ES2610658A1 - Self-cleaning, decontaminant and consolidating product for building materials (Machine-translation by Google Translate, not legally binding) - Google Patents

Self-cleaning, decontaminant and consolidating product for building materials (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2610658A1
ES2610658A1 ES201500772A ES201500772A ES2610658A1 ES 2610658 A1 ES2610658 A1 ES 2610658A1 ES 201500772 A ES201500772 A ES 201500772A ES 201500772 A ES201500772 A ES 201500772A ES 2610658 A1 ES2610658 A1 ES 2610658A1
Authority
ES
Spain
Prior art keywords
self
cleaning
translation
machine
building materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201500772A
Other languages
Spanish (es)
Other versions
ES2610658B1 (en
Inventor
Manuel Jesús LUNA AGUILERA
María Jesús MOSQUERA DÍAZ
María Luisa Almoraima GIL MONTERO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Cadiz
Original Assignee
Universidad de Cadiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Cadiz filed Critical Universidad de Cadiz
Priority to ES201500772A priority Critical patent/ES2610658B1/en
Publication of ES2610658A1 publication Critical patent/ES2610658A1/en
Application granted granted Critical
Publication of ES2610658B1 publication Critical patent/ES2610658B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/38Paints containing free metal not provided for above in groups C09D5/00 - C09D5/36
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cosmetics (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a composite material constituted by nanoparticles of titanium dioxide and gold integrated in a silica gel, which possesses photocatalytic activity. This new material originates a self-cleansing and decontaminating effect on building materials of porous nature. Specifically, it is a product capable of: (1) providing the treated surface with self-cleaning and decontaminating capacity by simple exposure to sunlight. (2) improving its surface mechanical strength (3) to form a cohesive coating capable of adhering to the substrate. (Machine-translation by Google Translate, not legally binding)

Description

imagen1image 1

imagen2image2

imagen3image3

imagen4image4

imagen5image5

que produce la evaporación de estos compuestos durante la fase de aplicación en los materiales de construcción o en los edificios. which produces the evaporation of these compounds during the application phase in building materials or in buildings.

Descripción de las figuras Description of the figures

FIGURA 1.- Comparación de productos autolimpiantes en los que su actividad disminuye al aumentar la concentración de Au. a) Curvas de degradación de azul de metileno sobre rocas tratadas con los productos. b) Distribución de tamaño de poros de los geles. c) Imagen HAADF-STEM del gel con 0,12% de oro y mapa EDX correspondiente para el silicio (rojo) y el titanio (azul). d) Imagen HAADF-STEM del gel con 0,25% de oro y mapa EDX correspondiente para el silicio (rojo) y el titanio (verde). FIGURE 1.- Comparison of self-cleaning products in which their activity decreases with increasing concentration of Au. a) Degradation curves of methylene blue on rocks treated with the products. b) Pore size distribution of the gels. c) HAADF-STEM image of the gel with 0.12% gold and corresponding EDX map for silicon (red) and titanium (blue). d) HAADF-STEM image of the gel with 0.25% gold and corresponding EDX map for silicon (red) and titanium (green).

FIGURA 2.- Comparación entre las isotermas de adsorción-deserción de nitrógeno y su correspondiente distribución de poros para un mismo material al variar la proporción de agua durante su síntesis. FIGURE 2.- Comparison between the adsorption-attrition nitrogen isotherms and their corresponding pore distribution for the same material by varying the proportion of water during its synthesis.

FIGURA 3.- Imagen de microscopia electrónica de trasmisión y distribución de tamaños de las nanopartículas de oro usadas en la síntesis. FIGURE 3.- Image of transmission electron microscopy and size distribution of the gold nanoparticles used in the synthesis.

FIGURA 4.- Espectros de reflectancia difusa de los xerogeles preparados. FIGURE 4.- Diffuse reflectance spectra of the prepared xerogels.

FIGURA 5.- Evolución del máximo de absorción relativo del azul de metileno en las muestras manchadas durante el ensayo de autolimpieza, evolución general y detalle de los primeros 60 minutos. FIGURE 5.- Evolution of the maximum relative absorption of methylene blue in the stained samples during the self-cleaning test, general evolution and detail of the first 60 minutes.

Modo de realización de la invención Embodiment of the invention

La síntesis del producto, objeto de la presente invención, incluye las siguientes etapas: The synthesis of the product, object of the present invention, includes the following steps:

En primer lugar, el proceso de síntesis sufre ligeras variaciones en función del modo en el que se introduzcan las nanopartículas de oro en el sol de partida: First, the synthesis process undergoes slight variations depending on the way in which the gold nanoparticles are introduced into the starting sun:

(1) (one)
El dióxido de titanio se mezcla con el oligómero de sílice y las nanopartículas de oro previamente sintetizadas se añaden dispersas en el volumen de agua que se empleara en la síntesis. Titanium dioxide is mixed with the silica oligomer and the previously synthesized gold nanoparticles are added dispersed in the volume of water used in the synthesis.

(2) (2)
El dióxido de titanio se mezcla con una dispersión de nanopartículas de oro previamente sintetizadas y el dispersante se evapora para obtener un polvo seco compuesto por nanopartículas de oro y de dióxido de titanio. Este polvo se mezcla con el oligómero de sílice y se añade el agua necesaria para la síntesis. The titanium dioxide is mixed with a dispersion of previously synthesized gold nanoparticles and the dispersant is evaporated to obtain a dry powder composed of gold and titanium dioxide nanoparticles. This powder is mixed with the silica oligomer and the water necessary for the synthesis is added.

(3) (3)
El dióxido de titanio se mezcla con el oligómero de sílice y se añaden un precursor de oro y opcionalmente un agente reductor disueltos en el volumen de agua que se empleara en la síntesis. De esta forma las nanopartículas de oro se forman durante la síntesis del sol. The titanium dioxide is mixed with the silica oligomer and a gold precursor and optionally a reducing agent dissolved in the volume of water to be used in the synthesis are added. In this way gold nanoparticles are formed during the synthesis of the sun.

Independientemente del tipo de incorporación de las nanopartículas elegido, a la mezcla de precursor de sílice, agua, nanopartículas de oro y de dióxido de titanio se le añade el tensioactivo no iónico y la mezcla se mantiene bajo agitación ultrasónica durante 10 minutos. El oligómero de silicio puede ser TES40 WN (Wacker) y el tensioactivo no iónico utilizado en la síntesis, la amina primeria n-octilamina. Respecto a las concentraciones requeridas de cada componente en el sol de partida, mencionar que si el precursor polimérico es TES 40 WN de Wacker y el tensioactivo no iónico n-octilamina, la concentración de surfactante en el sol inicial debe ser 0.22 M o superior, siendo la Regardless of the type of incorporation of the nanoparticles chosen, the non-ionic surfactant is added to the mixture of silica, water, gold nanoparticles and titanium dioxide precursor and the mixture is kept under ultrasonic stirring for 10 minutes. The silicon oligomer can be TES40 WN (Wacker) and the nonionic surfactant used in the synthesis, the first amine n-octylamine. Regarding the required concentrations of each component in the starting sol, mention that if the polymer precursor is Wacker TES 40 WN and the non-ionic n-octylamine surfactant, the concentration of surfactant in the initial sol should be 0.22 M or higher, being the

7 7

concentración micelar crítica de dicho surfactante en torno a 0.0065 M. Para concentraciones inferiores de n-octilamina, se produce la agregación y/o precipitación de las nanopartículas antes que la transición sol-gel ocurra. Critical micellar concentration of said surfactant at around 0.0065 M. For lower concentrations of n-octylamine, aggregation and / or precipitation of the nanoparticles occurs before the sol-gel transition occurs.

En el caso del dióxido de titanio puede emplearse partículas comerciales como Aeroxide P25 o VP Aeroperl P25/20 de Evonik o nanopartículas preparadas en el laboratorio. Su proporción en el sol debe encontrarse entre el 1 y el 4% p/v respecto al precursor, ya que para concentraciones superiores se producen un incremento significativo de la viscosidad y opacidad de los soles. Lo cual impide la penetración del material en la estructura porosa de la roca, reduce su adherencia y modifican en gran medida el color del sustrato tratado. In the case of titanium dioxide, commercial particles such as Aeroxide P25 or VP Aeroperl P25 / 20 from Evonik or nanoparticles prepared in the laboratory can be used. Its proportion in the sun must be between 1 and 4% w / v with respect to the precursor, since for higher concentrations there is a significant increase in the viscosity and opacity of the suns. This prevents the penetration of the material in the porous structure of the rock, reduces its adhesion and greatly modifies the color of the treated substrate.

Las nanopartículas de oro deben tener un tamaño entre los 3 y 20 nm para intensificar el fenómeno de resonancia del plasmón superficial. En caso de usar un precursor de oro, éste puede ser ácido tetracloroáurico o su sal potásica y como reductor citrato sódico. Sus concentraciones deben ser tal que la proporción Au/TiO2 no supere el 1% p/p. The gold nanoparticles must have a size between 3 and 20 nm to intensify the phenomenon of surface plasmon resonance. If a gold precursor is used, it can be tetrachlorouric acid or its potassium salt and as a sodium citrate reducer. Their concentrations should be such that the Au / TiO2 ratio does not exceed 1% w / w.

El contenido en agua en el sol debe ser entre el 0 y el 1,67% v/v respecto al precursor de sílice, situándose el porcentaje máximo de mejora de sus características en torno al 0,83% v/v (Figura 1), mayor cantidad de agua produce una gelificación excesivamente rápida que impide la aplicación de los productos. The water content in the sun must be between 0 and 1.67% v / v with respect to the silica precursor, with the maximum percentage of improvement of its characteristics around 0.83% v / v (Figure 1) , greater amount of water produces an excessively rapid gelation that prevents the application of the products.

La siguiente etapa del proceso, es la impregnación del material a tratar con el sol preparado. El producto puede penetrar en el sustrato por impregnación de la superficie mediante pulverización o bien, por aplicación mediante un rodillo o brocha. En el caso de objetos de tamaño reducido, por inmersión en un tanque que contenga el sol, o bien por ascenso capilar mediante el contacto superficial del producto con la cara inferior del objeto. Tras la impregnación, se produce la polimerización por condensación del oligómero de silicio, originándose un composite Au-TiO2-Si O2. The next stage of the process is the impregnation of the material to be treated with the prepared sun. The product can penetrate the substrate by impregnating the surface by spraying or by application by means of a roller or brush. In the case of small objects, by immersion in a tank containing the sun, or by capillary ascent by superficial contact of the product with the underside of the object. After impregnation, condensation polymerization of the silicon oligomer occurs, resulting in an Au-TiO2-Si O2 composite.

A continuación, y con objeto de ilustrar con más detalle, las ventajas de los productos que incorporan nanopartículas de oro, se describen resultados obtenidos en un nuestro laboratorio de investigación. En concreto, en el ejemplo 1 se describe el procedimiento de síntesis y se realiza la caracterización de los materiales sintetizados, en los que se varió la proporción de nanopartículas de oro respecto al dióxido de titanio entre 0 y 1% p/p. Next, and in order to illustrate in more detail, the advantages of products incorporating gold nanoparticles, results obtained in our research laboratory are described. Specifically, in example 1 the synthesis procedure is described and the characterization of the synthesized materials is performed, in which the proportion of gold nanoparticles with respect to titanium dioxide was varied between 0 and 1% w / w.

En el ejemplo 2, los mismos materiales son aplicados sobre un material de construcción de naturaleza pétrea, realizándose una evaluación de su capacidad de adherencia al sustrato y su eficacia como consolidante y auto-limpiante. In Example 2, the same materials are applied to a building material of a stone nature, with an evaluation of its ability to adhere to the substrate and its effectiveness as a consolidant and self-cleaning.

Ejemplo 1 Example 1

Se mezclaron partículas de dióxido de titanio VP Aeroperl P25/20 de Evonik, con diámetro de partícula de 20 μm, y área superficial de 50±15 m2/g, con una dispersión acuosa de nanopartículas de oro esféricas con un tamaño medio de 7,45 nm (Figura 2). A continuación, se evapora el agua de la mezcla hasta obtener un polvo seco. El proceso se repite para obtener polvos de dióxido de titanio con contenidos en oro del 0, 0,25, 0,5 y 1% p/p. Los polvos se mezclan con TES40 WN (en adelante "TES40"), fabricado por Wacker y constituido por oligómeros de sílice. La proporción de TiO2 respecto al precursor de silicio es 1% p/v. A continuación se añade el agua y el tensioactivo no iónico, n-octilamina, la proporción de agua y octilamina respecto a TES40 es 0,83% y 0,36% (v/v), respectivamente. Adicionalmente y a efectos comparativos, se preparó un sol sin nanopartículas de oro ni de dióxido de titanio. Los cinco soles preparados fueron sometidos a agitación por ultrasonidos (potencia 125 W) durante 10 minutos. Estos Evonik VP Aeroperl P25 / 20 titanium dioxide particles, with a particle diameter of 20 μm, and a surface area of 50 ± 15 m2 / g, were mixed with an aqueous dispersion of spherical gold nanoparticles with an average size of 7, 45 nm (Figure 2). Then, the water in the mixture is evaporated until a dry powder is obtained. The process is repeated to obtain titanium dioxide powders with gold contents of 0.25, 0.5 and 1% w / w. The powders are mixed with TES40 WN (hereinafter "TES40"), manufactured by Wacker and consisting of silica oligomers. The proportion of TiO2 with respect to the silicon precursor is 1% w / v. The water and the non-ionic surfactant, n-octylamine are then added, the proportion of water and octylamine with respect to TES40 is 0.83% and 0.36% (v / v), respectively. Additionally and for comparative purposes, a sun was prepared without gold nanoparticles or titanium dioxide. The five prepared suns were subjected to ultrasonic stirring (power 125 W) for 10 minutes. These

8 8

imagen6image6

imagen7image7

A continuación, utilizando un espectrofotómetro de reflexión para solidos modelo ColorFlex de Hunterlab, con las siguientes condiciones: iluminante 065, observador 10º y estándar CIEL*a*b*, se determinaron las diferencias de color totales (∆E*) que experimentan las muestras tras el tratamiento, las cuales son recogidas en la Tabla 1. Este parámetro es muy importante ya que cambios de color elevados son perceptibles por el ojo humano y limita la aplicación de los productos a campos exigentes como la conservación del patrimonio (M. Drdȧckẏ et al, Mater. Struct., 45, 505, 2012). El tratamiento con partículas de dióxido de titanio produce un menor cambio de color que el que no posee partículas porque al tratarse de una roca blanca, TiO2 no produce cambio de color apreciable. Con la adición de las nanopartículas de oro los cambios de color son mayores y se incrementan al aumentar el contenido en Au de las formulaciones. El límite para la aplicación en los campos más restrictivos se encuentra en la proporción de oro de 0,25% en la que ∆E se sitúa en torno a 5. Todos los cambios en las muestras son uniformes sin que aparezcan manchas que resten valor estético al material. Por lo que incluso los productos de mayor contenido en oro pueden ser destinados a aplicaciones en las que el cambio de color no sea un factor limitante, incluso al dotar a la roca de un tono rosa-purpura puede ser un efecto deseable. Next, using a reflection spectrophotometer for Hunterlab ColorFlex model solids, with the following conditions: illuminant 065, 10 ° observer and CIEL standard * a * b *, the total color differences (∆E *) that the samples undergo were determined after treatment, which are shown in Table 1. This parameter is very important since high color changes are perceptible by the human eye and limits the application of the products to demanding fields such as heritage conservation (M. Drdȧckȧ et al, Mater. Struct., 45, 505, 2012). The treatment with particles of titanium dioxide produces a smaller color change than the one that does not have particles because being a white rock, TiO2 does not produce an appreciable color change. With the addition of the gold nanoparticles the color changes are greater and increase as the content of Au in the formulations increases. The limit for the application in the most restrictive fields is in the proportion of gold of 0.25% in which ∆E is around 5. All changes in the samples are uniform without stains appearing to reduce aesthetic value to the material So even the products with the highest gold content can be used for applications where color change is not a limiting factor, even giving the rock a pink-purple hue can be a desirable effect.

El grado de adhesión de los productos sobre el sustrato pétreo se determinó mediante un test de adherencia, según metodología previamente descrita por otros autores (Ling L et al. Langmuir, 25, 3260, 2009; Ding, Z et al. Langmuir, 25, 9648, 2009). Las superficies pétreas tratadas y las muestras sin tratar fueron sometidas al test de adherencia. Dicho test consistió en la colocación de la cinta adhesiva sobre la superficie pétrea para, a continuación, ser extraída de forma manual, ejerciendo en todos los casos una presión similar. En la Tabla 1 se recoge la cantidad de material retirado por la cinta adhesiva para cada muestra. En todos los casos, la cantidad de material retirada es muy baja, siendo incluso nula para ST1Au, lo que indica una muy buena adhesión de los productos sobre el sustrato pétreo. Además, la cantidad de material retirado en las muestras tratadas es del orden de 20 veces inferior al de la muestra sin tratar, por lo tanto los productos logran un efecto consolidante eficaz de la superficie de las rocas. The degree of adhesion of the products on the stone substrate was determined by an adhesion test, according to methodology previously described by other authors (Ling L et al. Langmuir, 25, 3260, 2009; Ding, Z et al. Langmuir, 25, 9648, 2009). The treated stone surfaces and the untreated samples were subjected to the adhesion test. This test consisted of placing the adhesive tape on the stone surface and then being removed manually, exerting similar pressure in all cases. Table 1 shows the amount of material removed by the adhesive tape for each sample. In all cases, the amount of material removed is very low, even being null for ST1Au, which indicates a very good adhesion of the products on the stone substrate. In addition, the amount of material removed in the treated samples is of the order of 20 times lower than that of the untreated sample, therefore the products achieve an effective consolidating effect of the rock surface.

La eficacia auto-limpiante de los productos fue evaluado mediante un test adaptado a partir de la norma ISO 10678. Para ello, se depositan sobre las muestras 0,5 ml una de disolución de azul de metileno 1 mM. Las manchas se dejaron secar, en condiciones de laboratorio y oscuridad, hasta peso constante. A continuación, las probetas fueron irradiadas con luz a 500W/m2 en una cámara de degradación solar Solarbox 3000e RH de CO.FO.ME.GRA equipada con lámpara de xenón como fuente de luz. Durante el test las muestras fueron sometidas a una humedad del 60% y una temperatura de 50ºC. A simple vista se observó que durante el tiempo de ensayo la mancha en la roca sin tratar prácticamente no se ve alterada, en cambio todas las muestras tratadas muestran degradación del azul de metileno, observándose en todas las muestras tratadas una desaparición total del manchado después de 300 min. No obstante, existen significativas diferencias en la cinética de degradación entre los productos que contienen Au y los que no poseen este componente. En concreto, La degradación comienza a ser evidente en las muestras tratadas con los productos que contiene nanopartículas de oro a los 15 minutos y tras 60 minutos las manchas han, prácticamente, desaparecido. En el caso de las muestras tratadas con productos sin Au (S0Au y ST0Au), las manchas permanecen después de 60 minutos de exposición en la cámara. The self-cleaning efficacy of the products was evaluated by means of a test adapted from ISO 10678. To this end, 0.5 ml of 1 mM methylene blue solution is deposited on the samples. The spots were allowed to dry, under laboratory conditions and darkness, until constant weight. Next, the specimens were irradiated with light at 500W / m2 in a Solarbox 3000e RH solar degradation chamber of CO.FO.ME.GRA equipped with a xenon lamp as a light source. During the test the samples were subjected to a humidity of 60% and a temperature of 50 ° C. At first glance, it was observed that during the test time the stain in the untreated rock is practically not altered, however all the treated samples show degradation of methylene blue, being observed in all the treated samples a total disappearance of the staining after 300 min However, there are significant differences in degradation kinetics between products that contain Au and those that do not have this component. Specifically, degradation begins to be evident in samples treated with products containing gold nanoparticles at 15 minutes and after 60 minutes the spots have virtually disappeared. In the case of samples treated with products without Au (S0Au and ST0Au), the spots remain after 60 minutes of exposure in the chamber.

Para tener una medida cuantitativa de la degradación del azul de metileno se registraron los espectros visibles de reflexión de las muestras manchadas a lo largo del ensayo usando el espectrofotómetro para sólidos. A partir de estos espectros, se crearon las curvas de degradación del azul de metileno sobre cada muestra representando la absorción relativa del azul de metileno (cociente de la absorción en un tiempo To have a quantitative measure of the degradation of methylene blue, the visible reflection spectra of the stained samples were recorded throughout the test using the solid spectrophotometer. From these spectra, the degradation curves of methylene blue were created on each sample representing the relative absorption of methylene blue (absorption ratio over time

11 eleven

imagen8image8

Claims (1)

imagen1image 1
ES201500772A 2015-10-28 2015-10-28 Self-cleaning, decontaminating and consolidating product for building materials Active ES2610658B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201500772A ES2610658B1 (en) 2015-10-28 2015-10-28 Self-cleaning, decontaminating and consolidating product for building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201500772A ES2610658B1 (en) 2015-10-28 2015-10-28 Self-cleaning, decontaminating and consolidating product for building materials

Publications (2)

Publication Number Publication Date
ES2610658A1 true ES2610658A1 (en) 2017-04-28
ES2610658B1 ES2610658B1 (en) 2018-02-07

Family

ID=58580588

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201500772A Active ES2610658B1 (en) 2015-10-28 2015-10-28 Self-cleaning, decontaminating and consolidating product for building materials

Country Status (1)

Country Link
ES (1) ES2610658B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050266981A1 (en) * 2004-05-28 2005-12-01 Masayuki Nakajima Hydrophilic compositions, methods for their production, and substrates coated with such compositions
ES2394933A1 (en) * 2011-06-24 2013-02-06 Universidad De Cádiz Self-cleaning and aggregating product for rocks and other construction materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050266981A1 (en) * 2004-05-28 2005-12-01 Masayuki Nakajima Hydrophilic compositions, methods for their production, and substrates coated with such compositions
ES2394933A1 (en) * 2011-06-24 2013-02-06 Universidad De Cádiz Self-cleaning and aggregating product for rocks and other construction materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERGAMONTI, L. et al. ¿Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones¿. Environmental science and pollution research international, 2014, Vol. 21, N. 23, páginas 13264-13277. Ver resumen; apartado experimental. *
PAKDEL, E. et al. ¿Reprint of: photostability of wool fabrics coated with pure and modified TiO2 colloids¿. Journal of Colloid and Interface Science, 2015, Vol. 447, páginas 191-201. Ver resumen, apartado 3.1. *
PINHO, L. et al. ¿Ag¿SiO2¿TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials¿. Applied catalysis B, 2015, Vol. 178, páginas 144-154. Ver resumen; apartado 2.1. *

Also Published As

Publication number Publication date
ES2610658B1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
ES2710366T3 (en) Minerals containing modified surface calcium carbonate and its use
ES2707782T3 (en) Compositions comprising a film of agricultural particles
Yadav et al. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins
CN104837347B (en) Antimicrobial and antiviral property composition with and preparation method thereof
Wang et al. Facile encapsulation of SiO 2 on ZnO quantum dots and its application in waterborne UV-shielding polymer coatings
Han et al. Free-standing polydopamine films generated in the presence of different metallic ions: the comparison of reaction process and film properties
Jayram et al. Highly monodispersed Ag embedded SiO 2 nanostructured thin film for sensitive SERS substrate: growth, characterization and detection of dye molecules
Jacucci et al. Anisotropic silica colloids for light scattering
Clough et al. Photonic Paints: Structural Pigments Combined with Water‐Based Polymeric Film‐Formers for Structurally Colored Coatings
ES2610658A1 (en) Self-cleaning, decontaminant and consolidating product for building materials (Machine-translation by Google Translate, not legally binding)
EP2970679B1 (en) A process for manufacturing nanoparticles in a concentrated slurry
Park et al. Effect of shape of silver nanoplates on the enhancement of surface plasmon resonance (SPR) signals
ES2682070T3 (en) Glitter and manufacturing procedure
US9994714B2 (en) Silica protected pigments for use in artist media
ES2831273T3 (en) Coating compound, manufacturing process of the coating compound and its use
Nocera et al. Fluorescent microparticles fabricated through chemical coating of O/W emulsion droplets with a thin metallic film
KR101781291B1 (en) The manufacture method of the nano-materials for the materialization of the superhydrophobic advanced materials
Lai et al. Preparation of a colloidal photonic crystal containing CuO nanoparticles with tunable structural colors
ES2652140B2 (en) Biocidal and consolidating product for building materials.
Bunroek et al. Development of nano TiO2 coated cement surface degradation properties by the photocatalytic
RU2607221C1 (en) White pigment
CN110183112A (en) A kind of three glass, the two chamber glass and its preparation process of water-mist-proof condensation
Onoda et al. Influence of phosphoric acid treatment on the photocatalytic activity of zinc oxide
CN103143026B (en) Block copolymer mPEG-PLGA/amorphous calcium silicate hydrate composite nano material as well as preparation method and application thereof
ES2784876B2 (en) Procedure for the protection of an object or an ornamental surface of rocky origin, exposed to the elements.

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2610658

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20180207