving free the contacts (1.3, 2.3, 3.3) and active areas (1.1, 2.1, 3.1) of the electrodes, using an insulating ink. The correct formation of this insulating layer requires healing at 80 ° C for 30 minutes.

En esta realización, el área activa del electrodo de referencia es de geometría rectangular, el de trabajo circular y el contralectrodo tiene forma arqueada envolvente de los otros dos electrodos. Las mejores dimensiones del área activa (1.1) del electrodo de referencia del dispositivo corresponden a 2 mm de anchura por 4 mm de longitud.In this embodiment, the active area of the reference electrode is rectangular in geometry, the circular working one and the counter electrode has an arcuate envelope shape of the other two electrodes. The best dimensions of the active area (1.1) of the device reference electrode correspond to 2 mm in width and 4 mm in length.

55

1010

15fifteen

20twenty

2525

3030

3535

Para el electrodo de trabajo (2) la mejor dimensión probada de su área activa (2.1) corresponde a un círculo de 4.5 mm de diámetro.For the working electrode (2) the best tested dimension of its active area (2.1) corresponds to a circle of 4.5 mm in diameter.

Para poner en funcionamiento el dispositivo, se unen las partes superiores conductoras (1.3, 2.3, 3.3) de cada uno de los electrodos (1, 2, 3) con los bornes de salida de un potenciostato a través de unas conexiones eléctricas.To put the device into operation, the upper conductive parts (1.3, 2.3, 3.3) of each of the electrodes (1, 2, 3) are connected to the output terminals of a potentiostat through electrical connections.

Se depositan en el dispositivo electródico 100 microlitros de una sal de oro, y se somete a un potencial de 0.18 V para permitir la modificación de la superficie del electrodo de trabajo con nanopartículas de oro. A continuación, se sumerge el dispositivo electródico en una celda con la solución a analizar y de acuerdo con la técnica seleccionada para llevar a cabo la determinación amperométrica, se somete al dispositivo electródico a una diferencia de potencial de 0.2 V, registrándose la intensidad que se origina en el circuito debido a las reacciones electroquímicas que la perturbación de potencial provoca, en el analito ácido ascórbico.100 microliters of a gold salt are deposited in the electrode device, and it is subjected to a potential of 0.18 V to allow the modification of the surface of the working electrode with gold nanoparticles. Next, the electrode device is immersed in a cell with the solution to be analyzed and according to the technique selected to carry out the amperometric determination, the electrode device is subjected to a potential difference of 0.2 V, recording the intensity that is originates in the circuit due to the electrochemical reactions that the potential disturbance causes, in the analyte ascorbic acid.

Para llevar a cabo la determinación de una muestra problema de ácido ascórbico,se adiciona a la celda donde se ha introducido el dispositivo electródico, la muestra de ácido ascórbico en presencia de una solución tampón de fosfato de pH=7.0 y se somete a la disolución a una velocidad de agitación constante. A continuación se hacen sucesivas adiciones, de disoluciones patrón de ácido ascórbico y se miden las intensidades registradas tras cada adición.To carry out the determination of a test sample of ascorbic acid, the sample of ascorbic acid is added to the cell where the electrode device was introduced in the presence of a phosphate buffer solution of pH = 7.0 and subjected to dissolution at a constant stirring speed. Subsequently, successive additions of standard solutions of ascorbic acid are made and the intensities recorded after each addition are measured.

Se obtiene la recta de calibración correspon-The corresponding calibration line is obtained

diente y la concentración de ácido ascórbico en la muestra problema se calculapor extrapolación, de acuerdo con el procedimiento de adición estándar, midiendo en el eje de abscisas de la representación el valor de la 5 concentración para un valor de y=0.Tooth and the concentration of ascorbic acid in the test sample is calculated by extrapolation, according to the standard addition procedure, measuring on the abscissa axis of the representation the value of the concentration for a value of y = 0.

El proceso tiene una reproducibilidad del 4.6 % (n=3) calculada como la desviación de las pendientes de las rectas de calibrado obtenidas.The process has a reproducibility of 4.6% (n = 3) calculated as the deviation of the slopes of the calibration lines obtained.

1010

La capacidad de detección es de 2.3 ± 0.9 y el rango de concentraciones de medida está comprendido entre 1.9 - 16.6 ^M.The detection capacity is 2.3 ± 0.9 and the range of measurement concentrations is between 1.9 - 16.6 ^ M.

15fifteen

Claims (7)

55 1010 15fifteen 20twenty 2525 3030 3535 REIVINDICACIONES 1. - Dispositivo electródico para la detección de ácido ascórbico obtenido por serigrafía caracterizado porque comprende tres electrodos (1, 2, 3), cada electrodo consta de un contacto o borne (1.3, 2.3, 3.3),un tramo (1.2, 2.2, 3.2) y un área activa (1.1, 2.1, 3.1), siendo uno de referencia (1), otro electrodo de trabajo (2), y otro auxiliar o contraelectrodo (3), constituidos los bornes y los tramos con una tinta de plata, las áreas activas del contraelectrodo y del electrodo de trabajo con un tinta de carbono y el área activa del electrodo de referencia con una tinta de plata/cloruro de plata.1. - Electrode device for the detection of ascorbic acid obtained by screen printing characterized in that it comprises three electrodes (1, 2, 3), each electrode consists of a contact or terminal (1.3, 2.3, 3.3), a section (1.2, 2.2, 3.2) and an active area (1.1, 2.1, 3.1), being one of reference (1), another working electrode (2), and another auxiliary or counter electrode (3), constituted the terminals and sections with a silver ink , the active areas of the counter electrode and the working electrode with a carbon ink and the active area of the reference electrode with a silver / silver chloride ink. 2. - Dispositivo electródico según la reivindicación 1 caracterizado porque los contactos (1.3, 2.3, 3.3), los tramos (1.2, 2.2, 3.2) y el área activa del electrodo de referencia (1,1) tienen forma rectangular.2. - Electrode device according to claim 1 characterized in that the contacts (1.3, 2.3, 3.3), the sections (1.2, 2.2, 3.2) and the active area of the reference electrode (1,1) are rectangular in shape. 3. - Dispositivo electródico según la reivindicación 2 caracterizado porque el área activa (1.1) del electrodo de referencia tiene forma rectangular de 2 mm de anchura por 4 mm de longitud.3. - Electrode device according to claim 2, characterized in that the active area (1.1) of the reference electrode is rectangular in shape, 2 mm wide and 4 mm long. 4. Dispositivo ción 1 caracterizado electrodo de trabajo diámetro.4. Device 1 characterized by working electrode diameter. electródico según la reivindica- porque el área activa (2.1) del (2) es un círculo de 4.5 mm .deelectrode according to claim - because the active area (2.1) of (2) is a circle of 4.5 mm. 5.Dispositivo electródico según la reivindicación 1 caracterizado porque el área activa (3.1) del electrodo auxiliar o contraelectrodo (3) tiene una forma de arco.5. Electrode device according to claim 1 characterized in that the active area (3.1) of the auxiliary electrode or counter electrode (3) has an arc shape. 55 1010 15fifteen 20twenty 2525 3030 3535 6. -Proceso de fabricación del dispositivo según la reivindicación 1 caracterizado porque comprende las siguientes etapas:6. Manufacturing process of the device according to claim 1 characterized in that it comprises the following steps: -serigrafiado de una lámina de poliéster con tinta de plata con las formas de los contactos (1.3, 2.3, 3.3),y los tramos (1.2, 2.2, 3.2) de los tres-Screen printing of a sheet of polyester with silver ink with the shapes of the contacts (1.3, 2.3, 3.3), and the sections (1.2, 2.2, 3.2) of the three electrodos (1, 2, 3).electrodes (1, 2, 3).
-serigrafiado de las superficies activas del electrodo de trabajo (2.1) y del contraelectrodo (3. 1)

-Screen printing of the active surfaces of the working electrode (2.1) and the counter electrode (3. 1)
con tinta de carbono.with carbon ink.
-serigrafiado del área activa del electrodo de

-Screen printing of the active area of the electrode
referencia(1.1) con Ag/AgCl.reference (1.1) with Ag / AgCl.
-serigrafiado de un aislante cubriendo el dispositivo excepto las áreas activas (1.1, 2.1, 3.1) de

-Screen printing of an insulator covering the device except the active areas (1.1, 2.1, 3.1) of

los electrodos y de los contactos (1.2, 2.2, 3.2) de

electrodes and contacts (1.2, 2.2, 3.2) of
los electrodos.The electrodes
7. Uso del dispositivo según la reivindicación 1 caracterizado porque comprende las siguientes etapas:7. Use of the device according to claim 1 characterized in that it comprises the following steps: - unión de los contactos (1.3, 2.3, 3.3) de los- union of the contacts (1.3, 2.3, 3.3) of the electrodos (1, 2, 3) a un potenciostato paraelectrodes (1, 2, 3) to a potentiostat for aplicar el potencial adecuado al sistema elec- tródico.apply the appropriate potential to the electrode system. modificación del electrodo de trabajo con na- nopartículas de oro. La deposición de las na- nopartículas de oro (AuNPs) sobre el electrodo de trabajo se realiza electroquímicamente depositando en el dispositivo electródico una gota de 100 pL de disolución 0.1 mM de HAuCl4 preparada en H2SO4 0.5 M,y aplicando un potencial constante de +0.18 V vs Ag/AgCl SPE durante 50 segundos.modification of the working electrode with gold nanoparticles. The deposition of the gold nanoparticles (AuNPs) on the working electrode is performed electrochemically by depositing in the electrode a drop of 100 pL of 0.1 mM solution of HAuCl4 prepared in 0.5 M H2SO4, and applying a constant potential of +0.18 V vs Ag / AgCl SPE for 50 seconds. 55 1010 15fifteen 20twenty 2525 3030 - introducción del dispositivo electródico en la celda electroquímica.- introduction of the electrode device in the electrochemical cell. - adicción de 5 mL de la muestra de ácido ascór- bico en presencia de una disolución tampón 100 mM de KH2PO4 y 100 mM de KCl de pH=7, sometiendo la disolución a una velocidad de agitación constante.- Adding 5 mL of the ascorbic acid sample in the presence of a 100 mM KH2PO4 and 100 mM KCl buffer solution of pH = 7, subjecting the solution to a constant stirring speed. - aplicación de un potencial de +0.2 V vs Ag/AgClSPE.- application of a potential of +0.2 V vs Ag / AgClSPE. - realización de sucesivas adicciones de disoluciones patrón de ácido ascórbico midiendo las intensidades registradas tras cada adición.- realization of successive additions of standard solutions of ascorbic acid by measuring the intensities recorded after each addition. - representación de las intensidades frente las concentraciones de ascórbico para construir la recta de calibrado.- representation of the intensities against ascorbic concentrations to build the calibration line. - cálculo de la concentración de la muestra de ácido ascórbico problema midiendo en el eje de abscisas de la representación el valor de la concentración para un valor de y=0 de acuerdo con el método de adición estándar conocido.- calculation of the concentration of the sample of ascorbic acid problem by measuring on the abscissa axis of the representation the value of the concentration for a value of y = 0 according to the known standard addition method.
ES201631238A 2016-09-22 2016-09-22 Electrode device for the detection of ascorbic acid, manufacturing process and use of said device. Active ES2660516B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201631238A ES2660516B1 (en) 2016-09-22 2016-09-22 Electrode device for the detection of ascorbic acid, manufacturing process and use of said device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201631238A ES2660516B1 (en) 2016-09-22 2016-09-22 Electrode device for the detection of ascorbic acid, manufacturing process and use of said device.

Publications (2)

Publication Number Publication Date
ES2660516A1 ES2660516A1 (en) 2018-03-22
ES2660516B1 true ES2660516B1 (en) 2018-10-26

Family

ID=61629061

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201631238A Active ES2660516B1 (en) 2016-09-22 2016-09-22 Electrode device for the detection of ascorbic acid, manufacturing process and use of said device.

Country Status (1)

Country Link
ES (1) ES2660516B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI314211B (en) * 2006-04-14 2009-09-01 Univ Tamkang Method and electrochemical sensing strip with screen-printed three electrodes for determining concentration of dissolved oxygen in a solution
US20110139636A1 (en) * 2009-12-14 2011-06-16 Lai Rebecca Y Gold-plated screen-printed electrodes and their use as electrochemical sensors

Also Published As

Publication number Publication date
ES2660516A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
Sophocleous et al. A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors
Shetti et al. Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/amberlite XAD-4 resin modified carbon electrodes
van de Velde et al. Solid contact potassium selective electrodes for biomedical applications–a review
Cheng et al. 3D-printed metal electrodes for electrochemical detection of phenols
Mensah et al. Nanomolar detection limits of Cd2+, Ag+, and K+ using paper-strip ion-selective electrodes
Salamanca-Neto et al. Differential pulse voltammetric method for the individual and simultaneous determination of antihypertensive drug metoprolol and its association with hydrochlorothiazide in pharmaceutical dosage forms
Ozkan et al. From mercury to nanosensors: Past, present and the future perspective of electrochemistry in pharmaceutical and biomedical analysis
Brett et al. Electrochemical sensing in solution—origins, applications and future perspectives
Naik et al. Electroanalytical method for the determination of methylparaben
del Torno-de Román et al. Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole
He et al. A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid
Stepanova et al. Label-free electrochemical aptasensor for cytochrome c detection using pillar [5] arene bearing neutral red
Ho et al. Additive manufacturing of electrochemical interfaces: simultaneous detection of biomarkers
US9279781B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
Wong et al. Simultaneous determination of dopamine and cysteamine by flow injection with multiple pulse amperometric detection using a boron-doped diamond electrode
Park et al. pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum
Bartoszewicz et al. Calibration free solid contact electrodes with two PVC based membranes
Yang et al. Sensitive voltammetric detection of metronidazole based on three-dimensional graphene-like carbon architecture/polythionine modified glassy carbon electrode
Kamal et al. Electrochemical and chromogenic sensors based on ferrocene appended chalcone for selective quantification of copper (II)
Muratova et al. Voltammetric vs. potentiometric sensing of dopamine: advantages and disadvantages, novel cell designs, fundamental limitations and promising options
Xiao et al. A simple microdroplet chip consisting of silica nanochannel-assisted electrode and paper cover for highly sensitive electrochemiluminescent detection of drugs in human serum
Rohanifar et al. Determination of L-DOPA at an optimized poly (caffeic acid) modified glassy carbon electrode
Radi et al. Molecularly imprinted polymer based electrochemical sensor for the determination of the anthelmintic drug oxfendazole
Chiu et al. A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples
Kawde et al. Electroanalytical determination of antibacterial ciprofloxacin in pure form and in drug formulations

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2660516

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20181026