ES2599606A1 - Device based on optical fiber and diffraction gratings for the measurement of temperatures that reach the thermal limits of the optical fiber, and manufacturing process (Machine-translation by Google Translate, not legally binding) - Google Patents

Device based on optical fiber and diffraction gratings for the measurement of temperatures that reach the thermal limits of the optical fiber, and manufacturing process (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2599606A1
ES2599606A1 ES201601097A ES201601097A ES2599606A1 ES 2599606 A1 ES2599606 A1 ES 2599606A1 ES 201601097 A ES201601097 A ES 201601097A ES 201601097 A ES201601097 A ES 201601097A ES 2599606 A1 ES2599606 A1 ES 2599606A1
Authority
ES
Spain
Prior art keywords
optical fiber
outer protection
protection block
optical
transduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201601097A
Other languages
Spanish (es)
Other versions
ES2599606B2 (en
Inventor
Luis RODRIGUEZ COBO
José Miguel López Higuera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Cantabria
Original Assignee
Universidad de Cantabria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Cantabria filed Critical Universidad de Cantabria
Priority to ES201601097A priority Critical patent/ES2599606B2/en
Publication of ES2599606A1 publication Critical patent/ES2599606A1/en
Application granted granted Critical
Publication of ES2599606B2 publication Critical patent/ES2599606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

Device (10, 20, 30, 40) based on optical fiber (11, 21, 31, 41) for the measurement of temperatures that reach the thermal limits of the optical fiber (11, 21, 31, 41), using networks of diffraction (12, 22, 32) and subjected to an encapsulation process, comprising: - an optical transduction element consisting of an optical fiber (11, 21, 31, 41) in which a diffraction grating (12, 22, 32) is inscribed in an area thereof; - an interior coating (13, 23, 33) that lines the optical transduction element; - an outer protection block (14, 24, 34) inside which the transduction optical element covered by the inner cover (13, 23, 33) is placed; - as many inlet/outlet protections (15, 25, 35) as orifices presents the outer protection block (14, 24, 34), anchored to the outer protection block (14, 24, 34); - at least one support (16, 26, 36) attached to the outer protection block (14, 24,, 34); A manufacturing process of the device (10, 20, 30, 40) comprising the steps of: inscribing the diffraction grating (12, 22, 32) in the optical fiber (11, 21, 31, 41), applying the coating internal, apply the outer protection block (14, 24, 34), incorporate the entry/exit protections (15, 25, 35) and apply the support (16, 26, 36). (Machine-translation by Google Translate, not legally binding)

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

DESCRIPCIONDESCRIPTION

Dispositivo basado en fibra optica y redes de difraccion para la medida de temperaturas que alcanzan los llmites termicos de la fibra optica, y proceso de fabricacion.Device based on optical fiber and diffraction networks for measuring temperatures that reach the thermal limits of the optical fiber, and manufacturing process.

Campo de la invencionField of the Invention

La presente invencion pertenece al campo de los dispositivos para la medida de altas temperaturas (temperaturas de hasta aproximadamente 500°C), y, mas concretamente, al campo de los dispositivos basados en fibra optica para la medida de muy altas temperaturas (temperaturas que alcanzan los llmites termicos de la fibra optica. tlpicamente los 1200°C en fibras opticas estandar), empleando redes de difraccion y sometido a un proceso de encapsulado.The present invention belongs to the field of devices for measuring high temperatures (temperatures up to about 500 ° C), and, more specifically, to the field of optical fiber based devices for measuring very high temperatures (temperatures reaching the thermal limits of the optical fiber (typically 1200 ° C in standard optical fibers), using diffraction networks and subjected to an encapsulation process.

Antecedentes de la invencionBackground of the invention

En la actualidad existen una gran variedad de dispositivos para medir la temperatura, basados en multitud de tecnologlas y orientados a infinidad de aplicaciones diferentes. No obstante, a medida que se incrementa la temperatura de trabajo, las diferentes opciones se reducen. El metodo mas extendido para medir a altas temperaturas (Tmax ~ 500°C) es el conocido como termopar, en el que se mide la variacion de voltaje provocada por la diferencia de temperatura en la union de dos metales. Sin embargo, esta tecnologla presenta ciertas limitaciones como su precision o su vulnerabilidad a interferencias electromagneticas, motivos por los que se fomenta el uso de nuevas tecnicas de fibra optica.At present there is a great variety of devices to measure the temperature, based on a multitude of technologies and oriented to countless different applications. However, as the working temperature increases, the different options decrease. The most widespread method for measuring at high temperatures (Tmax ~ 500 ° C) is known as thermocouple, in which the voltage variation caused by the temperature difference at the junction of two metals is measured. However, this technology has certain limitations such as its precision or its vulnerability to electromagnetic interference, which is why the use of new fiber optic techniques is encouraged.

La medida de temperatura con fibra optica es una disciplina ampliamente trabajada durante los ultimos anos. Debido a esto, existen numerosas tecnicas tales como interferometros en fibra, redes de difraccion e incluso sistemas distribuidos capaces de obtener la temperatura en cada punto de la fibra. No obstante, teniendo en cuenta las limitaciones de cada tecnica, destacan por su versatilidad y fiabilidad las redes de difraccion, y en particular las redes de difraccion de periodo corto o de Bragg (del ingles, Fiber Bragg Gratings FBGs) [Kashyap. R. (1999). Fiber bragg gratings. Academic press].The measurement of temperature with optical fiber is a discipline widely worked during the last years. Because of this, there are numerous techniques such as fiber interferometers, diffraction networks and even distributed systems capable of obtaining the temperature at each point of the fiber. However, taking into account the limitations of each technique, diffraction networks stand out for their versatility and reliability, and in particular short-term or Bragg diffraction networks (in English, Fiber Bragg Gratings FBGs) [Kashyap. R. (1999). Fiber bragg gratings. Academic press].

Estas redes de difraccion de periodo corto consisten en una variacion periodica del Indice de refraccion del nucleo de la fibra que provoca la reflexion de aquellas longitudes de onda que cumplen las condiciones de resonancia de Bragg. Dicha resonancia es proporcional al periodo de cada PBG y se selecciona durante la fabricacion, por lo que se pueden conectar varios FBG en serie, reflejando cada uno de ellos una longitud de onda diferente (multiplexacion en longitud de onda), obteniendo un transductor quasi- distribuido capaz de medir en varios puntos, empleando una unica fibra optica. Este tipo de estructuras se utilizan ampliamente para la medida de deformacion y temperatura desde hace mas de dos decadas, presentando muy diferentes configuraciones y prestaciones. No obstante, si bien es cierto que los FBGs son una tecnica muy estable, pueden aparecer efectos no deseados cuando son sometidos a temperaturas superiores a 500°C, dependiendo del metodo de inscripcion en la fibra.These short-period diffraction networks consist of a periodic variation of the refractive index of the fiber nucleus that causes the reflection of those wavelengths that meet Bragg resonance conditions. This resonance is proportional to the period of each PBG and is selected during manufacturing, so that several FBGs can be connected in series, each of them reflecting a different wavelength (wavelength multiplexing), obtaining a quasi-transducer distributed capable of measuring at several points, using a single optical fiber. These types of structures are widely used for the measurement of deformation and temperature for more than two decades, presenting very different configurations and performance. However, while it is true that FBGs are a very stable technique, unwanted effects may occur when they are subjected to temperatures above 500 ° C, depending on the method of inscription in the fiber.

La inscripcion empleando laseres de alta intensidad, corno por ejemplo tecnicas basadas en inscripcion punto a punto (sin necesidad del patron de interferencia) permite obtener estructuras capaces de resistir muy altas temperaturas (Tmax ~ 1200°C) sin necesidad de un tratamiento termico posterior [US7835605B1, US8272236B2]. Sin embargo, si bien esThe inscription using high intensity lasers, as for example techniques based on point-to-point inscription (without the need for the interference pattern) allows to obtain structures capable of withstanding very high temperatures (Tmax ~ 1200 ° C) without the need for a subsequent thermal treatment [ US7835605B1, US8272236B2]. However, while it is

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

cierto que las investigaciones relacionadas con la medida de alta temperatura mediante fibra optica se han centrado en sus propiedades opticas, al someter la fibra a los tratamientos mas extremos (con laser, de alta energla), esta se vuelve extremadamente fragil, pudiendo ser empleada solo en entornos muy controlados, ya que degrada en exceso la fibra mecanicamente. Es decir, este tipo de inscripcion solo se centra en el aspecto optico, descuidando el aspecto mecanico.It is true that research related to the measurement of high temperature using optical fiber has focused on its optical properties, by subjecting the fiber to the most extreme treatments (with laser, high energy), it becomes extremely fragile, and can only be used in very controlled environments, since it degrades excessively the fiber mechanically. That is, this type of inscription only focuses on the optical aspect, neglecting the mechanical aspect.

Por otro lado, el metodo mas extendido para la inscripcion de FBGs, es la exposicion a un patron de interferencia centrado en el ultravioleta que provoca un cam bio de Indice de refraccion en el nucleo de la fibra. Este metodo de inscripcion, emplea laseres de baja intensidad lo que permite que la fibra optica presente suficiente integridad mecanica a temperatura ambiente. No obstante, cuando el cambio de Indice de refraccion se obtiene mediante este metodo, al incrementar la temperatura del FBG se produce una degradacion de dicha modulacion, llegando a "borrar" dicha modulacion. Este efecto, suele ocurrir en fibras normales de telecomunicacion entorno a los 600°C y limita el uso de estos dispositivos. Para mitigar esta limitacion, destacan principalmente dos tratamientos termicos que consiguen estabilizar el comportamiento optico de FBGs inducidos por exposicion ultravioleta.On the other hand, the most widespread method for the registration of FBGs is the exposure to an interference pattern centered in the ultraviolet that causes a change of refractive index in the fiber nucleus. This method of registration uses low intensity lasers which allows the optical fiber to have sufficient mechanical integrity at room temperature. However, when the change of refractive index is obtained by this method, increasing the temperature of the FBG causes a degradation of said modulation, reaching "erase" said modulation. This effect usually occurs in normal telecommunication fibers around 600 ° C and limits the use of these devices. To mitigate this limitation, two thermal treatments that stabilize the optical behavior of FBGs induced by ultraviolet exposure stand out.

El primero consiste en hacer un envejecimiento termico del FBG (annealing) [Rodriguez- Cobo, L., & Lopez-Higuera. J M. (2016). SLM Fiber Laser Stabilized at High Temperature. IEEE Photonics Technology Letters. 28{6), 693-696], con el fin de minimizar su degradacion con la temperatura [US7499605B1]. Mediante este envejecimiento, se consigue incrementar la longevidad del FBG a temperaturas altas, aunque solo puede ser aplicado cuando la temperatura de operacion del FBG esta por debajo de su borrado (p.ej 500°C).The first is to make a thermal aging of the FBG (annealing) [Rodriguez- Cobo, L., & Lopez-Higuera. J M. (2016). SLM Fiber Laser Stabilized at High Temperature. IEEE Photonics Technology Letters. 28 {6), 693-696], in order to minimize its degradation with temperature [US7499605B1]. Through this aging, it is possible to increase the longevity of the FBG at high temperatures, although it can only be applied when the operating temperature of the FBG is below its erasure (eg 500 ° C).

El segundo metodo se basa en un fenomeno conocido como "regeneracion", consistente en aplicar una mayor temperatura al FBG (por encima de la del borrado), hacer desaparecer el FBG y obtener de nuevo una respuesta similar centrada en una longitud de onda parecida [Canning. J. Cook. K., Aslund, M., Stevenson, M., Biswas, P, & Bandyopadhyay, S. (2010). Regenerated fibre Bragg gratings. INTECH Open Access Publisher]. Con este mecanismo, los cambios de Indice de refraccion del material se transform an en cambios permanentes en el material con el mismo periodo que el FBG semilla, por lo que sus propiedades opticas no se borran al incrementar otra vez la temperatura por encima de 500-600°C. En el proceso de regeneracion influyen multitud de parametros por lo que no existe un unico proceso para regenerar, existiendo diversas variantes, en las que generalmente se mantiene la temperatura estable por encima del umbral de regeneracion (que depende de diversos factores como el tipo de fibra, la presencia de hidrogeno...) durante varias horas, provocando el borrado y la regeneracion del espectro optico del FBG [Lindner, E., Chojetzki, C., Bruckner, S., Becker. M., Rothhardt, M. & Bartelt. H. (2009). Thermal regeneration of fiber Bragg gratings in photosensitive fibers. Optics express. 17(15), 1 2523-12531). [Lindner. E.. Canning. J., Chojetzki, C., Bruckner. S. Becker. M., Rothhardt. M. & Barre/t. H (201 1). Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation. Optics Communications. 284(1). 183-185]. [WO2015181419A1). Aunque no es el unico metodo para obtener FBGs resistentes a altas temperaturas, la regeneracion es la que exige menor complejidad durante la inscripcion del FBG, por lo que es mas facilmente escalable. Sin embargo, este tratamientos termicos generalmente requiere elevar la temperatura de la fibra por encima de los 800-1000°C por lo que esta se vuelveThe second method is based on a phenomenon known as "regeneration", consisting of applying a higher temperature to the FBG (above that of the erasure), removing the FBG and obtaining a similar response again centered on a similar wavelength [ Canning. J. Cook. K., Aslund, M., Stevenson, M., Biswas, P, & Bandyopadhyay, S. (2010). Regenerated fiber Bragg gratings. INTECH Open Access Publisher]. With this mechanism, the changes in the index of refraction of the material will be transformed into permanent changes in the material with the same period as the FBG seed, so that its optical properties are not erased by increasing the temperature above 500- 600 ° C A multitude of parameters influence the regeneration process, so there is no single process to regenerate, there are several variants, in which the stable temperature is generally maintained above the regeneration threshold (which depends on various factors such as the type of fiber , the presence of hydrogen ...) for several hours, causing the deletion and regeneration of the optical spectrum of the FBG [Lindner, E., Chojetzki, C., Bruckner, S., Becker. M., Rothhardt, M. & Bartelt. H. (2009). Thermal regeneration of fiber Bragg gratings in photosensitive fibers. Optics express. 17 (15), 1 2523-12531). [Lindner. E .. Canning. J., Chojetzki, C., Bruckner. S. Becker M., Rothhardt. M. & Barre / t. H (201 1). Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation. Optics Communications 284 (1). 183-185]. [WO2015181419A1). Although it is not the only method to obtain FBGs resistant to high temperatures, the regeneration is the one that demands less complexity during the registration of the FBG, so it is more easily scalable. However, this thermal treatment generally requires raising the temperature of the fiber above 800-1000 ° C so that it becomes

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

extremadamente quebradiza, aunque sus propiedades opticas se estabilicen para altas temperaturas.extremely brittle, although its optical properties are stabilized for high temperatures.

Es decir, la inscripcion empleando laseres de alta intensidad y la inscripcion mediante un patron de interferencia centrado en el ultravioleta y sometido a un tratamiento termico posterior, son muy agresivas para la fibra optica, descuidando en ambos casos el aspecto mecanico.That is to say, the inscription using high intensity lasers and the inscription by means of an interference pattern centered in the ultraviolet and subjected to a subsequent thermal treatment, are very aggressive for the optical fiber, neglecting in both cases the mechanical aspect.

En el caso de los dispositivos existentes para la medida de temperaturas de hasta aproximadamente 300-400°C, se procede a un encapsulado de la fibra optica con materiales termo-moldeables y/o pulverizables con el objetivo de proteger la fibra. Por ejemplo, es habitual la utilizacion de polyimida para conseguir medir temperaturas de hasta 300°C o de aluminio para temperaturas de hasta 400°C. Sin embargo, la utilizacion de este tipo de encapsulado, en dispositivos capaces de medir hasta muy altas temperaturas (inscripcion empleando laseres de alta intensidad e inscripcion mediante un patron de interferencia centrado en el ultravioleta y sometido a un tratamiento termico posterior) para dotarles de rigidez mecanica no es viable, y su adaptacion a este tipo de dispositivos conlleva una serie de inconvenientes que actualmente no se han podido superar.In the case of existing devices for measuring temperatures up to approximately 300-400 ° C, an encapsulation of the optical fiber with thermo-moldable and / or sprayable materials is carried out in order to protect the fiber. For example, it is common to use polyimide to measure temperatures up to 300 ° C or aluminum for temperatures up to 400 ° C. However, the use of this type of encapsulation, in devices capable of measuring up to very high temperatures (registration using high intensity lasers and registration through an interference pattern focused on ultraviolet and subjected to a subsequent thermal treatment) to provide them with rigidity mechanics is not feasible, and its adaptation to this type of devices entails a series of inconveniences that currently have not been overcome.

En primer lugar, los materiales de proteccion de la fibra tienen que resistir muy altas temperaturas (p. ej. varias horas por encima de 1000°C) limitando tanto los posibles materiales a emplear como su geometrla etc. Por otro lado, los materiales capaces de resistir muy altas temperaturas exigen que la fibra optica se adapte al encapsulado, por lo que surgen los cortes por cizalladura y la necesidad de encastre mecanico. Por ultimo, la utilizacion de materiales que soporten muy altas temperaturas dificulta el aislamiento de tensiones y fuerzas sobre la fibra opticaFirst, the fiber protection materials have to withstand very high temperatures (eg several hours above 1000 ° C) limiting both the possible materials to be used and their geometry etc. On the other hand, materials capable of withstanding very high temperatures require that the optical fiber be adapted to the encapsulation, so that shear cuts and the need for mechanical insertion arise. Finally, the use of materials that withstand very high temperatures makes it difficult to isolate tensions and forces on the optical fiber

En US6923048B2, se propone un metodo para monitorizar partes de un motor analizando la deformacion y/o temperatura mediante FBGs. Sin entrar a detalles de como obtener una respuesta optica estable hasta 1200°C, se propone embeber los FBGs en metal siendo sensibles a cambios en la deformacion y temperatura, actuando este metal como proteccion ffsica y termica de la fibra. Sin embargo, en este documento no se menciona como tiene que ser el encapsulado, ni su proceso de fabricacion, ni se comenta como dar estabilidad a la fibra optica.In US6923048B2, a method is proposed to monitor parts of an engine analyzing the deformation and / or temperature by means of FBGs. Without going into details of how to obtain a stable optical response up to 1200 ° C, it is proposed to embed the FBGs in metal being sensitive to changes in deformation and temperature, this metal acting as physical and thermal protection of the fiber. However, this document does not mention how the encapsulation has to be, nor its manufacturing process, nor does it comment on how to give stability to the optical fiber.

En resumen, de la revision del estado de la tecnica relacionada con la medida de altas temperaturas (Tmax ~ 500°C) y muy altas temperaturas (Tmax ~ 1200°C) mediante fibra optica se pueden extraer las siguientes conclusiones.In summary, the following conclusions can be drawn from the revision of the state of the art related to the measurement of high temperatures (Tmax ~ 500 ° C) and very high temperatures (Tmax ~ 1200 ° C) by means of optical fiber.

• Los sistemas descritos solo se centran o en el aspecto optico o en su proteccion mecanica, presentando generalmente requisitos incompatibles• The systems described only focus on either the optical aspect or its mechanical protection, generally presenting incompatible requirements

• Existen diversas tecnicas para la medida de altas temperaturas con fibra optica, siendo la mas productiva la inscripcion con laser ultravioleta y el posterior tratamiento termico, lo cual limita su posible embebido.• There are several techniques for measuring high temperatures with fiber optics, the most productive being the ultraviolet laser registration and the subsequent thermal treatment, which limits its possible embedding.

• No se abordan los metodos de instalacion de los dispositivos de muy alta temperatura, salvo que la fibra sea embebida en alguna parte de la estructura, aunque no se menciona como.• The installation methods of very high temperature devices are not addressed, unless the fiber is embedded in some part of the structure, although it is not mentioned as.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

Asimismo se identifican las siguientes necesidadesThe following needs are also identified

• Disenar encapsulados capaces de soportar tanto la operacion como los posibles tratamientos termicos necesarios para obtener dispositivos opticos estables (p.ej. regeneracion de FBGs)• Design packages capable of supporting both the operation and the possible thermal treatments necessary to obtain stable optical devices (eg regeneration of FBGs)

• Definir metodos de entrada (salida) al (del) dispositivo que eviten roturas de la fibra optica.• Define input (output) methods to (of) the device that avoid breakage of the optical fiber.

• Determinar metodos de anclaje e/o instalacion de los dispositivos al lugar a monitorizar.• Determine methods of anchoring and / or installation of the devices to the place to be monitored.

Resumen de la invencionSummary of the invention

La presente invencion trata de resolver los inconvenientes mencionados anteriormente mediante un dispositivo basado en fibra optica y redes de difraccion para la medida de temperaturas que alcanzan los l(mites termicos de la fibra optica, y su proceso de fabricacion.The present invention tries to solve the aforementioned inconveniences by means of a device based on optical fiber and diffraction networks for the measurement of temperatures that reach the l (thermal limits of the optical fiber, and its manufacturing process.

Concretamente, en un primer aspecto de la invencion se proporciona un dispositivo basado en fibra optica para la medida de temperaturas que alcanzan los llmites termicos de la fibra optica, empleando redes de difraccion y sometido a un proceso de encapsulado, que comprende:Specifically, in a first aspect of the invention a device based on optical fiber is provided for measuring temperatures that reach the thermal limits of the optical fiber, using diffraction networks and subjected to an encapsulation process, comprising:

- un elemento optico de transduccion consistente en una fibra optica en la que en una zona de la misma esta inscrita una red de difraccion, siendo aquella zona del elemento optico de transduccion en la que se encuentra inscrita la red de difraccion, la zona de transduccion;- an optical transduction element consisting of an optical fiber in which a diffraction network is inscribed in an area thereof, being that area of the transduction optical element in which the diffraction network is registered, the transduction zone ;

- un recubrimiento interior que reviste el elemento optico de transduccion al menos en la zona de transduccion, configurado para ejercer de capa intermedia que evita que ninguna traccion/presion sea transmitida a la fibra optica, protegiendo las zonas debiles de la fibra optica y evitando posibles fallos en la medida provocados por la deformacion;- an inner covering that covers the optical transduction element at least in the transduction zone, configured to act as an intermediate layer that prevents any traction / pressure from being transmitted to the optical fiber, protecting the weak areas of the optical fiber and avoiding possible measurement failures caused by deformation;

- un bloque de proteccion exterior, que presenta al menos un orificio, en cuyo interior se situa el elemento optico de transduccion revestido por el recubrimiento interior, tal que al menos un extremo de la fibra optica se situa en el exterior del bloque de proteccion exterior atravesando dicho al menos un orificio, permaneciendo la zona de transduccion en el interior del bloque de proteccion exterior, tal que la fibra optica puede disponerse en diferentes geometrlas, estando el bloque de proteccion exterior configurado para la sujecion mecanica y proteccion de todo el conjunto, es decir, presenta unas propiedades mecanicas que no se degradan. y presenta un espesor cuyo rango esta comprendido entre varios millimetres y varios centimetres:- an outer protection block, which has at least one hole, inside which the optical transduction element coated by the inner coating is located, such that at least one end of the optical fiber is located outside the outer protection block said at least one hole passing through, the transduction zone remaining inside the outer protection block, such that the optical fiber can be arranged in different geometries, the outer protection block being configured for the mechanical fastening and protection of the whole assembly, that is, it has mechanical properties that do not degrade. and has a thickness whose range is between several millimeters and several centimeters:

- tantas protecciones de entrada/salida como orificios presenta el bloque de proteccion exterior, con aberturas cuyo diametro es tal que permite el paso de la fibra optica por su interior, y que se encuentran ancladas al bloque de proteccion exterior, de tal forma que cada proteccion de entrada/salida se situa de manera que su abertura sea concentrica con uno de los orificios del bloque de proteccion exterior, de tal forma que el al menos un extremo de la fibra optica que se encuentra en el exterior del bloque de proteccion exterior, esta recubierto, en la parte mas en contacto con dicho bloque de proteccion- As many entry / exit protections as holes presents the outer protection block, with openings whose diameter is such that it allows the passage of the optical fiber inside, and that are anchored to the outer protection block, so that each input / output protection is positioned so that its opening is concentric with one of the holes of the outer protection block, such that the at least one end of the optical fiber that is outside the outer protection block, It is coated, in the part most in contact with said protection block

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

exterior, por una proteccion de entrada/salida. tal que dichas protecciones de entrada/salida presentan una menor resistencia mecanica que el bloque de proteccion exterior, lo que permite una flexion parcial cuando se deforma la fibra optica, evitando cortes por cizalladura, y tal que las protecciones de entrada/salida ofrecen una rigidez gradual a medida que se alejan del bloque de proteccion exterior, siendo las zonas mas cercanas al bloque de proteccion exterior mas rlgidas, mientras que las mas lejanas se doblan con mas facilidad con el fin de no romper la fibra optica:outside, for an input / output protection. such that said input / output protections have a lower mechanical resistance than the outer protection block, which allows partial flexion when the optical fiber is deformed, avoiding shear cuts, and such that the input / output protections offer a rigidity Gradually as they move away from the outer protection block, the areas closest to the outermost protection block being more rigid, while the farthest ones bend more easily in order not to break the optical fiber:

- al menos un soporte unido al bloque de proteccion exterior, configurado para anclar el dispositivo a la superficie sobre la que desee realizar la medida;- at least one support attached to the outer protection block, configured to anchor the device to the surface on which you want to measure;

estando el dispositivo configurado para poder conectarse a un equipo de interrogacion externo; y/o en serie con otros dispositivos, empleando la fibra optica como canal, y centrado cada uno en una longitud de onda diferente, permitiendo la medicion de varios puntos de temperatura a la vez.the device being configured to be able to connect to an external interrogation equipment; and / or in series with other devices, using the optical fiber as a channel, and each centered on a different wavelength, allowing the measurement of several temperature points at the same time.

En una posible realizacion, el elemento optico de transduccion es una red de difraccion de periodo corto inscrita en fibra optica estandar de telecomunicaciones.In a possible embodiment, the optical transduction element is a short period diffraction network inscribed in standard telecommunications optical fiber.

En una posible realizacion, el recubrimiento interior presenta un espesor inferior a 0.5 mm y una rugosidad inferior a 5 pm, de tal forma que no provoque irregularidades en la zona de transduccion.In a possible embodiment, the inner coating has a thickness of less than 0.5 mm and a roughness of less than 5 pm, so as not to cause irregularities in the transduction zone.

En una posible realizacion, el recubrimiento interior reviste la totalidad del elemento optico de transduccion.In a possible embodiment, the inner coating covers the entire optical transduction element.

En una posible realizacion, el recubrimiento interior es ceramico, y con un espesor comprendido entre los 20 y los 500 micrometros. Alternativamente, el recubrimiento interior es un tubo de 0.4 mm de diametro, de acero inoxidable y esta fijado a la fibra optica con pegamento ceramico. Alternativamente, el recubrimiento interior es una capa ceramica, moldeada con la forma deseada.In a possible embodiment, the inner coating is ceramic, and with a thickness between 20 and 500 micrometers. Alternatively, the inner lining is a 0.4 mm diameter stainless steel tube and is fixed to the optical fiber with ceramic glue. Alternatively, the inner coating is a ceramic layer, molded to the desired shape.

En una posible realizacion, el bloque de proteccion exterior presenta dos orificios, tal que el elemento de transduccion revestido se situa en el interior del bloque de proteccion exterior atravesando am bos orificios, de modo que la zona de transduccion permanece en el interior del bloque de proteccion exterior y los extremos de la fibra optica en su exterior.In a possible embodiment, the outer protection block has two holes, such that the coated transduction element is located inside the outer protection block through both holes, so that the transduction zone remains inside the block of outer protection and the ends of the fiber optic outside.

En una posible realizacion, las protecciones de entrada/salida presentan una forma cillndrica.In a possible embodiment, the input / output protections have a cylindrical shape.

En una posible realizacion, las protecciones de entrada/salida son dos tubos metalicos de acero o tungsteno superpuestos de diferente longitud que permiten flexionar la parte exterior mas que la interior. Alternativamente, las protecciones de entrada/salida son un refuerzo en forma de filamento ceramico, tal que el filamento es mas grueso en la zona mas cercana al bloque de proteccion exterior.In a possible embodiment, the input / output protections are two superimposed steel or tungsten metal tubes of different lengths that allow the outer part to be flexed more than the inner part. Alternatively, the input / output protections are a reinforcement in the form of a ceramic filament, such that the filament is thicker in the area closest to the outer protection block.

En una posible realizacion, el soporte esta basado en aprisionamiento mecanico.In a possible embodiment, the support is based on mechanical imprisonment.

En otro aspecto de la invencion, se proporciona un proceso de fabricacion del dispositivo de acuerdo con cualquiera de las reivindicaciones anteriores. El proceso comprende lasIn another aspect of the invention, a manufacturing process of the device according to any of the preceding claims is provided. The process includes the

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

etapas de: inscribir la red de difraccion en la fibra optica, aplicar el recubrimiento interno, aplicar el bloque de proteccion exterior, incorporar las protecciones de entrada/salida y aplicar el soporte.stages of: inscribing the diffraction network in the optical fiber, applying the internal coating, applying the outer protection block, incorporating the input / output protections and applying the support.

En el caso de que la inscripcion se realice mediante un patron de interferencia centrado en el ultravioleta el proceso comprende ademas la etapa de someter al dispositivo a un tratamiento termico, siendo esta etapa posterior a la incorporacion de cualquier proteccion -recubrimiento interior, bloque de proteccion exterior, protecciones de entrada/salida y soporte-, siempre y cuando estas sean de un material resistente a muy altas temperaturas, o con anterioridad a la incorporacion de cualquier proteccion cuyo material sea no resistente a muy altas temperaturas.In the event that the registration is carried out by means of an interference pattern centered on the ultraviolet, the process also includes the stage of subjecting the device to a thermal treatment, this stage being subsequent to the incorporation of any protection - inner covering, protection block exterior, input / output protections and support-, as long as these are made of a material resistant to very high temperatures, or prior to the incorporation of any protection whose material is not resistant to very high temperatures.

Breve descripcion de las figurasBrief description of the figures

Con objeto de ayudar a una mejor comprension de las caracterlsticas de la invencion, de acuerdo con un ejemplo preferente de realizacion practica del mismo, y para complementar esta descripcion, se acompana como parte integrante de la misma. un juego de dibujos, cuyo caracter es ilustrativo y no limitativo. En estos dibujos:In order to help a better understanding of the features of the invention, according to a preferred example of practical realization thereof, and to complement this description, it is accompanied as an integral part thereof. a set of drawings, whose character is illustrative and not limiting. In these drawings:

La figura 1 muestra un esquema del dispositivo de la invencion, de acuerdo a una posible realizacion.Figure 1 shows a diagram of the device of the invention, according to a possible embodiment.

La figura 2 muestra un esquema del dispositivo de la invencion, de acuerdo a una posible realizacion.Figure 2 shows a diagram of the device of the invention, according to a possible embodiment.

La figura 3 muestra un esquema del dispositivo de la invencion, de acuerdo a una posible realizacion.Figure 3 shows a diagram of the device of the invention, according to a possible embodiment.

La figura 4 muestra varios dispositivos de la invencion conectados en serie. Descripcion detallada de la invencionFigure 4 shows several devices of the invention connected in series. Detailed description of the invention

En este texto, el termino "comprende" y sus variantes no deben entenderse en un sentido excluyente, es decir, estos terminos no pretenden excluir otras caracterlsticas tecnicas, aditivos, componentes o pasos.In this text, the term "comprises" and its variants should not be understood in an exclusive sense, that is, these terms are not intended to exclude other technical characteristics, additives, components or steps.

Ademas, los terminas "aproximadamente", "sustancialmente", "alrededor de", "unos", etc. deben entenderse como indicando valores proximos a los que dichos terminas acompanen, ya que por errores de calculo o de medida, resulte imposible conseguir esos valores con total exactitud.In addition, you end them "approximately", "substantially", "around", "ones", etc. they should be understood as indicating values close to which these endings accompany, since due to calculation or measurement errors, it is impossible to achieve those values with total accuracy.

Ademas, en el contexto de la presente invencion se entiende por alta temperatura aquel rango de temperaturas cuya temperatura maxima son 500°C. Ademas, se entiende por muy alta temperatura aquel rango de temperaturas cuya temperatura maxima son 1200°C.Furthermore, in the context of the present invention high temperature is understood to be that temperature range whose maximum temperature is 500 ° C. In addition, it is understood by very high temperature that range of temperatures whose maximum temperature is 1200 ° C.

Las caracterlsticas del dispositivo de la invencion, as! como las ventajas derivadas de las mismas, podran comprenderse mejor con la siguiente descripcion, hecha con referencia a los dibujos antes enumerados.The characteristics of the device of the invention, as! As the advantages derived therefrom, they may be better understood with the following description, made with reference to the drawings listed above.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

Las siguientes realizaciones preferidas se proporcionan a modo de ilustracion, y no se pretende que sean limitativos de la presente invencion. Ademas, la presente invencion cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquf indicadas. Para los expertos en la materia, otros objetos, ventajas y caracterfsticas de la invencion se desprenderan en parte de la descripcion y en parte de la practica de la invencion.The following preferred embodiments are provided by way of illustration, and are not intended to be limiting of the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein. For those skilled in the art, other objects, advantages and characteristics of the invention will be derived partly from the description and partly from the practice of the invention.

A continuacion se describe el dispositivo de la invencion, y su metodo de fabricacion, basado en fibra optica para la medida de temperaturas que alcanzan los lfmites termicos de la fibra optica (tfpicamente 1200°C en fibras opticas estandar), empleando redes de difraccion y sometido a un proceso de encapsulado, de acuerdo con el esquema del mismo de la figura 1. Este dispositivo cumple tanto los requisitos de opticos para la medida de altas temperaturas (Tmax ~ 500°c) y muy altas temperaturas (Tmax ~ 1200°C) como su implementacion mecanica, habilitando su posterior instalacion en entornos agresivos.Next, the device of the invention is described, and its manufacturing method, based on optical fiber for measuring temperatures that reach the thermal limits of the optical fiber (typically 1200 ° C in standard optical fibers), using diffraction networks and undergoing an encapsulation process, according to the scheme of the same in Figure 1. This device meets both the requirements of opticians for the measurement of high temperatures (Tmax ~ 500 ° C) and very high temperatures (Tmax ~ 1200 ° C ) as its mechanical implementation, enabling its subsequent installation in aggressive environments.

El dispositivo 10 comprende un elemento optico de transduccion consistente en una fibra optica 11 en la que en una zona de la misma esta inscrita una red de difraccion 12. Preferentemente, el elemento optico de transduccion es una red de difraccion 12 de periodo corto (FBG) inscrita en fibra optica 11 estandar de telecom unicaciones (G652 o G657). En el contexto de la presente invencion se entendera por zona de transduccion a aquella zona del elemento optico de transduccion en la que se encuentra inscrita la red de difraccion 1 2.The device 10 comprises an optical transduction element consisting of an optical fiber 11 in which a diffraction network is inscribed in an area thereof 12. Preferably, the optical transduction element is a short period diffraction network 12 (FBG ) inscribed in fiber optic standard 11 telecom communications (G652 or G657). In the context of the present invention, a transduction zone to that area of the optical transduction element in which the diffraction network 1 2 is inscribed is understood.

En la mayorfa de los casos, para la inscripcion de una red de difraccion (en particular FBG) inscrita en fibra optica (en particular una fibra optica comercial de sflice) se retira el recubrimiento (tfpicamente plastico) dejando al descubierto unos 5-30 mm de sflice de la fibra. Al retirar este recubrimiento de forma mecanica (empleando un utensilio para ello, similar a un alicate) se pueden introducir danos microscopicos en la superficie de la fibra que pueden propagarse al aplicar alguna tension, realizando un corte por cizalladura en la fibra. Con el fin de minimizar estos problemas, es recomendable para esta tecnica emplear tecnicas qufmicas o por temperatura para eliminar la proteccion plastica de la fibra. En cualquier caso, cualquiera de estas tecnicas es ampliamente conocida y queda fuera del alcance de la presente invencion. Una vez retirada la proteccion, se somete la fibra al proceso de grabado del FBG (de una longitud tfpica de 5-20mm), bien sea por exposicion a luz ultravioleta o por otros medios (por ejemplo, inscripcion punto a punto con un laser de alta intensidad). La mayorfa de sistemas actuales se graba transversalmente a la fibra, siendo la opcion mas viable para tal fin, independientemente del tipo de laser y modo de inscripcion (punto a punto, ultravioleta...).In most cases, for the inscription of a diffraction network (in particular FBG) inscribed in optical fiber (in particular a commercial optical fiber of silica) the coating (typically plastic) is removed, revealing about 5-30 mm of silica fiber. By removing this coating mechanically (using a tool for this, similar to a pliers) microscopic damage can be introduced to the surface of the fiber that can be propagated by applying some tension, making a shear cut in the fiber. In order to minimize these problems, it is recommended for this technique to use chemical or temperature techniques to eliminate the plastic protection of the fiber. In any case, any of these techniques is widely known and is beyond the scope of the present invention. Once the protection is removed, the fiber is subjected to the FBG etching process (of a typical length of 5-20mm), either by exposure to ultraviolet light or by other means (for example, point-to-point registration with a laser High intensity). Most current systems are recorded transversely to the fiber, being the most viable option for this purpose, regardless of the type of laser and mode of registration (point to point, ultraviolet ...).

Por otro lado, y como se ha comentado anteriormente, cuando el elemento optico de transduccion empleado es inestable a altas temperaturas (p.ej. redes de difraccion grabadas con luz ultravioleta) se requiere un tratamiento termico, como por ejemplo de regeneracion, para garantizar la estabilidad optica del elemento de transduccion.On the other hand, and as mentioned above, when the optical transduction element used is unstable at high temperatures (eg diffraction networks recorded with ultraviolet light) a thermal treatment, such as regeneration, is required to guarantee The optical stability of the transduction element.

Un posible metodo de regeneracion, consiste en introducir hidrogeno en la fibra optica (sumergiendo la fibra optica a una alta presion de H2, p.ej 20 bares), aplicar un pre-tratamiento termico a baja temperatura (p.ej 1 hora a 2000C), incrementar la temperatura por encima del umbral de regeneracion durante otro intervalo (p.ej 4 h a 1000°C) y devolver al FBG a temperatura ambiente. Con el fin de garantizar la integridad mecanica del FBG, es necesario que la fibra este protegida mecanicamente antes deOne possible method of regeneration consists in introducing hydrogen into the optical fiber (submerging the optical fiber at a high pressure of H2, eg 20 bar), applying a thermal pre-treatment at low temperature (eg 1 hour at 2000C ), increase the temperature above the regeneration threshold during another interval (eg 4 h at 1000 ° C) and return to the FBG at room temperature. In order to guarantee the mechanical integrity of the FBG, it is necessary that the fiber be mechanically protected before

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

realizar tratamientos termicos agresivos (p.ej por encima de 800°C) o mecanizados con laseres de alta intensidad. En cualquier caso, un experto en la materia entendera que el tratamiento termico empleado queda fuera del alcance de la presente invencion.Perform aggressive thermal treatments (eg above 800 ° C) or mechanized with high intensity lasers. In any case, a person skilled in the art will understand that the thermal treatment used is outside the scope of the present invention.

Estos tratamientos termicos posteriores a la inscripcion mediante un patron de interferencia centrado en el ultravioleta generalmente requieren elevar la temperatura de la fibra por encima de los 800-1000°C por Jo que esta se vuelve extremadamente quebradiza, aunque sus propiedades opticas se estabilicen para altas temperaturas. Por otro lado, la inscripcion empleando laseres de alta intensidad es muy agresiva para la fibra optica, por lo que la fibra tambien se vuelve quebradiza al descuidar el aspecto mecanico.These thermal treatments after enrollment by means of an interference pattern centered in the ultraviolet generally require raising the temperature of the fiber above 800-1000 ° C, so that it becomes extremely brittle, although its optical properties are stabilized for high temperatures On the other hand, the inscription using high intensity lasers is very aggressive for the optical fiber, so the fiber also becomes brittle when neglecting the mechanical aspect.

Para solucionar este inconveniente, en la presente invencion se realiza un encapsulado del elemento optico de transduccion con diferentes elementos: recubrimiento interior 13, bloque de proteccion exterior 14, protecciones de entrada/salida 15 y soporte 16. Estos elementos estan hechos de materiales resistentes a muy altas temperaturas, como por ejemplo algunos metales (tungsteno o acero) y materiales ceramicos, con el objetivo de proteger al elemento optico de transduccion durante su operacion y soportar las condiciones termicas durante la fabricacion del dispositivo 10. Como se ha comentado anteriormente, este encapsulado no es trivial pues es preciso superar una serie de inconvenientes existentes, como por ejemplo: seleccion de los materiales a utilizar y geometrla, dificultad al adaptar la fibra optica al encapsulado (cortes por cizalladura, necesidad de encastre mecanico...) o dificultad de conseguir el aislamiento de tensiones y fuerzas sobre la fibra optica.To solve this problem, an encapsulation of the optical transduction element with different elements is carried out in the present invention: inner covering 13, outer protection block 14, input / output protections 15 and support 16. These elements are made of materials resistant to very high temperatures, such as some metals (tungsten or steel) and ceramic materials, in order to protect the optical transduction element during its operation and withstand the thermal conditions during the manufacture of the device 10. As mentioned above, this encapsulation is not trivial because it is necessary to overcome a series of existing disadvantages, such as: selection of the materials to be used and geometry, difficulty adapting the optical fiber to the encapsulation (shear cuts, need for mechanical insertion ...) or difficulty to achieve the isolation of tensions and forces on the optical fiber.

El elemento optico de transduccion se encuentra revestido al menos en la zona de transduccion, preferentemente se encuentra revestido en su totalidad, por un recubrimiento interior 13 configurado para proporcionar la primera proteccion mecanica al elemento optico de transduccion. Preferentemente, este recubrimiento interior 13 presenta un espesor inferior a 0.5 mm y una rugosidad muy baja (p. ej. Ra < 5 pm) de tal forma que no provoque irregularidades en la zona de transduccion y no perjudique la medida.The optical transduction element is coated at least in the transduction zone, preferably it is completely covered by an inner coating 13 configured to provide the first mechanical protection to the optical transduction element. Preferably, this inner coating 13 has a thickness of less than 0.5 mm and a very low roughness (eg Ra <5 pm) such that it does not cause irregularities in the transduction zone and does not impair the measurement.

El recubrimiento interior 13 es necesario incluso aunque la fibra optica 11 con la red de difraccion 12 inscrita presente suficiente integridad mecanica a temperatura ambiente (por ejemplo porque la red de difraccion 12 se ha inscrito con laseres de baja intensidad, tfpicamente en el ultravioleta), y tiene dos finalidades: a) proteger la fibra optica 11 desnuda durante el proceso de fabricacion del dispositivo 10; y b) aislar la fibra optica 11 de posibles tensiones, siendo mas facil evitar la rotura de la fibra 11 durante el uso del dispositivo 10 (por ejemplo, cuando esta fibra 11 se incorpora en algunos materiales ceramicos, al estar sujeto a muy altas temperaturas y aplicar una ligera tension, puede provocarse una rotura por cizalladura con un borde cortante). Es decir, este recubrimiento interior 13 ejerce de capa intermedia que evita que ninguna traccion/presion sea transmitida a la fibra optica 11, protegiendo las zonas debiles de la fibra optica 11 y evitando posibles fallos en la medida provocados por la deformacion.The inner coating 13 is necessary even if the optical fiber 11 with the inscribed diffraction network 12 has sufficient mechanical integrity at room temperature (for example because the diffraction network 12 has been inscribed with low intensity lasers, typically in the ultraviolet), and it has two purposes: a) to protect the naked fiber optic 11 during the manufacturing process of the device 10; and b) isolate the optical fiber 11 from possible tensions, it being easier to avoid the breakage of the fiber 11 during the use of the device 10 (for example, when this fiber 11 is incorporated in some ceramic materials, being subject to very high temperatures and Apply a slight tension, it can cause a shear break with a cutting edge). That is, this inner coating 13 acts as an intermediate layer that prevents any traction / pressure from being transmitted to the optical fiber 11, protecting the weak areas of the optical fiber 11 and avoiding possible measurement failures caused by deformation.

En una realizacion preferente, este recubrimiento interior 13 es ceramico, y con un espesor comprendido entre los 20 y 500 micrometros. En otra posible realizacion, este recubrimiento interior 13 es un tubo de 0.4 mm de diametro, de acero inoxidable y fijado a la fibra optica 11 con pegamento ceramico. En otra posible realizacion, el recubrimiento interior 13 es una capa ceramica, moldeada con la forma deseada.In a preferred embodiment, this inner coating 13 is ceramic, and with a thickness between 20 and 500 micrometers. In another possible embodiment, this inner coating 13 is a 0.4 mm diameter tube, made of stainless steel and fixed to the optical fiber 11 with ceramic glue. In another possible embodiment, the inner coating 13 is a ceramic layer, molded to the desired shape.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

El elemento optico de transduccion revestido por el recubrimiento interior 13, se situa parcialmente en el interior de un bloque de proteccion exterior 14 que presenta al menos un orificio, tal que al menos un extremo de la fibra optica 11 se situa en el exterior del bloque 14 atravesando dicho al menos un orificio, permaneciendo la zona de transduccion en el interior del bloque 14. En una posible realizacion, el bloque de proteccion exterior 14 presenta dos orificios, tal que el elemento de transduccion revestido se situa en el interior del bloque 14 atravesando ambos orificios, de modo que la zona de transduccion permanece en el interior del bloque 14 y los extremos de la fibra optica 11 en su exterior. Un experto en la materia entendera que el dispositivo 10 de la invencion esta configurado para unirse por al menos uno de los extremos de la fibra optica 11 a un equipo de interrogacion.The optical transduction element coated by the inner lining 13 is partially located inside an outer protection block 14 having at least one hole, such that at least one end of the optical fiber 11 is located outside the block 14 crossing said at least one hole, the transduction zone remaining inside the block 14. In a possible embodiment, the outer protection block 14 has two holes, such that the coated transduction element is located inside the block 14 through both holes, so that the transduction zone remains inside the block 14 and the ends of the optical fiber 11 outside. One skilled in the art will understand that the device 10 of the invention is configured to join at least one of the ends of the optical fiber 11 to an interrogation equipment.

El bloque de proteccion exterior 14, esta configurado para la sujecion mecan1ca y proteccion de todo el conjunto, es decir, presenta unas propiedades mecanicas que no se degradan ni durante el tratamiento termico ni durante el uso del dispositivo 10, y presenta un espesor cuyo rango esta comprendido entre varios millimetres y varios centimetres. El doble recubrimiento (interior y exterior) permite mantener la integridad mecanica del dispositivo 10 y su sensibilidad a altas temperaturas.The outer protection block 14, is configured for mechanical fastening and protection of the entire assembly, that is, it has mechanical properties that do not degrade during the heat treatment or during the use of the device 10, and has a thickness whose range It is comprised between several millimeters and several centimeters. The double coating (interior and exterior) allows to maintain the mechanical integrity of the device 10 and its sensitivity at high temperatures.

Ademas, y como se observa en las figuras 2 y 3, este bloque 24, 34 permite la colocacion de la fibra optica 21,31 en diferentes geometrlas (por ejemplo, forma lineal o de "U"), por lo que un experto en la materia entendera que el elemento de transduccion y su recubrimiento interior 23, 33 se deben disponer dentro del bloque de proteccion exterior 24, 34 en geometrlas que favorezcan la transferencia termica y/o alslen la zona de transduccion de posibles tensiones externas, evitando generar deformaciones en el elemento de transduccion. Al acoplar el elemento optico de transduccion con su recubrimiento interior 23, 33 en el bloque de proteccion exterior 24, 34, es importante prestar especial interes a la entrada y salida de la fibra optica 21, 31: cualquier colocacion que pueda deformar el conjunto en exceso, es susceptible de provocar una rotura en la fibra 21, 31. Para ello se plantean geometrlas sencillas (rectas, curvas suaves...) que eviten estos problemas, mejorando a la vez la transmision optica.In addition, and as seen in Figures 2 and 3, this block 24, 34 allows the placement of the optical fiber 21.31 in different geometries (for example, linear or "U" shape), so that an expert in the matter will understand that the transduction element and its inner lining 23, 33 must be arranged inside the outer protection block 24, 34 in geometries that favor thermal transfer and / or clear the transduction zone of possible external stresses, avoiding generating deformations in the transduction element. When coupling the optical transduction element with its inner coating 23, 33 in the outer protection block 24, 34, it is important to pay special interest to the input and output of the optical fiber 21, 31: any placement that can deform the assembly into excess, is likely to cause a break in the fiber 21, 31. For this, simple geometries (straight, smooth curves ...) are raised to avoid these problems, while improving the optical transmission.

Dependiendo del material del bloque de proteccion exterior 14, 24, 34, la fibra optica 11, 21, 31 revestida por el recubrimiento interior 13, 23, 33 se acopla a dicho bloque 14, 24, 34 (por ejemplo, un bloque de acero con un surco mecanizado para tal fin) o el bloque 14, 24, 34 se acopla al recubrimiento interno 13, 23, 33 de la fibra optica 11,21, 31 - que no a la fibra optica, pues es el inconveniente que se ha explicado anteriormente - (por ejemplo, pegamento ceramico, ceramica, gres...), evitando asi cortes por cizalladura, problemas de rugosidad, etc.Depending on the material of the outer protection block 14, 24, 34, the optical fiber 11, 21, 31 coated by the inner liner 13, 23, 33 is coupled to said block 14, 24, 34 (for example, a steel block with a machined groove for this purpose) or block 14, 24, 34 is coupled to the inner lining 13, 23, 33 of the optical fiber 11,21, 31 - not to the optical fiber, as it is the inconvenience that has been explained above - (for example, ceramic glue, ceramic, stoneware ...), thus avoiding shear cuts, roughness problems, etc.

Tantas protecciones de entrada/salida 15, 25, 35 como orificios presenta el bloque de proteccion exterior 14, 24, 34, con forma preferentemente cilindrica, y con aberturas cuyo diametro es tal que permite el paso de la fibra optica 11, 21, 31 por su interior, se encuentran ancladas al bloque de proteccion exterior 14, 24, 34, de tal forma que cada proteccion de entrada/salida 15, 25, 35 se situa de manera que su abertura sea concentrica con uno de los orificios del bloque 14, 24, 34. De esta forma, el al menos un extremo de la fibra optica 11, 21, 31 que se encuentra en el exterior del bloque de proteccion exterior 14, 24, 34, esta recubierto, en la parte mas en contacto con dicho bloque 14, 24, 34, por una proteccion de entrada/salida 15, 25, 35, tal que dichas protecciones 15, 25, 35 presentan una menor resistencia mecanica que el bloque de proteccion exterior 14, 24, 34, lo que permite una flexion parcial cuando se deforma laSo many input / output protections 15, 25, 35 as holes have the outer protection block 14, 24, 34, preferably cylindrical, and with openings whose diameter is such that it allows the passage of the optical fiber 11, 21, 31 inside, they are anchored to the outer protection block 14, 24, 34, so that each input / output protection 15, 25, 35 is positioned so that its opening is concentric with one of the holes in block 14 , 24, 34. In this way, the at least one end of the optical fiber 11, 21, 31 that is outside the outer protection block 14, 24, 34, is coated, in the part most in contact with said block 14, 24, 34, by an input / output protection 15, 25, 35, such that said protections 15, 25, 35 have a lower mechanical resistance than the outer protection block 14, 24, 34, which allows a partial flexion when the

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

fibra optica 11, 21, 31, evitando cortes por cizalladura. Preferentemente, dentro de las protecciones de entrada/salida 15, 25, 35, se mantiene el recubrimiento interior 13, 23, 33 de la fibra 11,21, 31 con el fin de evitar posibles tensiones a la zona de transduccion.fiber optic 11, 21, 31, avoiding shear cuts. Preferably, within the input / output protections 15, 25, 35, the inner lining 13, 23, 33 of the fiber 11,21, 31 is maintained in order to avoid possible tensions to the transduction zone.

Ademas, para dichas protecciones de entrada/salida 15, 25, 35 se deben emplear materiales y geometrlas que ofrezcan una menor resistencia a la deformacion a medida que se alejan del punto de anclaje, esto es, las protecciones 15, 25, 35 ofrecen una rigidez gradual a medida que se alejan del bloque de proteccion exterior 14, 24, 34: las zonas mas cercanas al bloque 14, 24, 34 son mas rlgidas, mientras que las mas lejanas se doblan con mas facilidad con el fin de no romper la fibra 11,21, 31. Este efecto puede conseguirse reduciendo gradualmente el espesor de las protecciones 15, 25, 35.Furthermore, for said input / output protections 15, 25, 35, materials and geometries that offer a lower resistance to deformation should be used as they move away from the anchor point, that is, protections 15, 25, 35 offer a gradual stiffness as they move away from the outer protection block 14, 24, 34: the areas closest to block 14, 24, 34 are more rigid, while the furthest ones bend more easily in order not to break the fiber 11,21, 31. This effect can be achieved by gradually reducing the thickness of the protections 15, 25, 35.

En una posible realizacion. las protecciones de entrada/salida 15, 25, 35 son dos tubos metalicos de acero o tungsteno superpuestos de diferente longitud que permiten flexionar la parte exterior mas que la interior. En otra posible realizacion, las protecciones de entrada/salida 15, 25, 35 son un refuerzo en forma de filamento ceramico, tal que el filamento es mas grueso en la zona mas cercana al bloque de proteccion exterior 14, 24, 34.In a possible realization. the input / output protections 15, 25, 35 are two superimposed steel or tungsten metal tubes of different lengths that allow the outer part to be flexed more than the inner part. In another possible embodiment, the input / output protections 15, 25, 35 are a reinforcement in the form of a ceramic filament, such that the filament is thicker in the area closest to the outer protection block 14, 24, 34.

Por ultimo, el dispositivo 10, 20, 30 de la invencion comprende al menos un soporte 16, 26, 36 basado preferentemente en aprisionamiento mecanice unido al bloque de proteccion exterior 14, 24, 34, configurado para anclar el dispositivo 10, 20, 30 a la superficie sobre la que desee realizar la medida. Un experto en la materia entendera que el material de dichos soportes 16, 26, 36 depende del rango de temperaturas a monitorizar, siendo posibles realizaciones con anclajes mecanicos sencillos, como tuercas, tomillos, mordazas, etc... de metal (por ejemplo, tungsteno) o ceramica resistentes a muy altas temperaturas (1200°C).Finally, the device 10, 20, 30 of the invention comprises at least one support 16, 26, 36 based preferably on mechanical clamping attached to the outer protection block 14, 24, 34, configured to anchor the device 10, 20, 30 to the surface on which you want to measure. One skilled in the art will understand that the material of said supports 16, 26, 36 depends on the range of temperatures to be monitored, being possible with simple mechanical anchors, such as nuts, thymes, jaws, etc ... of metal (for example, tungsten) or ceramic resistant to very high temperatures (1200 ° C).

Dentro de una posible realizacion de la invencion, se emplea como elemento optico de transduccion un FBG que, como se ha descrito anteriormente, solo refleja ciertas longitudes de onda, por lo que varios dispositivos 10, 20, 30 pueden ser conectados en serie empleando fibra optica 11, 21, 31 estandar de telecom unicaciones como canal, y centrado cada uno en una longitud de onda diferente. De esta forma, es posible la medicion de varios puntos de temperatura a la vez. Dentro de una posible realizacion de la invencion, y como se observa en la figura 4, se produce la multiplexacion en longitud de onda de los FBGs, que permite enviar los datos de cada dispositivo 40 codificados en longitudes de onda diferentes. Varios dispositivos 40 de la invencion, son interconectados mediante cable de fibra optica 41 hasta llegar a un equipo de interrogacion 47 de FBGs que lanza la luz a la fibra optica 41 y analiza el espectro a la salida, obteniendo la medida de temperatura de cada sensor. El conjunto de varios dispositivos 40 en serie con diferentes longitudes de onda, puede ser interrogado mediante las diferentes tecnicas de interrogacion de FBGs que, tfpicamente, consisten en una fuente de luz, un detector y un acoplador o circulador para conectar ambos dispositivos a la misma fibra optica.Within a possible embodiment of the invention, an FBG is used as an optical transduction element that, as described above, only reflects certain wavelengths, whereby several devices 10, 20, 30 can be connected in series using fiber Optical 11, 21, 31 standard telecommunication as a channel, and each centered on a different wavelength. In this way, it is possible to measure several temperature points at once. Within a possible embodiment of the invention, and as seen in Figure 4, the wavelength multiplexing of the FBGs occurs, which allows the data of each device 40 encoded in different wavelengths to be sent. Several devices 40 of the invention are interconnected by means of fiber optic cable 41 until they reach an interrogation equipment 47 of FBGs that throw the light to the optical fiber 41 and analyze the spectrum at the output, obtaining the temperature measurement of each sensor . The set of several devices 40 in series with different wavelengths can be interrogated by means of the different interrogation techniques of FBGs that typically consist of a light source, a detector and a coupler or circulator to connect both devices to it. optical fiber.

Los pasos generales para la fabricacion del dispositivo 10, 20, 30, 40 de la invencion son: inscripcion de la red de difraccion 12, 22, 32 en la fibra optica 11,21, 31, 41, aplicacion del recubrimiento interno 13, 23, 33, aplicacion del bloque de proteccion exterior 14, 24, 34, incorporacion de las protecciones de entrada/salida 15, 25, 35 y aplicacion del soporte 16, 26, 36. En el caso de que la inscripcion se realice mediante un patron de interferencia centrado en el ultravioleta y sea necesario someter al dispositivo 10, 20, 30, 40 a un tratamiento termico, es recomendable realizar el tratamiento termico despues deThe general steps for the manufacture of the device 10, 20, 30, 40 of the invention are: inscription of the diffraction network 12, 22, 32 in the optical fiber 11,21, 31, 41, application of the internal coating 13, 23 , 33, application of the external protection block 14, 24, 34, incorporation of the input / output protections 15, 25, 35 and application of the support 16, 26, 36. In the event that the registration is made through a pattern of interference centered in the ultraviolet and it is necessary to subject the device 10, 20, 30, 40 to a thermal treatment, it is advisable to perform the thermal treatment after

la incorporacion de cualquier proteccion (recubrimiento interior 13, 23, 33, bloque de proteccion exterior 14, 24, 34, protecciones de entrada/salida 15, 25, 35 y soporte 16, 26, 36), siempre y cuando estas sean de un material resistente a muy altas temperaturas. De esta forma, el tratamiento termico sirve para endurecerlas. En caso contrario, por ejemplo 5 cuando el material sea no resistente a muy altas temperaturas, el tratamiento termico debe realizarse con anterioridad, pues sino se degradarlan sus propiedades mecanicas.the incorporation of any protection (inner covering 13, 23, 33, outer protection block 14, 24, 34, input / output protections 15, 25, 35 and support 16, 26, 36), as long as these are of a material resistant to very high temperatures. In this way, the heat treatment serves to harden them. Otherwise, for example 5 when the material is not resistant to very high temperatures, the thermal treatment must be carried out beforehand, otherwise its mechanical properties will be degraded.

Claims (15)

55 1010 15fifteen 20twenty 2525 3030 3535 4040 45Four. Five 50fifty 1. Dispositivo (10, 20, 30, 40) basado en fibra optica (11, 21. 3 1, 41) para la medida de temperaturas que alcanzan los Kmites termicos de la fibra optica (11, 21, 31, 41), empleando redes de difraccion (12, 22, 32) y sometido a un proceso de encapsulado, caracterizado por que comprende:1. Device (10, 20, 30, 40) based on optical fiber (11, 21. 3 1, 41) for measuring temperatures that reach the thermal limits of the optical fiber (11, 21, 31, 41), using diffraction networks (12, 22, 32) and subjected to an encapsulation process, characterized in that it comprises: - un elemento optico de transduccion consistente en una fibra optica (11,21, 31, 41) en la que en una zona de la misma esta inscrita una red de difraccion (12, 22, 32), siendo aquella zona del elemento optico de transduccion en la que se encuentra inscrita la red de difraccion (12, 22, 32), la zona de transduccion;- an optical transduction element consisting of an optical fiber (11,21, 31, 41) in which a diffraction network (12, 22, 32) is inscribed in an area thereof, being that area of the optical element of transduction in which the diffraction network (12, 22, 32), the transduction zone is registered; - un recubrimiento interior (13, 23, 33) que reviste el elemento optico de transduccion al menos en la zona de transduccion, configurado para ejercer de capa intermedia que evita que ninguna traccion/presion sea transmitida a la fibra optica (11,21, 31,41), protegiendo las zonas debiles de la fibra optica (11,21, 31, 41) y evitando posibles fallos en la medida provocados por la deformacion:- an inner covering (13, 23, 33) that covers the optical transduction element at least in the transduction zone, configured to act as an intermediate layer that prevents any traction / pressure from being transmitted to the optical fiber (11,21, 31,41), protecting the weak areas of the optical fiber (11,21, 31, 41) and avoiding possible measurement failures caused by deformation: - un bloque de protection exterior (14, 24, 34), que presenta al menos un orificio. en cuyo interior se situa el elemento optico de transduccion revestido por el recubrimiento interior (13, 23, 33), tal que al menos un extremo de la fibra optica (11, 21, 31, 41) se situa en el exterior del bloque de proteccion exterior (14, 24, 34) atravesando dicho al menos un orificio. pem1aneciendo la zona de transduccion en el interior del bloque de proteccion exterior (14, 24, 34), tal que la fibra optica (11,21, 31, 41) puede disponerse en diferentes geometrias, estando el bloque de proteccion exterior (14, 24. 34) configurado para la sujecion mecanica y proteccion de todo el conjunto, es decir, presenta unas propiedades mecanicas que no se degradan, y presenta un espesor cuyo rango esta comprendido entre varios milmetros y varios centimetres;- an outer protection block (14, 24, 34), which has at least one hole. inside which the optical transduction element coated by the inner lining (13, 23, 33) is located, such that at least one end of the optical fiber (11, 21, 31, 41) is located outside the block of outer protection (14, 24, 34) through said at least one hole. allowing the transduction zone inside the outer protection block (14, 24, 34), such that the optical fiber (11,21, 31, 41) can be arranged in different geometries, the outer protection block (14, 24. 34) configured for mechanical fastening and protection of the whole assembly, that is, it has mechanical properties that do not degrade, and has a thickness whose range is between several millimeters and several centimeters; - tantas protecciones de entrada/salida (15, 25, 35) como orificios presenta el bloque de proteccion exterior (14, 24, 34), con aberturas cuyo diametro es tal que permite el paso de la fibra optica (11, 21, 31, 41) por su interior, y que se encuentran ancladas al bloque de proteccion exterior (14, 24. 34), de tal forma que cada proteccion de entrada/salida (15, 25, 35) se situa de manera que su abertura sea concentrica con uno de los orificios del bloque de proteccion exterior (14, 24, 34), de tal forma que el al menos un extremo de la fibra optica (11, 21, 31, 41) que se encuentra en el exterior del bloque de proteccion exterior (14, 24. 34), esta recubierto, en la parte mas en contacto con dicho bloque de proteccion exterior (14, 24, 34), por una proteccion de entrada/salida (15, 25, 35), tal que dichas protecciones de entrada/salida (15. 25. 35) presentan una menor resistencia mecanica que el bloque de proteccion exterior (14, 24. 34), lo que permite una flexion parcial cuando se deforma la fibra optica (11, 21, 31, 41), evitando cortes por cizalladura, y tal que las protecciones de entrada/salida (15, 25, 35) ofrecen una rigidez gradual a medida que se alejan del bloque de proteccion exterior (14, 24, 34), siendo las zonas mas cercanas al bloque de proteccion exterior (14. 24, 34) mas rigidas, mientras que las mas lejanas se doblan con mas facilidad con el fin de no romper la fibra optica (11,21, 31, 41);- As many input / output protections (15, 25, 35) as holes has the outer protection block (14, 24, 34), with openings whose diameter is such that it allows the passage of the optical fiber (11, 21, 31 , 41) inside, and that are anchored to the outer protection block (14, 24. 34), so that each input / output protection (15, 25, 35) is positioned so that its opening is concentric with one of the holes of the outer protection block (14, 24, 34), such that the at least one end of the optical fiber (11, 21, 31, 41) that is outside the block of outer protection (14, 24. 34), is covered, in the part most in contact with said outer protection block (14, 24, 34), by an input / output protection (15, 25, 35), such that said input / output protections (15. 25. 35) have a lower mechanical resistance than the outer protection block (14, 24. 34), which allows partial flexion when forms the optical fiber (11, 21, 31, 41), avoiding shear cuts, and such that the input / output protections (15, 25, 35) offer a gradual stiffness as they move away from the outer protection block ( 14, 24, 34), being the areas closest to the outer protection block (14. 24, 34) more rigid, while the farthest ones bend more easily in order not to break the optical fiber (11,21, 31, 41); - al menos un soporte (16, 26, 36) unido al bloque de proteccion exterior (14, 24, 34), configurado para anclar el dispositivo (10, 20, 30, 40) a la superficie sobre la que desee realizar la medida;- at least one support (16, 26, 36) attached to the outer protection block (14, 24, 34), configured to anchor the device (10, 20, 30, 40) to the surface on which you want to measure ; 55 1010 15fifteen 20twenty 2525 3030 3535 4040 45Four. Five 50fifty estando el dispositivo (10, 20, 30, 40) configurado para poder conectarse a un equipo de interrogacion (47) externo; y/o en serie con otros dispositivos (10, 20, 30, 40), empleando la fibra optica (11, 21, 3 1, 41) como canal, y centrado cada uno en una longitud de onda diferente, permitiendo la medicion de varios puntos de temperatura a la vez.the device (10, 20, 30, 40) being configured to be able to connect to an external interrogation equipment (47); and / or in series with other devices (10, 20, 30, 40), using the optical fiber (11, 21, 3 1, 41) as a channel, and each centered on a different wavelength, allowing the measurement of several temperature points at once. 2. El dispositivo (10, 20, 30, 40) de la reivindicacion 1, donde el elemento optico de transduccion es una red de difraccion (12, 22, 32) de periodo corto inscrita en fibra optica (11,21, 31,41) estandar de telecomunicaciones.2. The device (10, 20, 30, 40) of claim 1, wherein the optical transduction element is a short-term diffraction network (12, 22, 32) inscribed in optical fiber (11,21, 31, 41) telecommunications standard. 3. El dispositivo de cualquiera de las reivindicaciones anteriores, donde el recubrimiento interior (13, 23, 33) presenta un espesor inferior a 0.5 mm y una rugosidad inferior a 5 pm, de tal forma que no provoque irregularidades en la zona de transduccion.3. The device of any of the preceding claims, wherein the inner lining (13, 23, 33) has a thickness of less than 0.5 mm and a roughness of less than 5 pm, such that it does not cause irregularities in the transduction zone. 4. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones anteriores, donde el recubrimiento interior (13, 23, 33) reviste la totalidad del elemento optico de transduccion.4. The device (10, 20, 30, 40) of any of the preceding claims, wherein the inner lining (13, 23, 33) covers the entire optical transduction element. 5. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones anteriores. donde el recubrimiento interior (13, 23, 33) es ceramico, y con un espesor comprendido entre los 20 y los 500 micrometros.5. The device (10, 20, 30, 40) of any of the preceding claims. where the inner covering (13, 23, 33) is ceramic, and with a thickness between 20 and 500 micrometers. 6. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones 1 a 4, donde el6. The device (10, 20, 30, 40) of any one of claims 1 to 4, wherein the recubrimiento interior (13, 23, 33) es un tubo de 0.4 mm de diametro, de acero inoxidableinner lining (13, 23, 33) is a 0.4 mm diameter stainless steel tube y esta fijado a la fibra optica (11,21, 31,41) con pegamento ceramico.and is fixed to the optical fiber (11,21, 31,41) with ceramic glue. 7. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones 1 a 4, donde el7. The device (10, 20, 30, 40) of any one of claims 1 to 4, wherein the recubrimiento interior (13, 23, 33) es una capa ceramica, moldeada con la formaInner lining (13, 23, 33) is a ceramic layer, molded with the shape deseada.desired. 8. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones anteriores, donde el bloque de proteccion exterior (14, 24, 34) presenta dos orificios. tal que el elemento de transduccion revestido se situa en el interior del bloque de proteccion exterior (14, 24, 34) atravesando am bos orificios. de modo que la zona de transduccion permanece en el interior del bloque de proteccion exterior (14, 24, 34) y los extremos de la fibra optica (11, 21, 31,41) en su exterior.8. The device (10, 20, 30, 40) of any of the preceding claims, wherein the outer protection block (14, 24, 34) has two holes. such that the coated transduction element is located inside the outer protection block (14, 24, 34) through both holes. so that the transduction zone remains inside the outer protection block (14, 24, 34) and the ends of the optical fiber (11, 21, 31,41) on its outside. 9. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones anteriores, donde las protecciones de entrada/salida (15, 25, 35) presentan una forma cillndrica.9. The device (10, 20, 30, 40) of any of the preceding claims, wherein the input / output protections (15, 25, 35) have a cylindrical shape. 10. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones anteriores. donde las protecciones de entrada/salida (15, 25, 35) son dos tubos metalicos de acero superpuestos de diferente longitud que permiten flexionar la parte exterior mas que la interior.10. The device (10, 20, 30, 40) of any of the preceding claims. where the input / output protections (15, 25, 35) are two overlapping steel metal tubes of different lengths that allow the outer part to be flexed more than the inner part. 11. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones 1 a 9, donde las protecciones de entrada/salida (15, 25, 35) son dos tubos metalicos de tungsteno superpuestos de diferente longitud que permiten flexionar la parte exterior mas que la interior.11. The device (10, 20, 30, 40) of any one of claims 1 to 9, wherein the inlet / outlet protections (15, 25, 35) are two overlapping tungsten metal tubes of different lengths that allow flexing the outer part more than the inner part. 12. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones 1 a 9, donde las protecciones de entrada/salida (15, 25, 35) son un refuerzo en forma de filamento12. The device (10, 20, 30, 40) of any one of claims 1 to 9, wherein the input / output protections (15, 25, 35) are a filament-shaped reinforcement ceramico, tal que el filamento es mas grueso en la zona mas cercana al bloque de proteccion exterior (14, 24, 34).ceramic, such that the filament is thicker in the area closest to the outer protection block (14, 24, 34). 13. El dispositivo (10, 20, 30, 40) de cualquiera de las reivindicaciones anteriores, donde 5 el soporte (16, 26, 36) esta basado en aprisionamiento mecanico.13. The device (10, 20, 30, 40) of any of the preceding claims, wherein the support (16, 26, 36) is based on mechanical clamping. 14. Proceso de fabricacion del dispositivo (10, 20, 30, 40) de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado por que comprende las etapas de: inscribir la red de difraccion (12, 22, 32) en la fibra optica (11, 21, 31, 41), aplicar el recubrimiento14. Process of manufacturing the device (10, 20, 30, 40) according to any of the preceding claims, characterized in that it comprises the steps of: inscribing the diffraction network (12, 22, 32) in the optical fiber ( 11, 21, 31, 41), apply the coating 10 interno, aplicar el bloque de proteccion exterior (14, 24. 34), incorporar las protecciones de entrada/salida (15, 25, 35) y aplicar el soporte (16, 26, 36).10 internal, apply the outer protection block (14, 24. 34), incorporate the input / output protections (15, 25, 35) and apply the support (16, 26, 36). 15. El proceso de fabricacion de la reivindicacion anterior donde en el caso de que la inscription se realice mediante un patron de interferencia centrado en el ultravioleta15. The manufacturing process of the previous claim where in the event that the registration is carried out by means of an interference pattern centered on the ultraviolet 15 comprende ademas la etapa de someter al dispositivo (10, 20, 30, 40) a un tratamiento termico, siendo esta etapa posterior a la incorporation de cualquier proteccion - recubrimiento interior (13, 23, 33), bloque de proteccion exterior (14, 24, 34), protecciones de entrada/salida (15, 25, 35) y soporte (16, 26, 36) -, siempre y cuando estas sean de un material resistente a muy altas temperaturas, o con anterioridad a la 20 incorporacion de cualquier proteccion cuyo material sea no resistente a muy altas temperaturas.15 also includes the stage of subjecting the device (10, 20, 30, 40) to a thermal treatment, this stage being after the incorporation of any protection - inner coating (13, 23, 33), outer protection block (14 , 24, 34), input / output protections (15, 25, 35) and support (16, 26, 36) - as long as they are made of a material resistant to very high temperatures, or prior to incorporation of any protection whose material is not resistant to very high temperatures.
ES201601097A 2016-12-20 2016-12-20 Fiber optic based device and diffraction networks for measuring temperatures that reach the thermal limits of the optical fiber, and manufacturing process Active ES2599606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201601097A ES2599606B2 (en) 2016-12-20 2016-12-20 Fiber optic based device and diffraction networks for measuring temperatures that reach the thermal limits of the optical fiber, and manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201601097A ES2599606B2 (en) 2016-12-20 2016-12-20 Fiber optic based device and diffraction networks for measuring temperatures that reach the thermal limits of the optical fiber, and manufacturing process

Publications (2)

Publication Number Publication Date
ES2599606A1 true ES2599606A1 (en) 2017-02-02
ES2599606B2 ES2599606B2 (en) 2017-06-08

Family

ID=57904397

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201601097A Active ES2599606B2 (en) 2016-12-20 2016-12-20 Fiber optic based device and diffraction networks for measuring temperatures that reach the thermal limits of the optical fiber, and manufacturing process

Country Status (1)

Country Link
ES (1) ES2599606B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399854A (en) * 1994-03-08 1995-03-21 United Technologies Corporation Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating
JP2004212438A (en) * 2002-12-27 2004-07-29 Totoku Electric Co Ltd Heat-resistant optical fiber and heat-resistant optical fiber sensor
CN101581610A (en) * 2009-06-22 2009-11-18 天津工业大学 Manufacturing method of optical fiber and optical grating polymer encapsulation temperature sensor used for intelligent garment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399854A (en) * 1994-03-08 1995-03-21 United Technologies Corporation Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating
JP2004212438A (en) * 2002-12-27 2004-07-29 Totoku Electric Co Ltd Heat-resistant optical fiber and heat-resistant optical fiber sensor
CN101581610A (en) * 2009-06-22 2009-11-18 天津工业大学 Manufacturing method of optical fiber and optical grating polymer encapsulation temperature sensor used for intelligent garment

Also Published As

Publication number Publication date
ES2599606B2 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
CA2740372C (en) Method and system for measuring a parameter in a high temperature environment using an optical sensor
US9248615B2 (en) Compact fiber optic sensors
US9557344B2 (en) Sensor for measuring flow speed of a fluid
Chen et al. Fiber Bragg gratings and their applications as temperature and humidity sensors
Wang et al. Bend-insensitive long-period fiber grating sensors
ES2599606B2 (en) Fiber optic based device and diffraction networks for measuring temperatures that reach the thermal limits of the optical fiber, and manufacturing process
Marchi et al. Femtosecond laser machined micro-structured fiber Bragg grating for simultaneous temperature and force measurements
Park et al. Temperature and pressure sensors based on chiral fibers
US10408995B1 (en) Optical sensing fiber
KR20120010295A (en) A structure of FBG sensor fixing on one body material
Peng et al. Polymer optical fiber sensing
US20230194773A1 (en) Optical waveguide and method of fabrication thereof
JP2001208915A (en) Optical fiber cable and method of measuring distortion
Huang et al. Fiber Bragg grating sensors written by femtosecond laser pulses in micro-structured fiber for downhole pressure monitoring
WO2009144341A1 (en) Optical sensor for structural monitoring
EP1235089A1 (en) Optical cable for measuring temperature and/or extension
JP4286382B2 (en) Fiber tension sensor for temperature tension measurement
MADAN et al. Carbon-steel tube surface mounted FBG sensors under high-temperature environment, part I: Polyimide coated and femtosecond laser written
Chen et al. Optical bend sensor for vector curvature measurement based on Bragg grating in eccentric core polymer optical fibre
KR20140101078A (en) Fiber bragg gratting sensor
Zhang et al. Characteristics of fiber Bragg grating temperature sensor at elevated temperatures
KR100334813B1 (en) Long period fiber grating recoating equipment and method thereof
Johnson Grating devices in polymer optical fibre
Shen et al. Small period long period grating with enhanced sensitivity in low refractive index region
Marques et al. Advances in POF Bragg grating sensors inscription using only one laser pulse for photonic applications

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2599606

Country of ref document: ES

Kind code of ref document: B2

Effective date: 20170608