ES2638068B1 - High efficiency photoelectric cell - Google Patents

High efficiency photoelectric cell Download PDF

Info

Publication number
ES2638068B1
ES2638068B1 ES201600179A ES201600179A ES2638068B1 ES 2638068 B1 ES2638068 B1 ES 2638068B1 ES 201600179 A ES201600179 A ES 201600179A ES 201600179 A ES201600179 A ES 201600179A ES 2638068 B1 ES2638068 B1 ES 2638068B1
Authority
ES
Spain
Prior art keywords
metal
solar
cells
high efficiency
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201600179A
Other languages
Spanish (es)
Other versions
ES2638068R1 (en
ES2638068A2 (en
Inventor
Elena María PASTOR TEJERA
Gonzalo Garcia
Olmedo GILLÉN VILLAFUENTE
Benito ANULA ALAMEDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de La Laguna
Original Assignee
Universidad de La Laguna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de La Laguna filed Critical Universidad de La Laguna
Priority to ES201600179A priority Critical patent/ES2638068B1/en
Publication of ES2638068A2 publication Critical patent/ES2638068A2/en
Publication of ES2638068R1 publication Critical patent/ES2638068R1/en
Application granted granted Critical
Publication of ES2638068B1 publication Critical patent/ES2638068B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Abstract

Célula fotovoltaica de alta eficiencia de bajo coste y no tóxica donde la rejilla metálica utilizada en la parte superior de las celdas convencionales de silicio se sustituye por una capa metálica conductora e invisible a la radiación solar.High-efficiency, low-cost, non-toxic photovoltaic cell where the metal grid used in the upper part of conventional silicon cells is replaced by a conductive metal layer invisible to solar radiation.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

DESCRIPCIÓNDESCRIPTION

Célula fotoeléctrica de alta eficiencia.High efficiency photoelectric cell.

Objeto de la invenciónObject of the invention

Sector de la "Ciencia de los Materiales" aplicada a la "Nanotecnología" manipulando la materia a escala atómica y creando un material que experimenta una notable mejora en la eficiencia energética de las celdas solares y fotovoltaicas.Sector of the "Materials Science" applied to "Nanotechnology" manipulating matter at the atomic scale and creating a material that experiences a remarkable improvement in the energy efficiency of solar and photovoltaic cells.

Antecedentes de la invenciónBackground of the invention

Un panel solar es un módulo que aprovecha la energía de la radiación solar. El término contempla tanto a los colectores solares utilizados para producir agua caliente (usualmente doméstica) y como a los paneles fotovoltaicos utilizados para generar electricidad.A solar panel is a module that harnesses the energy of solar radiation. The term includes both the solar collectors used to produce hot water (usually domestic) and the photovoltaic panels used to generate electricity.

En el caso de los paneles fotovoltaicos, estos están formados por numerosas celdas que convierten la luz en electricidad. Estas celdas dependen del efecto fotovoltaico por el que la energía luminosa produce cargas positiva y negativa en dos semiconductores próximos de diferente tipo, produciendo así un campo eléctrico capaz de generar una corriente.In the case of photovoltaic panels, these are formed by numerous cells that convert light into electricity. These cells depend on the photovoltaic effect by which light energy produces positive and negative charges in two nearby semiconductors of different types, thus producing an electric field capable of generating a current.

La estructura para las celdas solares de silicio típicas de la industria moderna de celdas solares se ilustra en la figura 1. Estas celdas poseen dedos colectores (Figura1 (1)) y contacto posterior obtenidos por serigrafía, además de presentar una texturización superficial por ataque químico entre otras cosas. En general las celdas comerciales no incluyen emisor selectivo optimizado, ni la pasivación de estados de superficie, particularmente en el emisor, además de que la tecnología serigráfica utilizada impone límites para la reducción de las pérdidas, tanto por resistencia en serie como por sombreado, debidas a los dedos colectores en el enrejado de las celdas solares. Por ello, la máxima eficiencia en estas celdas "industriales" es de sólo 6 a 15%, dependiendo de la tecnología utilizada.The structure for silicon solar cells typical of the modern solar cell industry is illustrated in Figure 1. These cells have collector fingers (Figure 1 (1)) and subsequent contact obtained by screen printing, in addition to presenting a surface texturing by chemical attack among other things. In general, commercial cells do not include optimized selective emitter, nor the passivation of surface states, particularly in the issuer, in addition to the serigraphic technology used imposes limits for the reduction of losses, both due to series resistance and shading, due to the collector fingers on the lattice of the solar cells. Therefore, maximum efficiency in these "industrial" cells is only 6 to 15%, depending on the technology used.

La celda solar de silicio con mayor eficiencia (24.7%) hasta el momento se ha realizado mediante una estructura sofisticada denominada "Passivated Emmiter and Rear Locally diffused (PERL)", ilustrada en la figura 2. Esta estructura, desarrollada por Martin Green y su grupo en Australia [Progress and Outlook for High-Efficiency Crystalline Silicon Solar Cells, M.A. Green, J. Zhao, A. Wang, S.R. Wenham, Solar Energy Materials & Solar Cells 65 9-16 (2001)1, es de gran importancia porque ha mostrado que es posible alcanzar eficiencias de conversión cercanas a la máxima eficiencia teórica (32%, límite Shockley-Queisser) de celdas de silicio bajo luz solar (espectro AM1.5 global normalizado a 1 kW m-2), pero requieren procesos de fabricación tales como la fotolitografía de múltiples niveles, la oxidación y difusión de impurezas en laboratorios ultra limpios (clase microelectrónica para fabricar circuitos integrados) y el empleo de obleas de silicio de extrema calidad, de forma que no pueden industrializarse a costos de producción apropiados para su aplicación terrestre.The most efficient silicon solar cell (24.7%) so far has been carried out using a sophisticated structure called "Passivated Emmiter and Rear Locally diffused (PERL)", illustrated in Figure 2. This structure, developed by Martin Green and his group in Australia [Progress and Outlook for High-Efficiency Crystalline Silicon Solar Cells, MA Green, J. Zhao, A. Wang, S.R. Wenham, Solar Energy Materials & Solar Cells 65 9-16 (2001) 1, is of great importance because it has shown that it is possible to achieve conversion efficiencies close to the theoretical maximum efficiency (32%, Shockley-Queisser limit) of silicon cells under sunlight (global standard AM1.5 spectrum at 1 kW m-2), but require manufacturing processes such as multi-level photolithography, oxidation and diffusion of impurities in ultra-clean laboratories (microelectronic class for manufacturing integrated circuits) and the use of silicon wafers of extreme quality, so that they cannot be industrialized at production costs appropriate for their terrestrial application.

Además de los mecanismos típicos de pérdida de energía (termalización de portadores por la red; pérdida de voltaje en la unión y los contactos; recombinación de huecos y electrones) tenemos otros que existen en la práctica y que pueden reducirse mediante el diseño y la aplicación de los procesos de fabricación adecuados. Entre éstos podemos mencionar: la recombinación superficial debida a la presencia de defectos en la superficie de cualquier material; y la reflexión de la radiación solar en la superficie de la celda solar. El primero puede reducirse mediante lo que se llama pasivación superficial. En el casoIn addition to the typical mechanisms of energy loss (thermalization of carriers by the network; loss of voltage at the junction and contacts; recombination of holes and electrons) we have others that exist in practice and that can be reduced by design and application of the appropriate manufacturing processes. Among these we can mention: surface recombination due to the presence of defects in the surface of any material; and the reflection of solar radiation on the surface of the solar cell. The first can be reduced by what is called surface passivation. If

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

del silicio, generalmente se realiza depositando capas finas de un óxido o nitruro que eliminen los enlaces sueltos en la superficie. [G. Santana y A. Morales-Acevedo, Solar Energy Materials and Solar Cells 60 (2000) 135]. En el segundo caso, la reflectancia normalmente se reduce depositando una o dos capas de materiales con espesor e índice de refracción adecuados sobre la cara en que incide la luz [A. Morales-Acevedo, E. Luna- Arredondo y G. Santana, 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA (IEEE, New York, 2002), p. 293.] De esta manera habría un mayor acoplamiento óptico entre el aire y el silicio. Otra manera de lograr esto último es texturizando la superficie con arreglos piramidales (Figura 2 (2)), de manera que la luz es "atrapada" induciendo la reflexión múltiple hacia la foto-celda. Por consiguiente, la celda solar de silicio más avanzada posee una estructura del emisor tipo n+, la base es tipo p y la región posterior es tipo p+ (o sea una celda solar de silicio n+ - p - p+, Figura 2 (3)). Hay que resaltar que debajo del dedo metálico del enrejado (Figura 2 (1)) se tendrá una región n++ para formar un buen contacto óhmico. También debe notarse que normalmente se incluye una capa de óxido o nitruro de silicio para lograr la pasivación de la superficie del emisor (Figura 2 (4)). Este es el tipo de estructura conocido como "celda solar con emisor selectivo". Sin embargo, no se conoce una solución como la propuesta. En este caso, se trata de sustituir la rejilla metálica utilizada en la parte superior de las celdas comerciales por una capa metálica conductora e invisible a la radiación solar. La eliminación de la rejilla metálica (Figura 1 y 2 (1)) que refleja parcialmente la luz (sombreado), permite un aumento en la eficiencia de la celda solar como consecuencia del aprovechamiento de toda el área del semiconductor para realizar el efecto fotoeléctrico. Además, al retirar la rejilla metálica se eliminan todos los componentes tóxicos necesarios para su unión a la superficie de la celda. De esta forma, se consiguen fabricar celdas solares por un procedimiento que da lugar a celdas solares más eficientes, de menor toxicidad y de menor costo.Of silicon, it is usually done by depositing thin layers of an oxide or nitride that eliminate loose bonds on the surface. [G. Santana and A. Morales-Acevedo, Solar Energy Materials and Solar Cells 60 (2000) 135]. In the second case, the reflectance is usually reduced by depositing one or two layers of materials with adequate thickness and refractive index on the face on which the light falls [A. Morales-Acevedo, E. Luna- Arredondo and G. Santana, 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA (IEEE, New York, 2002), p. 293.] In this way there would be a greater optical coupling between the air and the silicon. Another way to achieve the latter is by texturing the surface with pyramidal arrangements (Figure 2 (2)), so that the light is "trapped" inducing multiple reflection towards the photocell. Therefore, the most advanced silicon solar cell has an emitter structure type n +, the base is type p and the posterior region is type p + (ie a silicon solar cell n + - p - p +, Figure 2 (3)). It should be noted that under the metal lattice finger (Figure 2 (1)) there will be an n ++ region to form a good ohmic contact. It should also be noted that a silicon oxide or nitride layer is normally included to achieve passivation of the emitter surface (Figure 2 (4)). This is the type of structure known as "solar cell with selective emitter". However, a solution like the proposal is not known. In this case, it is a question of replacing the metal grid used in the upper part of the commercial cells with a conductive metallic layer that is invisible to solar radiation. The elimination of the metal grid (Figure 1 and 2 (1)) that partially reflects the light (shading), allows an increase in the efficiency of the solar cell as a result of the use of the entire semiconductor area to perform the photoelectric effect. In addition, removing the metal grid eliminates all the toxic components necessary for its attachment to the cell surface. In this way, they are able to manufacture solar cells by a procedure that results in more efficient solar cells, of lower toxicity and of lower cost.

Descripción de la invenciónDescription of the invention

La solución propuesta consiste en suplantar la rejilla metálica utilizada en la parte superior de las celdas comerciales, por una capa metálica conductora e invisible a la radiación solar. De esta forma no existirá pérdida de energía por reflexión de la radiación solar en la superficie de la celda solar (sombreado), aumentando la eficiencia de conversión energética.The proposed solution consists in supplanting the metal grid used in the upper part of the commercial cells, by a conductive metallic layer and invisible to solar radiation. In this way there will be no loss of energy by reflection of solar radiation on the surface of the solar cell (shading), increasing the efficiency of energy conversion.

El método utilizado para la formación de micelas conteniendo un núcleo metálico fue el de microemulsión, que consiste básicamente en preparar micelas orgánicas conteniendo en su núcleo alrededor de 500 átomos de Pt [O. Guillén-Villafuerte, G. García, B. Anula, E. Pastor, N.C. Blanco, M.A. López-Quintela, A. Hernández-Creus and G.A. Planes, Angew. Chem. Int. Ed. 118 (2006) 4372].The method used for the formation of micelles containing a metallic core was that of microemulsion, which basically consists of preparing organic micelles containing around 500 atoms of Pt [O. Guillén-Villafuerte, G. García, B. Anula, E. Pastor, N.C. Blanco, M.A. López-Quintela, A. Hernández-Creus and G.A. Plans, Angew. Chem. Int. Ed. 118 (2006) 4372].

En el presente trabajo se han sintetizado con éxito diversas micelas con diferentes metales en su núcleo, como son Pt, Sn, Ni, Rh, Ir, Cu, Fe, Pd, Cr y Ag. Estas micelas con núcleo metálico se depositaron y distribuyeron uniformemente sobre la superficie de una celda solar en ausencia del enrejado metálico. Para ello, una alícuota de la disolución de micelas se depositó sobre la placa solar (en ausencia de la rejilla conductora). Posteriormente, se sometió a la muestra a un tratamiento térmico (300°C por 30 minutos) bajo una atmósfera reductora (H2/N2: 1/10). Se observó que el depósito metálico es uniforme, posee buena conductividad eléctrica y más importante aún es que se produce eficazmente el efecto fotoeléctrico, es decir el depósito metálico resulta en una capa conductora e invisible a la radiación solar.In the present work, several micelles with different metals in their nucleus have been successfully synthesized, such as Pt, Sn, Ni, Rh, Ir, Cu, Fe, Pd, Cr and Ag. These micelles with metallic nucleus were deposited and distributed uniformly on the surface of a solar cell in the absence of the metal lattice. For this, an aliquot of the micelle solution was deposited on the solar plate (in the absence of the conductive grid). Subsequently, the sample was subjected to heat treatment (300 ° C for 30 minutes) under a reducing atmosphere (H2 / N2: 1/10). It was observed that the metallic deposit is uniform, has good electrical conductivity and even more important is that the photoelectric effect is produced effectively, that is to say the metallic deposit results in a conductive layer and invisible to solar radiation.

Descripción de los dibujosDescription of the drawings

Figura 1: Principales características de una típica celda solar de silicio, donde se indica el uso de dedos colectores (1).Figure 1: Main characteristics of a typical silicon solar cell, where the use of collecting fingers (1) is indicated.

55

Figura 2: Principales características de la celda solar de silicio que presenta la mayor eficiencia hasta el momento. En ella se destaca el uso de dedos colectores (1), el texturizado de la superficie con arreglos piramidales (2) y la estructura de la "zona de barrera" (3).Figure 2: Main characteristics of the silicon solar cell that has the highest efficiency so far. It highlights the use of collecting fingers (1), surface texturing with pyramid arrangements (2) and the structure of the "barrier zone" (3).

1010

Figura 3: Curva de Potencia bajo irradiación lumínica de una placa solar comercial en ausencia del enrejado metálico (A) y de una monocapa de micelas que contienen Pt en su interior sobre una placa solar comercial en ausencia del enrejado metálico (B).Figure 3: Power curve under light irradiation of a commercial solar panel in the absence of the metal lattice (A) and of a monolayer of micelles containing Pt inside it on a commercial solar plate in the absence of the metallic lattice (B).

15 Figura 4: Curva de Potencia bajo irradiación lumínica de una placa solar comercial en ausencia del enrejado metálico (A) y de multicapas de micelas que contienen Pt en su interior sobre una placa solar comercial en ausencia del enrejado metálico (C).15 Figure 4: Power curve under light irradiation of a commercial solar plate in the absence of the metal lattice (A) and of multilayers of micelles containing Pt inside it on a commercial solar plate in the absence of the metallic lattice (C).

Realización preferente de la invenciónPreferred Embodiment of the Invention

20twenty

Las Figuras 3 y 4 muestran el efecto de depositar una monocapa (Figura 3 (B)) y multicapas (Figura 4 (C)) de micelas que contienen Pt en su interior sobre una placa solar comercial en ausencia del enrejado metálico (Figuras 3 (A) y 4 (A)). Se observa como la potencia máxima así como el potencial en cortocircuito desarrollado por la celda solar 25 aumenta ligeramente al depositar las micelas que contienen platino en su núcleo.Figures 3 and 4 show the effect of depositing a monolayer (Figure 3 (B)) and multilayers (Figure 4 (C)) of micelles containing Pt inside on a commercial solar panel in the absence of the metal lattice (Figures 3 ( A) and 4 (A)). It is observed how the maximum power as well as the potential in short circuit developed by the solar cell 25 increases slightly when depositing the micelles that contain platinum in its nucleus.

Claims (2)

ES 2 638 068 A2ES 2 638 068 A2 REIVINDICACIONES 1. Célula fotovoltaica de alta eficiencia de bajo coste y no tóxica caracterizada por la sustitución de la rejilla metálica utilizada en la parte superior de las celdas convencionales1. Low-cost, non-toxic high efficiency photovoltaic cell characterized by the replacement of the metal grid used in the upper part of conventional cells 5 por una capa metálica conductora e invisible a la radiación solar.5 by a conductive metallic layer and invisible to solar radiation. 2. Procedimiento para el depósito de una monocapa o multicapas metálicas utilizada en células fotovoltaicas carentes de rejillas metálicas caracterizada según la reivindicación (1) que comprende las siguientes etapas:2. Method for the deposit of a metal monolayer or multilayers used in photovoltaic cells lacking metal grids characterized according to claim (1) comprising the following steps: 1010 l. Depositar una alícuota de micelas conteniendo un núcleo metálico (ej. Pt, Sn, Ni, Rh, Ir, Cu, Fe, Pd, Cr y Ag, etc.) sobre una celda solar comercial (obleas de silicio mono y/o policristalinas) en ausencia del enrejado metálico (dedos colectores).l. Deposit an aliquot of micelles containing a metal core (eg Pt, Sn, Ni, Rh, Ir, Cu, Fe, Pd, Cr and Ag, etc.) on a commercial solar cell (mono and / or polycrystalline silicon wafers) in the absence of the metal lattice (collecting fingers). 15 II. Secado bajo un flujo de gas inerte.15 II. Drying under a flow of inert gas. III. Lavado exhausto con acetona.III. Drained wash with acetone. IV. Calentamiento a una temperatura de aproximadamente 300°C duranteIV. Heating at a temperature of approximately 300 ° C during 20 aproximadamente media hora bajo un flujo de gas reductor.20 approximately half an hour under a flow of reducing gas.
ES201600179A 2016-02-29 2016-02-29 High efficiency photoelectric cell Active ES2638068B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201600179A ES2638068B1 (en) 2016-02-29 2016-02-29 High efficiency photoelectric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201600179A ES2638068B1 (en) 2016-02-29 2016-02-29 High efficiency photoelectric cell

Publications (3)

Publication Number Publication Date
ES2638068A2 ES2638068A2 (en) 2017-10-18
ES2638068R1 ES2638068R1 (en) 2017-11-06
ES2638068B1 true ES2638068B1 (en) 2018-09-06

Family

ID=60043439

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201600179A Active ES2638068B1 (en) 2016-02-29 2016-02-29 High efficiency photoelectric cell

Country Status (1)

Country Link
ES (1) ES2638068B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9373515B2 (en) * 2012-03-01 2016-06-21 Ramot At Tel-Aviv University Ltd Conductive nanowire films
US20170133527A1 (en) * 2014-07-15 2017-05-11 Centre National De La Recherche Scientifique Method for the preparation of a transparent and conductive auto-supported silver nanowire film and applications thereof

Also Published As

Publication number Publication date
ES2638068R1 (en) 2017-11-06
ES2638068A2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
US7786376B2 (en) High efficiency solar cells and manufacturing methods
Bagher et al. Types of solar cells and application
TW201203576A (en) Single junction CIGS/CIS solar module
Untila et al. Bifacial concentrator Ag‐free crystalline n‐type Si solar cell
JP2012186415A (en) Manufacturing method of photoelectric conversion element, photoelectric conversion element, and tandem-type photoelectric conversion element
TWI424582B (en) Method of fabricating solar cell
Untila et al. Concentrator bifacial Ag-free LGCells
CN101707224A (en) Flexible amorphous silicon film solar cell and preparation method thereof
ES2638068B1 (en) High efficiency photoelectric cell
Untila et al. Silicon-based photovoltaics: State of the art and main lines of development
JP7378940B2 (en) Solar cells, multijunction solar cells, solar cell modules and solar power generation systems
US11756744B1 (en) Three-tandem perovskite/silicon-based tandem solar cell
US8445311B2 (en) Method of fabricating a differential doped solar cell
KR20130030122A (en) Solar cell and method of fabricating the same
Kanneboina Detailed review on c-Si/a-Si: H heterojunction solar cells in perspective of experimental and simulation
Faes et al. Direct contact to TCO with SmartWire connection technology
CN110224033B (en) Iron oxide photo-anode system embedded with silicon pn junction and preparation method
JP2018056541A (en) Solar cell, junction type solar cell, solar cell module and solar power generation system
Muñoz Cervantes Silicon heterojunction solar cells obtained by Hot-Wire CVD
CN108630765B (en) Solar cell, multijunction solar cell, solar cell module, and solar power generation system
KR101326970B1 (en) Solaa cell and solaa cell module using the same
Galib Hashmi et al. Fabrication of crystalline silicon solar cell in Bangladesh: limitations and remedies
Chaudhari et al. From 1 sun to 10 suns c-Si cells by optimizing metal grid, metal resistance, and junction depth
CN106062973A (en) Photoelectric conversion device
KR20200033569A (en) METHOD FOR MANUFACTURING CuI THIN-LAYER AND SOLAR CELL USING THE SAME

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2638068

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20180906