ES2635285B2 - Method and system for non-invasive characterization of human and animal tissues in vivo - Google Patents

Method and system for non-invasive characterization of human and animal tissues in vivo Download PDF

Info

Publication number
ES2635285B2
ES2635285B2 ES201600995A ES201600995A ES2635285B2 ES 2635285 B2 ES2635285 B2 ES 2635285B2 ES 201600995 A ES201600995 A ES 201600995A ES 201600995 A ES201600995 A ES 201600995A ES 2635285 B2 ES2635285 B2 ES 2635285B2
Authority
ES
Spain
Prior art keywords
raman
tissue
neural network
analysis
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201600995A
Other languages
Spanish (es)
Other versions
ES2635285A1 (en
Inventor
Velasco José Santiago Torrecilla
Garcia María Guadalupe Fernandez
Soto Roberto Dominguez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad Complutense de Madrid
Original Assignee
Universidad Complutense de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Complutense de Madrid filed Critical Universidad Complutense de Madrid
Priority to ES201600995A priority Critical patent/ES2635285B2/en
Publication of ES2635285A1 publication Critical patent/ES2635285A1/en
Application granted granted Critical
Publication of ES2635285B2 publication Critical patent/ES2635285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

DESCRIPCIONDESCRIPTION

Metodo y sistema para caracterizacion no invasiva de tejidos humanos y animales in vivo.Method and system for non-invasive characterization of human and animal tissues in vivo.

Sector de la tecnicaSector of the technique

La presente invention se encuadra en el sector de metodos y aparatos para determinar la composition de tejidos animales o humanos in vivo de forma no invasiva. Mas concretamente, la invencion se refiere a la determination inteligente de la composicion de tejido mamario combinando tecnicas espectroscopicas y redes neuronales.The present invention fits into the field of methods and apparatus for determining the composition of animal or human tissues in vivo non-invasively. More specifically, the invention relates to the intelligent determination of the breast tissue composition by combining spectroscopic techniques and neural networks.

Estado de la tecnicaState of the art

La espectroscopia Raman es una tecnica fotonica capaz de proporcionar information molecular de materiales, ya sean organicos o inorganicos, permitiendo asl su identification.Raman spectroscopy is a photonic technique capable of providing molecular information of materials, whether organic or inorganic, allowing its identification.

El analisis mediante espectroscopia Raman se basa en el tratamiento de la luz dispersada por un material al incidir sobre el un haz de luz monocromatico. Una pequena portion de la luz incidente es dispersada inelasticamente experimentando ligeros cambios de frecuencia que son caracterlsticos de la estructura qulmica del material analizado, e independientes de la frecuencia de la luz incidente. Se trata de una tecnica de analisis que se realiza directamente sobre el material a analizar sin necesitar este ningun tipo de preparation especial y que no conlleva ninguna alteration de la superficie sobre la que se realiza el analisis; es decir, es una tecnica no-destructiva. Por este motivo se ha aplicado en el analisis de una gran variedad de tejidos biologicos como fluidos, celulas y tejidos.The analysis by means of Raman spectroscopy is based on the treatment of light scattered by a material when striking a monochromatic beam of light. A small portion of the incident light is dispersed inelastically, experiencing slight changes in frequency that are characteristic of the chemical structure of the material analyzed, and independent of the frequency of the incident light. It is an analysis technique that is performed directly on the material to be analyzed without needing any special type of preparation and that does not involve any alteration of the surface on which the analysis is performed; that is, it is a non-destructive technique. For this reason it has been applied in the analysis of a great variety of biological tissues such as fluids, cells and tissues.

Los cambios bioqulmicos en celulas y tejidos, que pueden ser causados o ser la causa de enfermedades, pueden dar lugar a cambios significativos en el espectro Raman por lo que esta tecnica presenta un alto potencial para su uso en el diagnostico y pronostico de diferentes enfermedades asl como herramienta para evaluar nuevas terapias (K. Kong et al, Advanced Drug Delivery Reviews 89 (2015) 121-134).The biochemical changes in cells and tissues, which can be caused or be the cause of diseases, can lead to significant changes in the Raman spectrum, so this technique presents a high potential for use in the diagnosis and prognosis of different diseases. as a tool to evaluate new therapies (K. Kong et al, Advanced Drug Delivery Reviews 89 (2015) 121-134).

La espectroscopia Raman se ha aplicado en la detection de cancer de mama identificando microcalcificaciones en lesiones malignas y benignas. Las microcalcificaciones son marcadores de la degradation celular y necrosis y estan compuestas qulmicamente de oxalato de calcio y depositos minerales de hidroxiapatita (Radi MJ., Axch Pathol Lab Med 113 (1989) 1367-9). En general, el oxalato de calcio se asocia a lesiones benignas mientras que los depositos de hidroxiapatita se asocian a lesiones proliferativas como el carcinoma. En base al analisis de estos compuestos de calcio, Haka et al. (Cancer Research 62 (2002) 5375-5380) concluyeron que la tecnica Raman puede ser aplicada, en primer lugar, in-vitro sobre pequenas muestras de tejido biopsiado siendo deseable su aplicacion in-vivo combinada con la mamografla para seleccionar pacientes con microcalcificaciones que necesitan someterse a una biopsia.Raman spectroscopy has been applied in breast cancer detection identifying microcalcifications in malignant and benign lesions. Microcalcifications are markers of cellular degradation and necrosis and are chemically composed of calcium oxalate and hydroxyapatite mineral deposits (Radi MJ., Axch Pathol Lab Med 113 (1989) 1367-9). In general, calcium oxalate is associated with benign lesions while hydroxyapatite deposits are associated with proliferative lesions such as carcinoma. Based on the analysis of these calcium compounds, Haka et al. (Cancer Research 62 (2002) 5375-5380) concluded that the Raman technique can be applied, firstly, in-vitro on small samples of biopsied tissue being desirable its in-vivo application combined with the mammography to select patients with microcalcifications that They need to have a biopsy.

Por otro lado, los cambios en la composicion del tejido asociados a la malignidad se reflejan no solo en la composicion de las microcalcificaciones sino tambien en un aumento de nucleoprotelnas y acidos nucleicos por lo que un analisis bioqulmico completo podrla dar lugar a resultados mas fiables.On the other hand, changes in tissue composition associated with malignancy are reflected not only in the composition of microcalcifications but also in an increase in nucleoproteins and nucleic acids, so a complete biochemical analysis could lead to more reliable results.

La aplicacion in-vitro sobre tejido biopsiado, ademas de ser una tecnica invasiva, tiene el inconveniente de que se analiza una pequena muestra de tejido por lo que puede ocurrir que la muestra no sea representativa de todo el volumen de mama. La aplicacion in-vivo presenta el inconveniente de que solamente es capaz de proporcionar informacion del tejido muy proximo a la superficie (pocas decenas de micrometros de profundidad). Para aumentar la profundidad del tejido analizado que permita realizar una exploracion bioquimica de una zona extensa (como el caso de la mama) es necesario un tiempo de analisis tan elevado que hace que la tecnica no sea viable en la practica.The in-vitro application on biopsied tissue, in addition to being an invasive technique, has the disadvantage that a small sample of tissue is analyzed, so it can happen that the sample is not representative of the entire breast volume. The in-vivo application has the disadvantage that it is only able to provide very close tissue information to the surface (few tens of micrometers deep). To increase the depth of the analyzed tissue that allows a biochemical exploration of a large area (as in the case of the breast), it is necessary a time of analysis so high that the technique is not viable in practice.

Para salvar este inconveniente en el documento US20090238333 se describe un metodo donde se analizan composiciones de tejido en diferentes zonas de la superficie exterior del mismo y, mediante un modelo numerico, se predice la composition del resto de tejido. Este metodo permite conocer la composicion real del tejido en capas superficiales pero la composicion en capas mas profundas es solamente una estimacion que resulta de la aplicacion de un metodo matematico por lo que no permite, por tanto, conocer con certeza la composicion real del tejido en capas profundas.To overcome this drawback in US20090238333 a method is described where tissue compositions are analyzed in different areas of the outer surface thereof and, by means of a numerical model, the composition of the rest of tissue is predicted. This method allows to know the real composition of the tissue in superficial layers but the composition in deeper layers is only an estimate that results from the application of a mathematical method so it does not allow, therefore, to know with certainty the real composition of the tissue in deep layers.

Por tanto, seria deseable desarrollar un metodo de estudio in-vivo, no invasivo, capaz de analizar de forma fiable la composicion quimica del tejido mamario tanto en capas superficiales como profundas y en un tiempo que haga posible su uso en el diagnostico y seguimiento del cancer de mama. Asimismo, seria necesario incluir algoritmos inteligentes para poder considerar los cambios en las analrticas de la composicion quimica y ser aplicados a diagnosticos y seguimientos mas eficientes del cancer de mama.Therefore, it would be desirable to develop an in-vivo, non-invasive study method capable of reliably analyzing the chemical composition of breast tissue in both superficial and deep layers and at a time that makes it possible to use it in the diagnosis and monitoring of the breast cancer Likewise, it would be necessary to include intelligent algorithms to be able to consider the changes in the analytes of the chemical composition and be applied to more efficient diagnosis and monitoring of breast cancer.

Description de la inventionDescription of the invention

En la presente invencion se describe un metodo de analisis in vivo de tejido animal o humano para determinar la composicion qtimica y caracteristicas del mismo que combina un escaneo rapido de optica difusa y un escaneo preciso Raman permitiendo realizar la exploracion bioqtimica de una zona extensa en corto espacio de tiempo.In the present invention, a method of in vivo analysis of animal or human tissue is described to determine the chemical composition and characteristics thereof that combines a fast scanning of diffuse optics and a precise Raman scan allowing the biochemical exploration of a large area in short. space of time.

La identification del tipo de tejido segun su composicion qtimica instantanea es posible gracias a una biblioteca espectral obtenida mediante un pulso de laser en una sola de las muestras representativas y su posterior tratamiento empleando redes neuronales. Los resultados obtenidos muestran una eficacia de mas del 99,99% en los tejidos analizados.The identification of the type of tissue according to its instantaneous chemical composition is possible thanks to a spectral library obtained by a laser pulse in only one of the representative samples and its subsequent treatment using neural networks. The results obtained show an efficacy of more than 99.99% in the tissues analyzed.

El metodo combina:The method combines:

- Escaneo infrarrojo de optica difusa de baja precision (DOT, de las siglas en ingles Diffuse Optical Tomography) cuyo error se inclina al exceso de falsos positivos, con objeto de determinar zonas sospechosas de contener determinados compuestos qtimicos. Almacenamiento de los escaneos de las zonas sospechosas de la informacion en redes neuronales.- Infrared low-precision diffuse optical scanning (DOT), whose error is tilted to the excess of false positives, in order to determine areas suspected of containing certain chemical compounds. Storage of scans of suspicious areas of information in neural networks.

- Analisis de los datos obtenidos en el escaneo infrarrojo DOT mediante el uso de redes neuronales disenadas y la base de datos neuronal antes creada para clasificacion del tejido sospechoso.- Analysis of the data obtained in the DOT infrared scan through the use of designed neural networks and the previously created neuronal database for the classification of the suspect tissue.

- Escaneo preciso Raman/SORS (Spatially Offset Raman Spectroscopy) acotado a zonas de tejido sospechoso. Almacenamiento de los escaneos precisos y acotados de las zonas sospechosas en redes neuronales.- Accurate scanning Raman / SORS (Spatially Offset Raman Spectroscopy) bounded to areas of suspicious tissue. Storage of accurate and bounded scans of suspicious areas in neural networks.

- Analisis de los datos obtenidos en escaneo preciso Raman/SORS mediante el uso de redes neuronales entrenadas con firmas Raman conocidas base de datos de escaneos Raman previos y la information almacenada.- Analysis of the data obtained in precise Raman / SORS scanning through the use of trained neural networks with known Raman signatures database of previous Raman scans and stored information.

- Determination de la composicion qtimica y/o caracteristicas del tejido mediante software que combina los resultados de las redes neuronales de optica difusa y de analisis Raman con criterios especlficos como, por ejemplo, la morfologla de las calcificaciones presentes en el tejido.- Determination of the chemical composition and / or characteristics of the tissue by means of software that combines the results of the neural networks of diffuse optics and Raman analysis with specific criteria such as, for example, the morphology of the calcifications present in the tissue.

El primer escaneo se realiza para encontrar zonas donde, posteriormente, aplicar la espectroscopia Raman y consiste en una tomografla de optica difusa (DOT) con haz cerca de infrarrojo (NIR, Near InfraRed). La information obtenida con un haz de luz NIR se trata en crudo para alimentar una red neuronal de tiempo real que determina si es necesaria una exploration Raman en un area concreta. Asimismo se almacena esta informacion de zonas conflictivas con su composition qulmica recogida en las redes neuronales para ir mejorando las clasificaciones con el tiempo. El transporte de la luz en tejido a estas longitudes de onda en una determinada direction de dispersion se vuelve casi isotropico por lo que se puede predecir correctamente con un modelo de optica difusa. Para el analisis los datos obtenidos por optica difusa se utiliza un modelo de elementos finitos y algoritmos de reconstruction de imagen. The first scan is performed to find areas where, subsequently, apply Raman spectroscopy and consists of a diffuse optical tomography (DOT) with near infrared beam (NIR, Near InfraRed). The information obtained with a NIR beam of light is treated raw to feed a real-time neural network that determines if a Raman exploration is necessary in a specific area. Likewise, this information of conflicting zones is stored with its chemical composition collected in the neural networks to improve the classifications over time. The transport of light in tissue at these wavelengths in a certain direction of dispersion becomes almost isotropic, so it can be predicted correctly with a diffuse optics model. For the analysis of the data obtained by fuzzy optics, a finite element model and image reconstruction algorithms are used.

A la informacion obtenida en el primer escaneo por DOT se anade el analisis de las bandas Raman de un segundo escaneo por espectrometrla Raman.To the information obtained in the first scan by DOT, the analysis of the Raman bands of a second scan by Raman spectrometry is added.

El escaneo Raman se realiza utilizando la tecnica de compensation espacial de espetroscopla Raman SORS que es efectiva a profundidades mlnimas de 500 mm en tejido biologico. La senal Raman es acoplada a traves de una proyeccion de imagen optica a un haz de fibra optica y entregada a un sensor CCD (Charge Coupled Device) de infrarrojos de altas prestaciones. De este modo se obtiene informacion detallada de la composicion qulmica de los tejidos. Dada la gran variabilidad que aparece en los canceres y composiciones qulmicas, la creation de las bases de datos en redes neuronales dan la posibilidad de resolver espectros con mucha mas fiabilidad. Asl, por ejemplo, el tejido mamario sano en humanos muestra bandas Raman en 1078, 1300, 1445 y 1651 cm-1 y el tejido maligno solo muestra bandas a 1445 y 1651 cm-1. Los tumores benignos tienen bandas caracterlsticas en 1240, 1445 y 1659 cm-1. Ademas, las intensidades de las bandas 1445 y 1651 cm-1 estan correlacionadas con la clasificacion de la enfermedad.Raman scanning is performed using the spatial compensation technique Raman SORS that is effective at depths of 500 mm in biological tissue. The Raman signal is coupled through an optical image projection to an optical fiber beam and delivered to a high performance infrared (Charge Coupled Device) CCD sensor. In this way, detailed information on the chemical composition of the tissues is obtained. Given the great variability that appears in cancers and chemical compositions, the creation of databases in neural networks give the possibility of resolving spectra with much more reliability. Asl, for example, healthy mammary tissue in humans shows Raman bands at 1078, 1300, 1445 and 1651 cm-1 and malignant tissue only shows bands at 1445 and 1651 cm-1. Benign tumors have characteristic bands at 1240, 1445 and 1659 cm-1. In addition, the intensities of bands 1445 and 1651 cm-1 are correlated with the classification of the disease.

Los datos Raman obtenidos se analizan utilizando una red neuronal (NN) con conexiones hacia adelante, concretamente siguiendo un modelo de propagation perceptron (retropropagacion, perceptron model). La NN consta de tres capas denominadas de entrada, de salida y oculta, formada por neuronas (unico elemento operativo). La capa de entrada se utiliza solo para la entrada de la matriz de datos en la NN. En las otras capas se realizan calculos no lineales. En la capa oculta cada neurona recibe senales de otros nodos de entrada, sumandose estas mediante la funcion de activation. Despues el resultado es transformado por la funcion de transferencia para, posteriormente, ser enviado a las neuronas de salida para determinar si el reconocimiento es positivo o negativo. Todas estas neuronas y nodos estan unidos hacia adelante y cada union esta ponderada por medio de variables llamadas pesos. Estos pesos se encargan de adaptarse al sistema a modelizar y “recuerda” la informacion presentada al modelo. Los algoritmos basicos de retropropagacion ajustan los pesos en una fuerte pendiente de direccion descendiente (valores negativos del gradiente); esto es, la direccion en la cual la funcion de rendimiento disminuye mas rapidamente. Las medidas basicas son el numero de positivos y negativos (verdaderos y falsos, PV, NV, FP, FN) a partir de los cuales se determina la sensibilidad y la especificidad de los procesos de detection. Un positivo verdadero (PV) corresponde con la deteccion correcta de una sustancia, compuesto o caracterlstica en una muestra, cuando esta realmente existe. Un negativo verdadero (NV) corresponde a la deteccion negativa de una sustancia, compuesto o caracterlstica de una muestra cuando efectivamente no existe. Las detecciones se consideran falsas (PF, NF) cuando la deteccion no corresponde con la realidad de la muestra.The obtained Raman data is analyzed using a neural network (NN) with forward connections, specifically following a propagation perceptron model (retropropagation, perceptron model). The NN consists of three layers called input, output and hidden, formed by neurons (only operative element). The input layer is used only for the entry of the data matrix in the NN. In the other layers, non-linear calculations are made. In the hidden layer each neuron receives signals from other input nodes, adding these through the activation function. Then the result is transformed by the transfer function to subsequently be sent to the output neurons to determine if the recognition is positive or negative. All these neurons and nodes are linked forward and each union is weighted by means of variables called weights. These weights are responsible for adapting to the system to model and "remember" the information presented to the model. The basic backpropagation algorithms adjust the weights in a steep slope of descending direction (negative values of the gradient); that is, the direction in which the performance function decreases more rapidly. The basic measurements are the number of positives and negatives (true and false, PV, NV, FP, FN) from which the sensitivity and specificity of the detection processes is determined. A true positive (PV) corresponds to the correct detection of a substance, compound or characteristic in a sample, when it actually exists. A true negative (NV) corresponds to the negative detection of a substance, compound or characteristic of a sample when it does not exist. The detections are considered false (PF, NF) when the detection does not correspond to the reality of the sample.

Los datos Raman obtenidos se almacenan en una red neuronal (NN) para posteriores analisis y para mejorar las resoluciones de los espectros. Este almacenamiento se lleva a cabo por medio de una red neuronal y sus pesos. Estos pesos se van adaptando a cada uno de los datos de espectros conflictivos y su composition qulmica presentados a la red. De esta forma se deja constancia del sistema objeto de estudio y su composicion en forma de matriz numerica que se va adaptando a los nuevos espectros/composicion que se van presentando con el tiempo.The obtained Raman data is stored in a neural network (NN) for later analysis and to improve the resolutions of the spectra. This storage is carried out by medium of a neural network and its weights. These weights are adapted to each of the data of conflicting spectra and their chemical composition presented to the network. In this way, the system under study and its composition are recorded in the form of a numerical matrix that adapts to the new spectra / composition that are presented over time.

La interaction de la luz con la materia en regimen lineal permite la absorcion y la emision de luz que se ajusta a los niveles de energla ya definidos por los electrones. El efecto Raman corresponde, en la teorla de las perturbaciones de la mecanica cuantica, a la absorcion y consecuente emision de un foton mediante cambio de estado intermedio de un electron, pasando por un estado virtual. Existen las siguientes posibilidades:The interaction of light with matter in a linear regime allows the absorption and emission of light that adjusts to the energy levels already defined by the electrons. The Raman effect corresponds, in the theory of perturbations of quantum mechanics, to the absorption and consequent emission of a photon by changing the intermediate state of an electron, passing through a virtual state. There are the following possibilities:

1. No existe intercambio de energla entre los fotones incidentes y las moleculas (no existe, por tanto, efecto Raman)1. There is no energy exchange between the incident photons and the molecules (there is, therefore, no Raman effect)

2. Existe intercambio de energla entre los fotones incidentes y las moleculas. Las diferencias de energla son iguales a las diferencias de los estados vibracionales o rotacionales de la molecula. Estas son diferencias en la energla medida mediante la sustraccion de la energla de un laser mono-energetico de luz de fotones dispersados. En los cristales, solo ciertos fotones son admitidos por la estructura cristalina de forma que el efecto de dispersion Raman puede aparecer solo a ciertas frecuencias.2. There is energy exchange between the incident photons and the molecules. The energy differences are equal to the differences of the vibrational or rotational states of the molecule. These are differences in energy measured by subtracting the energy of a mono-energetic laser from light scattered photons. In crystals, only certain photons are admitted by the crystal structure so that the Raman scattering effect can appear only at certain frequencies.

• Las moleculas absorben energla (dispersion Stokes). El foton resultante es de inferior frecuencia y genera una llnea de Stokes en el lado rojo del espectro incidente.• Molecules absorb energy (Stokes scattering). The resulting photon is of lower frequency and generates a Stokes line on the red side of the incident spectrum.

• La molecula pierde energla (dispersion anti-Stokes). Los fotones incidentes son desplazados a frecuencias mas elevadas (azul) del espectro y generan, por lo tanto, una llnea que se denomina anti-Stokes.• The molecule loses energy (anti-Stokes scattering). The incident photons are displaced at higher frequencies (blue) of the spectrum and, therefore, generate a line called anti-Stokes.

Las intensidades de las bandas Raman solo dependen del numero de moleculas que ocupan los diferentes estados vibracionales; la variation de las frecuencias determina la estructura qulmica del material analizado.The intensities of the Raman bands only depend on the number of molecules that occupy the different vibrational states; The variation of the frequencies determines the chemical structure of the material analyzed.

Modo de realization de la inventionMode of realization of the invention

La presente invencion se ilustra mediante los siguientes ejemplos, los cuales no pretenden ser limitativos del alcance de la misma.The present invention is illustrated by the following examples, which are not intended to be limiting of the scope thereof.

Ejemplo 1Example 1

Este ejemplo se refiere al escaneo preliminar infrarrojo y creation de la base de datos inteligente de los datos conflictivos.This example refers to the infrared preliminary scan and creation of the intelligent database of conflicting data.

En el primer escaneo para encontrar zonas donde aplicar la espectroscopia Raman, se realiza una tomografia de optica difusa con haz infrarrojo. La information derivada de la exploration con un haz de luz NIR de longitudes de onda entre 650 y 900 nm se tratan en crudo para alimentar la red neuronal de tiempo real de forma que se puedan extraer las propiedades opticas intrlnsecas del tejido en cada una de las diferentes longitudes de onda aplicadas, obteniendo as! la cantidad de hemoglobina o la proportion de agua y la saturation de oxlgeno en cada zona del tejido. Los resultados obtenidos se pueden interpretar tambien de forma grafica para distinguir entre zonas de tejido sospechosas y no sospechosas de presentar una lesion y sobre las que realizar un posterior analisis empleando Raman SORS. Esta informacion de propiedades opticas y concentracion de hemoglobina o agua de las zonas conflictivas se van incluyendo en una red neuronal para mejorar los analisis posteriores. In the first scan to find areas to apply Raman spectroscopy, a diffuse optics tomography with infrared beam is performed. The information derived from the exploration with a NIR light beam of wavelengths between 650 and 900 nm is treated raw to feed the real-time neural network so that the intrinsic optical properties of the tissue can be extracted in each of the different wavelengths applied, thus obtaining! the amount of hemoglobin or the proportion of water and the saturation of oxygen in each tissue area. The results obtained can also be interpreted graphically to distinguish between tissue areas that are suspicious and not suspicious of presenting a lesion and on which to perform a subsequent analysis using Raman SORS. This information of optical properties and concentration of hemoglobin or water from the conflictive zones are included in a neural network to improve the subsequent analyzes.

Ejemplo 2Example 2

Este ejemplo se refiere al analisis de tejido mamario empleando la tecnica Raman SORS. Creacion de la base de datos en forma de red neuronal.This example refers to the analysis of breast tissue using the Raman SORS technique. Creation of the database in the form of a neural network.

Se obtiene un espectro Raman de una muestra de tejido mamario siguiendo el metodo SORS descrito en el documento US7652763 y usando un diodo laser para espectroscopia Raman con estabilizacion de temperatura, atenuando a 115 mW y operando en 827 nm (Micro Laser Systems, Lepton IVSeries Diffraction Limited Diode Lasers L4-830S). La potencia incidida sobre la muestra es de 50 mW con un diametro de haz de 0,5 -1 mm. El haz se filtra espectralmente para eliminar componentes de emision espontanea usando dos filtros de paso banda 830 nm de Semrock. El haz incide sobre la muestra en un angulo de 45°. El desplazamiento espacial es de 3 mm.A Raman spectrum is obtained from a sample of breast tissue following the SORS method described in US7652763 and using a laser diode for Raman spectroscopy with temperature stabilization, attenuating at 115 mW and operating at 827 nm (Micro Laser Systems, Lepton IV Series Diffraction Limited Diode Lasers L4-830S). The power incident on the sample is 50 mW with a beam diameter of 0.5 -1 mm. The beam is spectrally filtered to remove spontaneous emission components using two 830 nm band pass filters from Semrock. The beam impinges on the sample at an angle of 45 °. The spatial displacement is 3 mm.

Para la adquisicion de la luz Raman se utiliza un objetivo de 50 mm de diametro y una distancia focal de 60 mm. La luz dispersada se colima y pasa a traves de un filtro holograflco de 50 mm de diametro (Kaiser Optical Systems, Inc. Holographic Notch Filter 830 nm) para eliminar componentes de dispersion elastica. La luz Raman se propaga a traves de sistemas de fibra anular SORS de ~ 2 m de longitud hasta la entrada del espectografo HoloSpecf/1.8 (.Kaiser Optical Systems, Inc.). El espectro Raman se obtiene mediante una camara CCD Andor Technology DU420A-BR-DD, 1024 x 256 pixels. El sistema de fibra anular consiste en un haz de 50 fibras activas encargadas de recolectar la luz (dispersada por la muestra) colocadas en clrculo a una distancia de 3 mm alrededor del punto de emision que dirige la luz de laser hacia la muestra. Al usar esta configuration la intensidad de la senal puede ser aumentada de gran manera.For the acquisition of the Raman light, a lens with a diameter of 50 mm and a focal length of 60 mm is used. The scattered light is collimated and passed through a 50 mm diameter holographic filter ( Kaiser Optical Systems, Inc. Holographic Notch Filter 830 nm ) to remove elastic dispersion components. The Raman light is propagated through SORS annular fiber systems of ~ 2 m in length to the input of the HoloSpecf / 1.8 (.Kaiser Optical Systems, Inc.) spectrograph. The Raman spectrum is obtained through a CCD camera Andor Technology DU420A-BR-DD, 1024 x 256 pixels. The ring fiber system consists of a beam of 50 active fibers responsible for collecting light (scattered by the sample) placed in a circle at a distance of 3 mm around the emission point that directs the laser light towards the sample. By using this configuration the intensity of the signal can be greatly increased.

Con exposiciones de 0,2 a 10 segundos se adquiere el espectro de un volumen de 50x50x14 mm, resultando en la generation de 20 GB de datos con los que se alimento la etapa de analisis Raman de la red neuronal. Estos datos generados se transformaron en una matriz numerica de pesos almacenan la information recabada en el experimento reduciendo su tamano a 500MB.With exposures of 0.2 to 10 seconds, the spectrum of a volume of 50x50x14 mm is acquired, resulting in the generation of 20 GB of data with which the Raman analysis stage of the neural network is fed. These generated data were transformed into a numeric matrix of weights that store the information gathered in the experiment, reducing its size to 500MB.

Ejemplo 3Example 3

En este ejemplo se muestra el modo de clasificacion de tejido analizado.In this example, the sorting mode of the analyzed tissue is shown.

Usando espectrometrla Raman se obtiene informacion detallada de la composition qulmica del tejido. Buscando diferencias en las lecturas de Raman en tejidos mamarios se observa que el tejido sano muestra bandas Raman en 1078, 1300, 1445 y 1651 cm-1. Los tumores benignos tienen bandas caracterlsticas en 1240,1445 y 1659 cm-1. Ademas, las intensidades relativas a las bandas 1445 y 1651 cm-1 estan correlacionadas con la clasificacion de tejidos en maligno, benigno o normal (Manoharan, R. et al. Photochemistry and Photobiology, 67(1), (1998), 15­ 22).Using Raman spectrometry, detailed information on the chemical composition of the tissue is obtained. Looking for differences in the Raman readings in mammary tissues it is observed that the healthy tissue shows Raman bands in 1078, 1300, 1445 and 1651 cm-1. Benign tumors have characteristic bands at 1240.1445 and 1659 cm-1. In addition, the intensities relative to the bands 1445 and 1651 cm-1 are correlated with the tissue classification in malignant, benign or normal (Manoharan, R. et al .. Photochemistry and Photobiology, 67 (1), (1998), 15 22 ).

El tejido mamario normal es facil de distinguir porque presenta senales Raman fuertes procedentes de la abundancia de llpidos. Sin embargo, la diferenciacion entre tejido con lesiones malignas o benignas es diflcil porque en ambos casos existe un alto contenido de protelnas debido a los cambios del estroma (Mahoran, R. et al. Photochemistry and Photobiology, 67(1), (1998), 15-22).Normal breast tissue is easy to distinguish because it has strong Raman signals from abundance of lipids. However, the differentiation between tissue with malignant or benign lesions is difficult because in both cases there is a high protein content due to stromal changes (Mahoran, R. et al., Photochemistry and Photobiology, 67 (1), (1998)). , 15-22).

Para conseguir la diferenciacion, los datos Raman obtenidos, se analizan empleando una red neuronal feed-forward, concretamente con un modelo de propagation perceptron multicapa. Utilizando algoritmos de retropropagacion para la optimacion de los pesos, como se comento anteriormente. To obtain the differentiation, the obtained Raman data are analyzed using a feed-forward neural network, specifically with a multilayer perceptron propagation model. Using retropropagation algorithms for the optimization of weights, as mentioned above.

Se analizan los componentes principales para examinar las diferencias espectrales entre tumores malignos y benignos. En lugar de construir un algoritmo basado en una serie de caracterlsticas espectrales, el analisis de componentes principales permite utilizar toda la gama de datos para desarrollar un algoritmo de decision mediante regresion loglstica. Utilizando los coeficientes de ajuste de estos componentes principales, se estima la probabilidad de que cada muestra pertenezca a una categorla (normal, benigno o maligno).The main components are analyzed to examine the spectral differences between malignant and benign tumors. Instead of constructing an algorithm based on a series of spectral characteristics, the principal component analysis allows the full range of data to be used to develop a decision algorithm by logistic regression. Using the adjustment coefficients of these main components, we estimate the probability that each sample belongs to a category (normal, benign or malignant).

Estos resultados demuestran que los espectros Raman contienen la information necesaria para diferenciar tejido mamario normal, benigno y maligno. These results show that the Raman spectra contain the necessary information to differentiate normal, benign and malignant mammary tissue.

Claims (5)

REIVINDICACIONES 1. Metodo para caracterizar tejido mamario que comprende las siguientes etapas:1. Method to characterize breast tissue comprising the following stages: - Escaneo infrarrojo de optica difusa de baja precision (DOT) con objeto de determinar zonas sospechosas de contener determinados compuestos qulmicos. Almacenamiento de los escaneos de las zonas sospechosas de la information en redes neuronales. - Infrared scanning of low-precision diffuse optics (DOT) in order to determine areas suspected of containing certain chemical compounds. Storage of scans of suspicious areas of information in neural networks. - Analisis de los datos obtenidos en el escaneo infrarrojo DOT mediante el uso de redes neuronales disenadas y la base de datos neuronal antes creada para clasificacion del tejido en sospechoso y no sospechoso.- Analysis of the data obtained in DOT infrared scanning through the use of designed neural networks and the previously created neuronal database for tissue classification in suspect and non-suspect. - Escaneo preciso Raman/SORS acotado a zonas de tejido sospechoso.- Raman / SORS precise scanning bounded to areas of suspicious tissue. Almacenamiento de los escaneos precisos y acotados de las zonas sospechosas en redes neuronales.Storage of accurate and bounded scans of suspicious areas in neural networks. - Analisis de los datos obtenidos en escaneo preciso Raman/SORS mediante el uso de redes neuronales entrenadas con firmas Raman conocidas base de datos de escaneos Raman previos y la informacion almacenada.- Analysis of the data obtained in precise Raman / SORS scanning through the use of trained neural networks with known Raman signatures database of previous Raman scans and stored information. - Determination de la presencia de la composition qulmica y/o caracterlsticas del tejido mediante software que combina los resultados de las redes neuronales de optica difusa y de analisis Raman con criterios especlficos como, por ejemplo, la morfologla de las calcificaciones presentes en el tejido.- Determination of the presence of chemical composition and / or tissue characteristics by software that combines the results of the neural networks of diffuse optics and Raman analysis with specific criteria such as, for example, the morphology of the calcifications present in the tissue. Caracterizado porque la red neuronal que analiza los datos Raman obtenidos es una red neuronal (NN) con conexiones hacia adelante, concretamente siguiendo un modelo de propagation perceptron (retropropagacion, perception model). La NN consta de tres capas denominadas de entrada, de salida y oculta, formada por neuronas (unico elemento operativo). La capa de entrada se utiliza solo para la entrada de la matriz de datos en la NN. En las otras capas se realizan calculos no lineales. En la capa oculta cada neurona recibe senales de otros nodos de entrada, sumandose estas mediante la funcion de activation. Despues el resultado es transformado por la funcion de transferencia para, posteriormente, ser enviado a las neuronas de salida para determinar si el reconocimiento es positivo o negativo. Todas estas neuronas y nodos estan unidos hacia adelante y cada union esta ponderada por medio de variables llamadas pesos. Estos pesos se encargan de adaptarse al sistema a modelizar y “recuerda” la informacion presentada al modelo. Los algoritmos basicos de retropropagacion ajustan los pesos en una fuerte pendiente de direction descendiente (valores negativos del gradiente); esto es, la direccion en la cual la funcion de rendimiento disminuye mas rapidamente. Las medidas basicas son el numero de positivos y negativos (verdaderos y falsos, PV, NV, FP, FN) a partir de los cuales se determina la sensibilidad y la especificidad de los procesos de detection. Un positivo verdadero (PV) corresponde con la detection correcta de una sustancia, compuesto o caracterlstica en una muestra, cuando esta realmente existe. Un negativo verdadero (NV) corresponde a la deteccion negativa de una sustancia, compuesto o caracterlstica de una muestra cuando efectivamente no existe. Las detecciones se consideran falsas (PF, NF) cuando la deteccion no corresponde con la realidad de la muestra. Los datos Raman obtenidos se almacenan en una red neuronal (NN) para posteriores analisis y para mejorar las resoluciones de los espectros. Este almacenamiento se lleva a cabo por medio de una red neuronal y sus pesos. Estos pesos se van adaptando a cada uno de los datos de espectros conflictivos y su composicion qulmica presentados a la red. De esta forma se deja constancia del sistema objeto de estudio y su composicion en forma de matriz numerica que se va adaptando a los nuevos espectros/composicion que se van presentando con el tiempo y se obtienen resultados con una eficacia de mas del 99,99% en corto espacio de tiempo y se obtienen resultados con una eficacia de mas del 99,99% en corto espacio de tiempo.Characterized because the neural network that analyzes the Raman data obtained is a neural network (NN) with forward connections, specifically following a propagation perceptron model (retropropagation, perception model). The NN consists of three layers called input, output and hidden, formed by neurons (only operative element). The input layer is used only for the entry of the data matrix in the NN. In the other layers, non-linear calculations are made. In the hidden layer each neuron receives signals from other input nodes, adding these through the activation function. Then the result is transformed by the transfer function to subsequently be sent to the output neurons to determine if the recognition is positive or negative. All these neurons and nodes are linked forward and each union is weighted by means of variables called weights. These weights are responsible for adapting to the system to model and "remember" the information presented to the model. The basic backpropagation algorithms adjust the weights in a steep slope of descending direction (negative values of the gradient); that is, the direction in which the performance function decreases more rapidly. The basic measurements are the number of positives and negatives (true and false, PV, NV, FP, FN) from which the sensitivity and specificity of the detection processes is determined. A true positive (PV) corresponds to the correct detection of a substance, compound or characteristic in a sample, when it actually exists. A true negative (NV) corresponds to the negative detection of a substance, compound or characteristic of a sample when it does not exist. The detections are considered false (PF, NF) when the detection does not correspond to the reality of the sample. The obtained Raman data is stored in a neural network (NN) for later analysis and to improve the resolutions of the spectra. This storage is carried out by means of a neural network and its weights. These weights are adapted to each of the data of conflicting spectra and their chemical composition presented to the network. In this way, the system object of study and its composition in the form of a numerical matrix that adapts to the new spectra / composition that are presented over time and results are obtained with an efficiency of more than 99.99%. in short space of time and results are obtained with an efficiency of more than 99.99% in a short space of time. 2. Metodo, segun reivindicacion 1, donde la red neuronal para analisis de datos obtenidos en el escaneo infrarrojo DOT es entrenada previamente con datos de DOT conocidos para clasificar zonas en el tejido.2. Method according to claim 1, wherein the neural network for analyzing data obtained in infrared scanning DOT is previously trained with known DOT data to classify zones in the tissue. 3. Metodo, segun reivindicaciones 1 y 2, donde la red neuronal para analisis de datos obtenidos en el escaneo Raman es entrenada previamente con datos de escaneo Raman conocidos para determinar la composition qulmica y las caracterlsticas del tejido.3. Method according to claims 1 and 2, wherein the neural network for analysis of data obtained in the Raman scan is previously trained with known Raman scan data to determine the chemical composition and the characteristics of the tissue. 4. Metodo, segun reivindicaciones anteriores, donde la red neuronal de optica difusa se retroalimenta con datos obtenidos por optica difusa con el fin de realizar un entrenamiento continuo.Method, according to previous claims, where the neural network of diffuse optics is fed back with data obtained by diffuse optics in order to carry out a continuous training. 5. Metodo, segun reivindicaciones anteriores, donde la red neuronal del escaneo Raman se retroalimenta con datos obtenidos por escaneo Raman con el fin de realizar un entrenamiento continuo. 5. Method, according to previous claims, where the neural network of the Raman scan is fed back with data obtained by Raman scanning in order to perform a continuous training.
ES201600995A 2016-11-24 2016-11-24 Method and system for non-invasive characterization of human and animal tissues in vivo Active ES2635285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201600995A ES2635285B2 (en) 2016-11-24 2016-11-24 Method and system for non-invasive characterization of human and animal tissues in vivo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201600995A ES2635285B2 (en) 2016-11-24 2016-11-24 Method and system for non-invasive characterization of human and animal tissues in vivo

Publications (2)

Publication Number Publication Date
ES2635285A1 ES2635285A1 (en) 2017-10-03
ES2635285B2 true ES2635285B2 (en) 2019-04-23

Family

ID=59957849

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201600995A Active ES2635285B2 (en) 2016-11-24 2016-11-24 Method and system for non-invasive characterization of human and animal tissues in vivo

Country Status (1)

Country Link
ES (1) ES2635285B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135965A (en) * 1996-12-02 2000-10-24 Board Of Regents, The University Of Texas System Spectroscopic detection of cervical pre-cancer using radial basis function networks
WO2005052558A1 (en) * 2003-11-28 2005-06-09 Bc Cancer Agency Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy
US7796243B2 (en) * 2004-06-09 2010-09-14 National Research Council Of Canada Detection and monitoring of changes in mineralized tissues or calcified deposits by optical coherence tomography and Raman spectroscopy

Also Published As

Publication number Publication date
ES2635285A1 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
Matousek et al. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring
Jermyn et al. A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology
US7257437B2 (en) Autofluorescence detection and imaging of bladder cancer realized through a cystoscope
Matousek et al. Recent advances in the development of Raman spectroscopy for deep non‐invasive medical diagnosis
US7016717B2 (en) Near-infrared spectroscopic tissue imaging for medical applications
Mayinger et al. Endoscopic light-induced autofluorescence spectroscopy for the diagnosis of colorectal cancer and adenoma
ES2208696T3 (en) DIAGNOSIS OF CANCER DIFFERENTIAL NORMALIZED FLUORESCENCE INDUCED BY LASER.
Matousek et al. Emerging concepts in deep Raman spectroscopy of biological tissue
WO2006061565A1 (en) Raman spectral analysis of sub-surface tissues and fluids
Li et al. Machine-learning-assisted spontaneous Raman spectroscopy classification and feature extraction for the diagnosis of human laryngeal cancer
Kekkonen et al. Chemical imaging of human teeth by a time-resolved Raman spectrometer based on a CMOS single-photon avalanche diode line sensor
Dramićanin et al. Using fluorescence spectroscopy to diagnose breast cancer
Martin et al. An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging
ES2635285B2 (en) Method and system for non-invasive characterization of human and animal tissues in vivo
Ghasemi et al. Optical spectroscopic methods to discriminate in-Vitro Hodgkin cancerous and normal tissues
Saraswathy et al. Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy
US11375897B2 (en) System and method for characterization of a brain tissue sample using Raman marker regions
US11725984B2 (en) Raman spectroscopy-based optical matched filter system and method for using the same
Vasefi et al. Hyperspectral angular domain imaging for ex-vivo breast tumor detection
Sowoidnich et al. Spatially Offset Raman Spectroscopy for photon migration investigations in long bone
Baria et al. Label-free spectroscopic diagnosis of urothelial carcinoma
Steinecker et al. Development of an Optical Projection Tomography (OPT) Setup Operating in the Short-Wave Infrared (SWIR) Region
Li et al. Analysis on data for detection of lung cancer using serum auto-fluorescence
Wang et al. Probability-based differential normalized fluorescence bivariate analysis for the classification of tissue autofluorescence spectra
Khristoforova et al. The study of ex vivo and in vivo skin neoplasms using near-infrared fluorescence spectroscopy

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2635285

Country of ref document: ES

Kind code of ref document: B2

Effective date: 20190423