ES2552370A1 - Photoactive spectral image system (Machine-translation by Google Translate, not legally binding) - Google Patents

Photoactive spectral image system (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2552370A1
ES2552370A1 ES201400416A ES201400416A ES2552370A1 ES 2552370 A1 ES2552370 A1 ES 2552370A1 ES 201400416 A ES201400416 A ES 201400416A ES 201400416 A ES201400416 A ES 201400416A ES 2552370 A1 ES2552370 A1 ES 2552370A1
Authority
ES
Spain
Prior art keywords
spectral
translation
machine
legally binding
google translate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201400416A
Other languages
Spanish (es)
Other versions
ES2552370B1 (en
Inventor
Leticia CHÁVARRI DEL HOYO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to ES201400416A priority Critical patent/ES2552370B1/en
Publication of ES2552370A1 publication Critical patent/ES2552370A1/en
Application granted granted Critical
Publication of ES2552370B1 publication Critical patent/ES2552370B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

System that stimulates an organ or tissue of the living being, or any object or phenomenon that can be characterized spectrally, radiating with electromagnetic waves in different spectral bands (visible and near infrared) and captures with an image sensor the response to that stimulus, in each spectral band emitted. The reflected radiation, in intensity and wavelength, is analyzed with an image processing that presents, as a result, in real time, the spectral signature that identifies the study sample. With this system photodiagnostic tasks are carried out (identification of injuries, wounds or diseases by means of the spectral signature that characterizes them), application of customized phototherapy (using as an element of the treatment time control the absorption capacity of the irradiated area of the patient) or other applications that derive from the knowledge of the spectral characterization. (Machine-translation by Google Translate, not legally binding)

Description

imagen1image 1

imagen2image2

imagen3image3

imagen4image4

imagen5image5

2. 2.
Modo estático: Se emplea para hacer fototerapia en una banda específica. Static mode: It is used to make phototherapy in a specific band.

3. 3.
Modo secuencial: Se emplea cuando se requiere aplicar diferentes bandas en forma secuencial en fototerapias combinada. Sequential mode: It is used when it is required to apply different bands sequentially in combined phototherapies.

4. Four.
Modo de barrido: Se emplea para obtener la firma espectral en la región del visible e infrarrojo cercano para realizar fotodiagnóstico. Secuencialmente se activa cada banda espectral y se captura una imagen hasta cubrir toda la región del visible e infrarrojo cercano. Scanning mode: It is used to obtain the spectral signature in the region of visible and near infrared to perform photodiagnostic. Each spectral band is activated sequentially and an image is captured to cover the entire region of the visible and near infrared.

El sistema almacena las imágenes adquiridas en cada una de las bandas espectrales en un directorio establecido por el usuario y que permite contar con una base de datos. The system stores the images acquired in each of the spectral bands in a directory established by the user and that allows to have a database.

El circuito de control de las fuentes de radiación y adquisición de datos e imagen se controla mediante una aplicación software desarrollada para ello. La aplicación permite realizar dos funciones: controlar la energía que llega a la superficie del objeto a estudiar y adquirir las imágenes en cada banda espectral, según el modo de operación del sistema. The control circuit of the radiation sources and acquisition of data and image is controlled by a software application developed for it. The application allows two functions to be performed: control the energy that reaches the surface of the object to be studied and acquire the images in each spectral band, according to the mode of operation of the system.

Para ver los resultados se utiliza un visualizador. También ha sido desarrollada una aplicación software para mostrar los resultados en dos mapas 3D de la zona irradiada. En el primer mapa las imágenes RGB adquiridas en cada banda espectral se transforman en un mapa en el que cada píxel de la imagen se corresponde con la longitud de onda pico máxima reflejada por el objeto de estudio (Figura 8). Esto se realiza mediante una algoritmia matemática basada en los espacios de color. En el segundo mapa las imágenes RGB se transforman en un mapa en el que cada píxel se corresponde con un nivel de energía reflejada por el objeto de estudio y su correspondiente energía absorbida (Figura 9). La energía reflejada en cada banda espectral se calcula mediante la diferencia entre la radiación reflejada de la piel u objeto de estudio y la emitida por las fuentes (previamente calculada en la calibración del sistema con el patrón). To view the results a visualizer is used. A software application has also been developed to show the results on two 3D maps of the irradiated area. In the first map the RGB images acquired in each spectral band are transformed into a map in which each pixel of the image corresponds to the maximum peak wavelength reflected by the object of study (Figure 8). This is done through a mathematical algorithm based on color spaces. In the second map the RGB images are transformed into a map in which each pixel corresponds to a level of energy reflected by the object of study and its corresponding absorbed energy (Figure 9). The energy reflected in each spectral band is calculated by the difference between the radiation reflected from the skin or object of study and that emitted by the sources (previously calculated in the calibration of the system with the standard).

El software de visualización de resultados también realiza operaciones de análisis como son: comparación entre varias áreas de interés seleccionadas dentro de una misma imagen (por ejemplo, zona sana y enferma en la piel) o entre varias imágenes de bandas espectrales distintas; también realizar análisis estadísticos de los datos obtenidos, como histogramas del porcentaje de píxeles de una imagen en cada banda en función de la la longitud de onda pico reflejada por el objeto de estudio o representación de firmas espectrales en 2D y 3D. The results visualization software also performs analysis operations such as: comparison between several areas of interest selected within the same image (for example, healthy and diseased skin area) or between several images of different spectral bands; also perform statistical analysis of the data obtained, such as histograms of the percentage of pixels of an image in each band depending on the peak wavelength reflected by the object of study or representation of 2D and 3D spectral signatures.

Descripción de los dibujos Description of the drawings

Figura 1: Diagrama en bloque que muestra las partes fundamentales del sistema de imagen multiespectral activo para aplicaciones en fototerapias personalizadas y fotodiagnóstico de una lesión u objeto de estudio. Figure 1: Block diagram showing the fundamental parts of the active multispectral imaging system for applications in personalized phototherapies and photodiagnostic of a lesion or object of study.

- 101: Lámpara multiespectral configurable en intensidad y en longitudes de onda emitidas en rango visible e infrarrojo cercano del espectro electromagnético. - 101: Multispectral lamp configurable in intensity and in wavelengths emitted in visible and near infrared range of the electromagnetic spectrum.

- 102: Sensor de distancia. - 102: Distance sensor.

- 103: Sensor de imagen. - 103: Image sensor.

7 7

imagen6image6

- 505: valores para un LED verde fabricado con GalnN. - 505: values for a green LED manufactured with GalnN.

- 506: valores para un LED rojo fabricado con AIGalnP. - 506: values for a red LED manufactured with AIGalnP.

Figura 6: Gráfica que muestra la variación de la longitud de onda cuando varía la temperatura de la unión. Figure 6: Graph showing the variation of the wavelength when the temperature of the junction varies.

- 601: temperatura de la unión en ºC. - 601: junction temperature in ºC.

- 602: longitud de onda en nm. - 602: wavelength in nm.

- 603: variación de nm para un LED rojo. - 603: variation of nm for a red LED.

Figura 7: Potencia óptica normalizada correspondiente a los diodos LED en una misma diagonal Di contra longitud de onda pico de las bandas espectrales. Figure 7: Normalized optical power corresponding to the LEDs on the same diagonal Di against peak wavelength of the spectral bands.

- 701: E/EO. Potencia óptica normalizada correspondiente a los diodos LED en una misma diagonal Di. - 701: E / EO. Standard optical power corresponding to the LEDs on the same diagonal Di.

- 702: Longitud de onda pico de la banda espectral (LDiP0). - 702: Peak wavelength of the spectral band (LDiP0).

- 703: Longitud de onda pico de la banda espectral (LDiP1...). - 703: Peak wavelength of the spectral band (LDiP1 ...).

- 704: Longitud de onda pico de la banda espectral (LDiPj…). - 704: Peak wavelength of the spectral band (LDiPj…).

- 705. Longitud de onda pico de la banda espectral (LDiPm-1). - 705. Peak wavelength of the spectral band (LDiPm-1).

- 706. Longitud de onda pico de la banda espectral (LDiPm). - 706. Peak wavelength of the spectral band (LDiPm).

Figura 8: Transformación de la imagen RGB en un mapa en el que cada píxel de la imagen se corresponde con la longitud de onda pico reflejada por el objeto de estudio. Figure 8: Transformation of the RGB image into a map in which each pixel of the image corresponds to the peak wavelength reflected by the object of study.

- 801: Color en RGB del pixel localizado en la posición (i, j) de la imagen. - 801: RGB color of the pixel located at the position (i, j) of the image.

- 802: Longitud de onda pico reflejada correspondiente al color en RGB del píxel localizado en la posición (i, j) de la imagen. - 802: Reflected peak wavelength corresponding to the RGB color of the pixel located at the position (i, j) of the image.

Figura 9: Transformación de la imagen RGB en un mapa en el que cada píxel de la imagen se corresponde con un nivel de energía reflejada por el objeto de estudio. Figure 9: Transformation of the RGB image into a map in which each pixel of the image corresponds to a level of energy reflected by the object of study.

- 901: Color en RGB del píxel localizado en la posición (i, j) de la imagen. - 901: RGB color of the pixel located at the position (i, j) of the image.

- 902: Nivel de energía reflejada por el objeto de estudio correspondiente al color en RGB del píxel localizado en la posición (i, j) de la imagen. - 902: Energy level reflected by the object of study corresponding to the RGB color of the pixel located at the position (i, j) of the image.

9 9

Claims (1)

imagen1image 1 imagen2image2
ES201400416A 2014-05-27 2014-05-27 Spectral photoactive imaging system Active ES2552370B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES201400416A ES2552370B1 (en) 2014-05-27 2014-05-27 Spectral photoactive imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201400416A ES2552370B1 (en) 2014-05-27 2014-05-27 Spectral photoactive imaging system

Publications (2)

Publication Number Publication Date
ES2552370A1 true ES2552370A1 (en) 2015-11-27
ES2552370B1 ES2552370B1 (en) 2016-09-09

Family

ID=54601443

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201400416A Active ES2552370B1 (en) 2014-05-27 2014-05-27 Spectral photoactive imaging system

Country Status (1)

Country Link
ES (1) ES2552370B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046856A1 (en) * 1996-06-07 1997-12-11 Psc, Inc. Object recognition system and method
WO2012021898A2 (en) * 2010-08-13 2012-02-16 Certusview Technologies, Llc Methods, apparatus and systems for surface type detection in connection with locate and marking operations
EP2557411A1 (en) * 2010-04-09 2013-02-13 Toyota Jidosha Kabushiki Kaisha Spectrum measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046856A1 (en) * 1996-06-07 1997-12-11 Psc, Inc. Object recognition system and method
EP2557411A1 (en) * 2010-04-09 2013-02-13 Toyota Jidosha Kabushiki Kaisha Spectrum measurement device
WO2012021898A2 (en) * 2010-08-13 2012-02-16 Certusview Technologies, Llc Methods, apparatus and systems for surface type detection in connection with locate and marking operations

Also Published As

Publication number Publication date
ES2552370B1 (en) 2016-09-09

Similar Documents

Publication Publication Date Title
JP6672406B2 (en) Single sensor hyperspectral imaging device
ES2692648T3 (en) Procedures for evaluating an erythema
Rey-Barroso et al. Visible and extended near-infrared multispectral imaging for skin cancer diagnosis
US9080977B2 (en) Apparatus and methods for fluorescence guided surgery
US20160139039A1 (en) Imaging system and imaging method
Lihachev et al. Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera
EP2155048A1 (en) Method for real time tumour visualisation and demarcation by means of photodynamic diagnosis
US20230148958A1 (en) Method and apparatus for intraoperative nerve visualization using polarized diffuse reflectance spectroscopy and applications of same
CN104323858B (en) Handheld molecular imaging navigation system
AU2014363329B2 (en) Medical imaging
JP6844093B2 (en) Devices and methods for capturing medical images for ulcer analysis
Modir et al. LED-based hyperspectral endoscopic imaging
US20180042481A1 (en) Handheld molecular imaging navigation system
ES2552370A1 (en) Photoactive spectral image system (Machine-translation by Google Translate, not legally binding)
Veasey et al. Wood’s lamp in dermatology: Applications in the daily practice
Saknite et al. Comparison of single-spot technique and RGB imaging for erythema index estimation
Rossi et al. Healing process study in murine skin superficial wounds treated with the blue LED photocoagulator “EMOLED”
Zakharov et al. Advances in tumor diagnosis using OCT and Raman spectroscopy
Gatica-Torres et al. Subungual pigmented squamous cell carcinoma presenting as a grey longitudinal melanonychia in a young patient
Nguyen et al. Tumor margin assessment in Mohs surgery using reflectance, fluorescence and Raman spectroscopy
Cinotti et al. Fluorescence videodermoscopy
Saknite et al. Diffuse reflectance and fluorescence multispectral imaging system for assessment of skin
Dixon et al. Toward Development of a Portable System for 3D Fluorescence Lymphography
MacKinnon et al. Toward in vivo diagnosis of skin cancer using multimode imaging dermoscopy:(I) clinical system development and validation
Martin et al. Hyperspectral imaging for melanoma screening

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2552370

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20160909