ES2551014B1 - HEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS - Google Patents

HEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS Download PDF

Info

Publication number
ES2551014B1
ES2551014B1 ES201430542A ES201430542A ES2551014B1 ES 2551014 B1 ES2551014 B1 ES 2551014B1 ES 201430542 A ES201430542 A ES 201430542A ES 201430542 A ES201430542 A ES 201430542A ES 2551014 B1 ES2551014 B1 ES 2551014B1
Authority
ES
Spain
Prior art keywords
mott
medium according
radiation
electromagnetic radiation
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES201430542A
Other languages
Spanish (es)
Other versions
ES2551014A1 (en
Inventor
Jesús M SANTAMARIA RAMIRO
José GRACIA BUDRIA
Miguel ESCUIN MELERO
Nuria Navascues Garcia
Reyes MALLADA VIANA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Zaragoza
Original Assignee
Universidad de Zaragoza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Zaragoza filed Critical Universidad de Zaragoza
Priority to ES201430542A priority Critical patent/ES2551014B1/en
Priority to PCT/ES2015/070270 priority patent/WO2015155395A1/en
Publication of ES2551014A1 publication Critical patent/ES2551014A1/en
Application granted granted Critical
Publication of ES2551014B1 publication Critical patent/ES2551014B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • H10N99/03Devices using Mott metal-insulator transition, e.g. field-effect transistor-like devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Medio de calentamiento sensible a la radiación electromagnética basado en materiales de Mott.#La presente invención se refiere a medios de calentamiento que permiten una absorción óptima de una radiación electromagnética no ionizante cuya energía o información asociada, se transforma en calor. El objeto de la invención consiste en una composición y una arquitectura basada en micro y nanopartículas capaces de resonar con la radiación externa. Como entidades sensibles a la radiación, dichas partículas comprenden preferentemente materiales de Mott. En términos de eficiencia, las partículas de materiales de Mott deben dispersarse en una matriz espaciadora cuya carga máxima la determinará de forma exacta el límite de percolación eléctrica del nanocompuesto. La invención puede usarse para generar calor de forma selectiva, para la activación catalítica o como material que evite la propagación de una señal electromagnética.Heating medium sensitive to electromagnetic radiation based on Mott materials. # The present invention relates to heating means that allow optimum absorption of a non-ionizing electromagnetic radiation whose energy or associated information is transformed into heat. The object of the invention consists of a composition and an architecture based on micro and nanoparticles capable of resonating with external radiation. As radiation sensitive entities, said particles preferably comprise Mott materials. In terms of efficiency, Mott material particles must be dispersed in a spacer matrix whose maximum load will be determined exactly by the limit of electrical percolation of the nanocomposite. The invention can be used to generate heat selectively, for catalytic activation or as a material that prevents the propagation of an electromagnetic signal.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

DESCRIPCIONDESCRIPTION

MEDIO DE CALENTAMIENTO SENSIBLE A LA RADIACION ELECTROMAGNETICA BASADO EN MATERIALES DE MOTTHEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS

CAMPO DE LA INVENCIONFIELD OF THE INVENTION

La presente invention se refiere a medios capaces de disipar energla a traves de la absorcion de radiation electromagnetica no ionizante, susceptibles de ser utilizados como medios de calentamiento y/o como catalizadores. Mas concretamente, la invencion se enmarca dentro del campo tecnico correspondiente a medios de calentamiento basados en nanopartlculas que presentan resonancia al someterse a radiacion externa, comprendiendo dichos medios, preferentemente, materiales de Mott sensibles a la radiacion no ionizante de microondas y/o radiofrecuencia.The present invention relates to means capable of dissipating energy through the absorption of non-ionizing electromagnetic radiation, capable of being used as heating means and / or as catalysts. More specifically, the invention falls within the technical field corresponding to nanoparticle-based heating media that have resonance when subjected to external radiation, said means, preferably comprising Mott materials sensitive to non-ionizing microwave and / or radiofrequency radiation.

ANTECEDENTES DE LA INVENCIONBACKGROUND OF THE INVENTION

Los materiales de Mott son objeto de un fenomeno de disipacion de energla unico que resulta de su interaction con la radiacion electromagnetica. La naturaleza de la interaction esta asociada con los portadores de carga libres, relativamente lentos, por lo que la mayor eficiencia de absorcion electromagnetica coincide con la transition de aislante o semiconductor a metal correlacionado (A-MC) del material de Mott. En el rango de temperaturas donde la transicion A-MC tiene lugar, los portadores de carga del material se autoajustan para resonar con la radiacion externa aplicada. Tras la absorcion de energla, los electrones libres y las vibraciones elementales de la red cristalina del material interaccionan, resultando en la deposition de energla electromagnetica.Mott materials are subject to a phenomenon of dissipation of single energy resulting from their interaction with electromagnetic radiation. The nature of the interaction is associated with relatively slow, free charge carriers, so that the greater electromagnetic absorption efficiency coincides with the transition from insulator or semiconductor to correlated metal (A-MC) of Mott material. In the range of temperatures where the A-MC transition takes place, the load carriers of the material adjust themselves to resonate with the external radiation applied. After the absorption of energy, the free electrons and the elementary vibrations of the crystalline network of the material interact, resulting in the deposition of electromagnetic energy.

La conversion eficiente de radiacion electromagnetica no ionizante en calor a escala micro y nanometrica ha sido descrita para nanopartlculas metalicas de tipo plasmonico. La fototermia conducida por nanopartlculas plasmomicas metalicas en el infrarrojo cercano es de utilidad, por ejemplo, en aplicaciones biomedicas. Sin embargo, la respuesta frente a una radiacion electromagnetica en materiales de Mott permite ampliar el espectro a mayores longitudes de onda, como por ejemplo microondas y radiofrecuencia. La respuesta de estos materiales a la radiacion electromagnetica ha sido estudiada, tradicionalmente, bajo el principio de prueba, encontrandose que ciertos materiales de Mott, principalmente magnetita, Fe3O4, y oxido de vanadio (VO2), pueden ser utilizados en aplicacionesThe efficient conversion of non-ionizing electromagnetic radiation into heat on a micro and nanometric scale has been described for plasma-type metal nanoparticles. Photothermia driven by near infrared metal plasma nanoparticles is useful, for example, in biomedical applications. However, the response to electromagnetic radiation in Mott materials allows the spectrum to be extended to greater wavelengths, such as microwaves and radiofrequency. The response of these materials to electromagnetic radiation has been studied, traditionally, under the test principle, finding that certain Mott materials, mainly magnetite, Fe3O4, and vanadium oxide (VO2), can be used in applications

55

1010

15fifteen

20twenty

2525

3030

3535

tecnologicas basadas en el empleo de radiacion electromagnetica no ionizante. No son conocidas, sin embargo, referencias en el estado de la tecnica que generalicen y ejemplifiquen los requisitos para un aprovechamiento energetico optimo de las partlculas nanometricas de Mott para la atenuacion de radiacion incidente. En este sentido, es conocido, por ejemplo, el uso de nanoestructuras de carbono (por ejemplo, nanotubos de carbono) dispersas en matrices espaciadoras como medio sensible a la radiacion electromagnetica. Sin embargo, dicho uso no hace distinciones entre nanotubos conductores o semiconductores, y tampoco contempla cuales son las condiciones que permiten una disipacion maxima de la radiacion electromagnetica absorbida, tales como la temperatura del material, la concentration de las nanopartlculas o las propiedades de conduccion de las matrices espaciadoras.technologies based on the use of non-ionizing electromagnetic radiation. There are no known, however, references in the state of the art that generalize and exemplify the requirements for optimal energy utilization of Mott nanometer particles for attenuation of incident radiation. In this sense, it is known, for example, the use of carbon nanostructures (for example, carbon nanotubes) dispersed in spacer matrices as a medium sensitive to electromagnetic radiation. However, such use does not distinguish between conductive or semiconductor nanotubes, and does not contemplate what are the conditions that allow a maximum dissipation of the absorbed electromagnetic radiation, such as the temperature of the material, the concentration of the nanoparticles or the conduction properties of The spacer matrices.

Otros estudios ejemplifican el uso particular de ciertas composiciones que entran dentro de la familia de materiales de Mott, tales como las perovskitas. No obstante, tal y como sucede con los usos relativos a los nanotubos de carbono, dichos estudios no especifican cuales son las propiedades flsicas necesarias ni la arquitectura del compuesto que garanticen un comportamiento optimo asociado al maximo rendimiento energetico.Other studies exemplify the particular use of certain compositions that fall within the Mott family of materials, such as perovskites. However, as with the uses related to carbon nanotubes, these studies do not specify which are the necessary physical properties or the architecture of the compound that guarantee optimum behavior associated with maximum energy efficiency.

La presente invention propone una solution al problema tecnico antes citado, a traves de medios de calentamiento novedosos, basados en materiales de Mott.The present invention proposes a solution to the aforementioned technical problem, through novel heating means, based on Mott materials.

DESCRIPCION BREVE DE LA INVENCIONBRIEF DESCRIPTION OF THE INVENTION

Un objeto de la presente invencion es, pues, un medio de calentamiento basado en materiales de Mott, en combinacion con matrices espaciadoras donde se depositan micro o nanopartlculas de dichos materiales. El objetivo de dicha combination es dar lugar a medios de calentamiento que, por su composition y arquitectura, resulten altamente disipativos ante la absorcion de radiacion electromagnetica no ionizante, preferentemente en la banda de frecuencias de las microondas y/o radiofrecuencia. Adicionalmente, otro objeto de la invencion es obtener medios cuyo calentamiento pueda llevarse a cabo de forma selectiva en su volumen o superficie, dando lugar a focos de calentamiento en puntos nanometricos o regiones especlficas de los materiales que los componen.An object of the present invention is, therefore, a heating medium based on Mott materials, in combination with spacer matrices where micro or nanoparticles of said materials are deposited. The objective of this combination is to give rise to heating means that, due to their composition and architecture, are highly dissipative in the face of the absorption of non-ionizing electromagnetic radiation, preferably in the microwave and / or radiofrequency frequency band. Additionally, another object of the invention is to obtain means whose heating can be carried out selectively in its volume or surface, giving rise to heating foci at nanometric points or specific regions of the materials that compose them.

Dichos objetos de la invencion se consiguen mediante un medio de calentamiento sensible a la radiacion electromagnetica, que comprende micropartlculas y/o nanopartlculas de un material de Mott, dispuestas en la superficie y/o el volumen de una matriz espaciadora deSaid objects of the invention are achieved by means of a heating medium sensitive to electromagnetic radiation, comprising microparticles and / or nanoparticles of a Mott material, arranged on the surface and / or the volume of a spacer matrix of

55

1010

15fifteen

20twenty

2525

3030

3535

dichas partlculas, donde la concentration en volumen de dicho material de Mott en la matriz espaciadora es igual o inferior a su llmite de percolation. Preferentemente, el material de Mott presenta una concentration de entre el 1% y el 30% en volumen en dicha matriz espaciadora; dependiendo de la forma y composition de las partlculas del material de Mott y de la matriz. Mas preferentemente, la concentration del material es de entre el 5% y el 20% (por ejemplo para partlculas esfericas de oxidos metalicos). Se consigue con ello un medio de calentamiento eficaz, que permite ademas obtener rampas muy elevadas de calentamiento.said particles, where the volume concentration of said Mott material in the spacer matrix is equal to or less than its percolation limit. Preferably, the Mott material has a concentration of between 1% and 30% by volume in said spacer matrix; depending on the shape and composition of the Mott material particles and the matrix. More preferably, the concentration of the material is between 5% and 20% (for example for spherical particles of metal oxides). This achieves an effective heating means, which also allows to obtain very high heating ramps.

Preferentemente pero no necesariamente, el material de Mott del medio de calentamiento se encuentra a una temperatura Tt en el rango XT = |(Tt-Ta.Mc)|/Ta.mc < 20%, donde la temperatura Ta-mc es la correspondiente al inicio de la progresiva transition A-MC del material. Mas preferentemente, XT < 10% y, aun mas preferentemente, XT < 5%. Se consigue con ello obtener medios de calentamiento cuyos materiales de Mott se encuentran en la region de transition A-MC, obteniendose las condiciones optimas para aumentar sus capacidades disipativas.Preferably but not necessarily, the Mott material of the heating medium is at a temperature Tt in the range XT = | (Tt-Ta.Mc) | /Ta.mc <20%, where the Ta-mc temperature is corresponding at the beginning of the progressive transition A-MC of the material. More preferably, XT <10% and, even more preferably, XT <5%. This is achieved by obtaining heating means whose Mott materials are in the region of transition A-MC, obtaining the optimal conditions to increase their dissipative capacities.

Preferentemente, la invention se refiere a medios de calentamiento que comprenden materiales de Mott de diferente naturaleza, tanto organica como inorganica. Entre otros, los materiales de Mott mas destacados son: semiconductores de carbono (nanotubos, fulerenos, grafeno), oxidos metalicos (oxidos de vanadio, cobalto o nlquel) y oxidos complejos (perovskitas). No obstante, cualquier material de Mott presenta caracterlsticas analogas en mayor o menor grado. La election del soporte y material de Mott mas adecuado dependera del uso especlfico que se de a la invention.Preferably, the invention relates to heating means comprising Mott materials of different nature, both organic and inorganic. Among others, the most prominent Mott materials are: carbon semiconductors (nanotubes, fulerenes, graphene), metal oxides (vanadium, cobalt or nickel oxides) and complex oxides (perovskites). However, any Mott material has similar characteristics to a greater or lesser degree. The choice of the most suitable Mott support and material will depend on the specific use of the invention.

Los materiales de Mott de la invention pueden ser, por ejemplo, uno o mas de los siguientes: oxidos simples, cobaltitas, perovskitas, magnetita, nanoestructuras de carbono. Mas preferentemente, dichos materiales pueden ser NiO, VO2, CuO, LaCoO3, PrCoO3, NdCoO3, SmCoO3, EuCoO3, GaCoO3, La0,9Sr0,1CoO3, SmNiO3, EuNiO3, LaMnO3, La1- XSrXNiO3, comprendiendo opcionalmente sustancias dopantes o fases activas en su entorno.Mott materials of the invention can be, for example, one or more of the following: simple oxides, cobaltites, perovskites, magnetite, carbon nanostructures. More preferably, said materials can be NiO, VO2, CuO, LaCoO3, PrCoO3, NdCoO3, SmCoO3, EuCoO3, GaCoO3, La0,9Sr0,1CoO3, SmNiO3, EuNiO3, LaMnO3, La1- XSrXniOnly active substances in 3 phases, environment.

Por su parte, la matriz espaciadora del medio de calentamiento de la invencion puede comprender un material no conductor transparente a la radiation electromagnetica, por ejemplo basado en monolitos de cordierita, KBr, TiO2, CeO2, un oxido metalico formalmente sin electrones d o f en la capa de valencia, alumina, una zeolita acida, calcica oFor its part, the spacer matrix of the heating medium of the invention may comprise a non-conductive material transparent to electromagnetic radiation, for example based on cordierite monoliths, KBr, TiO2, CeO2, a formally metallic metal oxide without dof electrons in the layer of Valencia, alumina, an acidic, calcium or zeolite

55

1010

15fifteen

20twenty

2525

3030

3535

intercambiada con cationes divalentes, o un fluido dielectrico. Alternativamente, la matriz espaciadora puede comprender un material capaz de absorber radiacion electromagnetica, tal como una zeolita sodica.exchanged with divalent cations, or a dielectric fluid. Alternatively, the spacer matrix may comprise a material capable of absorbing electromagnetic radiation, such as a sodium zeolite.

Otro objeto de la invention se refiere a un metodo de calentamiento de materiales que comprende la aplicacion de radiacion no ionizante a un medio de calentamiento segun cualquiera de las realizaciones descritas en el presente documento. Preferentemente, dicha radiacion comprende radiacion de microondas y/o radiofrecuencia, opcionalmente operada de forma pulsada.Another object of the invention relates to a method of heating materials comprising the application of non-ionizing radiation to a heating medium according to any of the embodiments described herein. Preferably, said radiation comprises microwave and / or radiofrequency radiation, optionally operated in a pulsed manner.

En una realization preferente del metodo de la invencion, los materiales de Mott se disponen de forma inhomogenea en la matriz espaciadora, de forma que se generen gradientes termicos ante la aplicacion de radiacion, para producir un calentamiento superficial o volumetrico selectivo de dichos materiales.In a preferred embodiment of the method of the invention, Mott materials are disposed inhomogeneously in the spacer matrix, so that thermal gradients are generated before the application of radiation, to produce a selective surface or volumetric heating of said materials.

Un tercer objeto de la invencion se refiere al uso de un medio de calentamiento segun cualquiera de las realizaciones descritas en el presente documento.A third object of the invention relates to the use of a heating means according to any of the embodiments described herein.

Las ventajas que aporta la invencion propuesta son, principalmente: elevada velocidad de calentamiento, elevada temperatura maxima alcanzada y calentamiento selectivo, localizado en las regiones donde se concentran los materiales de Mott.The advantages of the proposed invention are mainly: high heating rate, high maximum temperature reached and selective heating, located in the regions where Mott materials are concentrated.

Como posibles aplicaciones de estos sistemas de calentamiento, se plantea su utilization en slntesis SHS ("Self propagating High temperature Sinthesis”) para la generation de calor y obtencion de determinados compuestos que requieran alcanzar altas temperaturas para ser sintetizados. Otros ejemplos de aplicacion se refieren, por ejemplo, a la industria del vidrio, que precisa elevadas temperaturas para fundir la arena (cuarzo) utilizada. Asimismo, se plantea tambien la utilizacion de la invencion propuesta para su uso en medios de elimination de residuos presentes en efluentes gaseosos. En este caso, el calor generado por las realizaciones de la invencion servirla para activar un catalizador.As possible applications of these heating systems, its use in SHS ("Self propagating High temperature Synthesis") synthesis for the generation of heat and obtaining certain compounds that require reaching high temperatures to be synthesized is considered. Other examples of application refer , for example, to the glass industry, which requires high temperatures to melt the sand (quartz) used, as well as the use of the proposed invention for use in waste disposal media present in gaseous effluents. case, the heat generated by the embodiments of the invention will serve to activate a catalyst.

DESCRIPCION DE LAS FIGURASDESCRIPTION OF THE FIGURES

Las Figuras 1a-1b muestran graficas que ilustran el calentamiento selectivo de nanopartlculas de perovskita y nanotubos de carbono para laminas. En la Figura 1a se muestra la evolution de la temperatura con el tiempo para pastillas de 200 mg con un 2% de nanopartlculas de tipo LaBO3 perovskita (donde B = Cr, Mn, Fe, Co, Ni), o nanotubos deFigures 1a-1b show graphs illustrating the selective heating of perovskite nanoparticles and carbon nanotubes for sheets. Figure 1a shows the evolution of temperature over time for 200 mg tablets with 2% of nanoparticles of the LaBO3 perovskite type (where B = Cr, Mn, Fe, Co, Ni), or nanotubes of

55

1010

15fifteen

20twenty

2525

3030

3535

carbono (CNTs) sobre KBr como aglutinante. La Figura 1b muestra el comportamiento de laminas con un 20% en peso de perovskita. Las muestras se encuentran dentro de una guia de ondas monomodal a 2.45 GHz y una potencia de 60W.Carbon (CNTs) on KBr as a binder. Figure 1b shows the behavior of sheets with 20% by weight of perovskite. The samples are located within a monomodal waveguide at 2.45 GHz and a power of 60W.

La Figura 2 ilustra el calentamiento selectivo de nanoparticulas de LaCoO3 dispersas en placas de cuarzo, en dos dimensiones (2D), obtenido por termografia. Las Figuras 2a y 2b se refieren a una muestra de 0,18 mg de LaCoO3 depositada en dos canales de una placa de cuarzo, con densidad superficial de aproximadamente 0,10 mg/cm2, donde la Figura 2a se refiere concretamente a un sistema estable a 645 K a 65 W, y la Figura 2b muestra las rampas de temperatura trabajando con pulsos de potencia a 150 W.Figure 2 illustrates the selective heating of LaCoO3 nanoparticles dispersed in quartz plates, in two dimensions (2D), obtained by thermography. Figures 2a and 2b refer to a 0.18 mg sample of LaCoO3 deposited in two channels of a quartz plate, with a surface density of approximately 0.10 mg / cm2, where Figure 2a specifically refers to a stable system at 645 K at 65 W, and Figure 2b shows the temperature ramps working with power pulses at 150 W.

La Figura 3 muestra fotografias que ilustran el calentamiento selectivo de nanoparticulas de LaMnO3 y LaCoO3 dispersas en en monolitos de cordierita, en tres dimensiones (3D). Concretamente, las Figuras 3a y 3b muestran dos imagenes de microscopio electronico de barrido junto a imagenes de termografia infrarroja para nanoparticulas de LaMnO3 y LaCoO3 (20 mg, aproximadamente 5% en peso) dispersas en monolitos de cordierita, con un regimen estable de temperaturas a 30 W.Figure 3 shows photographs illustrating the selective heating of LaMnO3 and LaCoO3 nanoparticles dispersed in cordierite monoliths, in three dimensions (3D). Specifically, Figures 3a and 3b show two scanning electron microscope images together with infrared thermography images for LaMnO3 and LaCoO3 nanoparticles (20 mg, approximately 5% by weight) dispersed in cordierite monoliths, with a stable temperature regime at 30 W.

La Figura 4 muestra una grafica que ilustra la combustion de hexano con nanoparticulas de La0,95Ce0,05CoO3. En ella, se compara la combustion de hexano en un horno convencional o en una guia de ondas a 2,45 GHz, donde aproximadamente 20 mg de nanoparticulas de La0,95Ce0,05CoO3 se depositan sobre un monolito de cordierita, con 200 ppm en aire y 4 ml/minmg.Figure 4 shows a graph illustrating the combustion of hexane with nanoparticles of La0.95Ce0.05CoO3. In it, the combustion of hexane is compared in a conventional oven or in a waveguide at 2.45 GHz, where approximately 20 mg of La0.95Ce0.05CoO3 nanoparticles are deposited on a cordierite monolith, with 200 ppm in air and 4 ml / minmg.

La Figura 5 ilustra la amortiguacion de un campo electromagnetico a partir de una monocapa de VO2 sobre alumina. Las lmeas punteadas de color negro denotan las caras de alumina sobre las que se han depositado las particulas de VO2. El experimento consta de dos bloques de VO2 depositados sobre alumina, donde se altera el orden de los mismos (Figuras 5a y 5b) con respecto a la fuente de microondas (cuya direccion es la indicada por la flecha en las Figuras). En ambos casos, el apantallamiento del campo electromagnetico por parte de la primera superficie de VO2 hace que el segundo bloque no disipe apenas energia en la imagen termografica.Figure 5 illustrates the damping of an electromagnetic field from a monolayer of VO2 on alumina. The black dotted lines denote the faces of alumina on which the VO2 particles have been deposited. The experiment consists of two VO2 blocks deposited on alumina, where their order is altered (Figures 5a and 5b) with respect to the microwave source (whose direction is indicated by the arrow in the Figures). In both cases, the shielding of the electromagnetic field by the first surface of VO2 means that the second block does not dissipate energy in the thermographic image.

DESCRIPCION DETALLADA DE LA INVENCIONDETAILED DESCRIPTION OF THE INVENTION

Tal y como se ha descrito en parrafos precedentes, la presente invencion se refiere a un medio de calentamiento que comprende una composition capaz de atenuar de formaAs described in previous paragraphs, the present invention relates to a heating medium comprising a composition capable of attenuating in a manner

55

1010

15fifteen

20twenty

2525

3030

3535

eficiente la radiacion electromagnetica no ionizante. El medio de calentamiento de la invention permite, pues, disipar energia mediante el calentamiento selectivo de los portadores de carga de un material sensible, concretamente de un material de Mott. Para ello, se requiere que el material de Mott se encuentre en un rango de temperatura que proporcione un aumento de su conductividad electrica. Siempre y cuando el compuesto en su conjunto no se vuelva conductor, ello permite, para porcentajes de carga del material de Mott que sean inferiores o sustancialmente iguales al limite de percolation electrica, una atenuacion optima y volumetrica a escala micro y nanometrica de la radiacion externa. De este modo, el medio de calentamiento de la invencion comprende, preferentemente, micro o nanoparticulas de un material de Mott, que presentan una transition A-MC a un determinado rango de temperaturas.Efficient non-ionizing electromagnetic radiation. The heating means of the invention thus allows energy dissipation by selective heating of the load carriers of a sensitive material, specifically of a Mott material. For this, it is required that the Mott material be in a temperature range that provides an increase in its electrical conductivity. As long as the compound as a whole does not become conductive, this allows, for percentages of Mott material load that are lower or substantially equal to the limit of electric percolation, an optimal and volumetric attenuation at micro and nanometric scale of external radiation . Thus, the heating medium of the invention preferably comprises micro or nanoparticles of a Mott material, which have an A-MC transition at a certain temperature range.

Asimismo, dichas particulas estan preferentemente dispuestas superficial o volumetricamente en una matriz espaciadora, por ejemplo una matriz no conductora transparente a la radiacion electromagnetica a aplicar sobre el medio. La matriz espaciadora podra ser, pues, un soporte bidimensional, tridimensional o una carcasa sobre las particulas del material de Mott. Igualmente, como matriz espaciadora puede utilizarse un fluido no sensible, como el aire. En una realization preferente de la invencion, la matriz espaciadora es aislante, con una perdida dielectrica baja y estable con la temperatura en la frecuencia de radiacion a utilizar. No obstante, en realizaciones alternativas de la invencion, es tambien posible utilizar otros materiales, tales como materiales absorbentes de la radiacion electromagnetica (por ejemplo, zeolitas sodicas), que sirvan como agente concentrador y que puedan calentarse rapidamente bajo irradiation de microondas. Esta arquitectura posee la ventaja de que permite trabajar con radiacion pulsada, con etapas de baja temperatura en las que se adsorberian los reactantes. El rapido calentamiento de las zeolitas sensibles a la radiacion y de los materiales de Mott es capaz de producir corrientes disipativas concentradas, lo que favorece su aplicacion como catalizadores.Likewise, said particles are preferably arranged superficially or volumetrically in a spacer matrix, for example a non-conductive matrix transparent to the electromagnetic radiation to be applied on the medium. The spacer matrix could thus be a two-dimensional, three-dimensional support or a shell on the particles of the Mott material. Likewise, a non-sensitive fluid, such as air, can be used as a spacer matrix. In a preferred embodiment of the invention, the spacer matrix is insulating, with a low and stable dielectric loss with the temperature in the radiation frequency to be used. However, in alternative embodiments of the invention, it is also possible to use other materials, such as electromagnetic radiation absorbing materials (eg, sodium zeolites), which serve as a concentrating agent and which can be rapidly heated under microwave irradiation. This architecture has the advantage that it allows to work with pulsed radiation, with low temperature stages in which the reactants would be adsorbed. The rapid heating of radiation sensitive zeolites and Mott materials is capable of producing concentrated dissipative currents, which favors their application as catalysts.

Para cada aplicacion concreta de la invencion, es posible realizar diferentes elecciones del material de Mott y de la matriz de soporte. Pare ello, es necesario conocer, por ejemplo, las propiedades del material de Mott, temperatura de transicion A-MC, estabilidad, y posible actividad catalrtica. Si la aplicacion se orienta a reacciones de oxidation total, es posible utilizar composiciones formadas por oxidos mixtos, por ejemplo con estructura base de perovskita: A1-XA’XMnO3 para metano o A1-XA’XCoO3 para otros hidrocarburos. En aplicaciones para reformado en seco de metano, se puede partir de perovskitas de niquel o NiO. En el caso general de buscar una respuesta termica a temperatura ambiente, se puedeFor each specific application of the invention, it is possible to make different choices of Mott material and the support matrix. Stop it, it is necessary to know, for example, the properties of Mott material, A-MC transition temperature, stability, and possible catalytic activity. If the application is directed to total oxidation reactions, it is possible to use compositions formed by mixed oxides, for example with perovskite base structure: A1-XA'XMnO3 for methane or A1-XA'XCoO3 for other hydrocarbons. In applications for dry reforming of methane, it is possible to start from nickel perovskites or NiO. In the general case of looking for a thermal response at room temperature, you can

55

1010

15fifteen

20twenty

2525

3030

3535

trabajar con micro o nanoestructuras de carbono u oxidos de vanadio. A temperaturas mas altas, tambien se pueden utilizar oxidos mixtos en la composition. Finalmente, en aplicaciones para el uso de atenuacion de la radiation como fuente de information, es posible partir de grafeno dispuesto en multicapas, as! como otras nanoestructuras de carbono.work with micro or nanostructures of carbon or vanadium oxides. At higher temperatures, mixed oxides can also be used in the composition. Finally, in applications for the use of radiation attenuation as a source of information, it is possible to start from graphene arranged in multilayers, as well! like other carbon nanostructures.

Complementariamente, para aplicaciones dirigidas a catalisis, el medio de calentamiento de la presente invention puede comprender micro o nanopartlculas catallticas metalicas, soportadas sobre el material de Mott.In addition, for applications directed to catalysis, the heating medium of the present invention may comprise micro or metallic catalytic nanoparticles, supported on the Mott material.

Para poder maximizar el fenomeno de disipacion electromagnetica de forma volumetrica en una muestra macroscopica, es necesario un porcentaje de micro o nanopartlculas de Mott en el llmite de percolation electrica del compuesto. Dicho llmite se encuentra, preferentemente, en una concentration del material de Mott comprendida entre un 1 % y un 30 % en volumen total y, mas preferentemente entre un 5% y un 20%. Por encima del llmite de percolacion, llegada la transition A-MC, toda la muestra se volvera conductora, y se comporta como un espejo que refleja la radiacion electromagnetica.In order to maximize the phenomenon of electromagnetic dissipation volumetrically in a macroscopic sample, a percentage of Mott micro or nanoparticles is necessary in the limit of electrical percolation of the compound. Said limit is preferably found in a concentration of Mott material comprised between 1% and 30% in total volume and, more preferably between 5% and 20%. Above the percolating limit, when the A-MC transition arrives, the entire sample will become conductive, and behaves like a mirror that reflects electromagnetic radiation.

El medio de calentamiento de la invencion, segun las composiciones y aplicaciones descritas en el presente documento, permite la conception de estructuras que absorban de forma volumetrica una radiacion electromagnetica no ionizante. En cualquier caso la energla, o informacion que transporta la radiacion, genera inicialmente electrones calientes. Este tipo de compuestos es de gran interes para aplicaciones que requieren respuestas termicas locales localizadas, en general para aplicaciones que demanden un micro o nanocompuesto muy eficiente para la absorcion de radiacion no ionizante, o directamente en catalisis, electrones calientes. Como aplicacion significativa, se destaca la mejora en la eficiencia energetica de procesos de la industria qulmica y en particular procesos catallticos. Dado el alcance y las escalas de consumo del sector energetico, dicha mejora de eficiencia energetica asociada a procesos qulmicos particulares puede tener un impacto tecnologico y economico considerable.The heating medium of the invention, according to the compositions and applications described herein, allows the conception of structures that volumetrically absorb non-ionizing electromagnetic radiation. In any case, the energy, or information that carries the radiation, initially generates hot electrons. This type of compounds is of great interest for applications that require localized local thermal responses, in general for applications that demand a very efficient micro or nanocomposite for the absorption of non-ionizing radiation, or directly in catalysis, hot electrons. As a significant application, the improvement in the energy efficiency of chemical industry processes and in particular catallotic processes is highlighted. Given the scope and scales of consumption of the energy sector, such improvement in energy efficiency associated with particular chemical processes can have a considerable technological and economic impact.

El rango de temperaturas optimo en terminos de eficiencia energetica en el calentamiento selectivo aparece a partir de aquellas temperaturas proximas a la region de transicion A-MC en las micro o nanopartlculas del material de Mott, pero es posible obtener calentamientos intensos a otras temperaturas. Preferentemente, la temperatura (Tt) del material de Mott de la presente invencion con la que se consigue un aprovechamiento optimo de disipacionThe optimum temperature range in terms of energy efficiency in selective heating appears from those temperatures close to the region of transition A-MC in the micro or nanoparticles of the Mott material, but it is possible to obtain intense heating at other temperatures. Preferably, the temperature (Tt) of the Mott material of the present invention with which optimum dissipation utilization is achieved

55

1010

15fifteen

20twenty

2525

energetica, esta comprendida en un rango XT = |(Tt-Ta_Mc)|/Ta-mc < 20%, donde la temperatura Ta-Mc es la correspondiente a la transition A-MC del material. Mas preferentemente, XT < 10% y, aun mas preferentemente, XT < 5%. Como referencia de los valores de temperatura Ta-Mc de diferentes materiales de Mott, se aporta la Tabla 1 del presente documento.energy, is in a range XT = | (Tt-Ta_Mc) | / Ta-mc <20%, where the Ta-Mc temperature corresponds to the A-MC transition of the material. More preferably, XT <10% and, even more preferably, XT <5%. As reference of the Ta-Mc temperature values of different Mott materials, Table 1 of this document is provided.

Material Temperatura (A^MC) (K)  Material Temperature (A ^ MC) (K)

Oxidos  Oxides
NiO 525  NiO 525

Simples  Simple
VO2 340  VO2 340

CuO 293  CuO 293

LaCoO3 490  LaCoO3 490

PrCoO3 525  PrCoO3 525

Cobaltitas  Cobaltites
NdCoO3 575  NdCoO3 575

SmCoO3 610  SmCoO3 610

EuCoO3 625  EuCoO3 625

GaCoO3 650  GaCoO3 650

Cobaltita dopada  Doped Cobaltite
La0,9Sr0,1CoO3 400  La0,9Sr0,1CoO3 400

Perovskitas  Perovskites
SmNiO3 400  SmNiO3 400

Ni  Neither
EuNiO3 420  EuNiO3 420

Mn  Mn
LaMnO3 750  LaMnO3 750

Nanoestructuras de carbono  Carbon nanostructures
C 300  C 300

Tabla 1. Temperatura Ta-Mc de diferentes materiales de Mott.Table 1. Ta-Mc temperature of different Mott materials.

En otras realizaciones preferentes de la invention, el material de Mott y/o la matriz espaciadora de soporte del medio de calentamiento pueden ser modificados para una respuesta termica y/o catalltica particular, mediante la introduction de dopantes o fases activas. Dichos dopantes o fases activas, especialmente para oxidos mixtos, pueden mejorar la respuesta especlfica del material de Mott, siempre y cuando no se destruya el caracter correlacionado de los portadores de carga. La familia La1-XCeXCoO3 es un ejemplo adecuado de sistemas dopados de este tipo. La introduccion de Ce u otros donadores de carga permiten adelantar la transicion A-MC. A su vez, es posible combinar varios materiales de Mott en la matriz espaciadora, por ejemplo con el objeto de que la disipacion termica se produzca por fases.In other preferred embodiments of the invention, the Mott material and / or the support spacer matrix of the heating medium can be modified for a particular thermal and / or catalytic response, by introducing dopants or active phases. Such dopants or active phases, especially for mixed oxides, can improve the specific response of Mott's material, as long as the correlated character of the load carriers is not destroyed. The La1-XCeXCoO3 family is a suitable example of doped systems of this type. The introduction of Ce or other load donors allows to advance the A-MC transition. In turn, it is possible to combine several Mott materials in the spacer matrix, for example in order that the thermal dissipation occurs in phases.

Tlpicamente, para obtener una absorcion de energla homogenea a nivel macroscopico, las nanopartlculas estan distribuidas sobre la matriz de forma uniforme, para evitar la formation de areas calientes macroscopicas. No obstante, como realization complementaria de la invencion, el medio de calentamiento de la invencion puede comprender una arquitectura especlfica, donde las micro o nanopartlculas sensibles se disponen segun una determinada organization espacial no homogenea en la matriz espaciadora, a fin de introducir gradientesTypically, to obtain a homogeneous energy absorption at the macroscopic level, the nanoparticles are distributed evenly over the matrix, to avoid the formation of macroscopic hot areas. However, as a complementary embodiment of the invention, the heating means of the invention may comprise a specific architecture, where the sensitive micro or nanoparticles are arranged according to a specific non-homogeneous spatial organization in the spacer matrix, in order to introduce gradients

55

1010

15fifteen

20twenty

2525

3030

3535

termicos controlados. En algunas realizaciones preferidas, las micro o nanopartlcuias de Mott pueden estar distribuidas en gradiente, es decir, que en ciertas regiones de la matriz de soporte haya un mayor numero de nanopartlculas y que este numero vaya disminuyendo en otras zonas a lo largo de cualquier direction, lo que permitirla inducir gradientes termicos controlados en el medio de calentamiento.thermal controlled. In some preferred embodiments, Mott micro or nanopartlcuias may be distributed in a gradient, that is, in certain regions of the support matrix there is a greater number of nanoparticles and that this number decreases in other areas along any direction. , which would allow it to induce controlled thermal gradients in the heating medium.

De este modo, se consigue que la respuesta volumetrica o superficial del medio posea un comportamiento selectivo, lo que permite generar focos de disipacion en el medio de calentamiento. Esta aplicacion puede resultar de gran utilidad en determinadas aplicaciones de la invention en las que se requiera crear puntos especlficos de calor dentro del medio.In this way, it is achieved that the volumetric or surface response of the medium possesses a selective behavior, which allows to generate dissipation foci in the heating medium. This application can be very useful in certain applications of the invention in which it is required to create specific heat points within the medium.

En otras realizaciones de la invencion, los materiales de Mott se pueden disponer especlficamente formando multiples capas, en espesor suficiente como para producir una barrera que impida tanto la penetracion de la radiacion microondas al seno del material, una vez producida la transition A-MC, as! como la reflexion de la radiation.In other embodiments of the invention, Mott materials can be arranged specifically forming multiple layers, in sufficient thickness to produce a barrier that prevents both the penetration of microwave radiation into the material, once the A-MC transition has occurred, ace! as the reflection of radiation.

- Ejemplos de realizaciones de la invencion:- Examples of embodiments of the invention:

1. Calentamiento de laminas planas. Muestras dispuestas dentro de una gula de ondas monomodal, a 2,45 GHz y una potencia de 60W:1. Heating of flat sheets. Samples arranged within a monomodal wave glutton, at 2.45 GHz and a power of 60W:

La Figura 1a presenta la evolution de la temperatura obtenida por termografla en laminas conteniendo un 2% en peso de nanopartlculas de perovskita LaBO3 (B = Cr, Mn, Fe, Co, Ni) o de nanotubos de carbono (CNTs), sobre KBr como aglutinante en una matriz transparente. En cualquiera de los casos mostrados, no se supera el llmite de percolation para la muestras. Se observa como la disipacion de energla para LaCoO3 crece exponencialmente a partir de los 500 K. Comenzando en 500 K se inicia la transicion A-MC, y a la vista del crecimiento de la disipacion dielectrica, se ejemplifica que LaCoO3 es una material de Mott muy eficiente para aplicaciones por encima de la temperatura de transicion. En cambio los materiales basados en carbono son ejemplos muy utiles para aplicaciones a temperatura ambiente. La Figura 1b muestra una termografla en laminas conteniendo un 20% en peso de nanopartlculas de perovskita LaBO3. En caso de que suceda una transicion A-MC, se ha superado el llmite de carga necesario para la percolacion electrica. En este caso, LaMnO3 es el material que mas se calienta, puesto que su estado metalico se manifiesta por encima de los 750 K. Para el resto de las composiciones, las muestras se comportan como un espejo, propiciando que la radiacion/informacion se refleje y no se disipe.Figure 1a shows the evolution of the temperature obtained by thermography in sheets containing 2% by weight of Labo3 perovskite nanoparticles (B = Cr, Mn, Fe, Co, Ni) or carbon nanotubes (CNTs), on KBr as binder in a transparent matrix. In any of the cases shown, the percolation limit for the samples is not exceeded. It is observed how the energy dissipation for LaCoO3 grows exponentially from 500 K. Starting at 500 K the A-MC transition begins, and in view of the growth of the dielectric dissipation, it is exemplified that LaCoO3 is a very Mott material Efficient for applications above the transition temperature. In contrast, carbon-based materials are very useful examples for applications at room temperature. Figure 1b shows a sheet thermograph containing 20% by weight of Lavs3 perovskite nanoparticles. In the event of an A-MC transition, the charge limit necessary for electric percolation has been exceeded. In this case, LaMnO3 is the material that warms the most, since its metallic state manifests above 750 K. For the rest of the compositions, the samples behave like a mirror, causing the radiation / information to be reflected. And don't dissipate.

55

1010

15fifteen

20twenty

2525

3030

2. Respuesta termica ultrarrapida en microrreactores asistidos mediante microondas:2. Ultra-fast thermal response in microwave-assisted microreactors:

Un segundo ejemplo de los medios de calentamiento de la invention son partlculas de LaCoO3 dispuestas sobre una placa de cuarzo, para lograr un calentamiento selectivo en dos dimensiones. El ejemplo muestra la estabilidad de las nanopartlculas LaCoO3 bajo irradiation de microondas en varios soportes planos. Para canales de cuarzo de 2 x 0,2 cm, se logra contar con sistemas estables con solo 0,18 mg de LaCoO3 (Figura 2a). Ademas, se observa una respuesta ultrarrapida del sistema bajo pulsos con rampas de temperatura de aproximadamente 500 K/s, ver Figura 2b. El gradiente de temperatura entre la superficie de los catalizadores y el medio es muy acusado. En este caso particular, la invencion permite una respuesta termica ultrarrapida en microsistemas, solo accesible bajo excitation electromagnetica.A second example of the heating means of the invention are LaCoO3 particles arranged on a quartz plate, to achieve selective heating in two dimensions. The example shows the stability of the LaCoO3 nanoparticles under microwave irradiation on several flat supports. For 2 x 0.2 cm quartz channels, stable systems with only 0.18 mg of LaCoO3 are achieved (Figure 2a). In addition, an ultra-rapid response of the system is observed under pulses with temperature ramps of approximately 500 K / s, see Figure 2b. The temperature gradient between the surface of the catalysts and the medium is very pronounced. In this particular case, the invention allows an ultra-rapid thermal response in microsystems, only accessible under electromagnetic excitation.

3. Nanopartlculas de perovskita con composition base LaCoO3 y LaMnO3 dispersadas en cordierita:3. Perovskite nanoparticles with LaCoO3 and LaMnO3 base composition dispersed in cordierite:

Como ejemplo de aplicaciones catallticas de la invencion, se han utilizado monolitos de cordierita en cuya superficie se han dispersado nanopartlculas de Mott, en este caso LaCoO3 y LaMnO3. La carga de las partlculas MFC es inferior al llmite de percolation, aproximadamente en un 20%-30% de area superficial (5% en peso). Los monolitos sembrados se introducen en la gula de ondas a 30W. El material LaMnO3 apenas genera electrones calientes, al contrario que la muestra de LaCoO3 (ver Figura 3). La Figura 4 muestra un ahorro en torno al 10% para la combustion de hexano en la comparacion activation electromagnetica, frente a calentamiento convencional.As an example of catalytic applications of the invention, cordierite monoliths have been used on whose surface Mott nanoparticles have been dispersed, in this case LaCoO3 and LaMnO3. The loading of the MFC particles is less than the percolation limit, approximately 20% -30% of surface area (5% by weight). The seeded monoliths are introduced into the gluttony wave at 30W. The LaMnO3 material barely generates hot electrons, unlike the LaCoO3 sample (see Figure 3). Figure 4 shows a saving of around 10% for the combustion of hexane in the electromagnetic activation comparison, compared to conventional heating.

4. Apantallamiento:4. Shielding:

La Figura 5 muestra de perfil dos placas de alumina, 4 x 4 x 0,5 cm, donde se ha depositado una capa de partlculas de oxido de vanadio, VO2. Una placa esta situada dentro de la gula de ondas, apantallando el paso de la radiation desde la fuente, por lo que solo se observa la disipacion por parte de la primera de las capas de VO2.Figure 5 shows in profile two plates of alumina, 4 x 4 x 0.5 cm, where a layer of vanadium oxide particles, VO2, has been deposited. A plate is located inside the wave glutton, shielding the radiation path from the source, so that only the dissipation by the first of the VO2 layers is observed.

Claims (18)

55 1010 15fifteen 20twenty 2525 3030 3535 REIVINDICACIONES 1Medio de calentamiento sensible a la radiacion electromagnetica caracterizado por que comprende micropartlculas y/o nanopartlculas de un material de Mott, dispuestas en la superficie y/o el volumen de una matriz espaciadora de dichas partlculas, donde la concentracion en volumen de dicho material de Mott en la matriz espaciadora es igual o inferior a su llmite de percolacion.1 Heating medium sensitive to electromagnetic radiation characterized in that it comprises microparticles and / or nanoparticles of a Mott material, arranged on the surface and / or the volume of a spacer matrix of said particles, where the volume concentration of said Mott material in the spacer matrix it is equal to or less than its percolation limit. 2. - Medio segun la reivindicacion anterior, donde el material de Mott presenta una concentracion de entre el 1% y el 30% en volumen en dicha matriz espaciadora.2. - Medium according to the previous claim, where Mott material has a concentration of between 1% and 30% by volume in said spacer matrix. 3. - Medio segun la reivindicacion anterior, donde el material de Mott presenta una concentracion de entre el 10% y el 20% en volumen en dicha matriz espaciadora.3. - Medium according to the previous claim, where Mott material has a concentration of between 10% and 20% by volume in said spacer matrix. 4. - Medio segun cualquiera de las reivindicaciones anteriores, donde el material de Mott se encuentra a una temperatura Tt en el rango |(Tt-Ta-mc)|/Ta-mc < 20%, donde la temperatura Ta-mc es la correspondiente a la transicion A-MC del material.4. - Medium according to any of the preceding claims, wherein the Mott material is at a temperature Tt in the range | (Tt-Ta-mc) | / Ta-mc <20%, where the temperature Ta-mc is the corresponding to the A-MC transition of the material. 5. -Medio segun la reivindicacion anterior, donde el material de Mott se encuentra a una temperatura TT en el rango |(TT-Ta-mc)|/Ta-mc < 10%.5. -Average according to the previous claim, where Mott material is at a temperature TT in the range | (TT-Ta-mc) | / Ta-mc <10%. 6. - Medio segun la reivindicacion anterior, donde el material de Mott se encuentra a una temperatura TT en el rango |(TT-Ta-mc)|/Ta-mc < 5%.6. - Medium according to the preceding claim, wherein the Mott material is at a temperature TT in the range | (TT-Ta-mc) | / Ta-mc <5%. 7. - Medio segun cualquiera de las reivindicaciones anteriores, donde el material de Mott comprende uno o mas de los siguientes: oxidos simples, cobaltitas, perovskitas, magnetita, nanoestructuras de carbono.7. - Medium according to any of the preceding claims, wherein the Mott material comprises one or more of the following: simple oxides, cobaltites, perovskites, magnetite, carbon nanostructures. 8. - Medio segun la reivindicacion anterior, que comprende uno o mas de los siguientes compuestos: NiO, VO2, CuO, LaCoO3, PrCoO3, NdCoO3, SmCoO3, EuCoO3, GaCoO3, La0,9Sr0,1CoO3, SmNiO3, EuNiO3, LaMnO3, C, La1-XSrXNiO3.8. - Medium according to the preceding claim, comprising one or more of the following compounds: NiO, VO2, CuO, LaCoO3, PrCoO3, NdCoO3, SmCoO3, EuCoO3, GaCoO3, La0,9Sr0,1CoO3, SmNiO3, EuNi3, LaMnO3, LaMnO3, LaMnO3 , La1-XSrXNiO3. 9. - Medio segun cualquiera de las reivindicaciones anteriores, que comprende sustancias dopantes o fases activas en el entorno del material de Mott.9. - Medium according to any of the preceding claims, comprising doping substances or active phases in the environment of the Mott material. 55 1010 15fifteen 20twenty 2525 3030 10. - Medio segun cualquiera de las reivindicaciones anteriores, donde la matriz espaciadora comprende un material no conductor transparente a la radiacion electromagnetica.10. - Medium according to any of the preceding claims, wherein the spacer matrix comprises a non-conductive material transparent to electromagnetic radiation. 11. - Medio segun cualquiera de las reivindicaciones anteriores, donde la matriz espaciadora comprende una estructura basada en uno o mas de los siguientes: monolitos de cordierita, KBr, zeolitas acidas y calcicas, alumina, TiO2, CeO2, un oxido metalico formalmente sin electrones d o f en la capa de Valencia, un fluido dielectrico.11. - Medium according to any of the preceding claims, wherein the spacer matrix comprises a structure based on one or more of the following: cordierite monoliths, KBr, acidic and calcium zeolites, alumina, TiO2, CeO2, a formally electron-free metal oxide DOF in the Valencia layer, a dielectric fluid. 12. - Medio segun cualquiera de las reivindicaciones 1-9, donde la matriz espaciadora comprende un material capaz de absorber radiacion electromagnetica.12. - Medium according to any of claims 1-9, wherein the spacer matrix comprises a material capable of absorbing electromagnetic radiation. 13. - Medio segun la reivindicacion anterior, donde el material capaz de absorber radiacion electromagnetica comprende una zeolita sodica.13. - Medium according to the preceding claim, wherein the material capable of absorbing electromagnetic radiation comprises a sodium zeolite. 14. - Metodo de calentamiento de materiales que comprende la aplicacion de radiacion no ionizante a un medio de calentamiento segun cualquiera de las reivindicaciones 1-13.14. - Method of heating materials comprising the application of non-ionizing radiation to a heating medium according to any of claims 1-13. 15. - Metodo segun la reivindicacion 14, donde la radiacion se encuentra en el rango de frecuencias de las microondas y/o radiofrecuencia.15. - Method according to claim 14, wherein the radiation is in the microwave and / or radiofrequency frequency range. 16. - Metodo segun cualquiera de las reivindicaciones 14-15, donde las partlculas del material de Mott se disponen de forma inhomogenea en la matriz espaciadora, de forma que se generen gradientes termicos ante la aplicacion de radiacion, para producir un calentamiento superficial o volumetrico selectivo.16. - Method according to any of claims 14-15, wherein the particles of the Mott material are arranged inhomogeneously in the spacer matrix, so that thermal gradients are generated before the application of radiation, to produce a surface or volumetric heating selective. 17. - Metodo segun cualquiera de las reivindicaciones 14-16, donde la aplicacion de la radiacion se opera de forma pulsada mediante absorcion-irradiacion.17. - Method according to any of claims 14-16, wherein the application of the radiation is operated pulsed by absorption-irradiation. 18. - Uso de un medio de calentamiento segun cualquiera de las reivindicaciones 1-13 en un reactor catalltico.18. - Use of a heating medium according to any of claims 1-13 in a catalytic reactor.
ES201430542A 2014-04-11 2014-04-11 HEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS Active ES2551014B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201430542A ES2551014B1 (en) 2014-04-11 2014-04-11 HEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS
PCT/ES2015/070270 WO2015155395A1 (en) 2014-04-11 2015-04-06 Heating means sensitive to electromagnetic radiation, based on mott materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201430542A ES2551014B1 (en) 2014-04-11 2014-04-11 HEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS

Publications (2)

Publication Number Publication Date
ES2551014A1 ES2551014A1 (en) 2015-11-13
ES2551014B1 true ES2551014B1 (en) 2016-08-23

Family

ID=54287344

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201430542A Active ES2551014B1 (en) 2014-04-11 2014-04-11 HEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS

Country Status (2)

Country Link
ES (1) ES2551014B1 (en)
WO (1) WO2015155395A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109225240A (en) * 2018-09-29 2019-01-18 佛山科学技术学院 A kind of advanced oxidation processing method of LaCo0.9Ti0.1O3- δ catalyst

Also Published As

Publication number Publication date
WO2015155395A1 (en) 2015-10-15
ES2551014A1 (en) 2015-11-13

Similar Documents

Publication Publication Date Title
Kong et al. Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins
Moitra et al. Synthesis and microwave absorption properties of BiFeO3 nanowire-RGO nanocomposite and first-principles calculations for insight of electromagnetic properties and electronic structures
Correas-Serrano et al. Plasmon canalization and tunneling over anisotropic metasurfaces
Hassan et al. Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A= Ca, Sr, Ba) using density functional theory
US20070194016A1 (en) Useful energy product
Rahmanzadeh et al. Analytical investigation of ultrabroadband plasma–graphene radar absorbing structures
JP2006522435A (en) Cross-reference to the application of artificial dielectric systems and related equipment for electromagnetic coatings and susceptors
WO2013083351A1 (en) Graphene-based nanodevices for terahertz electronics
Yu et al. Hard carbon nanotube sponges for highly efficient cooling via moisture absorption–desorption process
Fal et al. Experimental investigation of electrical conductivity and permittivity of SC-TiO 2-EG nanofluids
Peymanfar et al. Recent advances in microwave-absorbing materials fabricated using organic conductive polymers
Bafekry et al. Two-dimensional Dirac half-metal in porous carbon nitride C6N7 monolayer via atomic doping
Wu et al. Effect of rare earth dopants on the morphologies and photocatalytic activities of BiFeO 3 microcrystallites
ES2551014B1 (en) HEATING MEDIA SENSITIVE TO ELECTROMAGNETIC RADIATION BASED ON MOTT MATERIALS
Gracia et al. Nano-heaters: New insights on the outstanding deposition of dielectric energy on perovskite nanoparticles
Klemmed et al. Hybrid plasmonic–aerogel materials as optical superheaters with engineered resonances
JP2021528701A (en) Lossy devices with asymmetric phase transfer of waves
JPWO2017141682A1 (en) Thermo-light conversion element and thermoelectric conversion element
Lone et al. Metal–organic precursor synthesis, structural characterization, and multiferroic properties of GdFeO3 nanoparticles
Al Naim et al. Bismuth telluride (Bi2Te3) nanoparticles as a brilliant microwave absorber: a new exploration
Mohammed et al. Recent progress in hexagonal ferrites based composites for microwave absorption
Bosisio et al. Gate-modulated thermopower in disordered nanowires: I. Low temperature coherent regime
Ishfaq et al. First principles insight into physical properties of CaX2O4 (X= In, Gd) spinels for optical and spintronic applications
Ma et al. Excellent energy‐storage performance in lead‐free capacitors with highly dynamic polarization heterogeneous nanoregions
Zhang et al. Fabrication and characterisation of Magneli phase Ti4O7 nanoparticles

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2551014

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20160823