ES2589036A1 - Structural panel of stiffness and variable resistance and its manufacturing process (Machine-translation by Google Translate, not legally binding) - Google Patents

Structural panel of stiffness and variable resistance and its manufacturing process (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2589036A1
ES2589036A1 ES201500313A ES201500313A ES2589036A1 ES 2589036 A1 ES2589036 A1 ES 2589036A1 ES 201500313 A ES201500313 A ES 201500313A ES 201500313 A ES201500313 A ES 201500313A ES 2589036 A1 ES2589036 A1 ES 2589036A1
Authority
ES
Spain
Prior art keywords
panels
structural panel
panel
stiffness
translation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201500313A
Other languages
Spanish (es)
Other versions
ES2589036B1 (en
Inventor
Miguel Ángel CASTILLO ACERO
Yasser ESSA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aernnova Engineering Division SA
Original Assignee
Aernnova Engineering Division SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aernnova Engineering Division SA filed Critical Aernnova Engineering Division SA
Priority to ES201500313A priority Critical patent/ES2589036B1/en
Publication of ES2589036A1 publication Critical patent/ES2589036A1/en
Application granted granted Critical
Publication of ES2589036B1 publication Critical patent/ES2589036B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)

Abstract

The present invention describes a structural panel of stiffness and variable resistance and its manufacturing process. The panel results from the stacking of two or more selectively deformable sub-panels of lower thickness fig. 3 or fig. 4. These subpanels can be overlapped in different numbers, thicknesses and directions to obtain a final structure or panel fig. 6 with a thickness and certain mechanical properties. The set of superimposed subpanels can be manufactured by means of a 3d printing process, and the resulting gaps as a consequence of the geometry of each subpanel can be filled with a filling material, this process can be carried out by immersion in a liquid subjected to a curing process later. (Machine-translation by Google Translate, not legally binding)

Description

PANEL ESTRUCTURAL DE RIGIDEZ Y RESISTENCIA VARIABLE Y SU PROCESO DE FABRICACiÓN 5 SECTOR DE LA TÉCNICA 10 Materiales y procesos de fabricación de paneles estructurales. ANTECEDENTES DE LA INVENCiÓN Desde hace bastantes años, son conocidos los materiales compuestos en la fabricación de estructuras de distinto tipo. En concreto, si hablamos de los materiales compuestos consistentes en fibras o haces de fibra embebidos en una matriz de resina termoestable o termoplástica, su utilización presenta diferentes 15 ventajas frente a los materiales isótropos convencionales, precisamente por la posibilidad que ofrecen estos materiales de conseguir propiedades estructurales diferenciadas según la dirección considerada, variando la cantidad de fibras orientadas en cada dirección, ya que son las fibras en estos materiales las que constituyen el principal elemento resistente. 20 Estos materiales compuestos elaborados como empilados de telas compuestas por fibras y embutidas en matriz de resina tienen la capacidad de poder diseñarse con propiedades mecánicas direccionales, pero por su propia naturaleza se trata de materiales eminentemente rígidos en todas sus direcciones. Hay aplicaciones, sin 25 embargo, en las que sería muy útil disponer de un material con una flexibilidad direccional. Esto llevó al nacimiento del concepto de Estructuras Selectivamente Oeformables (ESO). Bajo este concepto se han descrito (Amiryants et aL, Se/ectively Deformable 30 Structures for Design of Adaptive Wing Smart Elements, 27th International Congress of the Aeronautical Sciences, 2010) paneles con una geometría especial que les permite mostrar propiedades de rigidez direccionales, al mismo tiempo que pueden presentar flexibilidad frente a la deformación fuera de su plano. Este material puede ser fácilmente deformado en una dirección "útil", manteniendo la rigidez en las otras 35 direcciones proporcionando así el control y la forma de la estructura asignada bajo cargas externas aplicadas. El componente principal de una ESO es una célula de 2 STRUCTURAL PANEL OF RIGIDITY AND VARIABLE RESISTANCE AND ITS MANUFACTURING PROCESS 5 SECTOR OF THE TECHNIQUE 10 Materials and manufacturing processes of structural panels. BACKGROUND OF THE INVENTION For many years now, composite materials have been known in the manufacture of structures of different types. Specifically, if we talk about composite materials consisting of fibers or fiber bundles embedded in a thermosetting or thermoplastic resin matrix, their use has different advantages over conventional isotropic materials, precisely because of the possibility that these materials offer properties. structural differentiated according to the direction considered, varying the amount of fibers oriented in each direction, since it is the fibers in these materials that constitute the main resistant element. 20 These composite materials made as stacked of fabrics composed of fibers and embedded in resin matrix have the ability to be designed with directional mechanical properties, but by their very nature they are eminently rigid materials in all directions. There are applications, however, in which it would be very useful to have a material with directional flexibility. This led to the birth of the concept of Selectively Oeformable Structures (ESO). Under this concept have been described (Amiryants et aL, Se / ectively Deformable 30 Structures for Design of Adaptive Wing Smart Elements, 27th International Congress of the Aeronautical Sciences, 2010) panels with a special geometry that allows them to show directional stiffness properties, at at the same time they can present flexibility against deformation outside their plane. This material can be easily deformed in a "useful" direction, maintaining the stiffness in the other 35 directions thus providing control and shape of the assigned structure under applied external loads. The main component of an ESO is a cell of 2

carga de geometría variable, la célula que comprende de pared delgada reforzada de elementos rígidos centrales y periféricos, así como componentes elásticos de apoyo deformables. La rigidez en compresión/tensión resulta insignificante debido al orden especial de los elementos dentro de la célula mientras que la rigidez en flexión, torsión y cortadura se mantiene en niveles finitos asignados. Combinado en cadenas, las células pueden formar marcos de adaptación de cualquier estructura. variable geometry load, the cell comprising a thin wall reinforced with rigid central and peripheral elements, as well as deformable support elastic components. The stiffness in compression / tension is insignificant due to the special order of the elements within the cell while the stiffness in bending, torsion and shear is maintained at assigned finite levels. Combined in chains, cells can form adaptive frameworks of any structure.

Las estructuras selectivamente deformables descritas hasta ahora consisten, por tanto, en estructuras en forma básicamente de panel, diseñadas con una geometría adaptada a las propiedades elásticas finales que se quieran conseguir para esa estructura en particular. No se dispone en el estado de la técnica actual de ningún material que pueda servir como base más o menos estándar para diseñar estructuras de propiedades elásticas a medida, al igual que se realiza con las propiedades mecánicas de las piezas de material compuesto a partir de telas elaboradas con fibras. The selectively deformable structures described so far consist, therefore, in basically panel-shaped structures, designed with a geometry adapted to the final elastic properties that are to be achieved for that particular structure. No material is available in the current state of the art that can serve as a more or less standard basis for designing structures of elastic properties to measure, as is done with the mechanical properties of pieces of composite material from fabrics made with fibers.

EXPLICACiÓN DE LA INVENCiÓN EXPLANATION OF THE INVENTION

La presente invención se engloba dentro del campo de los materiales y procesos para paneles estructurales. Se trata de una estructura tridimensional que comprende una serie de sub-paneles de rigidez altamente direccional superpuestos y dispuestos en distintas orientaciones para obtener distintas rigideces y resistencias para el conjunto resultante en función de la combinación de sub-paneles elegida. The present invention falls within the field of materials and processes for structural panels. It is a three-dimensional structure that comprises a series of highly directional sub-panels of superimposed overlapping and arranged in different orientations to obtain different stiffnesses and resistances for the resulting assembly depending on the combination of sub-panels chosen.

Partiendo del concepto conocido de las Estructuras Selectivamente Oeformables (ESO), la presente invención consiste en una estructura cuya deformabilidad y rigidez pueden ser diseñadas a medida superponiendo diferentes paneles de ESO en diferentes orientaciones espaciales, según necesidad. Starting from the known concept of Selectively Oeformable Structures (ESO), the present invention consists of a structure whose deformability and rigidity can be custom designed by superimposing different ESO panels in different spatial orientations, as needed.

Las ventajas del panel objeto de la invención son: The advantages of the panel object of the invention are:

El establecer diferentes parámetros de definición del panel gracias al uso de diferentes secuencias de apilamiento de los sub-paneles de rigidez altamente direccional, permitiendo de una manera sencilla el cambio de las propiedades mecánicas en términos de rigidez y resistencia. El amplio alcance de la utilización de los paneles resultantes cuya configuración está adaptada a los niveles de carga en cada aplicación. Por ejemplo, si queremos un panel que presente mayor resistencia y rigidez bajo condiciones de carga axial, habrá una mayoría de sub-paneles a 0°, mientras que si la carga interna dominante es cortadura, la mayoría de los subpaneles tendrán orientación +/-45°. The establishment of different panel definition parameters through the use of different stacking sequences of the highly directional stiffness sub-panels, allowing a simple change of the mechanical properties in terms of stiffness and strength. The wide scope of the use of the resulting panels whose configuration is adapted to the load levels in each application. For example, if we want a panel that has greater strength and rigidity under axial load conditions, there will be a majority of sub-panels at 0 °, while if the dominant internal load is cut, most subpanels will have +/- orientation. 45 °

Es objeto de la presente invención la fabricación de la estructura caracterizada por la superposición de paneles ESO a partir de cualquier material mediante un proceso de impresión 3D, como la fabricación aditiva. The object of the present invention is the manufacture of the structure characterized by the superposition of ESO panels from any material by means of a 3D printing process, such as additive manufacturing.

También es otro objeto de la presente invención el rellenar los huecos del material resultante con un material de relleno preferentemente flexible, como una resina elastómera compatible con el material del esqueleto. It is also another object of the present invention to fill the gaps of the resulting material with a preferably flexible filling material, such as an elastomeric resin compatible with the skeleton material.

BREVE DESCRIPCiÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS

A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta. A series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention which is presented as a non-limiting example thereof is described very briefly below.

FIG 1 muestra una vista esquemática de una celdilla elemental altamente direccional. FIG 1 shows a schematic view of a highly directional elementary cell.

FIG 2 muestra un esquema de otro tipo de celdilla elemental con sus principales parámetros geométricos. FIG 2 shows a scheme of another type of elementary cell with its main geometric parameters.

FIG 3 muestra un sub-panel altamente direccional basado en las celdillas elementales mostradas en la FIG 1. FIG 3 shows a highly directional sub-panel based on the elementary cells shown in FIG 1.

FIG 4 muestra un sub-panel altamente direccional basado en las celdillas elementales mostradas en la FIG 2. FIG 4 shows a highly directional sub-panel based on the elementary cells shown in FIG 2.

FIG 5 muestra un esquema los paneles orientados en las cuatro direcciones, 0°, 90°, +45°, -45°. FIG 5 shows a diagram of the panels oriented in the four directions, 0 °, 90 °, + 45 °, -45 °.

FIG 6 muestra un panel resultado de apilar 7 sub-paneles en distintas direcciones. FIG 6 shows a result panel of stacking 7 sub-panels in different directions.

REALIZACiÓN PREFERENTE DE LA INVENCiÓN PREFERRED EMBODIMENT OF THE INVENTION

En una realización preferente de esta invención, la estructura final resulta de un proceso de fabricación aditiva o impresión 3D que posibilita que distintos subpaneles constituidos por celdillas direccionales, se fabriquen en un único conjunto. In a preferred embodiment of this invention, the final structure results from a process of additive manufacturing or 3D printing that allows different subpanels constituted by directional cells to be manufactured in a single set.

Las celdillas direccionales se pueden basar en distintas geometrías que comparten la misma propiedad de presentar una dirección con mayor rigidez y resistencia estructural, que su dirección perpendicular. Como ejemplo se muestra en FIG 1 una vista esquemática de una celdilla elemental altamente direccional basada en segmentos rectos y en FIG 2 otra configuración basada en tramos curvos. La geometría de esta célula elemental puede presentar pues distintas geometrías, espesores, radios, ángulos pero siempre con el elemento común de presentar una dirección mecánicamente privilegiada respeto al perpendicular. Directional cells can be based on different geometries that share the same property of presenting a direction with greater rigidity and structural strength, than their perpendicular direction. As an example, a schematic view of a highly directional elementary cell based on straight segments is shown in FIG 1 and another configuration based on curved sections in FIG 2. The geometry of this elementary cell can therefore present different geometries, thicknesses, radii, angles but always with the common element of presenting a mechanically privileged direction with respect to the perpendicular.

De la repetición de las celdillas elementales, resultan los sub-paneles en FIG 3 Y 4 basados en los módulos incluidos en FIG 1 Y 2 respectivamente. From the repetition of the elementary cells, the sub-panels in FIG 3 and 4 result based on the modules included in FIG 1 and 2 respectively.

Definida una dirección como referencia, dirección 0°, la orientación que damos a los sub-paneles, junto con el espesor "t;" de cada sub-panel, resulta en unas características mecánicas distintas en rigidez y resistencia del panel en su conjunto. Por ejemplo, FIG 5 muestra unos sub-paneles orientados en cuatro direcciones distintas 0°, +45°, -45° Y90° respecto a la dirección tomada como referencia. Defined an address as a reference, address 0 °, the orientation we give to the sub-panels, together with the thickness "t;" of each sub-panel, results in different mechanical characteristics in rigidity and strength of the panel as a whole. For example, FIG 5 shows sub-panels oriented in four different directions 0 °, + 45 °, -45 ° Y90 ° with respect to the direction taken as a reference.

Para formar el panel final, se superponen uno encima de otro los sub-paneles que queramos utilizar para configurar las características mecánicas buscadas. Como ejemplo, FIG 6 muestra un panel resultado de apilar 7 sub-paneles en distintas direcciones; en este caso las direcciones de cada sub-panel son 0/90/45/0/+45/90/0. El espesor del panel resultante, "t", es la suma de los espesores de los sub-paneles, t = Li~~ti Siendo "n" el número de sub-paneles. To form the final panel, the sub-panels that we want to use to configure the desired mechanical characteristics are superimposed on top of each other. As an example, FIG 6 shows a panel resulting from stacking 7 sub-panels in different directions; in this case the addresses of each sub-panel are 0/90/45/0 / + 45/90/0. The thickness of the resulting panel, "t", is the sum of the thicknesses of the sub-panels, t = Li ~~ ti "n" being the number of sub-panels.

En una realización preferente de la invención, el citado panel es configurado como sólido en un sistema Computer-Aided-Design (CAD) siguiendo el siguiente esquema: In a preferred embodiment of the invention, said panel is configured as solid in a Computer-Aided-Design (CAD) system following the following scheme:

Diseñar primero en CAD elementos geométricos sólidos de distintas configuraciones que cumplen con el requisito de presentar mayor rigidez en una dirección que en la perpendicular. Design in CAD solid geometric elements of different configurations that meet the requirement of presenting greater rigidity in one direction than in the perpendicular.

Diseñar luego en CAD sub-paneles basados en la repetición de los elementos geométricos anteriores y que presentan en consecuencia rigidez y resistencia altamente direccional. Then design in CAD sub-panels based on the repetition of the previous geometric elements and that consequently present highly directional stiffness and resistance.

Diseñar finalmente en CAD un panel que resulta del apilamiento según determinadas direcciones, como por ejemplo las direcciones 0°, +45°, -45° Y 90°, de sub-paneles que presentan rigidez y resistencia altamente direccional. Finally, design in CAD a panel that results from stacking according to certain directions, such as the 0 °, + 45 °, -45 ° and 90 ° directions, of sub-panels that have highly directional stiffness and resistance.

El panel resultante diseñado como modelo sólido en CAD puede ser fabricado a partir de cualquier material por un proceso de impresión 3D como la fabricación aditiva con dispositivos comercialmente disponibles. El resultado es una única pieza que presenta los huecos originados por su propia constitución. Estos huecos se pueden rellenar con algún material, ya sea para darle un mejor acabado superficial, propiedades de impermeabilidad, o para aportarle características mecánicas adicionales al conjunto final. El relleno puede ser necesario para conseguir superficies de carga selladas lisas y continuas, por ejemplo, para aplicaciones aeronáuticas Este material de relleno puede consistir en un elastómero compatible químicamente con el material base del esqueleto, que podría aportarse de forma líquida, mediante inmersión del "esqueleto" formado por la superposición de subpaneles, seguido de un proceso de curado de dicho material elastómero formando un conjunto solidario con el esqueleto. The resulting panel designed as a solid CAD model can be manufactured from any material by a 3D printing process such as additive manufacturing with commercially available devices. The result is a single piece that presents the gaps originated by its own constitution. These holes can be filled with some material, either to give a better surface finish, waterproof properties, or to provide additional mechanical characteristics to the final assembly. The filling may be necessary to achieve smooth and continuous sealed loading surfaces, for example, for aeronautical applications. This filling material may consist of an elastomer chemically compatible with the base material of the skeleton, which could be provided in liquid form, by immersion of the " skeleton "formed by the superposition of subpanels, followed by a curing process of said elastomeric material forming a joint with the skeleton.

Claims (5)

REIVINDICACIONES 1. Panel estructural de rigidez y resistencia variable que comprende la superposición de 2 o más sub-paneles selectivamente deformables 1. Variable stiffness and strength structural panel comprising the superposition of 2 or more selectively deformable sub-panels 5 orientados de forma distinta para conseguir el resultado de propiedades mecánicas objetivo. 5 oriented differently to achieve the result of objective mechanical properties.
2. 2.
Panel estructural según reivindicación 1, basado en impresión en 3D con materiales metálicos o no metálicos. Structural panel according to claim 1, based on 3D printing with metallic or non-metallic materials.
3. 3.
Panel estructural según reivindicaciones 1 ó 2, caracterizado por el rellenado de los huecos de las celdillas de cada subpanel con un material de relleno. Structural panel according to claims 1 or 2, characterized by filling the holes in the cells of each subpanel with a filler material.
4. Four.
Panel estructural según reivindicación 3, caracterizado porque el rellenado de Structural panel according to claim 3, characterized in that the filling of
15 los huecos de los paneles se realiza mediante inmersión de dichos paneles en un material fluido compatible químicamente con el material base del esqueleto y que se cure solidariamente con él. 15 The gaps in the panels are made by immersing said panels in a fluid material chemically compatible with the base material of the skeleton and which is cured in solidarity with it.
5. Panel estructural según reivindicaciones 3 ó 4 caracterizado porque el 20 material de relleno es un material elastómero. 5. Structural panel according to claims 3 or 4 characterized in that the filling material is an elastomeric material. e and FIG 1 FIG 1 p p p p ... e ... e FIG2 FIG2 FIG3 FIG3 FIG4 FIG4 FIG 5 FIG 5
ES201500313A 2015-05-04 2015-05-04 Structural panel of variable stiffness and resistance and its manufacturing process Expired - Fee Related ES2589036B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201500313A ES2589036B1 (en) 2015-05-04 2015-05-04 Structural panel of variable stiffness and resistance and its manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201500313A ES2589036B1 (en) 2015-05-04 2015-05-04 Structural panel of variable stiffness and resistance and its manufacturing process

Publications (2)

Publication Number Publication Date
ES2589036A1 true ES2589036A1 (en) 2016-11-08
ES2589036B1 ES2589036B1 (en) 2017-05-17

Family

ID=57217039

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201500313A Expired - Fee Related ES2589036B1 (en) 2015-05-04 2015-05-04 Structural panel of variable stiffness and resistance and its manufacturing process

Country Status (1)

Country Link
ES (1) ES2589036B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654518A (en) * 1995-12-06 1997-08-05 Rockwell International Corporation Double truss structural armor component
US7575807B1 (en) * 2004-05-28 2009-08-18 Hrl Laboratories, Llc Hybrid active deformable material structure
US20140001670A1 (en) * 2009-11-14 2014-01-02 Michael Drever Composite structure manufacturing method and apparatus
EP2698245A1 (en) * 2012-08-15 2014-02-19 Otto Bock HealthCare GmbH Compound material and method for its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654518A (en) * 1995-12-06 1997-08-05 Rockwell International Corporation Double truss structural armor component
US7575807B1 (en) * 2004-05-28 2009-08-18 Hrl Laboratories, Llc Hybrid active deformable material structure
US20140001670A1 (en) * 2009-11-14 2014-01-02 Michael Drever Composite structure manufacturing method and apparatus
EP2698245A1 (en) * 2012-08-15 2014-02-19 Otto Bock HealthCare GmbH Compound material and method for its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Selectively Deformable Structures for Design of adaptative wing Smart elements" (Amiryants, IShmuratov, Malyutin, Timokhin) 28/09/2010; 27 th International Congress of the Aeronautical Sciences" *

Also Published As

Publication number Publication date
ES2589036B1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
Tran et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings
AU2019264665B2 (en) Multiple-resin composite structures and methods of producing the same
US9809001B2 (en) Flexural digital material construction and transduction
IN2012DN02206A (en)
CN109970021B (en) Three-dimensional structure
ES2732364T3 (en) Elbows in composite panels
WO2016198884A3 (en) A composite sandwich structure
JP2016531628A5 (en)
BR112018071036A2 (en) prepreg fiber reinforced composite material and surface modified reinforcement fibers
ES2589036B1 (en) Structural panel of variable stiffness and resistance and its manufacturing process
US11840026B2 (en) Fiber component having fiber rods connected to form a framework
Behera et al. Eigen-frequency analysis of stiffened laminated composite plates using finite elements
Bondyra et al. Design of composite tank covers
Yee et al. Tensioned fabric structures in oval form
JP2014076757A (en) Artificial satellite body structure
JP2014076763A (en) Method for making artificial satellite body structure
Dong-dong et al. Linearly independent higher-order numerical manifold method
MX2014015578A (en) Postformable sandwich laminate with a core formed by a recylced thermoplastic material and metalic surfaces and process for manufacturing same.
Kheirikhah et al. Buckling analysis of soft-core composite sandwich plates using 3D finite element method
ES2699085T3 (en) Stacking layers of reinforced plastic material for part molding
Kamarudin et al. Prediction of elastic properties for unidirectional carbon composites: Periodic boundary condition approach
WO2014193511A2 (en) Flexural digital material construction and transduction
Koslowski et al. Experimental investigation of failure modes of lattice grid composites for building structures based on case studies
ES2745587T3 (en) Procedure for manufacturing a support element and support element
Noh et al. 3D printing structures that exhibit torsions

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2589036

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20170517

FD2A Announcement of lapse in spain

Effective date: 20210928